xref: /openbmc/linux/kernel/kprobes.c (revision e7bae9bb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *		Probes initial implementation (includes suggestions from
10  *		Rusty Russell).
11  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *		hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *		interface to access function arguments.
15  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *		exceptions notifier to be first on the priority list.
17  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *		<prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38 #include <linux/perf_event.h>
39 
40 #include <asm/sections.h>
41 #include <asm/cacheflush.h>
42 #include <asm/errno.h>
43 #include <linux/uaccess.h>
44 
45 #define KPROBE_HASH_BITS 6
46 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
47 
48 
49 static int kprobes_initialized;
50 /* kprobe_table can be accessed by
51  * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
52  * Or
53  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
54  */
55 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
56 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
57 
58 /* NOTE: change this value only with kprobe_mutex held */
59 static bool kprobes_all_disarmed;
60 
61 /* This protects kprobe_table and optimizing_list */
62 static DEFINE_MUTEX(kprobe_mutex);
63 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
64 static struct {
65 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
66 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
67 
68 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
69 					unsigned int __unused)
70 {
71 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
72 }
73 
74 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
75 {
76 	return &(kretprobe_table_locks[hash].lock);
77 }
78 
79 /* Blacklist -- list of struct kprobe_blacklist_entry */
80 static LIST_HEAD(kprobe_blacklist);
81 
82 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
83 /*
84  * kprobe->ainsn.insn points to the copy of the instruction to be
85  * single-stepped. x86_64, POWER4 and above have no-exec support and
86  * stepping on the instruction on a vmalloced/kmalloced/data page
87  * is a recipe for disaster
88  */
89 struct kprobe_insn_page {
90 	struct list_head list;
91 	kprobe_opcode_t *insns;		/* Page of instruction slots */
92 	struct kprobe_insn_cache *cache;
93 	int nused;
94 	int ngarbage;
95 	char slot_used[];
96 };
97 
98 #define KPROBE_INSN_PAGE_SIZE(slots)			\
99 	(offsetof(struct kprobe_insn_page, slot_used) +	\
100 	 (sizeof(char) * (slots)))
101 
102 static int slots_per_page(struct kprobe_insn_cache *c)
103 {
104 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
105 }
106 
107 enum kprobe_slot_state {
108 	SLOT_CLEAN = 0,
109 	SLOT_DIRTY = 1,
110 	SLOT_USED = 2,
111 };
112 
113 void __weak *alloc_insn_page(void)
114 {
115 	return module_alloc(PAGE_SIZE);
116 }
117 
118 void __weak free_insn_page(void *page)
119 {
120 	module_memfree(page);
121 }
122 
123 struct kprobe_insn_cache kprobe_insn_slots = {
124 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
125 	.alloc = alloc_insn_page,
126 	.free = free_insn_page,
127 	.sym = KPROBE_INSN_PAGE_SYM,
128 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
129 	.insn_size = MAX_INSN_SIZE,
130 	.nr_garbage = 0,
131 };
132 static int collect_garbage_slots(struct kprobe_insn_cache *c);
133 
134 /**
135  * __get_insn_slot() - Find a slot on an executable page for an instruction.
136  * We allocate an executable page if there's no room on existing ones.
137  */
138 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
139 {
140 	struct kprobe_insn_page *kip;
141 	kprobe_opcode_t *slot = NULL;
142 
143 	/* Since the slot array is not protected by rcu, we need a mutex */
144 	mutex_lock(&c->mutex);
145  retry:
146 	rcu_read_lock();
147 	list_for_each_entry_rcu(kip, &c->pages, list) {
148 		if (kip->nused < slots_per_page(c)) {
149 			int i;
150 			for (i = 0; i < slots_per_page(c); i++) {
151 				if (kip->slot_used[i] == SLOT_CLEAN) {
152 					kip->slot_used[i] = SLOT_USED;
153 					kip->nused++;
154 					slot = kip->insns + (i * c->insn_size);
155 					rcu_read_unlock();
156 					goto out;
157 				}
158 			}
159 			/* kip->nused is broken. Fix it. */
160 			kip->nused = slots_per_page(c);
161 			WARN_ON(1);
162 		}
163 	}
164 	rcu_read_unlock();
165 
166 	/* If there are any garbage slots, collect it and try again. */
167 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
168 		goto retry;
169 
170 	/* All out of space.  Need to allocate a new page. */
171 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
172 	if (!kip)
173 		goto out;
174 
175 	/*
176 	 * Use module_alloc so this page is within +/- 2GB of where the
177 	 * kernel image and loaded module images reside. This is required
178 	 * so x86_64 can correctly handle the %rip-relative fixups.
179 	 */
180 	kip->insns = c->alloc();
181 	if (!kip->insns) {
182 		kfree(kip);
183 		goto out;
184 	}
185 	INIT_LIST_HEAD(&kip->list);
186 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
187 	kip->slot_used[0] = SLOT_USED;
188 	kip->nused = 1;
189 	kip->ngarbage = 0;
190 	kip->cache = c;
191 	list_add_rcu(&kip->list, &c->pages);
192 	slot = kip->insns;
193 
194 	/* Record the perf ksymbol register event after adding the page */
195 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
196 			   PAGE_SIZE, false, c->sym);
197 out:
198 	mutex_unlock(&c->mutex);
199 	return slot;
200 }
201 
202 /* Return 1 if all garbages are collected, otherwise 0. */
203 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
204 {
205 	kip->slot_used[idx] = SLOT_CLEAN;
206 	kip->nused--;
207 	if (kip->nused == 0) {
208 		/*
209 		 * Page is no longer in use.  Free it unless
210 		 * it's the last one.  We keep the last one
211 		 * so as not to have to set it up again the
212 		 * next time somebody inserts a probe.
213 		 */
214 		if (!list_is_singular(&kip->list)) {
215 			/*
216 			 * Record perf ksymbol unregister event before removing
217 			 * the page.
218 			 */
219 			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
220 					   (unsigned long)kip->insns, PAGE_SIZE, true,
221 					   kip->cache->sym);
222 			list_del_rcu(&kip->list);
223 			synchronize_rcu();
224 			kip->cache->free(kip->insns);
225 			kfree(kip);
226 		}
227 		return 1;
228 	}
229 	return 0;
230 }
231 
232 static int collect_garbage_slots(struct kprobe_insn_cache *c)
233 {
234 	struct kprobe_insn_page *kip, *next;
235 
236 	/* Ensure no-one is interrupted on the garbages */
237 	synchronize_rcu();
238 
239 	list_for_each_entry_safe(kip, next, &c->pages, list) {
240 		int i;
241 		if (kip->ngarbage == 0)
242 			continue;
243 		kip->ngarbage = 0;	/* we will collect all garbages */
244 		for (i = 0; i < slots_per_page(c); i++) {
245 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
246 				break;
247 		}
248 	}
249 	c->nr_garbage = 0;
250 	return 0;
251 }
252 
253 void __free_insn_slot(struct kprobe_insn_cache *c,
254 		      kprobe_opcode_t *slot, int dirty)
255 {
256 	struct kprobe_insn_page *kip;
257 	long idx;
258 
259 	mutex_lock(&c->mutex);
260 	rcu_read_lock();
261 	list_for_each_entry_rcu(kip, &c->pages, list) {
262 		idx = ((long)slot - (long)kip->insns) /
263 			(c->insn_size * sizeof(kprobe_opcode_t));
264 		if (idx >= 0 && idx < slots_per_page(c))
265 			goto out;
266 	}
267 	/* Could not find this slot. */
268 	WARN_ON(1);
269 	kip = NULL;
270 out:
271 	rcu_read_unlock();
272 	/* Mark and sweep: this may sleep */
273 	if (kip) {
274 		/* Check double free */
275 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
276 		if (dirty) {
277 			kip->slot_used[idx] = SLOT_DIRTY;
278 			kip->ngarbage++;
279 			if (++c->nr_garbage > slots_per_page(c))
280 				collect_garbage_slots(c);
281 		} else {
282 			collect_one_slot(kip, idx);
283 		}
284 	}
285 	mutex_unlock(&c->mutex);
286 }
287 
288 /*
289  * Check given address is on the page of kprobe instruction slots.
290  * This will be used for checking whether the address on a stack
291  * is on a text area or not.
