xref: /openbmc/linux/kernel/kprobes.c (revision f220d3eb)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51 
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56 
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 
60 
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64 
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67 
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74 
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 					unsigned int __unused)
77 {
78 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80 
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83 	return &(kretprobe_table_locks[hash].lock);
84 }
85 
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88 
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91  * kprobe->ainsn.insn points to the copy of the instruction to be
92  * single-stepped. x86_64, POWER4 and above have no-exec support and
93  * stepping on the instruction on a vmalloced/kmalloced/data page
94  * is a recipe for disaster
95  */
96 struct kprobe_insn_page {
97 	struct list_head list;
98 	kprobe_opcode_t *insns;		/* Page of instruction slots */
99 	struct kprobe_insn_cache *cache;
100 	int nused;
101 	int ngarbage;
102 	char slot_used[];
103 };
104 
105 #define KPROBE_INSN_PAGE_SIZE(slots)			\
106 	(offsetof(struct kprobe_insn_page, slot_used) +	\
107 	 (sizeof(char) * (slots)))
108 
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113 
114 enum kprobe_slot_state {
115 	SLOT_CLEAN = 0,
116 	SLOT_DIRTY = 1,
117 	SLOT_USED = 2,
118 };
119 
120 void __weak *alloc_insn_page(void)
121 {
122 	return module_alloc(PAGE_SIZE);
123 }
124 
125 void __weak free_insn_page(void *page)
126 {
127 	module_memfree(page);
128 }
129 
130 struct kprobe_insn_cache kprobe_insn_slots = {
131 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 	.alloc = alloc_insn_page,
133 	.free = free_insn_page,
134 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 	.insn_size = MAX_INSN_SIZE,
136 	.nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139 
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146 	struct kprobe_insn_page *kip;
147 	kprobe_opcode_t *slot = NULL;
148 
149 	/* Since the slot array is not protected by rcu, we need a mutex */
150 	mutex_lock(&c->mutex);
151  retry:
152 	rcu_read_lock();
153 	list_for_each_entry_rcu(kip, &c->pages, list) {
154 		if (kip->nused < slots_per_page(c)) {
155 			int i;
156 			for (i = 0; i < slots_per_page(c); i++) {
157 				if (kip->slot_used[i] == SLOT_CLEAN) {
158 					kip->slot_used[i] = SLOT_USED;
159 					kip->nused++;
160 					slot = kip->insns + (i * c->insn_size);
161 					rcu_read_unlock();
162 					goto out;
163 				}
164 			}
165 			/* kip->nused is broken. Fix it. */
166 			kip->nused = slots_per_page(c);
167 			WARN_ON(1);
168 		}
169 	}
170 	rcu_read_unlock();
171 
172 	/* If there are any garbage slots, collect it and try again. */
173 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 		goto retry;
175 
176 	/* All out of space.  Need to allocate a new page. */
177 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 	if (!kip)
179 		goto out;
180 
181 	/*
182 	 * Use module_alloc so this page is within +/- 2GB of where the
183 	 * kernel image and loaded module images reside. This is required
184 	 * so x86_64 can correctly handle the %rip-relative fixups.
185 	 */
186 	kip->insns = c->alloc();
187 	if (!kip->insns) {
188 		kfree(kip);
189 		goto out;
190 	}
191 	INIT_LIST_HEAD(&kip->list);
192 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 	kip->slot_used[0] = SLOT_USED;
194 	kip->nused = 1;
195 	kip->ngarbage = 0;
196 	kip->cache = c;
197 	list_add_rcu(&kip->list, &c->pages);
198 	slot = kip->insns;
199 out:
200 	mutex_unlock(&c->mutex);
201 	return slot;
202 }
203 
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207 	kip->slot_used[idx] = SLOT_CLEAN;
208 	kip->nused--;
209 	if (kip->nused == 0) {
210 		/*
211 		 * Page is no longer in use.  Free it unless
212 		 * it's the last one.  We keep the last one
213 		 * so as not to have to set it up again the
214 		 * next time somebody inserts a probe.
215 		 */
216 		if (!list_is_singular(&kip->list)) {
217 			list_del_rcu(&kip->list);
218 			synchronize_rcu();
219 			kip->cache->free(kip->insns);
220 			kfree(kip);
221 		}
222 		return 1;
223 	}
224 	return 0;
225 }
226 
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229 	struct kprobe_insn_page *kip, *next;
230 
231 	/* Ensure no-one is interrupted on the garbages */
232 	synchronize_sched();
233 
234 	list_for_each_entry_safe(kip, next, &c->pages, list) {
235 		int i;
236 		if (kip->ngarbage == 0)
237 			continue;
238 		kip->ngarbage = 0;	/* we will collect all garbages */
239 		for (i = 0; i < slots_per_page(c); i++) {
240 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 				break;
242 		}
243 	}
244 	c->nr_garbage = 0;
245 	return 0;
246 }
247 
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249 		      kprobe_opcode_t *slot, int dirty)
250 {
251 	struct kprobe_insn_page *kip;
252 	long idx;
253 
254 	mutex_lock(&c->mutex);
255 	rcu_read_lock();
256 	list_for_each_entry_rcu(kip, &c->pages, list) {
257 		idx = ((long)slot - (long)kip->insns) /
258 			(c->insn_size * sizeof(kprobe_opcode_t));
259 		if (idx >= 0 && idx < slots_per_page(c))
260 			goto out;
261 	}
262 	/* Could not find this slot. */
263 	WARN_ON(1);
264 	kip = NULL;
265 out:
266 	rcu_read_unlock();
267 	/* Mark and sweep: this may sleep */
268 	if (kip) {
269 		/* Check double free */
270 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 		if (dirty) {
272 			kip->slot_used[idx] = SLOT_DIRTY;
273 			kip->ngarbage++;
274 			if (++c->nr_garbage > slots_per_page(c))
275 				collect_garbage_slots(c);
276 		} else {
277 			collect_one_slot(kip, idx);
278 		}
279 	}
280 	mutex_unlock(&c->mutex);
281 }
282 
283 /*
284  * Check given address is on the page of kprobe instruction slots.
285  * This will be used for checking whether the address on a stack
286  * is on a text area or not.
287  */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290 	struct kprobe_insn_page *kip;
291 	bool ret = false;
292 
293 	rcu_read_lock();
294 	list_for_each_entry_rcu(kip, &c->pages, list) {
295 		if (addr >= (unsigned long)kip->insns &&
296 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 			ret = true;
298 			break;
299 		}
300 	}
301 	rcu_read_unlock();
302 
303 	return ret;
304 }
305 
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 	.alloc = alloc_insn_page,
311 	.free = free_insn_page,
312 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 	/* .insn_size is initialized later */
314 	.nr_garbage = 0,
315 };
316 #endif
317 #endif
318 
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322 	__this_cpu_write(kprobe_instance, kp);
323 }
324 
325 static inline void reset_kprobe_instance(void)
326 {
327 	__this_cpu_write(kprobe_instance, NULL);
328 }
329 
330 /*
331  * This routine is called either:
332  * 	- under the kprobe_mutex - during kprobe_[un]register()
333  * 				OR
334  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
335  */
336 struct kprobe *get_kprobe(void *addr)
337 {
338 	struct hlist_head *head;
339 	struct kprobe *p;
340 
341 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 	hlist_for_each_entry_rcu(p, head, hlist) {
343 		if (p->addr == addr)
344 			return p;
345 	}
346 
347 	return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350 
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352 
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356 	return p->pre_handler == aggr_pre_handler;
357 }
358 
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 	       list_empty(&p->list);
364 }
365 
366 /*
367  * Keep all fields in the kprobe consistent
368  */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374 
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378 
379 /*
380  * Call all pre_handler on the list, but ignores its return value.
381  * This must be called from arch-dep optimized caller.
382  */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385 	struct kprobe *kp;
386 
387 	list_for_each_entry_rcu(kp, &p->list, list) {
388 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 			set_kprobe_instance(kp);
390 			kp->pre_handler(kp, regs);
391 		}
392 		reset_kprobe_instance();
393 	}
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396 
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400 	struct optimized_kprobe *op;
401 
402 	op = container_of(p, struct optimized_kprobe, kp);
403 	arch_remove_optimized_kprobe(op);
404 	arch_remove_kprobe(p);
405 	kfree(op);
406 }
407 
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411 	struct optimized_kprobe *op;
412 
413 	if (kprobe_aggrprobe(p)) {
414 		op = container_of(p, struct optimized_kprobe, kp);
415 		return arch_prepared_optinsn(&op->optinsn);
416 	}
417 
418 	return 0;
419 }
420 
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424 	struct optimized_kprobe *op;
425 
426 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 	if (!kprobe_aggrprobe(p))
428 		return kprobe_disabled(p);
429 
430 	op = container_of(p, struct optimized_kprobe, kp);
431 
432 	return kprobe_disabled(p) && list_empty(&op->list);
433 }
434 
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438 	struct optimized_kprobe *op;
439 
440 	if (kprobe_aggrprobe(p)) {
441 		op = container_of(p, struct optimized_kprobe, kp);
442 		if (!list_empty(&op->list))
443 			return 1;
444 	}
445 	return 0;
446 }
447 
448 /*
449  * Return an optimized kprobe whose optimizing code replaces
450  * instructions including addr (exclude breakpoint).