292  */
293 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
294 {
295 	struct kprobe_insn_page *kip;
296 	bool ret = false;
297 
298 	rcu_read_lock();
299 	list_for_each_entry_rcu(kip, &c->pages, list) {
300 		if (addr >= (unsigned long)kip->insns &&
301 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
302 			ret = true;
303 			break;
304 		}
305 	}
306 	rcu_read_unlock();
307 
308 	return ret;
309 }
310 
311 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
312 			     unsigned long *value, char *type, char *sym)
313 {
314 	struct kprobe_insn_page *kip;
315 	int ret = -ERANGE;
316 
317 	rcu_read_lock();
318 	list_for_each_entry_rcu(kip, &c->pages, list) {
319 		if ((*symnum)--)
320 			continue;
321 		strlcpy(sym, c->sym, KSYM_NAME_LEN);
322 		*type = 't';
323 		*value = (unsigned long)kip->insns;
324 		ret = 0;
325 		break;
326 	}
327 	rcu_read_unlock();
328 
329 	return ret;
330 }
331 
332 #ifdef CONFIG_OPTPROBES
333 /* For optimized_kprobe buffer */
334 struct kprobe_insn_cache kprobe_optinsn_slots = {
335 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
336 	.alloc = alloc_insn_page,
337 	.free = free_insn_page,
338 	.sym = KPROBE_OPTINSN_PAGE_SYM,
339 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
340 	/* .insn_size is initialized later */
341 	.nr_garbage = 0,
342 };
343 #endif
344 #endif
345 
346 /* We have preemption disabled.. so it is safe to use __ versions */
347 static inline void set_kprobe_instance(struct kprobe *kp)
348 {
349 	__this_cpu_write(kprobe_instance, kp);
350 }
351 
352 static inline void reset_kprobe_instance(void)
353 {
354 	__this_cpu_write(kprobe_instance, NULL);
355 }
356 
357 /*
358  * This routine is called either:
359  * 	- under the kprobe_mutex - during kprobe_[un]register()
360  * 				OR
361  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
362  */
363 struct kprobe *get_kprobe(void *addr)
364 {
365 	struct hlist_head *head;
366 	struct kprobe *p;
367 
368 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
369 	hlist_for_each_entry_rcu(p, head, hlist,
370 				 lockdep_is_held(&kprobe_mutex)) {
371 		if (p->addr == addr)
372 			return p;
373 	}
374 
375 	return NULL;
376 }
377 NOKPROBE_SYMBOL(get_kprobe);
378 
379 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
380 
381 /* Return true if the kprobe is an aggregator */
382 static inline int kprobe_aggrprobe(struct kprobe *p)
383 {
384 	return p->pre_handler == aggr_pre_handler;
385 }
386 
387 /* Return true(!0) if the kprobe is unused */
388 static inline int kprobe_unused(struct kprobe *p)
389 {
390 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
391 	       list_empty(&p->list);
392 }
393 
394 /*
395  * Keep all fields in the kprobe consistent
396  */
397 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
398 {
399 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
400 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
401 }
402 
403 #ifdef CONFIG_OPTPROBES
404 /* NOTE: change this value only with kprobe_mutex held */
405 static bool kprobes_allow_optimization;
406 
407 /*
408  * Call all pre_handler on the list, but ignores its return value.
409  * This must be called from arch-dep optimized caller.
410  */
411 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
412 {
413 	struct kprobe *kp;
414 
415 	list_for_each_entry_rcu(kp, &p->list, list) {
416 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
417 			set_kprobe_instance(kp);
418 			kp->pre_handler(kp, regs);
419 		}
420 		reset_kprobe_instance();
421 	}
422 }
423 NOKPROBE_SYMBOL(opt_pre_handler);
424 
425 /* Free optimized instructions and optimized_kprobe */
426 static void free_aggr_kprobe(struct kprobe *p)
427 {
428 	struct optimized_kprobe *op;
429 
430 	op = container_of(p, struct optimized_kprobe, kp);
431 	arch_remove_optimized_kprobe(op);
432 	arch_remove_kprobe(p);
433 	kfree(op);
434 }
435 
436 /* Return true(!0) if the kprobe is ready for optimization. */
437 static inline int kprobe_optready(struct kprobe *p)
438 {
439 	struct optimized_kprobe *op;
440 
441 	if (kprobe_aggrprobe(p)) {
442 		op = container_of(p, struct optimized_kprobe, kp);
443 		return arch_prepared_optinsn(&op->optinsn);
444 	}
445 
446 	return 0;
447 }
448 
449 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
450 static inline int kprobe_disarmed(struct kprobe *p)
451 {
452 	struct optimized_kprobe *op;
453 
454 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
455 	if (!kprobe_aggrprobe(p))
456 		return kprobe_disabled(p);
457 
458 	op = container_of(p, struct optimized_kprobe, kp);
459 
460 	return kprobe_disabled(p) && list_empty(&op->list);
461 }
462 
463 /* Return true(!0) if the probe is queued on (un)optimizing lists */
464 static int kprobe_queued(struct kprobe *p)
465 {
466 	struct optimized_kprobe *op;
467 
468 	if (kprobe_aggrprobe(p)) {
469 		op = container_of(p, struct optimized_kprobe, kp);
470 		if (!list_empty(&op->list))
471 			return 1;
472 	}
473 	return 0;
474 }
475 
476 /*
477  * Return an optimized kprobe whose optimizing code replaces
478  * instructions including addr (exclude breakpoint).
479  */
480 static struct kprobe *get_optimized_kprobe(unsigned long addr)
481 {
482 	int i;
483 	struct kprobe *p = NULL;
484 	struct optimized_kprobe *op;
485 
486 	/* Don't check i == 0, since that is a breakpoint case. */
487 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
488 		p = get_kprobe((void *)(addr - i));
489 
490 	if (p && kprobe_optready(p)) {
491 		op = container_of(p, struct optimized_kprobe, kp);
492 		if (arch_within_optimized_kprobe(op, addr))
493 			return p;
494 	}
495 
496 	return NULL;
497 }
498 
499 /* Optimization staging list, protected by kprobe_mutex */
500 static LIST_HEAD(optimizing_list);
501 static LIST_HEAD(unoptimizing_list);
502 static LIST_HEAD(freeing_list);
503 
504 static void kprobe_optimizer(struct work_struct *work);
505 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
506 #define OPTIMIZE_DELAY 5
507 
508 /*
509  * Optimize (replace a breakpoint with a jump) kprobes listed on
510  * optimizing_list.
511  */
512 static void do_optimize_kprobes(void)
513 {
514 	lockdep_assert_held(&text_mutex);
515 	/*
516 	 * The optimization/unoptimization refers online_cpus via
517 	 * stop_machine() and cpu-hotplug modifies online_cpus.
518 	 * And same time, text_mutex will be held in cpu-hotplug and here.
519 	 * This combination can cause a deadlock (cpu-hotplug try to lock
520 	 * text_mutex but stop_machine can not be done because online_cpus
521 	 * has been changed)
522 	 * To avoid this deadlock, caller must have locked cpu hotplug
523 	 * for preventing cpu-hotplug outside of text_mutex locking.
524 	 */
525 	lockdep_assert_cpus_held();
526 
527 	/* Optimization never be done when disarmed */
528 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
529 	    list_empty(&optimizing_list))
530 		return;
531 
532 	arch_optimize_kprobes(&optimizing_list);
533 }
534 
535 /*
536  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
537  * if need) kprobes listed on unoptimizing_list.
538  */
539 static void do_unoptimize_kprobes(void)
540 {
541 	struct optimized_kprobe *op, *tmp;
542 
543 	lockdep_assert_held(&text_mutex);
544 	/* See comment in do_optimize_kprobes() */
545 	lockdep_assert_cpus_held();
546 
547 	/* Unoptimization must be done anytime */
548 	if (list_empty(&unoptimizing_list))
549 		return;
550 
551 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
552 	/* Loop free_list for disarming */
553 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
554 		/* Switching from detour code to origin */
555 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
556 		/* Disarm probes if marked disabled */
557 		if (kprobe_disabled(&op->kp))
558 			arch_disarm_kprobe(&op->kp);
559 		if (kprobe_unused(&op->kp)) {
560 			/*
561 			 * Remove unused probes from hash list. After waiting
562 			 * for synchronization, these probes are reclaimed.
563 			 * (reclaiming is done by do_free_cleaned_kprobes.)
564 			 */
565 			hlist_del_rcu(&op->kp.hlist);
566 		} else
567 			list_del_init(&op->list);
568 	}
569 }
570 
571 /* Reclaim all kprobes on the free_list */
572 static void do_free_cleaned_kprobes(void)
573 {
574 	struct optimized_kprobe *op, *tmp;
575 
576 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
577 		list_del_init(&op->list);
578 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
579 			/*
580 			 * This must not happen, but if there is a kprobe
581 			 * still in use, keep it on kprobes hash list.