451  */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454 	int i;
455 	struct kprobe *p = NULL;
456 	struct optimized_kprobe *op;
457 
458 	/* Don't check i == 0, since that is a breakpoint case. */
459 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 		p = get_kprobe((void *)(addr - i));
461 
462 	if (p && kprobe_optready(p)) {
463 		op = container_of(p, struct optimized_kprobe, kp);
464 		if (arch_within_optimized_kprobe(op, addr))
465 			return p;
466 	}
467 
468 	return NULL;
469 }
470 
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475 
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479 
480 /*
481  * Optimize (replace a breakpoint with a jump) kprobes listed on
482  * optimizing_list.
483  */
484 static void do_optimize_kprobes(void)
485 {
486 	/*
487 	 * The optimization/unoptimization refers online_cpus via
488 	 * stop_machine() and cpu-hotplug modifies online_cpus.
489 	 * And same time, text_mutex will be held in cpu-hotplug and here.
490 	 * This combination can cause a deadlock (cpu-hotplug try to lock
491 	 * text_mutex but stop_machine can not be done because online_cpus
492 	 * has been changed)
493 	 * To avoid this deadlock, caller must have locked cpu hotplug
494 	 * for preventing cpu-hotplug outside of text_mutex locking.
495 	 */
496 	lockdep_assert_cpus_held();
497 
498 	/* Optimization never be done when disarmed */
499 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
500 	    list_empty(&optimizing_list))
501 		return;
502 
503 	mutex_lock(&text_mutex);
504 	arch_optimize_kprobes(&optimizing_list);
505 	mutex_unlock(&text_mutex);
506 }
507 
508 /*
509  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510  * if need) kprobes listed on unoptimizing_list.
511  */
512 static void do_unoptimize_kprobes(void)
513 {
514 	struct optimized_kprobe *op, *tmp;
515 
516 	/* See comment in do_optimize_kprobes() */
517 	lockdep_assert_cpus_held();
518 
519 	/* Unoptimization must be done anytime */
520 	if (list_empty(&unoptimizing_list))
521 		return;
522 
523 	mutex_lock(&text_mutex);
524 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
525 	/* Loop free_list for disarming */
526 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
527 		/* Disarm probes if marked disabled */
528 		if (kprobe_disabled(&op->kp))
529 			arch_disarm_kprobe(&op->kp);
530 		if (kprobe_unused(&op->kp)) {
531 			/*
532 			 * Remove unused probes from hash list. After waiting
533 			 * for synchronization, these probes are reclaimed.
534 			 * (reclaiming is done by do_free_cleaned_kprobes.)
535 			 */
536 			hlist_del_rcu(&op->kp.hlist);
537 		} else
538 			list_del_init(&op->list);
539 	}
540 	mutex_unlock(&text_mutex);
541 }
542 
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546 	struct optimized_kprobe *op, *tmp;
547 
548 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 		BUG_ON(!kprobe_unused(&op->kp));
550 		list_del_init(&op->list);
551 		free_aggr_kprobe(&op->kp);
552 	}
553 }
554 
555 /* Start optimizer after OPTIMIZE_DELAY passed */
556 static void kick_kprobe_optimizer(void)
557 {
558 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
559 }
560 
561 /* Kprobe jump optimizer */
562 static void kprobe_optimizer(struct work_struct *work)
563 {
564 	mutex_lock(&kprobe_mutex);
565 	cpus_read_lock();
566 	/* Lock modules while optimizing kprobes */
567 	mutex_lock(&module_mutex);
568 
569 	/*
570 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
571 	 * kprobes before waiting for quiesence period.
572 	 */
573 	do_unoptimize_kprobes();
574 
575 	/*
576 	 * Step 2: Wait for quiesence period to ensure all potentially
577 	 * preempted tasks to have normally scheduled. Because optprobe
578 	 * may modify multiple instructions, there is a chance that Nth
579 	 * instruction is preempted. In that case, such tasks can return
580 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
581 	 * Note that on non-preemptive kernel, this is transparently converted
582 	 * to synchronoze_sched() to wait for all interrupts to have completed.
583 	 */
584 	synchronize_rcu_tasks();
585 
586 	/* Step 3: Optimize kprobes after quiesence period */
587 	do_optimize_kprobes();
588 
589 	/* Step 4: Free cleaned kprobes after quiesence period */
590 	do_free_cleaned_kprobes();
591 
592 	mutex_unlock(&module_mutex);
593 	cpus_read_unlock();
594 	mutex_unlock(&kprobe_mutex);
595 
596 	/* Step 5: Kick optimizer again if needed */
597 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
598 		kick_kprobe_optimizer();
599 }
600 
601 /* Wait for completing optimization and unoptimization */
602 void wait_for_kprobe_optimizer(void)
603 {
604 	mutex_lock(&kprobe_mutex);
605 
606 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
607 		mutex_unlock(&kprobe_mutex);
608 
609 		/* this will also make optimizing_work execute immmediately */
610 		flush_delayed_work(&optimizing_work);
611 		/* @optimizing_work might not have been queued yet, relax */
612 		cpu_relax();
613 
614 		mutex_lock(&kprobe_mutex);
615 	}
616 
617 	mutex_unlock(&kprobe_mutex);
618 }
619 
620 /* Optimize kprobe if p is ready to be optimized */
621 static void optimize_kprobe(struct kprobe *p)
622 {
623 	struct optimized_kprobe *op;
624 
625 	/* Check if the kprobe is disabled or not ready for optimization. */
626 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
627 	    (kprobe_disabled(p) || kprobes_all_disarmed))
628 		return;
629 
630 	/* kprobes with post_handler can not be optimized */
631 	if (p->post_handler)
632 		return;
633 
634 	op = container_of(p, struct optimized_kprobe, kp);
635 
636 	/* Check there is no other kprobes at the optimized instructions */
637 	if (arch_check_optimized_kprobe(op) < 0)
638 		return;
639 
640 	/* Check if it is already optimized. */
641 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
642 		return;
643 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
644 
645 	if (!list_empty(&op->list))
646 		/* This is under unoptimizing. Just dequeue the probe */
647 		list_del_init(&op->list);
648 	else {
649 		list_add(&op->list, &optimizing_list);
650 		kick_kprobe_optimizer();
651 	}
652 }
653 
654 /* Short cut to direct unoptimizing */
655 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
656 {
657 	lockdep_assert_cpus_held();
658 	arch_unoptimize_kprobe(op);
659 	if (kprobe_disabled(&op->kp))
660 		arch_disarm_kprobe(&op->kp);
661 }
662 
663 /* Unoptimize a kprobe if p is optimized */
664 static void unoptimize_kprobe(struct kprobe *p, bool force)
665 {
666 	struct optimized_kprobe *op;
667 
668 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
669 		return; /* This is not an optprobe nor optimized */
670 
671 	op = container_of(p, struct optimized_kprobe, kp);
672 	if (!kprobe_optimized(p)) {
673 		/* Unoptimized or unoptimizing case */
674 		if (force && !list_empty(&op->list)) {
675 			/*
676 			 * Only if this is unoptimizing kprobe and forced,
677 			 * forcibly unoptimize it. (No need to unoptimize
678 			 * unoptimized kprobe again :)
679 			 */
680 			list_del_init(&op->list);
681 			force_unoptimize_kprobe(op);
682 		}
683 		return;
684 	}
685 
686 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
687 	if (!list_empty(&op->list)) {
688 		/* Dequeue from the optimization queue */
689 		list_del_init(&op->list);
690 		return;
691 	}
692 	/* Optimized kprobe case */
693 	if (force)
694 		/* Forcibly update the code: this is a special case */
695 		force_unoptimize_kprobe(op);
696 	else {
697 		list_add(&op->list, &unoptimizing_list);
698 		kick_kprobe_optimizer();
699 	}
700 }
701 
702 /* Cancel unoptimizing for reusing */
703 static void reuse_unused_kprobe(struct kprobe *ap)
704 {
705 	struct optimized_kprobe *op;
706 
707 	BUG_ON(!kprobe_unused(ap));
708 	/*
709 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
710 	 * there is still a relative jump) and disabled.
711 	 */
712 	op = container_of(ap, struct optimized_kprobe, kp);
713 	WARN_ON_ONCE(list_empty(&op->list));
714 	/* Enable the probe again */
715 	ap->flags &= ~KPROBE_FLAG_DISABLED;
716 	/* Optimize it again (remove from op->list) */
717 	BUG_ON(!kprobe_optready(ap));
718 	optimize_kprobe(ap);
719 }
720 
721 /* Remove optimized instructions */
722 static void kill_optimized_kprobe(struct kprobe *p)
723 {
724 	struct optimized_kprobe *op;
725 
726 	op = container_of(p, struct optimized_kprobe, kp);
727 	if (!list_empty(&op->list))
728 		/* Dequeue from the (un)optimization queue */
729 		list_del_init(&op->list);
730 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
731 
732 	if (kprobe_unused(p)) {
733 		/* Enqueue if it is unused */
734 		list_add(&op->list, &freeing_list);
735 		/*
736 		 * Remove unused probes from the hash list. After waiting
737 		 * for synchronization, this probe is reclaimed.
738 		 * (reclaiming is done by do_free_cleaned_kprobes().)