582 			 */
583 			continue;
584 		}
585 		free_aggr_kprobe(&op->kp);
586 	}
587 }
588 
589 /* Start optimizer after OPTIMIZE_DELAY passed */
590 static void kick_kprobe_optimizer(void)
591 {
592 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
593 }
594 
595 /* Kprobe jump optimizer */
596 static void kprobe_optimizer(struct work_struct *work)
597 {
598 	mutex_lock(&kprobe_mutex);
599 	cpus_read_lock();
600 	mutex_lock(&text_mutex);
601 
602 	/*
603 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
604 	 * kprobes before waiting for quiesence period.
605 	 */
606 	do_unoptimize_kprobes();
607 
608 	/*
609 	 * Step 2: Wait for quiesence period to ensure all potentially
610 	 * preempted tasks to have normally scheduled. Because optprobe
611 	 * may modify multiple instructions, there is a chance that Nth
612 	 * instruction is preempted. In that case, such tasks can return
613 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
614 	 * Note that on non-preemptive kernel, this is transparently converted
615 	 * to synchronoze_sched() to wait for all interrupts to have completed.
616 	 */
617 	synchronize_rcu_tasks();
618 
619 	/* Step 3: Optimize kprobes after quiesence period */
620 	do_optimize_kprobes();
621 
622 	/* Step 4: Free cleaned kprobes after quiesence period */
623 	do_free_cleaned_kprobes();
624 
625 	mutex_unlock(&text_mutex);
626 	cpus_read_unlock();
627 
628 	/* Step 5: Kick optimizer again if needed */
629 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
630 		kick_kprobe_optimizer();
631 
632 	mutex_unlock(&kprobe_mutex);
633 }
634 
635 /* Wait for completing optimization and unoptimization */
636 void wait_for_kprobe_optimizer(void)
637 {
638 	mutex_lock(&kprobe_mutex);
639 
640 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
641 		mutex_unlock(&kprobe_mutex);
642 
643 		/* this will also make optimizing_work execute immmediately */
644 		flush_delayed_work(&optimizing_work);
645 		/* @optimizing_work might not have been queued yet, relax */
646 		cpu_relax();
647 
648 		mutex_lock(&kprobe_mutex);
649 	}
650 
651 	mutex_unlock(&kprobe_mutex);
652 }
653 
654 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
655 {
656 	struct optimized_kprobe *_op;
657 
658 	list_for_each_entry(_op, &unoptimizing_list, list) {
659 		if (op == _op)
660 			return true;
661 	}
662 
663 	return false;
664 }
665 
666 /* Optimize kprobe if p is ready to be optimized */
667 static void optimize_kprobe(struct kprobe *p)
668 {
669 	struct optimized_kprobe *op;
670 
671 	/* Check if the kprobe is disabled or not ready for optimization. */
672 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
673 	    (kprobe_disabled(p) || kprobes_all_disarmed))
674 		return;
675 
676 	/* kprobes with post_handler can not be optimized */
677 	if (p->post_handler)
678 		return;
679 
680 	op = container_of(p, struct optimized_kprobe, kp);
681 
682 	/* Check there is no other kprobes at the optimized instructions */
683 	if (arch_check_optimized_kprobe(op) < 0)
684 		return;
685 
686 	/* Check if it is already optimized. */
687 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
688 		if (optprobe_queued_unopt(op)) {
689 			/* This is under unoptimizing. Just dequeue the probe */
690 			list_del_init(&op->list);
691 		}
692 		return;
693 	}
694 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
695 
696 	/* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
697 	if (WARN_ON_ONCE(!list_empty(&op->list)))
698 		return;
699 
700 	list_add(&op->list, &optimizing_list);
701 	kick_kprobe_optimizer();
702 }
703 
704 /* Short cut to direct unoptimizing */
705 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
706 {
707 	lockdep_assert_cpus_held();
708 	arch_unoptimize_kprobe(op);
709 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
710 }
711 
712 /* Unoptimize a kprobe if p is optimized */
713 static void unoptimize_kprobe(struct kprobe *p, bool force)
714 {
715 	struct optimized_kprobe *op;
716 
717 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
718 		return; /* This is not an optprobe nor optimized */
719 
720 	op = container_of(p, struct optimized_kprobe, kp);
721 	if (!kprobe_optimized(p))
722 		return;
723 
724 	if (!list_empty(&op->list)) {
725 		if (optprobe_queued_unopt(op)) {
726 			/* Queued in unoptimizing queue */
727 			if (force) {
728 				/*
729 				 * Forcibly unoptimize the kprobe here, and queue it
730 				 * in the freeing list for release afterwards.
731 				 */
732 				force_unoptimize_kprobe(op);
733 				list_move(&op->list, &freeing_list);
734 			}
735 		} else {
736 			/* Dequeue from the optimizing queue */
737 			list_del_init(&op->list);
738 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
739 		}
740 		return;
741 	}
742 
743 	/* Optimized kprobe case */
744 	if (force) {
745 		/* Forcibly update the code: this is a special case */
746 		force_unoptimize_kprobe(op);
747 	} else {
748 		list_add(&op->list, &unoptimizing_list);
749 		kick_kprobe_optimizer();
750 	}
751 }
752 
753 /* Cancel unoptimizing for reusing */
754 static int reuse_unused_kprobe(struct kprobe *ap)
755 {
756 	struct optimized_kprobe *op;
757 
758 	/*
759 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
760 	 * there is still a relative jump) and disabled.
761 	 */
762 	op = container_of(ap, struct optimized_kprobe, kp);
763 	WARN_ON_ONCE(list_empty(&op->list));
764 	/* Enable the probe again */
765 	ap->flags &= ~KPROBE_FLAG_DISABLED;
766 	/* Optimize it again (remove from op->list) */
767 	if (!kprobe_optready(ap))
768 		return -EINVAL;
769 
770 	optimize_kprobe(ap);
771 	return 0;
772 }
773 
774 /* Remove optimized instructions */
775 static void kill_optimized_kprobe(struct kprobe *p)
776 {
777 	struct optimized_kprobe *op;
778 
779 	op = container_of(p, struct optimized_kprobe, kp);
780 	if (!list_empty(&op->list))
781 		/* Dequeue from the (un)optimization queue */
782 		list_del_init(&op->list);
783 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
784 
785 	if (kprobe_unused(p)) {
786 		/* Enqueue if it is unused */
787 		list_add(&op->list, &freeing_list);
788 		/*
789 		 * Remove unused probes from the hash list. After waiting
790 		 * for synchronization, this probe is reclaimed.
791 		 * (reclaiming is done by do_free_cleaned_kprobes().)