739 		 */
740 		hlist_del_rcu(&op->kp.hlist);
741 	}
742 
743 	/* Don't touch the code, because it is already freed. */
744 	arch_remove_optimized_kprobe(op);
745 }
746 
747 static inline
748 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
749 {
750 	if (!kprobe_ftrace(p))
751 		arch_prepare_optimized_kprobe(op, p);
752 }
753 
754 /* Try to prepare optimized instructions */
755 static void prepare_optimized_kprobe(struct kprobe *p)
756 {
757 	struct optimized_kprobe *op;
758 
759 	op = container_of(p, struct optimized_kprobe, kp);
760 	__prepare_optimized_kprobe(op, p);
761 }
762 
763 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
764 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
765 {
766 	struct optimized_kprobe *op;
767 
768 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
769 	if (!op)
770 		return NULL;
771 
772 	INIT_LIST_HEAD(&op->list);
773 	op->kp.addr = p->addr;
774 	__prepare_optimized_kprobe(op, p);
775 
776 	return &op->kp;
777 }
778 
779 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
780 
781 /*
782  * Prepare an optimized_kprobe and optimize it
783  * NOTE: p must be a normal registered kprobe
784  */
785 static void try_to_optimize_kprobe(struct kprobe *p)
786 {
787 	struct kprobe *ap;
788 	struct optimized_kprobe *op;
789 
790 	/* Impossible to optimize ftrace-based kprobe */
791 	if (kprobe_ftrace(p))
792 		return;
793 
794 	/* For preparing optimization, jump_label_text_reserved() is called */
795 	cpus_read_lock();
796 	jump_label_lock();
797 	mutex_lock(&text_mutex);
798 
799 	ap = alloc_aggr_kprobe(p);
800 	if (!ap)
801 		goto out;
802 
803 	op = container_of(ap, struct optimized_kprobe, kp);
804 	if (!arch_prepared_optinsn(&op->optinsn)) {
805 		/* If failed to setup optimizing, fallback to kprobe */
806 		arch_remove_optimized_kprobe(op);
807 		kfree(op);
808 		goto out;
809 	}
810 
811 	init_aggr_kprobe(ap, p);
812 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
813 
814 out:
815 	mutex_unlock(&text_mutex);
816 	jump_label_unlock();
817 	cpus_read_unlock();
818 }
819 
820 #ifdef CONFIG_SYSCTL
821 static void optimize_all_kprobes(void)
822 {
823 	struct hlist_head *head;
824 	struct kprobe *p;
825 	unsigned int i;
826 
827 	mutex_lock(&kprobe_mutex);
828 	/* If optimization is already allowed, just return */
829 	if (kprobes_allow_optimization)
830 		goto out;
831 
832 	cpus_read_lock();
833 	kprobes_allow_optimization = true;
834 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
835 		head = &kprobe_table[i];
836 		hlist_for_each_entry_rcu(p, head, hlist)
837 			if (!kprobe_disabled(p))
838 				optimize_kprobe(p);
839 	}
840 	cpus_read_unlock();
841 	printk(KERN_INFO "Kprobes globally optimized\n");
842 out:
843 	mutex_unlock(&kprobe_mutex);
844 }
845 
846 static void unoptimize_all_kprobes(void)
847 {
848 	struct hlist_head *head;
849 	struct kprobe *p;
850 	unsigned int i;
851 
852 	mutex_lock(&kprobe_mutex);
853 	/* If optimization is already prohibited, just return */
854 	if (!kprobes_allow_optimization) {
855 		mutex_unlock(&kprobe_mutex);
856 		return;
857 	}
858 
859 	cpus_read_lock();
860 	kprobes_allow_optimization = false;
861 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
862 		head = &kprobe_table[i];
863 		hlist_for_each_entry_rcu(p, head, hlist) {
864 			if (!kprobe_disabled(p))
865 				unoptimize_kprobe(p, false);
866 		}
867 	}
868 	cpus_read_unlock();
869 	mutex_unlock(&kprobe_mutex);
870 
871 	/* Wait for unoptimizing completion */
872 	wait_for_kprobe_optimizer();
873 	printk(KERN_INFO "Kprobes globally unoptimized\n");
874 }
875 
876 static DEFINE_MUTEX(kprobe_sysctl_mutex);
877 int sysctl_kprobes_optimization;
878 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
879 				      void __user *buffer, size_t *length,
880 				      loff_t *ppos)
881 {
882 	int ret;
883 
884 	mutex_lock(&kprobe_sysctl_mutex);
885 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
886 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
887 
888 	if (sysctl_kprobes_optimization)
889 		optimize_all_kprobes();
890 	else
891 		unoptimize_all_kprobes();
892 	mutex_unlock(&kprobe_sysctl_mutex);
893 
894 	return ret;
895 }
896 #endif /* CONFIG_SYSCTL */
897 
898 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
899 static void __arm_kprobe(struct kprobe *p)
900 {
901 	struct kprobe *_p;
902 
903 	/* Check collision with other optimized kprobes */
904 	_p = get_optimized_kprobe((unsigned long)p->addr);
905 	if (unlikely(_p))
906 		/* Fallback to unoptimized kprobe */
907 		unoptimize_kprobe(_p, true);
908 
909 	arch_arm_kprobe(p);
910 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
911 }
912 
913 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
914 static void __disarm_kprobe(struct kprobe *p, bool reopt)
915 {
916 	struct kprobe *_p;
917 
918 	/* Try to unoptimize */
919 	unoptimize_kprobe(p, kprobes_all_disarmed);
920 
921 	if (!kprobe_queued(p)) {
922 		arch_disarm_kprobe(p);
923 		/* If another kprobe was blocked, optimize it. */
924 		_p = get_optimized_kprobe((unsigned long)p->addr);
925 		if (unlikely(_p) && reopt)
926 			optimize_kprobe(_p);
927 	}
928 	/* TODO: reoptimize others after unoptimized this probe */
929 }
930 
931 #else /* !CONFIG_OPTPROBES */
932 
933 #define optimize_kprobe(p)			do {} while (0)
934 #define unoptimize_kprobe(p, f)			do {} while (0)
935 #define kill_optimized_kprobe(p)		do {} while (0)
936 #define prepare_optimized_kprobe(p)		do {} while (0)
937 #define try_to_optimize_kprobe(p)		do {} while (0)
938 #define __arm_kprobe(p)				arch_arm_kprobe(p)
939 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
940 #define kprobe_disarmed(p)			kprobe_disabled(p)
941 #define wait_for_kprobe_optimizer()		do {} while (0)
942 
943 /* There should be no unused kprobes can be reused without optimization */
944 static void reuse_unused_kprobe(struct kprobe *ap)
945 {
946 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
947 	BUG_ON(kprobe_unused(ap));
948 }
949 
950 static void free_aggr_kprobe(struct kprobe *p)
951 {
952 	arch_remove_kprobe(p);
953 	kfree(p);
954 }
955 
956 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
957 {
958 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
959 }
960 #endif /* CONFIG_OPTPROBES */
961 
962 #ifdef CONFIG_KPROBES_ON_FTRACE
963 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
964 	.func = kprobe_ftrace_handler,
965 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
966 };
967 static int kprobe_ftrace_enabled;
968 
969 /* Must ensure p->addr is really on ftrace */
970 static int prepare_kprobe(struct kprobe *p)
971 {
972 	if (!kprobe_ftrace(p))
973 		return arch_prepare_kprobe(p);
974 
975 	return arch_prepare_kprobe_ftrace(p);
976 }
977 
978 /* Caller must lock kprobe_mutex */
979 static int arm_kprobe_ftrace(struct kprobe *p)
980 {
981 	int ret = 0;
982 
983 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
984 				   (unsigned long)p->addr, 0, 0);
985 	if (ret) {
986 		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
987 			 p->addr, ret);
988 		return ret;
989 	}
990 
991 	if (kprobe_ftrace_enabled == 0) {
992 		ret = register_ftrace_function(&kprobe_ftrace_ops);
993 		if (ret) {
994 			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
995 			goto err_ftrace;
996 		}
997 	}
998 
999 	kprobe_ftrace_enabled++;
1000 	return ret;
1001 
1002 err_ftrace:
1003 	/*
1004 	 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1005 	 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1006 	 * empty filter_hash which would undesirably trace all functions.
1007 	 */
1008 	ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1009 	return ret;
1010 }
1011 
1012 /* Caller must lock kprobe_mutex */
1013 static int disarm_kprobe_ftrace(struct kprobe *p)
1014 {
1015 	int ret = 0;
1016 
1017 	if (kprobe_ftrace_enabled == 1) {
1018 		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1019 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1020 			return ret;
1021 	}
1022 
1023 	kprobe_ftrace_enabled--;
1024 
1025 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1026 			   (unsigned long)p->addr, 1, 0);
1027 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1028 		  p->addr, ret);
1029 	return ret;
1030 }
1031 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1032 #define prepare_kprobe(p)	arch_prepare_kprobe(p)
1033 #define arm_kprobe_ftrace(p)	(-ENODEV)
1034 #define disarm_kprobe_ftrace(p)	(-ENODEV)
1035 #endif
1036 
1037 /* Arm a kprobe with text_mutex */
1038 static int arm_kprobe(struct kprobe *kp)
1039 {
1040 	if (unlikely(kprobe_ftrace(kp)))
1041 		return arm_kprobe_ftrace(kp);
1042 
1043 	cpus_read_lock();
1044 	mutex_lock(&text_mutex);
1045 	__arm_kprobe(kp);
1046 	mutex_unlock(&text_mutex);
1047 	cpus_read_unlock();
1048 
1049 	return 0;
1050 }
1051 
1052 /* Disarm a kprobe with text_mutex */
1053 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1054 {
1055 	if (unlikely(kprobe_ftrace(kp)))
1056 		return disarm_kprobe_ftrace(kp);
1057 
1058 	cpus_read_lock();
1059 	mutex_lock(&text_mutex);
1060 	__disarm_kprobe(kp, reopt);
1061 	mutex_unlock(&text_mutex);
1062 	cpus_read_unlock();
1063 
1064 	return 0;
1065 }
1066 
1067 /*
1068  * Aggregate handlers for multiple kprobes support - these handlers
1069  * take care of invoking the individual kprobe handlers on p->list
1070  */
1071 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1072 {
1073 	struct kprobe *kp;
1074 
1075 	list_for_each_entry_rcu(kp, &p->list, list) {
1076 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1077 			set_kprobe_instance(kp);
1078 			if (kp->pre_handler(kp, regs))
1079 				return 1;
1080 		}
1081 		reset_kprobe_instance();
1082 	}
1083 	return 0;
1084 }
1085 NOKPROBE_SYMBOL(aggr_pre_handler);
1086 
1087 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1088 			      unsigned long flags)
1089 {
1090 	struct kprobe *kp;
1091 
1092 	list_for_each_entry_rcu(kp, &p->list, list) {
1093 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1094 			set_kprobe_instance(kp);
1095 			kp->post_handler(kp, regs, flags);
1096 			reset_kprobe_instance();
1097 		}
1098 	}
1099 }
1100 NOKPROBE_SYMBOL(aggr_post_handler);
1101 
1102 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1103 			      int trapnr)
1104 {
1105 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1106 
1107 	/*
1108 	 * if we faulted "during" the execution of a user specified
1109 	 * probe handler, invoke just that probe's fault handler
1110 	 */
1111 	if (cur && cur->fault_handler) {
1112 		if (cur->fault_handler(cur, regs, trapnr))
1113 			return 1;
1114 	}
1115 	return 0;
1116 }
1117 NOKPROBE_SYMBOL(aggr_fault_handler);
1118 
1119 /* Walks the list and increments nmissed count for multiprobe case */
1120 void kprobes_inc_nmissed_count(struct kprobe *p)
1121 {
1122 	struct kprobe *kp;
1123 	if (!kprobe_aggrprobe(p)) {
1124 		p->nmissed++;
1125 	} else {
1126 		list_for_each_entry_rcu(kp, &p->list, list)
1127 			kp->nmissed++;
1128 	}
1129 	return;
1130 }
1131 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1132 
1133 void recycle_rp_inst(struct kretprobe_instance *ri,
1134 		     struct hlist_head *head)
1135 {
1136 	struct kretprobe *rp = ri->rp;
1137 
1138 	/* remove rp inst off the rprobe_inst_table */
1139 	hlist_del(&ri->hlist);
1140 	INIT_HLIST_NODE(&ri->hlist);
1141 	if (likely(rp)) {
1142 		raw_spin_lock(&rp->lock);
1143 		hlist_add_head(&ri->hlist, &rp->free_instances);
1144 		raw_spin_unlock(&rp->lock);
1145 	} else
1146 		/* Unregistering */
1147 		hlist_add_head(&ri->hlist, head);
1148 }
1149 NOKPROBE_SYMBOL(recycle_rp_inst);
1150 
1151 void kretprobe_hash_lock(struct task_struct *tsk,
1152 			 struct hlist_head **head, unsigned long *flags)
1153 __acquires(hlist_lock)
1154 {
1155 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1156 	raw_spinlock_t *hlist_lock;
1157 
1158 	*head = &kretprobe_inst_table[hash];
1159 	hlist_lock = kretprobe_table_lock_ptr(hash);
1160 	raw_spin_lock_irqsave(hlist_lock, *flags);
1161 }
1162 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1163 
1164 static void kretprobe_table_lock(unsigned long hash,
1165 				 unsigned long *flags)
1166 __acquires(hlist_lock)
1167 {
1168 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1169 	raw_spin_lock_irqsave(hlist_lock, *flags);
1170 }
1171 NOKPROBE_SYMBOL(kretprobe_table_lock);
1172 
1173 void kretprobe_hash_unlock(struct task_struct *tsk,
1174 			   unsigned long *flags)
1175 __releases(hlist_lock)
1176 {
1177 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1178 	raw_spinlock_t *hlist_lock;
1179 
1180 	hlist_lock = kretprobe_table_lock_ptr(hash);
1181 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1182 }
1183 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1184 
1185 static void kretprobe_table_unlock(unsigned long hash,
1186 				   unsigned long *flags)
1187 __releases(hlist_lock)
1188 {
1189 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1190 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1191 }
1192 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1193 
1194 /*
1195  * This function is called from finish_task_switch when task tk becomes dead,
1196  * so that we can recycle any function-return probe instances associated
1197  * with this task. These left over instances represent probed functions
1198  * that have been called but will never return.
1199  */
1200 void kprobe_flush_task(struct task_struct *tk)
1201 {
1202 	struct kretprobe_instance *ri;
1203 	struct hlist_head *head, empty_rp;
1204 	struct hlist_node *tmp;
1205 	unsigned long hash, flags = 0;
1206 
1207 	if (unlikely(!kprobes_initialized))
1208 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1209 		return;
1210 
1211 	INIT_HLIST_HEAD(&empty_rp);
1212 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1213 	head = &kretprobe_inst_table[hash];
1214 	kretprobe_table_lock(hash, &flags);
1215 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1216 		if (ri->task == tk)
1217 			recycle_rp_inst(ri, &empty_rp);
1218 	}
1219 	kretprobe_table_unlock(hash, &flags);
1220 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1221 		hlist_del(&ri->hlist);
1222 		kfree(ri);
1223 	}
1224 }
1225 NOKPROBE_SYMBOL(kprobe_flush_task);
1226 
1227 static inline void free_rp_inst(struct kretprobe *rp)
1228 {
1229 	struct kretprobe_instance *ri;
1230 	struct hlist_node *next;
1231 
1232 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1233 		hlist_del(&ri->hlist);
1234 		kfree(ri);
1235 	}
1236 }
1237 
1238 static void cleanup_rp_inst(struct kretprobe *rp)
1239 {
1240 	unsigned long flags, hash;
1241 	struct kretprobe_instance *ri;
1242 	struct hlist_node *next;
1243 	struct hlist_head *head;
1244 
1245 	/* No race here */
1246 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1247 		kretprobe_table_lock(hash, &flags);
1248 		head = &kretprobe_inst_table[hash];
1249 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1250 			if (ri->rp == rp)
1251 				ri->rp = NULL;
1252 		}
1253 		kretprobe_table_unlock(hash, &flags);
1254 	}
1255 	free_rp_inst(rp);
1256 }
1257 NOKPROBE_SYMBOL(cleanup_rp_inst);
1258 
1259 /* Add the new probe to ap->list */
1260 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1261 {
1262 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1263 
1264 	if (p->post_handler)
1265 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1266 
1267 	list_add_rcu(&p->list, &ap->list);
1268 	if (p->post_handler && !ap->post_handler)
1269 		ap->post_handler = aggr_post_handler;
1270 
1271 	return 0;
1272 }
1273 
1274 /*
1275  * Fill in the required fields of the "manager kprobe". Replace the
1276  * earlier kprobe in the hlist with the manager kprobe
1277  */
1278 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1279 {
1280 	/* Copy p's insn slot to ap */
1281 	copy_kprobe(p, ap);
1282 	flush_insn_slot(ap);
1283 	ap->addr = p->addr;
1284 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1285 	ap->pre_handler = aggr_pre_handler;
1286 	ap->fault_handler = aggr_fault_handler;
1287 	/* We don't care the kprobe which has gone. */
1288 	if (p->post_handler && !kprobe_gone(p))
1289 		ap->post_handler = aggr_post_handler;
1290 
1291 	INIT_LIST_HEAD(&ap->list);
1292 	INIT_HLIST_NODE(&ap->hlist);
1293 
1294 	list_add_rcu(&p->list, &ap->list);
1295 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1296 }
1297 
1298 /*
1299  * This is the second or subsequent kprobe at the address - handle
1300  * the intricacies
1301  */
1302 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1303 {
1304 	int ret = 0;
1305 	struct kprobe *ap = orig_p;
1306 
1307 	cpus_read_lock();
1308 
1309 	/* For preparing optimization, jump_label_text_reserved() is called */
1310 	jump_label_lock();
1311 	mutex_lock(&text_mutex);
1312 
1313 	if (!kprobe_aggrprobe(orig_p)) {
1314 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1315 		ap = alloc_aggr_kprobe(orig_p);
1316 		if (!ap) {
1317 			ret = -ENOMEM;
1318 			goto out;
1319 		}
1320 		init_aggr_kprobe(ap, orig_p);
1321 	} else if (kprobe_unused(ap))
1322 		/* This probe is going to die. Rescue it */
1323 		reuse_unused_kprobe(ap);
1324 
1325 	if (kprobe_gone(ap)) {
1326 		/*
1327 		 * Attempting to insert new probe at the same location that
1328 		 * had a probe in the module vaddr area which already
1329 		 * freed. So, the instruction slot has already been
1330 		 * released. We need a new slot for the new probe.
1331 		 */
1332 		ret = arch_prepare_kprobe(ap);
1333 		if (ret)
1334 			/*
1335 			 * Even if fail to allocate new slot, don't need to
1336 			 * free aggr_probe. It will be used next time, or
1337 			 * freed by unregister_kprobe.
1338 			 */
1339 			goto out;
1340 
1341 		/* Prepare optimized instructions if possible. */
1342 		prepare_optimized_kprobe(ap);
1343 
1344 		/*
1345 		 * Clear gone flag to prevent allocating new slot again, and
1346 		 * set disabled flag because it is not armed yet.