792 		 */
793 		hlist_del_rcu(&op->kp.hlist);
794 	}
795 
796 	/* Don't touch the code, because it is already freed. */
797 	arch_remove_optimized_kprobe(op);
798 }
799 
800 static inline
801 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
802 {
803 	if (!kprobe_ftrace(p))
804 		arch_prepare_optimized_kprobe(op, p);
805 }
806 
807 /* Try to prepare optimized instructions */
808 static void prepare_optimized_kprobe(struct kprobe *p)
809 {
810 	struct optimized_kprobe *op;
811 
812 	op = container_of(p, struct optimized_kprobe, kp);
813 	__prepare_optimized_kprobe(op, p);
814 }
815 
816 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
817 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
818 {
819 	struct optimized_kprobe *op;
820 
821 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
822 	if (!op)
823 		return NULL;
824 
825 	INIT_LIST_HEAD(&op->list);
826 	op->kp.addr = p->addr;
827 	__prepare_optimized_kprobe(op, p);
828 
829 	return &op->kp;
830 }
831 
832 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
833 
834 /*
835  * Prepare an optimized_kprobe and optimize it
836  * NOTE: p must be a normal registered kprobe
837  */
838 static void try_to_optimize_kprobe(struct kprobe *p)
839 {
840 	struct kprobe *ap;
841 	struct optimized_kprobe *op;
842 
843 	/* Impossible to optimize ftrace-based kprobe */
844 	if (kprobe_ftrace(p))
845 		return;
846 
847 	/* For preparing optimization, jump_label_text_reserved() is called */
848 	cpus_read_lock();
849 	jump_label_lock();
850 	mutex_lock(&text_mutex);
851 
852 	ap = alloc_aggr_kprobe(p);
853 	if (!ap)
854 		goto out;
855 
856 	op = container_of(ap, struct optimized_kprobe, kp);
857 	if (!arch_prepared_optinsn(&op->optinsn)) {
858 		/* If failed to setup optimizing, fallback to kprobe */
859 		arch_remove_optimized_kprobe(op);
860 		kfree(op);
861 		goto out;
862 	}
863 
864 	init_aggr_kprobe(ap, p);
865 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
866 
867 out:
868 	mutex_unlock(&text_mutex);
869 	jump_label_unlock();
870 	cpus_read_unlock();
871 }
872 
873 #ifdef CONFIG_SYSCTL
874 static void optimize_all_kprobes(void)
875 {
876 	struct hlist_head *head;
877 	struct kprobe *p;
878 	unsigned int i;
879 
880 	mutex_lock(&kprobe_mutex);
881 	/* If optimization is already allowed, just return */
882 	if (kprobes_allow_optimization)
883 		goto out;
884 
885 	cpus_read_lock();
886 	kprobes_allow_optimization = true;
887 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
888 		head = &kprobe_table[i];
889 		hlist_for_each_entry(p, head, hlist)
890 			if (!kprobe_disabled(p))
891 				optimize_kprobe(p);
892 	}
893 	cpus_read_unlock();
894 	printk(KERN_INFO "Kprobes globally optimized\n");
895 out:
896 	mutex_unlock(&kprobe_mutex);
897 }
898 
899 static void unoptimize_all_kprobes(void)
900 {
901 	struct hlist_head *head;
902 	struct kprobe *p;
903 	unsigned int i;
904 
905 	mutex_lock(&kprobe_mutex);
906 	/* If optimization is already prohibited, just return */
907 	if (!kprobes_allow_optimization) {
908 		mutex_unlock(&kprobe_mutex);
909 		return;
910 	}
911 
912 	cpus_read_lock();
913 	kprobes_allow_optimization = false;
914 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
915 		head = &kprobe_table[i];
916 		hlist_for_each_entry(p, head, hlist) {
917 			if (!kprobe_disabled(p))
918 				unoptimize_kprobe(p, false);
919 		}
920 	}
921 	cpus_read_unlock();
922 	mutex_unlock(&kprobe_mutex);
923 
924 	/* Wait for unoptimizing completion */
925 	wait_for_kprobe_optimizer();
926 	printk(KERN_INFO "Kprobes globally unoptimized\n");
927 }
928 
929 static DEFINE_MUTEX(kprobe_sysctl_mutex);
930 int sysctl_kprobes_optimization;
931 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
932 				      void *buffer, size_t *length,
933 				      loff_t *ppos)
934 {
935 	int ret;
936 
937 	mutex_lock(&kprobe_sysctl_mutex);
938 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
939 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
940 
941 	if (sysctl_kprobes_optimization)
942 		optimize_all_kprobes();
943 	else
944 		unoptimize_all_kprobes();
945 	mutex_unlock(&kprobe_sysctl_mutex);
946 
947 	return ret;
948 }
949 #endif /* CONFIG_SYSCTL */
950 
951 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
952 static void __arm_kprobe(struct kprobe *p)
953 {
954 	struct kprobe *_p;
955 
956 	/* Check collision with other optimized kprobes */
957 	_p = get_optimized_kprobe((unsigned long)p->addr);
958 	if (unlikely(_p))
959 		/* Fallback to unoptimized kprobe */
960 		unoptimize_kprobe(_p, true);
961 
962 	arch_arm_kprobe(p);
963 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
964 }
965 
966 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
967 static void __disarm_kprobe(struct kprobe *p, bool reopt)
968 {
969 	struct kprobe *_p;
970 
971 	/* Try to unoptimize */
972 	unoptimize_kprobe(p, kprobes_all_disarmed);
973 
974 	if (!kprobe_queued(p)) {
975 		arch_disarm_kprobe(p);
976 		/* If another kprobe was blocked, optimize it. */
977 		_p = get_optimized_kprobe((unsigned long)p->addr);
978 		if (unlikely(_p) && reopt)
979 			optimize_kprobe(_p);
980 	}
981 	/* TODO: reoptimize others after unoptimized this probe */
982 }
983 
984 #else /* !CONFIG_OPTPROBES */
985 
986 #define optimize_kprobe(p)			do {} while (0)
987 #define unoptimize_kprobe(p, f)			do {} while (0)
988 #define kill_optimized_kprobe(p)		do {} while (0)
989 #define prepare_optimized_kprobe(p)		do {} while (0)
990 #define try_to_optimize_kprobe(p)		do {} while (0)
991 #define __arm_kprobe(p)				arch_arm_kprobe(p)
992 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
993 #define kprobe_disarmed(p)			kprobe_disabled(p)
994 #define wait_for_kprobe_optimizer()		do {} while (0)
995 
996 static int reuse_unused_kprobe(struct kprobe *ap)
997 {
998 	/*
999 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
1000 	 * released at the same time that the last aggregated kprobe is
1001 	 * unregistered.
1002 	 * Thus there should be no chance to reuse unused kprobe.
1003 	 */
1004 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1005 	return -EINVAL;
1006 }
1007 
1008 static void free_aggr_kprobe(struct kprobe *p)
1009 {
1010 	arch_remove_kprobe(p);
1011 	kfree(p);
1012 }
1013 
1014 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1015 {
1016 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1017 }
1018 #endif /* CONFIG_OPTPROBES */
1019 
1020 #ifdef CONFIG_KPROBES_ON_FTRACE
1021 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1022 	.func = kprobe_ftrace_handler,
1023 	.flags = FTRACE_OPS_FL_SAVE_REGS,
1024 };
1025 
1026 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1027 	.func = kprobe_ftrace_handler,
1028 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1029 };
1030 
1031 static int kprobe_ipmodify_enabled;
1032 static int kprobe_ftrace_enabled;
1033 
1034 /* Must ensure p->addr is really on ftrace */
1035 static int prepare_kprobe(struct kprobe *p)
1036 {
1037 	if (!kprobe_ftrace(p))
1038 		return arch_prepare_kprobe(p);
1039 
1040 	return arch_prepare_kprobe_ftrace(p);
1041 }
1042 
1043 /* Caller must lock kprobe_mutex */
1044 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1045 			       int *cnt)
1046 {
1047 	int ret = 0;
1048 
1049 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1050 	if (ret) {
1051 		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1052 			 p->addr, ret);
1053 		return ret;
1054 	}
1055 
1056 	if (*cnt == 0) {
1057 		ret = register_ftrace_function(ops);
1058 		if (ret) {
1059 			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1060 			goto err_ftrace;
1061 		}
1062 	}
1063 
1064 	(*cnt)++;
1065 	return ret;
1066 
1067 err_ftrace:
1068 	/*
1069 	 * At this point, sinec ops is not registered, we should be sefe from
1070 	 * registering empty filter.