1347 		 */
1348 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1349 			    | KPROBE_FLAG_DISABLED;
1350 	}
1351 
1352 	/* Copy ap's insn slot to p */
1353 	copy_kprobe(ap, p);
1354 	ret = add_new_kprobe(ap, p);
1355 
1356 out:
1357 	mutex_unlock(&text_mutex);
1358 	jump_label_unlock();
1359 	cpus_read_unlock();
1360 
1361 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1362 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1363 		if (!kprobes_all_disarmed) {
1364 			/* Arm the breakpoint again. */
1365 			ret = arm_kprobe(ap);
1366 			if (ret) {
1367 				ap->flags |= KPROBE_FLAG_DISABLED;
1368 				list_del_rcu(&p->list);
1369 				synchronize_sched();
1370 			}
1371 		}
1372 	}
1373 	return ret;
1374 }
1375 
1376 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1377 {
1378 	/* The __kprobes marked functions and entry code must not be probed */
1379 	return addr >= (unsigned long)__kprobes_text_start &&
1380 	       addr < (unsigned long)__kprobes_text_end;
1381 }
1382 
1383 bool within_kprobe_blacklist(unsigned long addr)
1384 {
1385 	struct kprobe_blacklist_entry *ent;
1386 
1387 	if (arch_within_kprobe_blacklist(addr))
1388 		return true;
1389 	/*
1390 	 * If there exists a kprobe_blacklist, verify and
1391 	 * fail any probe registration in the prohibited area
1392 	 */
1393 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1394 		if (addr >= ent->start_addr && addr < ent->end_addr)
1395 			return true;
1396 	}
1397 
1398 	return false;
1399 }
1400 
1401 /*
1402  * If we have a symbol_name argument, look it up and add the offset field
1403  * to it. This way, we can specify a relative address to a symbol.
1404  * This returns encoded errors if it fails to look up symbol or invalid
1405  * combination of parameters.
1406  */
1407 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1408 			const char *symbol_name, unsigned int offset)
1409 {
1410 	if ((symbol_name && addr) || (!symbol_name && !addr))
1411 		goto invalid;
1412 
1413 	if (symbol_name) {
1414 		addr = kprobe_lookup_name(symbol_name, offset);
1415 		if (!addr)
1416 			return ERR_PTR(-ENOENT);
1417 	}
1418 
1419 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1420 	if (addr)
1421 		return addr;
1422 
1423 invalid:
1424 	return ERR_PTR(-EINVAL);
1425 }
1426 
1427 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1428 {
1429 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1430 }
1431 
1432 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1433 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1434 {
1435 	struct kprobe *ap, *list_p;
1436 
1437 	ap = get_kprobe(p->addr);
1438 	if (unlikely(!ap))
1439 		return NULL;
1440 
1441 	if (p != ap) {
1442 		list_for_each_entry_rcu(list_p, &ap->list, list)
1443 			if (list_p == p)
1444 			/* kprobe p is a valid probe */
1445 				goto valid;
1446 		return NULL;
1447 	}
1448 valid:
1449 	return ap;
1450 }
1451 
1452 /* Return error if the kprobe is being re-registered */
1453 static inline int check_kprobe_rereg(struct kprobe *p)
1454 {
1455 	int ret = 0;
1456 
1457 	mutex_lock(&kprobe_mutex);
1458 	if (__get_valid_kprobe(p))
1459 		ret = -EINVAL;
1460 	mutex_unlock(&kprobe_mutex);
1461 
1462 	return ret;
1463 }
1464 
1465 int __weak arch_check_ftrace_location(struct kprobe *p)
1466 {
1467 	unsigned long ftrace_addr;
1468 
1469 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1470 	if (ftrace_addr) {
1471 #ifdef CONFIG_KPROBES_ON_FTRACE
1472 		/* Given address is not on the instruction boundary */
1473 		if ((unsigned long)p->addr != ftrace_addr)
1474 			return -EILSEQ;
1475 		p->flags |= KPROBE_FLAG_FTRACE;
1476 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1477 		return -EINVAL;
1478 #endif
1479 	}
1480 	return 0;
1481 }
1482 
1483 static int check_kprobe_address_safe(struct kprobe *p,
1484 				     struct module **probed_mod)
1485 {
1486 	int ret;
1487 
1488 	ret = arch_check_ftrace_location(p);
1489 	if (ret)
1490 		return ret;
1491 	jump_label_lock();
1492 	preempt_disable();
1493 
1494 	/* Ensure it is not in reserved area nor out of text */
1495 	if (!kernel_text_address((unsigned long) p->addr) ||
1496 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1497 	    jump_label_text_reserved(p->addr, p->addr)) {
1498 		ret = -EINVAL;
1499 		goto out;
1500 	}
1501 
1502 	/* Check if are we probing a module */
1503 	*probed_mod = __module_text_address((unsigned long) p->addr);
1504 	if (*probed_mod) {
1505 		/*
1506 		 * We must hold a refcount of the probed module while updating
1507 		 * its code to prohibit unexpected unloading.
1508 		 */
1509 		if (unlikely(!try_module_get(*probed_mod))) {
1510 			ret = -ENOENT;
1511 			goto out;
1512 		}
1513 
1514 		/*
1515 		 * If the module freed .init.text, we couldn't insert
1516 		 * kprobes in there.
1517 		 */
1518 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1519 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1520 			module_put(*probed_mod);
1521 			*probed_mod = NULL;
1522 			ret = -ENOENT;
1523 		}
1524 	}
1525 out:
1526 	preempt_enable();
1527 	jump_label_unlock();
1528 
1529 	return ret;
1530 }
1531 
1532 int register_kprobe(struct kprobe *p)
1533 {
1534 	int ret;
1535 	struct kprobe *old_p;
1536 	struct module *probed_mod;
1537 	kprobe_opcode_t *addr;
1538 
1539 	/* Adjust probe address from symbol */
1540 	addr = kprobe_addr(p);
1541 	if (IS_ERR(addr))
1542 		return PTR_ERR(addr);
1543 	p->addr = addr;
1544 
1545 	ret = check_kprobe_rereg(p);
1546 	if (ret)
1547 		return ret;
1548 
1549 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1550 	p->flags &= KPROBE_FLAG_DISABLED;
1551 	p->nmissed = 0;
1552 	INIT_LIST_HEAD(&p->list);
1553 
1554 	ret = check_kprobe_address_safe(p, &probed_mod);
1555 	if (ret)
1556 		return ret;
1557 
1558 	mutex_lock(&kprobe_mutex);
1559 
1560 	old_p = get_kprobe(p->addr);
1561 	if (old_p) {
1562 		/* Since this may unoptimize old_p, locking text_mutex. */
1563 		ret = register_aggr_kprobe(old_p, p);
1564 		goto out;
1565 	}
1566 
1567 	cpus_read_lock();
1568 	/* Prevent text modification */
1569 	mutex_lock(&text_mutex);
1570 	ret = prepare_kprobe(p);
1571 	mutex_unlock(&text_mutex);
1572 	cpus_read_unlock();
1573 	if (ret)
1574 		goto out;
1575 
1576 	INIT_HLIST_NODE(&p->hlist);
1577 	hlist_add_head_rcu(&p->hlist,
1578 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1579 
1580 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1581 		ret = arm_kprobe(p);
1582 		if (ret) {
1583 			hlist_del_rcu(&p->hlist);
1584 			synchronize_sched();
1585 			goto out;
1586 		}
1587 	}
1588 
1589 	/* Try to optimize kprobe */
1590 	try_to_optimize_kprobe(p);
1591 out:
1592 	mutex_unlock(&kprobe_mutex);
1593 
1594 	if (probed_mod)
1595 		module_put(probed_mod);
1596 
1597 	return ret;
1598 }
1599 EXPORT_SYMBOL_GPL(register_kprobe);
1600 
1601 /* Check if all probes on the aggrprobe are disabled */
1602 static int aggr_kprobe_disabled(struct kprobe *ap)
1603 {
1604 	struct kprobe *kp;
1605 
1606 	list_for_each_entry_rcu(kp, &ap->list, list)
1607 		if (!kprobe_disabled(kp))
1608 			/*
1609 			 * There is an active probe on the list.
1610 			 * We can't disable this ap.
1611 			 */
1612 			return 0;
1613 
1614 	return 1;
1615 }
1616 
1617 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1618 static struct kprobe *__disable_kprobe(struct kprobe *p)
1619 {
1620 	struct kprobe *orig_p;
1621 	int ret;
1622 
1623 	/* Get an original kprobe for return */
1624 	orig_p = __get_valid_kprobe(p);
1625 	if (unlikely(orig_p == NULL))
1626 		return ERR_PTR(-EINVAL);
1627 
1628 	if (!kprobe_disabled(p)) {
1629 		/* Disable probe if it is a child probe */
1630 		if (p != orig_p)
1631 			p->flags |= KPROBE_FLAG_DISABLED;
1632 
1633 		/* Try to disarm and disable this/parent probe */
1634 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1635 			/*
1636 			 * If kprobes_all_disarmed is set, orig_p
1637 			 * should have already been disarmed, so
1638 			 * skip unneed disarming process.
1639 			 */
1640 			if (!kprobes_all_disarmed) {
1641 				ret = disarm_kprobe(orig_p, true);
1642 				if (ret) {
1643 					p->flags &= ~KPROBE_FLAG_DISABLED;
1644 					return ERR_PTR(ret);
1645 				}
1646 			}
1647 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1648 		}
1649 	}
1650 
1651 	return orig_p;
1652 }
1653 
1654 /*
1655  * Unregister a kprobe without a scheduler synchronization.
1656  */
1657 static int __unregister_kprobe_top(struct kprobe *p)
1658 {
1659 	struct kprobe *ap, *list_p;
1660 
1661 	/* Disable kprobe. This will disarm it if needed. */
1662 	ap = __disable_kprobe(p);
1663 	if (IS_ERR(ap))
1664 		return PTR_ERR(ap);
1665 
1666 	if (ap == p)
1667 		/*
1668 		 * This probe is an independent(and non-optimized) kprobe
1669 		 * (not an aggrprobe). Remove from the hash list.
1670 		 */
1671 		goto disarmed;
1672 
1673 	/* Following process expects this probe is an aggrprobe */
1674 	WARN_ON(!kprobe_aggrprobe(ap));
1675 
1676 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1677 		/*
1678 		 * !disarmed could be happen if the probe is under delayed
1679 		 * unoptimizing.
1680 		 */
1681 		goto disarmed;
1682 	else {
1683 		/* If disabling probe has special handlers, update aggrprobe */
1684 		if (p->post_handler && !kprobe_gone(p)) {
1685 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1686 				if ((list_p != p) && (list_p->post_handler))
1687 					goto noclean;
1688 			}
1689 			ap->post_handler = NULL;
1690 		}
1691 noclean:
1692 		/*
1693 		 * Remove from the aggrprobe: this path will do nothing in
1694 		 * __unregister_kprobe_bottom().
1695 		 */
1696 		list_del_rcu(&p->list);
1697 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1698 			/*
1699 			 * Try to optimize this probe again, because post
1700 			 * handler may have been changed.
1701 			 */
1702 			optimize_kprobe(ap);
1703 	}
1704 	return 0;
1705 
1706 disarmed:
1707 	BUG_ON(!kprobe_disarmed(ap));
1708 	hlist_del_rcu(&ap->hlist);
1709 	return 0;
1710 }
1711 
1712 static void __unregister_kprobe_bottom(struct kprobe *p)
1713 {
1714 	struct kprobe *ap;
1715 
1716 	if (list_empty(&p->list))
1717 		/* This is an independent kprobe */
1718 		arch_remove_kprobe(p);
1719 	else if (list_is_singular(&p->list)) {
1720 		/* This is the last child of an aggrprobe */
1721 		ap = list_entry(p->list.next, struct kprobe, list);
1722 		list_del(&p->list);
1723 		free_aggr_kprobe(ap);
1724 	}
1725 	/* Otherwise, do nothing. */
1726 }
1727 
1728 int register_kprobes(struct kprobe **kps, int num)
1729 {
1730 	int i, ret = 0;
1731 
1732 	if (num <= 0)
1733 		return -EINVAL;
1734 	for (i = 0; i < num; i++) {
1735 		ret = register_kprobe(kps[i]);
1736 		if (ret < 0) {
1737 			if (i > 0)
1738 				unregister_kprobes(kps, i);
1739 			break;
1740 		}
1741 	}
1742 	return ret;
1743 }
1744 EXPORT_SYMBOL_GPL(register_kprobes);
1745 
1746 void unregister_kprobe(struct kprobe *p)
1747 {
1748 	unregister_kprobes(&p, 1);
1749 }
1750 EXPORT_SYMBOL_GPL(unregister_kprobe);
1751 
1752 void unregister_kprobes(struct kprobe **kps, int num)
1753 {
1754 	int i;
1755 
1756 	if (num <= 0)
1757 		return;
1758 	mutex_lock(&kprobe_mutex);
1759 	for (i = 0; i < num; i++)
1760 		if (__unregister_kprobe_top(kps[i]) < 0)
1761 			kps[i]->addr = NULL;
1762 	mutex_unlock(&kprobe_mutex);
1763 
1764 	synchronize_sched();
1765 	for (i = 0; i < num; i++)
1766 		if (kps[i]->addr)
1767 			__unregister_kprobe_bottom(kps[i]);
1768 }
1769 EXPORT_SYMBOL_GPL(unregister_kprobes);
1770 
1771 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1772 					unsigned long val, void *data)
1773 {
1774 	return NOTIFY_DONE;
1775 }
1776 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1777 
1778 static struct notifier_block kprobe_exceptions_nb = {
1779 	.notifier_call = kprobe_exceptions_notify,
1780 	.priority = 0x7fffffff /* we need to be notified first */
1781 };
1782 
1783 unsigned long __weak arch_deref_entry_point(void *entry)
1784 {
1785 	return (unsigned long)entry;
1786 }
1787 
1788 #ifdef CONFIG_KRETPROBES
1789 /*
1790  * This kprobe pre_handler is registered with every kretprobe. When probe
1791  * hits it will set up the return probe.
1792  */
1793 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1794 {
1795 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1796 	unsigned long hash, flags = 0;
1797 	struct kretprobe_instance *ri;
1798 
1799 	/*
1800 	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1801 	 * just skip the probe and increase the (inexact) 'nmissed'
1802 	 * statistical counter, so that the user is informed that
1803 	 * something happened:
1804 	 */
1805 	if (unlikely(in_nmi())) {
1806 		rp->nmissed++;
1807 		return 0;
1808 	}
1809 
1810 	/* TODO: consider to only swap the RA after the last pre_handler fired */
1811 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1812 	raw_spin_lock_irqsave(&rp->lock, flags);
1813 	if (!hlist_empty(&rp->free_instances)) {
1814 		ri = hlist_entry(rp->free_instances.first,
1815 				struct kretprobe_instance, hlist);
1816 		hlist_del(&ri->hlist);
1817 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1818 
1819 		ri->rp = rp;
1820 		ri->task = current;
1821 
1822 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1823 			raw_spin_lock_irqsave(&rp->lock, flags);
1824 			hlist_add_head(&ri->hlist, &rp->free_instances);
1825 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1826 			return 0;
1827 		}
1828 
1829 		arch_prepare_kretprobe(ri, regs);
1830 
1831 		/* XXX(hch): why is there no hlist_move_head? */
1832 		INIT_HLIST_NODE(&ri->hlist);
1833 		kretprobe_table_lock(hash, &flags);
1834 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1835 		kretprobe_table_unlock(hash, &flags);
1836 	} else {
1837 		rp->nmissed++;
1838 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1839 	}
1840 	return 0;
1841 }
1842 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1843 
1844 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1845 {
1846 	return !offset;
1847 }
1848 
1849 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1850 {
1851 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1852 
1853 	if (IS_ERR(kp_addr))
1854 		return false;
1855 
1856 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1857 						!arch_kprobe_on_func_entry(offset))
1858 		return false;
1859 
1860 	return true;
1861 }
1862 
1863 int register_kretprobe(struct kretprobe *rp)
1864 {
1865 	int ret = 0;
1866 	struct kretprobe_instance *inst;
1867 	int i;
1868 	void *addr;
1869 
1870 	if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1871 		return -EINVAL;
1872 
1873 	if (kretprobe_blacklist_size) {
1874 		addr = kprobe_addr(&rp->kp);
1875 		if (IS_ERR(addr))
1876 			return PTR_ERR(addr);
1877 
1878 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1879 			if (kretprobe_blacklist[i].addr == addr)
1880 				return -EINVAL;
1881 		}
1882 	}
1883 
1884 	rp->kp.pre_handler = pre_handler_kretprobe;
1885 	rp->kp.post_handler = NULL;
1886 	rp->kp.fault_handler = NULL;
1887 
1888 	/* Pre-allocate memory for max kretprobe instances */
1889 	if (rp->maxactive <= 0) {
1890 #ifdef CONFIG_PREEMPT
1891 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1892 #else
1893 		rp->maxactive = num_possible_cpus();
1894 #endif
1895 	}
1896 	raw_spin_lock_init(&rp->lock);
1897 	INIT_HLIST_HEAD(&rp->free_instances);
1898 	for (i = 0; i < rp->maxactive; i++) {
1899 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1900 			       rp->data_size, GFP_KERNEL);
1901 		if (inst == NULL) {
1902 			free_rp_inst(rp);
1903 			return -ENOMEM;
1904 		}
1905 		INIT_HLIST_NODE(&inst->hlist);
1906 		hlist_add_head(&inst->hlist, &rp->free_instances);
1907 	}
1908 
1909 	rp->nmissed = 0;
1910 	/* Establish function entry probe point */
1911 	ret = register_kprobe(&rp->kp);
1912 	if (ret != 0)
1913 		free_rp_inst(rp);
1914 	return ret;
1915 }
1916 EXPORT_SYMBOL_GPL(register_kretprobe);
1917 
1918 int register_kretprobes(struct kretprobe **rps, int num)
1919 {
1920 	int ret = 0, i;
1921 
1922 	if (num <= 0)
1923 		return -EINVAL;
1924 	for (i = 0; i < num; i++) {
1925 		ret = register_kretprobe(rps[i]);
1926 		if (ret < 0) {
1927 			if (i > 0)
1928 				unregister_kretprobes(rps, i);
1929 			break;
1930 		}
1931 	}
1932 	return ret;
1933 }
1934 EXPORT_SYMBOL_GPL(register_kretprobes);
1935 
1936 void unregister_kretprobe(struct kretprobe *rp)
1937 {
1938 	unregister_kretprobes(&rp, 1);
1939 }
1940 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1941 
1942 void unregister_kretprobes(struct kretprobe **rps, int num)
1943 {
1944 	int i;
1945 
1946 	if (num <= 0)
1947 		return;
1948 	mutex_lock(&kprobe_mutex);
1949 	for (i = 0; i < num; i++)
1950 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1951 			rps[i]->kp.addr = NULL;
1952 	mutex_unlock(&kprobe_mutex);
1953 
1954 	synchronize_sched();
1955 	for (i = 0; i < num; i++) {
1956 		if (rps[i]->kp.addr) {
1957 			__unregister_kprobe_bottom(&rps[i]->kp);
1958 			cleanup_rp_inst(rps[i]);
1959 		}
1960 	}
1961 }
1962 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1963 
1964 #else /* CONFIG_KRETPROBES */
1965 int register_kretprobe(struct kretprobe *rp)
1966 {
1967 	return -ENOSYS;
1968 }
1969 EXPORT_SYMBOL_GPL(register_kretprobe);
1970 
1971 int register_kretprobes(struct kretprobe **rps, int num)
1972 {
1973 	return -ENOSYS;
1974 }
1975 EXPORT_SYMBOL_GPL(register_kretprobes);
1976 
1977 void unregister_kretprobe(struct kretprobe *rp)
1978 {
1979 }
1980 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1981 
1982 void unregister_kretprobes(struct kretprobe **rps, int num)
1983 {
1984 }
1985 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1986 
1987 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1988 {
1989 	return 0;
1990 }
1991 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1992 
1993 #endif /* CONFIG_KRETPROBES */
1994 
1995 /* Set the kprobe gone and remove its instruction buffer. */
1996 static void kill_kprobe(struct kprobe *p)
1997 {
1998 	struct kprobe *kp;
1999 
2000 	p->flags |= KPROBE_FLAG_GONE;
2001 	if (kprobe_aggrprobe(p)) {
2002 		/*
2003 		 * If this is an aggr_kprobe, we have to list all the
2004 		 * chained probes and mark them GONE.