1071 	 */
1072 	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1073 	return ret;
1074 }
1075 
1076 static int arm_kprobe_ftrace(struct kprobe *p)
1077 {
1078 	bool ipmodify = (p->post_handler != NULL);
1079 
1080 	return __arm_kprobe_ftrace(p,
1081 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1082 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1083 }
1084 
1085 /* Caller must lock kprobe_mutex */
1086 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1087 				  int *cnt)
1088 {
1089 	int ret = 0;
1090 
1091 	if (*cnt == 1) {
1092 		ret = unregister_ftrace_function(ops);
1093 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1094 			return ret;
1095 	}
1096 
1097 	(*cnt)--;
1098 
1099 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1100 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1101 		  p->addr, ret);
1102 	return ret;
1103 }
1104 
1105 static int disarm_kprobe_ftrace(struct kprobe *p)
1106 {
1107 	bool ipmodify = (p->post_handler != NULL);
1108 
1109 	return __disarm_kprobe_ftrace(p,
1110 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1111 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1112 }
1113 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1114 static inline int prepare_kprobe(struct kprobe *p)
1115 {
1116 	return arch_prepare_kprobe(p);
1117 }
1118 
1119 static inline int arm_kprobe_ftrace(struct kprobe *p)
1120 {
1121 	return -ENODEV;
1122 }
1123 
1124 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1125 {
1126 	return -ENODEV;
1127 }
1128 #endif
1129 
1130 /* Arm a kprobe with text_mutex */
1131 static int arm_kprobe(struct kprobe *kp)
1132 {
1133 	if (unlikely(kprobe_ftrace(kp)))
1134 		return arm_kprobe_ftrace(kp);
1135 
1136 	cpus_read_lock();
1137 	mutex_lock(&text_mutex);
1138 	__arm_kprobe(kp);
1139 	mutex_unlock(&text_mutex);
1140 	cpus_read_unlock();
1141 
1142 	return 0;
1143 }
1144 
1145 /* Disarm a kprobe with text_mutex */
1146 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1147 {
1148 	if (unlikely(kprobe_ftrace(kp)))
1149 		return disarm_kprobe_ftrace(kp);
1150 
1151 	cpus_read_lock();
1152 	mutex_lock(&text_mutex);
1153 	__disarm_kprobe(kp, reopt);
1154 	mutex_unlock(&text_mutex);
1155 	cpus_read_unlock();
1156 
1157 	return 0;
1158 }
1159 
1160 /*
1161  * Aggregate handlers for multiple kprobes support - these handlers
1162  * take care of invoking the individual kprobe handlers on p->list
1163  */
1164 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1165 {
1166 	struct kprobe *kp;
1167 
1168 	list_for_each_entry_rcu(kp, &p->list, list) {
1169 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1170 			set_kprobe_instance(kp);
1171 			if (kp->pre_handler(kp, regs))
1172 				return 1;
1173 		}
1174 		reset_kprobe_instance();
1175 	}
1176 	return 0;
1177 }
1178 NOKPROBE_SYMBOL(aggr_pre_handler);
1179 
1180 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1181 			      unsigned long flags)
1182 {
1183 	struct kprobe *kp;
1184 
1185 	list_for_each_entry_rcu(kp, &p->list, list) {
1186 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1187 			set_kprobe_instance(kp);
1188 			kp->post_handler(kp, regs, flags);
1189 			reset_kprobe_instance();
1190 		}
1191 	}
1192 }
1193 NOKPROBE_SYMBOL(aggr_post_handler);
1194 
1195 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1196 			      int trapnr)
1197 {
1198 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1199 
1200 	/*
1201 	 * if we faulted "during" the execution of a user specified
1202 	 * probe handler, invoke just that probe's fault handler
1203 	 */
1204 	if (cur && cur->fault_handler) {
1205 		if (cur->fault_handler(cur, regs, trapnr))
1206 			return 1;
1207 	}
1208 	return 0;
1209 }
1210 NOKPROBE_SYMBOL(aggr_fault_handler);
1211 
1212 /* Walks the list and increments nmissed count for multiprobe case */
1213 void kprobes_inc_nmissed_count(struct kprobe *p)
1214 {
1215 	struct kprobe *kp;
1216 	if (!kprobe_aggrprobe(p)) {
1217 		p->nmissed++;
1218 	} else {
1219 		list_for_each_entry_rcu(kp, &p->list, list)
1220 			kp->nmissed++;
1221 	}
1222 	return;
1223 }
1224 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1225 
1226 void recycle_rp_inst(struct kretprobe_instance *ri,
1227 		     struct hlist_head *head)
1228 {
1229 	struct kretprobe *rp = ri->rp;
1230 
1231 	/* remove rp inst off the rprobe_inst_table */
1232 	hlist_del(&ri->hlist);
1233 	INIT_HLIST_NODE(&ri->hlist);
1234 	if (likely(rp)) {
1235 		raw_spin_lock(&rp->lock);
1236 		hlist_add_head(&ri->hlist, &rp->free_instances);
1237 		raw_spin_unlock(&rp->lock);
1238 	} else
1239 		/* Unregistering */
1240 		hlist_add_head(&ri->hlist, head);
1241 }
1242 NOKPROBE_SYMBOL(recycle_rp_inst);
1243 
1244 void kretprobe_hash_lock(struct task_struct *tsk,
1245 			 struct hlist_head **head, unsigned long *flags)
1246 __acquires(hlist_lock)
1247 {
1248 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1249 	raw_spinlock_t *hlist_lock;
1250 
1251 	*head = &kretprobe_inst_table[hash];
1252 	hlist_lock = kretprobe_table_lock_ptr(hash);
1253 	raw_spin_lock_irqsave(hlist_lock, *flags);
1254 }
1255 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1256 
1257 static void kretprobe_table_lock(unsigned long hash,
1258 				 unsigned long *flags)
1259 __acquires(hlist_lock)
1260 {
1261 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1262 	raw_spin_lock_irqsave(hlist_lock, *flags);
1263 }
1264 NOKPROBE_SYMBOL(kretprobe_table_lock);
1265 
1266 void kretprobe_hash_unlock(struct task_struct *tsk,
1267 			   unsigned long *flags)
1268 __releases(hlist_lock)
1269 {
1270 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1271 	raw_spinlock_t *hlist_lock;
1272 
1273 	hlist_lock = kretprobe_table_lock_ptr(hash);
1274 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1275 }
1276 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1277 
1278 static void kretprobe_table_unlock(unsigned long hash,
1279 				   unsigned long *flags)
1280 __releases(hlist_lock)
1281 {
1282 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1283 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1284 }
1285 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1286 
1287 struct kprobe kprobe_busy = {
1288 	.addr = (void *) get_kprobe,
1289 };
1290 
1291 void kprobe_busy_begin(void)
1292 {
1293 	struct kprobe_ctlblk *kcb;
1294 
1295 	preempt_disable();
1296 	__this_cpu_write(current_kprobe, &kprobe_busy);
1297 	kcb = get_kprobe_ctlblk();
1298 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1299 }
1300 
1301 void kprobe_busy_end(void)
1302 {
1303 	__this_cpu_write(current_kprobe, NULL);
1304 	preempt_enable();
1305 }
1306 
1307 /*
1308  * This function is called from finish_task_switch when task tk becomes dead,
1309  * so that we can recycle any function-return probe instances associated
1310  * with this task. These left over instances represent probed functions
1311  * that have been called but will never return.
1312  */
1313 void kprobe_flush_task(struct task_struct *tk)
1314 {
1315 	struct kretprobe_instance *ri;
1316 	struct hlist_head *head, empty_rp;
1317 	struct hlist_node *tmp;
1318 	unsigned long hash, flags = 0;
1319 
1320 	if (unlikely(!kprobes_initialized))
1321 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1322 		return;
1323 
1324 	kprobe_busy_begin();
1325 
1326 	INIT_HLIST_HEAD(&empty_rp);
1327 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1328 	head = &kretprobe_inst_table[hash];
1329 	kretprobe_table_lock(hash, &flags);
1330 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1331 		if (ri->task == tk)
1332 			recycle_rp_inst(ri, &empty_rp);
1333 	}
1334 	kretprobe_table_unlock(hash, &flags);
1335 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1336 		hlist_del(&ri->hlist);
1337 		kfree(ri);
1338 	}
1339 
1340 	kprobe_busy_end();
1341 }
1342 NOKPROBE_SYMBOL(kprobe_flush_task);
1343 
1344 static inline void free_rp_inst(struct kretprobe *rp)
1345 {
1346 	struct kretprobe_instance *ri;
1347 	struct hlist_node *next;
1348 
1349 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1350 		hlist_del(&ri->hlist);
1351 		kfree(ri);
1352 	}
1353 }
1354 
1355 static void cleanup_rp_inst(struct kretprobe *rp)
1356 {
1357 	unsigned long flags, hash;
1358 	struct kretprobe_instance *ri;
1359 	struct hlist_node *next;
1360 	struct hlist_head *head;
1361 
1362 	/* No race here */
1363 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1364 		kretprobe_table_lock(hash, &flags);
1365 		head = &kretprobe_inst_table[hash];
1366 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1367 			if (ri->rp == rp)
1368 				ri->rp = NULL;
1369 		}
1370 		kretprobe_table_unlock(hash, &flags);
1371 	}
1372 	free_rp_inst(rp);
1373 }
1374 NOKPROBE_SYMBOL(cleanup_rp_inst);
1375 
1376 /* Add the new probe to ap->list */
1377 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1378 {
1379 	if (p->post_handler)
1380 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1381 
1382 	list_add_rcu(&p->list, &ap->list);
1383 	if (p->post_handler && !ap->post_handler)
1384 		ap->post_handler = aggr_post_handler;
1385 
1386 	return 0;
1387 }
1388 
1389 /*
1390  * Fill in the required fields of the "manager kprobe". Replace the
1391  * earlier kprobe in the hlist with the manager kprobe
1392  */
1393 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1394 {
1395 	/* Copy p's insn slot to ap */
1396 	copy_kprobe(p, ap);
1397 	flush_insn_slot(ap);
1398 	ap->addr = p->addr;
1399 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1400 	ap->pre_handler = aggr_pre_handler;
1401 	ap->fault_handler = aggr_fault_handler;
1402 	/* We don't care the kprobe which has gone. */
1403 	if (p->post_handler && !kprobe_gone(p))
1404 		ap->post_handler = aggr_post_handler;
1405 
1406 	INIT_LIST_HEAD(&ap->list);
1407 	INIT_HLIST_NODE(&ap->hlist);
1408 
1409 	list_add_rcu(&p->list, &ap->list);
1410 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1411 }
1412 
1413 /*
1414  * This is the second or subsequent kprobe at the address - handle
1415  * the intricacies
1416  */
1417 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1418 {
1419 	int ret = 0;
1420 	struct kprobe *ap = orig_p;
1421 
1422 	cpus_read_lock();
1423 
1424 	/* For preparing optimization, jump_label_text_reserved() is called */
1425 	jump_label_lock();
1426 	mutex_lock(&text_mutex);
1427 
1428 	if (!kprobe_aggrprobe(orig_p)) {
1429 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1430 		ap = alloc_aggr_kprobe(orig_p);
1431 		if (!ap) {
1432 			ret = -ENOMEM;
1433 			goto out;
1434 		}
1435 		init_aggr_kprobe(ap, orig_p);
1436 	} else if (kprobe_unused(ap)) {
1437 		/* This probe is going to die. Rescue it */
1438 		ret = reuse_unused_kprobe(ap);
1439 		if (ret)
1440 			goto out;
1441 	}
1442 
1443 	if (kprobe_gone(ap)) {
1444 		/*
1445 		 * Attempting to insert new probe at the same location that
1446 		 * had a probe in the module vaddr area which already
1447 		 * freed. So, the instruction slot has already been
1448 		 * released. We need a new slot for the new probe.
1449 		 */
1450 		ret = arch_prepare_kprobe(ap);
1451 		if (ret)
1452 			/*
1453 			 * Even if fail to allocate new slot, don't need to
1454 			 * free aggr_probe. It will be used next time, or
1455 			 * freed by unregister_kprobe.
1456 			 */
1457 			goto out;
1458 
1459 		/* Prepare optimized instructions if possible. */
1460 		prepare_optimized_kprobe(ap);
1461 
1462 		/*
1463 		 * Clear gone flag to prevent allocating new slot again, and
1464 		 * set disabled flag because it is not armed yet.
1465 		 */
1466 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1467 			    | KPROBE_FLAG_DISABLED;
1468 	}
1469 
1470 	/* Copy ap's insn slot to p */
1471 	copy_kprobe(ap, p);
1472 	ret = add_new_kprobe(ap, p);
1473 
1474 out:
1475 	mutex_unlock(&text_mutex);
1476 	jump_label_unlock();
1477 	cpus_read_unlock();
1478 
1479 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1480 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1481 		if (!kprobes_all_disarmed) {
1482 			/* Arm the breakpoint again. */
1483 			ret = arm_kprobe(ap);
1484 			if (ret) {
1485 				ap->flags |= KPROBE_FLAG_DISABLED;
1486 				list_del_rcu(&p->list);
1487 				synchronize_rcu();
1488 			}
1489 		}
1490 	}
1491 	return ret;
1492 }
1493 
1494 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1495 {
1496 	/* The __kprobes marked functions and entry code must not be probed */
1497 	return addr >= (unsigned long)__kprobes_text_start &&
1498 	       addr < (unsigned long)__kprobes_text_end;
1499 }
1500 
1501 static bool __within_kprobe_blacklist(unsigned long addr)
1502 {
1503 	struct kprobe_blacklist_entry *ent;
1504 
1505 	if (arch_within_kprobe_blacklist(addr))
1506 		return true;
1507 	/*
1508 	 * If there exists a kprobe_blacklist, verify and
1509 	 * fail any probe registration in the prohibited area
1510 	 */
1511 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1512 		if (addr >= ent->start_addr && addr < ent->end_addr)
1513 			return true;
1514 	}
1515 	return false;
1516 }
1517 
1518 bool within_kprobe_blacklist(unsigned long addr)
1519 {
1520 	char symname[KSYM_NAME_LEN], *p;
1521 
1522 	if (__within_kprobe_blacklist(addr))
1523 		return true;
1524 
1525 	/* Check if the address is on a suffixed-symbol */
1526 	if (!lookup_symbol_name(addr, symname)) {
1527 		p = strchr(symname, '.');
1528 		if (!p)
1529 			return false;
1530 		*p = '\0';
1531 		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1532 		if (addr)
1533 			return __within_kprobe_blacklist(addr);
1534 	}
1535 	return false;
1536 }
1537 
1538 /*
1539  * If we have a symbol_name argument, look it up and add the offset field
1540  * to it. This way, we can specify a relative address to a symbol.
1541  * This returns encoded errors if it fails to look up symbol or invalid
1542  * combination of parameters.
1543  */
1544 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1545 			const char *symbol_name, unsigned int offset)
1546 {
1547 	if ((symbol_name && addr) || (!symbol_name && !addr))
1548 		goto invalid;
1549 
1550 	if (symbol_name) {
1551 		addr = kprobe_lookup_name(symbol_name, offset);
1552 		if (!addr)
1553 			return ERR_PTR(-ENOENT);
1554 	}
1555 
1556 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1557 	if (addr)
1558 		return addr;
1559 
1560 invalid:
1561 	return ERR_PTR(-EINVAL);
1562 }
1563 
1564 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1565 {
1566 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1567 }
1568 
1569 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1570 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1571 {
1572 	struct kprobe *ap, *list_p;
1573 
1574 	lockdep_assert_held(&kprobe_mutex);
1575 
1576 	ap = get_kprobe(p->addr);
1577 	if (unlikely(!ap))
1578 		return NULL;
1579 
1580 	if (p != ap) {
1581 		list_for_each_entry(list_p, &ap->list, list)
1582 			if (list_p == p)
1583 			/* kprobe p is a valid probe */
1584 				goto valid;
1585 		return NULL;
1586 	}
1587 valid:
1588 	return ap;
1589 }
1590 
1591 /* Return error if the kprobe is being re-registered */
1592 static inline int check_kprobe_rereg(struct kprobe *p)
1593 {
1594 	int ret = 0;
1595 
1596 	mutex_lock(&kprobe_mutex);
1597 	if (__get_valid_kprobe(p))
1598 		ret = -EINVAL;
1599 	mutex_unlock(&kprobe_mutex);
1600 
1601 	return ret;
1602 }
1603 
1604 int __weak arch_check_ftrace_location(struct kprobe *p)
1605 {
1606 	unsigned long ftrace_addr;
1607 
1608 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1609 	if (ftrace_addr) {
1610 #ifdef CONFIG_KPROBES_ON_FTRACE
1611 		/* Given address is not on the instruction boundary */
1612 		if ((unsigned long)p->addr != ftrace_addr)
1613 			return -EILSEQ;
1614 		p->flags |= KPROBE_FLAG_FTRACE;
1615 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1616 		return -EINVAL;
1617 #endif
1618 	}
1619 	return 0;
1620 }
1621 
1622 static int check_kprobe_address_safe(struct kprobe *p,
1623 				     struct module **probed_mod)
1624 {
1625 	int ret;
1626 
1627 	ret = arch_check_ftrace_location(p);
1628 	if (ret)
1629 		return ret;
1630 	jump_label_lock();
1631 	preempt_disable();
1632 
1633 	/* Ensure it is not in reserved area nor out of text */
1634 	if (!kernel_text_address((unsigned long) p->addr) ||
1635 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1636 	    jump_label_text_reserved(p->addr, p->addr) ||
1637 	    find_bug((unsigned long)p->addr)) {
1638 		ret = -EINVAL;
1639 		goto out;
1640 	}
1641 
1642 	/* Check if are we probing a module */
1643 	*probed_mod = __module_text_address((unsigned long) p->addr);
1644 	if (*probed_mod) {
1645 		/*
1646 		 * We must hold a refcount of the probed module while updating
1647 		 * its code to prohibit unexpected unloading.
1648 		 */
1649 		if (unlikely(!try_module_get(*probed_mod))) {
1650 			ret = -ENOENT;
1651 			goto out;
1652 		}
1653 
1654 		/*
1655 		 * If the module freed .init.text, we couldn't insert
1656 		 * kprobes in there.