2005 		 */
2006 		list_for_each_entry_rcu(kp, &p->list, list)
2007 			kp->flags |= KPROBE_FLAG_GONE;
2008 		p->post_handler = NULL;
2009 		kill_optimized_kprobe(p);
2010 	}
2011 	/*
2012 	 * Here, we can remove insn_slot safely, because no thread calls
2013 	 * the original probed function (which will be freed soon) any more.
2014 	 */
2015 	arch_remove_kprobe(p);
2016 }
2017 
2018 /* Disable one kprobe */
2019 int disable_kprobe(struct kprobe *kp)
2020 {
2021 	int ret = 0;
2022 	struct kprobe *p;
2023 
2024 	mutex_lock(&kprobe_mutex);
2025 
2026 	/* Disable this kprobe */
2027 	p = __disable_kprobe(kp);
2028 	if (IS_ERR(p))
2029 		ret = PTR_ERR(p);
2030 
2031 	mutex_unlock(&kprobe_mutex);
2032 	return ret;
2033 }
2034 EXPORT_SYMBOL_GPL(disable_kprobe);
2035 
2036 /* Enable one kprobe */
2037 int enable_kprobe(struct kprobe *kp)
2038 {
2039 	int ret = 0;
2040 	struct kprobe *p;
2041 
2042 	mutex_lock(&kprobe_mutex);
2043 
2044 	/* Check whether specified probe is valid. */
2045 	p = __get_valid_kprobe(kp);
2046 	if (unlikely(p == NULL)) {
2047 		ret = -EINVAL;
2048 		goto out;
2049 	}
2050 
2051 	if (kprobe_gone(kp)) {
2052 		/* This kprobe has gone, we couldn't enable it. */
2053 		ret = -EINVAL;
2054 		goto out;
2055 	}
2056 
2057 	if (p != kp)
2058 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2059 
2060 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2061 		p->flags &= ~KPROBE_FLAG_DISABLED;
2062 		ret = arm_kprobe(p);
2063 		if (ret)
2064 			p->flags |= KPROBE_FLAG_DISABLED;
2065 	}
2066 out:
2067 	mutex_unlock(&kprobe_mutex);
2068 	return ret;
2069 }
2070 EXPORT_SYMBOL_GPL(enable_kprobe);
2071 
2072 /* Caller must NOT call this in usual path. This is only for critical case */
2073 void dump_kprobe(struct kprobe *kp)
2074 {
2075 	pr_err("Dumping kprobe:\n");
2076 	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2077 	       kp->symbol_name, kp->offset, kp->addr);
2078 }
2079 NOKPROBE_SYMBOL(dump_kprobe);
2080 
2081 /*
2082  * Lookup and populate the kprobe_blacklist.
2083  *
2084  * Unlike the kretprobe blacklist, we'll need to determine
2085  * the range of addresses that belong to the said functions,
2086  * since a kprobe need not necessarily be at the beginning
2087  * of a function.
2088  */
2089 static int __init populate_kprobe_blacklist(unsigned long *start,
2090 					     unsigned long *end)
2091 {
2092 	unsigned long *iter;
2093 	struct kprobe_blacklist_entry *ent;
2094 	unsigned long entry, offset = 0, size = 0;
2095 
2096 	for (iter = start; iter < end; iter++) {
2097 		entry = arch_deref_entry_point((void *)*iter);
2098 
2099 		if (!kernel_text_address(entry) ||
2100 		    !kallsyms_lookup_size_offset(entry, &size, &offset))
2101 			continue;
2102 
2103 		ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2104 		if (!ent)
2105 			return -ENOMEM;
2106 		ent->start_addr = entry;
2107 		ent->end_addr = entry + size;
2108 		INIT_LIST_HEAD(&ent->list);
2109 		list_add_tail(&ent->list, &kprobe_blacklist);
2110 	}
2111 	return 0;
2112 }
2113 
2114 /* Module notifier call back, checking kprobes on the module */
2115 static int kprobes_module_callback(struct notifier_block *nb,
2116 				   unsigned long val, void *data)
2117 {
2118 	struct module *mod = data;
2119 	struct hlist_head *head;
2120 	struct kprobe *p;
2121 	unsigned int i;
2122 	int checkcore = (val == MODULE_STATE_GOING);
2123 
2124 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2125 		return NOTIFY_DONE;
2126 
2127 	/*
2128 	 * When MODULE_STATE_GOING was notified, both of module .text and
2129 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2130 	 * notified, only .init.text section would be freed. We need to
2131 	 * disable kprobes which have been inserted in the sections.
2132 	 */
2133 	mutex_lock(&kprobe_mutex);
2134 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2135 		head = &kprobe_table[i];
2136 		hlist_for_each_entry_rcu(p, head, hlist)
2137 			if (within_module_init((unsigned long)p->addr, mod) ||
2138 			    (checkcore &&
2139 			     within_module_core((unsigned long)p->addr, mod))) {
2140 				/*
2141 				 * The vaddr this probe is installed will soon
2142 				 * be vfreed buy not synced to disk. Hence,
2143 				 * disarming the breakpoint isn't needed.
2144 				 *
2145 				 * Note, this will also move any optimized probes
2146 				 * that are pending to be removed from their
2147 				 * corresponding lists to the freeing_list and
2148 				 * will not be touched by the delayed
2149 				 * kprobe_optimizer work handler.
2150 				 */
2151 				kill_kprobe(p);
2152 			}
2153 	}
2154 	mutex_unlock(&kprobe_mutex);
2155 	return NOTIFY_DONE;
2156 }
2157 
2158 static struct notifier_block kprobe_module_nb = {
2159 	.notifier_call = kprobes_module_callback,
2160 	.priority = 0
2161 };
2162 
2163 /* Markers of _kprobe_blacklist section */
2164 extern unsigned long __start_kprobe_blacklist[];
2165 extern unsigned long __stop_kprobe_blacklist[];
2166 
2167 static int __init init_kprobes(void)
2168 {
2169 	int i, err = 0;
2170 
2171 	/* FIXME allocate the probe table, currently defined statically */
2172 	/* initialize all list heads */
2173 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2174 		INIT_HLIST_HEAD(&kprobe_table[i]);
2175 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2176 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2177 	}
2178 
2179 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2180 					__stop_kprobe_blacklist);
2181 	if (err) {
2182 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2183 		pr_err("Please take care of using kprobes.\n");
2184 	}
2185 
2186 	if (kretprobe_blacklist_size) {
2187 		/* lookup the function address from its name */
2188 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2189 			kretprobe_blacklist[i].addr =
2190 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2191 			if (!kretprobe_blacklist[i].addr)
2192 				printk("kretprobe: lookup failed: %s\n",
2193 				       kretprobe_blacklist[i].name);
2194 		}
2195 	}
2196 
2197 #if defined(CONFIG_OPTPROBES)
2198 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2199 	/* Init kprobe_optinsn_slots */
2200 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2201 #endif
2202 	/* By default, kprobes can be optimized */
2203 	kprobes_allow_optimization = true;
2204 #endif
2205 
2206 	/* By default, kprobes are armed */
2207 	kprobes_all_disarmed = false;
2208 
2209 	err = arch_init_kprobes();
2210 	if (!err)
2211 		err = register_die_notifier(&kprobe_exceptions_nb);
2212 	if (!err)
2213 		err = register_module_notifier(&kprobe_module_nb);
2214 
2215 	kprobes_initialized = (err == 0);
2216 
2217 	if (!err)
2218 		init_test_probes();
2219 	return err;
2220 }
2221 
2222 #ifdef CONFIG_DEBUG_FS
2223 static void report_probe(struct seq_file *pi, struct kprobe *p,
2224 		const char *sym, int offset, char *modname, struct kprobe *pp)
2225 {
2226 	char *kprobe_type;
2227 	void *addr = p->addr;
2228 
2229 	if (p->pre_handler == pre_handler_kretprobe)
2230 		kprobe_type = "r";
2231 	else
2232 		kprobe_type = "k";
2233 
2234 	if (!kallsyms_show_value())
2235 		addr = NULL;
2236 
2237 	if (sym)
2238 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2239 			addr, kprobe_type, sym, offset,
2240 			(modname ? modname : " "));
2241 	else	/* try to use %pS */
2242 		seq_printf(pi, "%px  %s  %pS ",
2243 			addr, kprobe_type, p->addr);
2244 
2245 	if (!pp)
2246 		pp = p;
2247 	seq_printf(pi, "%s%s%s%s\n",
2248 		(kprobe_gone(p) ? "[GONE]" : ""),
2249 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2250 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2251 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2252 }
2253 
2254 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2255 {
2256 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2257 }