1657 		 */
1658 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1659 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1660 			module_put(*probed_mod);
1661 			*probed_mod = NULL;
1662 			ret = -ENOENT;
1663 		}
1664 	}
1665 out:
1666 	preempt_enable();
1667 	jump_label_unlock();
1668 
1669 	return ret;
1670 }
1671 
1672 int register_kprobe(struct kprobe *p)
1673 {
1674 	int ret;
1675 	struct kprobe *old_p;
1676 	struct module *probed_mod;
1677 	kprobe_opcode_t *addr;
1678 
1679 	/* Adjust probe address from symbol */
1680 	addr = kprobe_addr(p);
1681 	if (IS_ERR(addr))
1682 		return PTR_ERR(addr);
1683 	p->addr = addr;
1684 
1685 	ret = check_kprobe_rereg(p);
1686 	if (ret)
1687 		return ret;
1688 
1689 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1690 	p->flags &= KPROBE_FLAG_DISABLED;
1691 	p->nmissed = 0;
1692 	INIT_LIST_HEAD(&p->list);
1693 
1694 	ret = check_kprobe_address_safe(p, &probed_mod);
1695 	if (ret)
1696 		return ret;
1697 
1698 	mutex_lock(&kprobe_mutex);
1699 
1700 	old_p = get_kprobe(p->addr);
1701 	if (old_p) {
1702 		/* Since this may unoptimize old_p, locking text_mutex. */
1703 		ret = register_aggr_kprobe(old_p, p);
1704 		goto out;
1705 	}
1706 
1707 	cpus_read_lock();
1708 	/* Prevent text modification */
1709 	mutex_lock(&text_mutex);
1710 	ret = prepare_kprobe(p);
1711 	mutex_unlock(&text_mutex);
1712 	cpus_read_unlock();
1713 	if (ret)
1714 		goto out;
1715 
1716 	INIT_HLIST_NODE(&p->hlist);
1717 	hlist_add_head_rcu(&p->hlist,
1718 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1719 
1720 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1721 		ret = arm_kprobe(p);
1722 		if (ret) {
1723 			hlist_del_rcu(&p->hlist);
1724 			synchronize_rcu();
1725 			goto out;
1726 		}
1727 	}
1728 
1729 	/* Try to optimize kprobe */
1730 	try_to_optimize_kprobe(p);
1731 out:
1732 	mutex_unlock(&kprobe_mutex);
1733 
1734 	if (probed_mod)
1735 		module_put(probed_mod);
1736 
1737 	return ret;
1738 }
1739 EXPORT_SYMBOL_GPL(register_kprobe);
1740 
1741 /* Check if all probes on the aggrprobe are disabled */
1742 static int aggr_kprobe_disabled(struct kprobe *ap)
1743 {
1744 	struct kprobe *kp;
1745 
1746 	lockdep_assert_held(&kprobe_mutex);
1747 
1748 	list_for_each_entry(kp, &ap->list, list)
1749 		if (!kprobe_disabled(kp))
1750 			/*
1751 			 * There is an active probe on the list.
1752 			 * We can't disable this ap.
1753 			 */
1754 			return 0;
1755 
1756 	return 1;
1757 }
1758 
1759 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1760 static struct kprobe *__disable_kprobe(struct kprobe *p)
1761 {
1762 	struct kprobe *orig_p;
1763 	int ret;
1764 
1765 	/* Get an original kprobe for return */
1766 	orig_p = __get_valid_kprobe(p);
1767 	if (unlikely(orig_p == NULL))
1768 		return ERR_PTR(-EINVAL);
1769 
1770 	if (!kprobe_disabled(p)) {
1771 		/* Disable probe if it is a child probe */
1772 		if (p != orig_p)
1773 			p->flags |= KPROBE_FLAG_DISABLED;
1774 
1775 		/* Try to disarm and disable this/parent probe */
1776 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1777 			/*
1778 			 * If kprobes_all_disarmed is set, orig_p
1779 			 * should have already been disarmed, so
1780 			 * skip unneed disarming process.
1781 			 */
1782 			if (!kprobes_all_disarmed) {
1783 				ret = disarm_kprobe(orig_p, true);
1784 				if (ret) {
1785 					p->flags &= ~KPROBE_FLAG_DISABLED;
1786 					return ERR_PTR(ret);
1787 				}
1788 			}
1789 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1790 		}
1791 	}
1792 
1793 	return orig_p;
1794 }
1795 
1796 /*
1797  * Unregister a kprobe without a scheduler synchronization.
1798  */
1799 static int __unregister_kprobe_top(struct kprobe *p)
1800 {
1801 	struct kprobe *ap, *list_p;
1802 
1803 	/* Disable kprobe. This will disarm it if needed. */
1804 	ap = __disable_kprobe(p);
1805 	if (IS_ERR(ap))
1806 		return PTR_ERR(ap);
1807 
1808 	if (ap == p)
1809 		/*
1810 		 * This probe is an independent(and non-optimized) kprobe
1811 		 * (not an aggrprobe). Remove from the hash list.
1812 		 */
1813 		goto disarmed;
1814 
1815 	/* Following process expects this probe is an aggrprobe */
1816 	WARN_ON(!kprobe_aggrprobe(ap));
1817 
1818 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1819 		/*
1820 		 * !disarmed could be happen if the probe is under delayed
1821 		 * unoptimizing.
1822 		 */
1823 		goto disarmed;
1824 	else {
1825 		/* If disabling probe has special handlers, update aggrprobe */
1826 		if (p->post_handler && !kprobe_gone(p)) {
1827 			list_for_each_entry(list_p, &ap->list, list) {
1828 				if ((list_p != p) && (list_p->post_handler))
1829 					goto noclean;
1830 			}
1831 			ap->post_handler = NULL;
1832 		}
1833 noclean:
1834 		/*
1835 		 * Remove from the aggrprobe: this path will do nothing in
1836 		 * __unregister_kprobe_bottom().
1837 		 */
1838 		list_del_rcu(&p->list);
1839 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1840 			/*
1841 			 * Try to optimize this probe again, because post
1842 			 * handler may have been changed.
1843 			 */
1844 			optimize_kprobe(ap);
1845 	}
1846 	return 0;
1847 
1848 disarmed:
1849 	hlist_del_rcu(&ap->hlist);
1850 	return 0;
1851 }
1852 
1853 static void __unregister_kprobe_bottom(struct kprobe *p)
1854 {
1855 	struct kprobe *ap;
1856 
1857 	if (list_empty(&p->list))
1858 		/* This is an independent kprobe */
1859 		arch_remove_kprobe(p);
1860 	else if (list_is_singular(&p->list)) {
1861 		/* This is the last child of an aggrprobe */
1862 		ap = list_entry(p->list.next, struct kprobe, list);
1863 		list_del(&p->list);
1864 		free_aggr_kprobe(ap);
1865 	}
1866 	/* Otherwise, do nothing. */
1867 }
1868 
1869 int register_kprobes(struct kprobe **kps, int num)
1870 {
1871 	int i, ret = 0;
1872 
1873 	if (num <= 0)
1874 		return -EINVAL;
1875 	for (i = 0; i < num; i++) {
1876 		ret = register_kprobe(kps[i]);
1877 		if (ret < 0) {
1878 			if (i > 0)
1879 				unregister_kprobes(kps, i);
1880 			break;
1881 		}
1882 	}
1883 	return ret;
1884 }
1885 EXPORT_SYMBOL_GPL(register_kprobes);
1886 
1887 void unregister_kprobe(struct kprobe *p)
1888 {
1889 	unregister_kprobes(&p, 1);
1890 }
1891 EXPORT_SYMBOL_GPL(unregister_kprobe);
1892 
1893 void unregister_kprobes(struct kprobe **kps, int num)
1894 {
1895 	int i;
1896 
1897 	if (num <= 0)
1898 		return;
1899 	mutex_lock(&kprobe_mutex);
1900 	for (i = 0; i < num; i++)
1901 		if (__unregister_kprobe_top(kps[i]) < 0)
1902 			kps[i]->addr = NULL;
1903 	mutex_unlock(&kprobe_mutex);
1904 
1905 	synchronize_rcu();
1906 	for (i = 0; i < num; i++)
1907 		if (kps[i]->addr)
1908 			__unregister_kprobe_bottom(kps[i]);
1909 }
1910 EXPORT_SYMBOL_GPL(unregister_kprobes);
1911 
1912 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1913 					unsigned long val, void *data)
1914 {
1915 	return NOTIFY_DONE;
1916 }
1917 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1918 
1919 static struct notifier_block kprobe_exceptions_nb = {
1920 	.notifier_call = kprobe_exceptions_notify,
1921 	.priority = 0x7fffffff /* we need to be notified first */
1922 };
1923 
1924 unsigned long __weak arch_deref_entry_point(void *entry)
1925 {
1926 	return (unsigned long)entry;
1927 }
1928 
1929 #ifdef CONFIG_KRETPROBES
1930 /*
1931  * This kprobe pre_handler is registered with every kretprobe. When probe
1932  * hits it will set up the return probe.