2258 
2259 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2260 {
2261 	(*pos)++;
2262 	if (*pos >= KPROBE_TABLE_SIZE)
2263 		return NULL;
2264 	return pos;
2265 }
2266 
2267 static void kprobe_seq_stop(struct seq_file *f, void *v)
2268 {
2269 	/* Nothing to do */
2270 }
2271 
2272 static int show_kprobe_addr(struct seq_file *pi, void *v)
2273 {
2274 	struct hlist_head *head;
2275 	struct kprobe *p, *kp;
2276 	const char *sym = NULL;
2277 	unsigned int i = *(loff_t *) v;
2278 	unsigned long offset = 0;
2279 	char *modname, namebuf[KSYM_NAME_LEN];
2280 
2281 	head = &kprobe_table[i];
2282 	preempt_disable();
2283 	hlist_for_each_entry_rcu(p, head, hlist) {
2284 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2285 					&offset, &modname, namebuf);
2286 		if (kprobe_aggrprobe(p)) {
2287 			list_for_each_entry_rcu(kp, &p->list, list)
2288 				report_probe(pi, kp, sym, offset, modname, p);
2289 		} else
2290 			report_probe(pi, p, sym, offset, modname, NULL);
2291 	}
2292 	preempt_enable();
2293 	return 0;
2294 }
2295 
2296 static const struct seq_operations kprobes_seq_ops = {
2297 	.start = kprobe_seq_start,
2298 	.next  = kprobe_seq_next,
2299 	.stop  = kprobe_seq_stop,
2300 	.show  = show_kprobe_addr
2301 };
2302 
2303 static int kprobes_open(struct inode *inode, struct file *filp)
2304 {
2305 	return seq_open(filp, &kprobes_seq_ops);
2306 }
2307 
2308 static const struct file_operations debugfs_kprobes_operations = {
2309 	.open           = kprobes_open,
2310 	.read           = seq_read,
2311 	.llseek         = seq_lseek,
2312 	.release        = seq_release,
2313 };
2314 
2315 /* kprobes/blacklist -- shows which functions can not be probed */
2316 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2317 {
2318 	return seq_list_start(&kprobe_blacklist, *pos);
2319 }
2320 
2321 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2322 {
2323 	return seq_list_next(v, &kprobe_blacklist, pos);
2324 }
2325 
2326 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2327 {
2328 	struct kprobe_blacklist_entry *ent =
2329 		list_entry(v, struct kprobe_blacklist_entry, list);
2330 
2331 	/*
2332 	 * If /proc/kallsyms is not showing kernel address, we won't
2333 	 * show them here either.
2334 	 */
2335 	if (!kallsyms_show_value())
2336 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2337 			   (void *)ent->start_addr);
2338 	else
2339 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2340 			   (void *)ent->end_addr, (void *)ent->start_addr);
2341 	return 0;
2342 }
2343 
2344 static const struct seq_operations kprobe_blacklist_seq_ops = {
2345 	.start = kprobe_blacklist_seq_start,
2346 	.next  = kprobe_blacklist_seq_next,
2347 	.stop  = kprobe_seq_stop,	/* Reuse void function */
2348 	.show  = kprobe_blacklist_seq_show,
2349 };
2350 
2351 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2352 {
2353 	return seq_open(filp, &kprobe_blacklist_seq_ops);
2354 }
2355 
2356 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2357 	.open           = kprobe_blacklist_open,
2358 	.read           = seq_read,
2359 	.llseek         = seq_lseek,
2360 	.release        = seq_release,
2361 };
2362 
2363 static int arm_all_kprobes(void)
2364 {
2365 	struct hlist_head *head;
2366 	struct kprobe *p;
2367 	unsigned int i, total = 0, errors = 0;
2368 	int err, ret = 0;
2369 
2370 	mutex_lock(&kprobe_mutex);
2371 
2372 	/* If kprobes are armed, just return */
2373 	if (!kprobes_all_disarmed)
2374 		goto already_enabled;
2375 
2376 	/*
2377 	 * optimize_kprobe() called by arm_kprobe() checks
2378 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2379 	 * arm_kprobe.
2380 	 */
2381 	kprobes_all_disarmed = false;
2382 	/* Arming kprobes doesn't optimize kprobe itself */
2383 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2384 		head = &kprobe_table[i];
2385 		/* Arm all kprobes on a best-effort basis */
2386 		hlist_for_each_entry_rcu(p, head, hlist) {
2387 			if (!kprobe_disabled(p)) {
2388 				err = arm_kprobe(p);
2389 				if (err)  {
2390 					errors++;
2391 					ret = err;
2392 				}
2393 				total++;
2394 			}
2395 		}
2396 	}
2397 
2398 	if (errors)
2399 		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2400 			errors, total);
2401 	else
2402 		pr_info("Kprobes globally enabled\n");
2403 
2404 already_enabled:
2405 	mutex_unlock(&kprobe_mutex);
2406 	return ret;
2407 }
2408 
2409 static int disarm_all_kprobes(void)
2410 {
2411 	struct hlist_head *head;
2412 	struct kprobe *p;
2413 	unsigned int i, total = 0, errors = 0;
2414 	int err, ret = 0;
2415 
2416 	mutex_lock(&kprobe_mutex);
2417 
2418 	/* If kprobes are already disarmed, just return */
2419 	if (kprobes_all_disarmed) {
2420 		mutex_unlock(&kprobe_mutex);
2421 		return 0;
2422 	}
2423 
2424 	kprobes_all_disarmed = true;
2425 
2426 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2427 		head = &kprobe_table[i];
2428 		/* Disarm all kprobes on a best-effort basis */
2429 		hlist_for_each_entry_rcu(p, head, hlist) {
2430 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2431 				err = disarm_kprobe(p, false);
2432 				if (err) {
2433 					errors++;
2434 					ret = err;
2435 				}
2436 				total++;
2437 			}
2438 		}
2439 	}
2440 
2441 	if (errors)
2442 		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2443 			errors, total);
2444 	else
2445 		pr_info("Kprobes globally disabled\n");
2446 
2447 	mutex_unlock(&kprobe_mutex);
2448 
2449 	/* Wait for disarming all kprobes by optimizer */
2450 	wait_for_kprobe_optimizer();
2451 
2452 	return ret;
2453 }
2454 
2455 /*
2456  * XXX: The debugfs bool file interface doesn't allow for callbacks
2457  * when the bool state is switched. We can reuse that facility when
2458  * available
2459  */
2460 static ssize_t read_enabled_file_bool(struct file *file,
2461 	       char __user *user_buf, size_t count, loff_t *ppos)
2462 {
2463 	char buf[3];
2464 
2465 	if (!kprobes_all_disarmed)
2466 		buf[0] = '1';
2467 	else
2468 		buf[0] = '0';
2469 	buf[1] = '\n';
2470 	buf[2] = 0x00;
2471 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2472 }
2473 
2474 static ssize_t write_enabled_file_bool(struct file *file,
2475 	       const char __user *user_buf, size_t count, loff_t *ppos)
2476 {
2477 	char buf[32];
2478 	size_t buf_size;
2479 	int ret = 0;
2480 
2481 	buf_size = min(count, (sizeof(buf)-1));
2482 	if (copy_from_user(buf, user_buf, buf_size))
2483 		return -EFAULT;
2484 
2485 	buf[buf_size] = '\0';
2486 	switch (buf[0]) {
2487 	case 'y':
2488 	case 'Y':
2489 	case '1':
2490 		ret = arm_all_kprobes();
2491 		break;
2492 	case 'n':
2493 	case 'N':
2494 	case '0':
2495 		ret = disarm_all_kprobes();
2496 		break;
2497 	default:
2498 		return -EINVAL;
2499 	}
2500 
2501 	if (ret)
2502 		return ret;
2503 
2504 	return count;
2505 }
2506 
2507 static const struct file_operations fops_kp = {
2508 	.read =         read_enabled_file_bool,
2509 	.write =        write_enabled_file_bool,
2510 	.llseek =	default_llseek,
2511 };
2512 
2513 static int __init debugfs_kprobe_init(void)
2514 {
2515 	struct dentry *dir, *file;
2516 	unsigned int value = 1;
2517 
2518 	dir = debugfs_create_dir("kprobes", NULL);
2519 	if (!dir)
2520 		return -ENOMEM;
2521 
2522 	file = debugfs_create_file("list", 0400, dir, NULL,
2523 				&debugfs_kprobes_operations);
2524 	if (!file)
2525 		goto error;
2526 
2527 	file = debugfs_create_file("enabled", 0600, dir,
2528 					&value, &fops_kp);
2529 	if (!file)
2530 		goto error;
2531 
2532 	file = debugfs_create_file("blacklist", 0400, dir, NULL,
2533 				&debugfs_kprobe_blacklist_ops);
2534 	if (!file)
2535 		goto error;
2536 
2537 	return 0;
2538 
2539 error:
2540 	debugfs_remove(dir);
2541 	return -ENOMEM;
2542 }
2543 
2544 late_initcall(debugfs_kprobe_init);
2545 #endif /* CONFIG_DEBUG_FS */
2546 
2547 module_init(init_kprobes);
2548