1933  */
1934 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1935 {
1936 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1937 	unsigned long hash, flags = 0;
1938 	struct kretprobe_instance *ri;
1939 
1940 	/*
1941 	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1942 	 * just skip the probe and increase the (inexact) 'nmissed'
1943 	 * statistical counter, so that the user is informed that
1944 	 * something happened:
1945 	 */
1946 	if (unlikely(in_nmi())) {
1947 		rp->nmissed++;
1948 		return 0;
1949 	}
1950 
1951 	/* TODO: consider to only swap the RA after the last pre_handler fired */
1952 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1953 	raw_spin_lock_irqsave(&rp->lock, flags);
1954 	if (!hlist_empty(&rp->free_instances)) {
1955 		ri = hlist_entry(rp->free_instances.first,
1956 				struct kretprobe_instance, hlist);
1957 		hlist_del(&ri->hlist);
1958 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1959 
1960 		ri->rp = rp;
1961 		ri->task = current;
1962 
1963 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1964 			raw_spin_lock_irqsave(&rp->lock, flags);
1965 			hlist_add_head(&ri->hlist, &rp->free_instances);
1966 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1967 			return 0;
1968 		}
1969 
1970 		arch_prepare_kretprobe(ri, regs);
1971 
1972 		/* XXX(hch): why is there no hlist_move_head? */
1973 		INIT_HLIST_NODE(&ri->hlist);
1974 		kretprobe_table_lock(hash, &flags);
1975 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1976 		kretprobe_table_unlock(hash, &flags);
1977 	} else {
1978 		rp->nmissed++;
1979 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1980 	}
1981 	return 0;
1982 }
1983 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1984 
1985 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1986 {
1987 	return !offset;
1988 }
1989 
1990 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1991 {
1992 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1993 
1994 	if (IS_ERR(kp_addr))
1995 		return false;
1996 
1997 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1998 						!arch_kprobe_on_func_entry(offset))
1999 		return false;
2000 
2001 	return true;
2002 }
2003 
2004 int register_kretprobe(struct kretprobe *rp)
2005 {
2006 	int ret = 0;
2007 	struct kretprobe_instance *inst;
2008 	int i;
2009 	void *addr;
2010 
2011 	if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
2012 		return -EINVAL;
2013 
2014 	if (kretprobe_blacklist_size) {
2015 		addr = kprobe_addr(&rp->kp);
2016 		if (IS_ERR(addr))
2017 			return PTR_ERR(addr);
2018 
2019 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2020 			if (kretprobe_blacklist[i].addr == addr)
2021 				return -EINVAL;
2022 		}
2023 	}
2024 
2025 	rp->kp.pre_handler = pre_handler_kretprobe;
2026 	rp->kp.post_handler = NULL;
2027 	rp->kp.fault_handler = NULL;
2028 
2029 	/* Pre-allocate memory for max kretprobe instances */
2030 	if (rp->maxactive <= 0) {
2031 #ifdef CONFIG_PREEMPTION
2032 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2033 #else
2034 		rp->maxactive = num_possible_cpus();
2035 #endif
2036 	}
2037 	raw_spin_lock_init(&rp->lock);
2038 	INIT_HLIST_HEAD(&rp->free_instances);
2039 	for (i = 0; i < rp->maxactive; i++) {
2040 		inst = kmalloc(sizeof(struct kretprobe_instance) +
2041 			       rp->data_size, GFP_KERNEL);
2042 		if (inst == NULL) {
2043 			free_rp_inst(rp);
2044 			return -ENOMEM;
2045 		}
2046 		INIT_HLIST_NODE(&inst->hlist);
2047 		hlist_add_head(&inst->hlist, &rp->free_instances);
2048 	}
2049 
2050 	rp->nmissed = 0;
2051 	/* Establish function entry probe point */
2052 	ret = register_kprobe(&rp->kp);
2053 	if (ret != 0)
2054 		free_rp_inst(rp);
2055 	return ret;
2056 }
2057 EXPORT_SYMBOL_GPL(register_kretprobe);
2058 
2059 int register_kretprobes(struct kretprobe **rps, int num)
2060 {
2061 	int ret = 0, i;
2062 
2063 	if (num <= 0)
2064 		return -EINVAL;
2065 	for (i = 0; i < num; i++) {
2066 		ret = register_kretprobe(rps[i]);
2067 		if (ret < 0) {
2068 			if (i > 0)
2069 				unregister_kretprobes(rps, i);
2070 			break;
2071 		}
2072 	}
2073 	return ret;
2074 }
2075 EXPORT_SYMBOL_GPL(register_kretprobes);
2076 
2077 void unregister_kretprobe(struct kretprobe *rp)
2078 {
2079 	unregister_kretprobes(&rp, 1);
2080 }
2081 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2082 
2083 void unregister_kretprobes(struct kretprobe **rps, int num)
2084 {
2085 	int i;
2086 
2087 	if (num <= 0)
2088 		return;
2089 	mutex_lock(&kprobe_mutex);
2090 	for (i = 0; i < num; i++)
2091 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2092 			rps[i]->kp.addr = NULL;
2093 	mutex_unlock(&kprobe_mutex);
2094 
2095 	synchronize_rcu();
2096 	for (i = 0; i < num; i++) {
2097 		if (rps[i]->kp.addr) {
2098 			__unregister_kprobe_bottom(&rps[i]->kp);
2099 			cleanup_rp_inst(rps[i]);
2100 		}
2101 	}
2102 }
2103 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2104 
2105 #else /* CONFIG_KRETPROBES */
2106 int register_kretprobe(struct kretprobe *rp)
2107 {
2108 	return -ENOSYS;
2109 }
2110 EXPORT_SYMBOL_GPL(register_kretprobe);
2111 
2112 int register_kretprobes(struct kretprobe **rps, int num)
2113 {
2114 	return -ENOSYS;
2115 }
2116 EXPORT_SYMBOL_GPL(register_kretprobes);
2117 
2118 void unregister_kretprobe(struct kretprobe *rp)
2119 {
2120 }
2121 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2122 
2123 void unregister_kretprobes(struct kretprobe **rps, int num)
2124 {
2125 }
2126 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2127 
2128 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2129 {
2130 	return 0;
2131 }
2132 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2133 
2134 #endif /* CONFIG_KRETPROBES */
2135 
2136 /* Set the kprobe gone and remove its instruction buffer. */
2137 static void kill_kprobe(struct kprobe *p)
2138 {
2139 	struct kprobe *kp;
2140 
2141 	lockdep_assert_held(&kprobe_mutex);
2142 
2143 	if (WARN_ON_ONCE(kprobe_gone(p)))
2144 		return;
2145 
2146 	p->flags |= KPROBE_FLAG_GONE;
2147 	if (kprobe_aggrprobe(p)) {
2148 		/*
2149 		 * If this is an aggr_kprobe, we have to list all the
2150 		 * chained probes and mark them GONE.
2151 		 */
2152 		list_for_each_entry(kp, &p->list, list)
2153 			kp->flags |= KPROBE_FLAG_GONE;
2154 		p->post_handler = NULL;
2155 		kill_optimized_kprobe(p);
2156 	}
2157 	/*
2158 	 * Here, we can remove insn_slot safely, because no thread calls
2159 	 * the original probed function (which will be freed soon) any more.
2160 	 */
2161 	arch_remove_kprobe(p);
2162 
2163 	/*
2164 	 * The module is going away. We should disarm the kprobe which
2165 	 * is using ftrace, because ftrace framework is still available at
2166 	 * MODULE_STATE_GOING notification.
2167 	 */
2168 	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2169 		disarm_kprobe_ftrace(p);
2170 }
2171 
2172 /* Disable one kprobe */
2173 int disable_kprobe(struct kprobe *kp)
2174 {
2175 	int ret = 0;
2176 	struct kprobe *p;
2177 
2178 	mutex_lock(&kprobe_mutex);
2179 
2180 	/* Disable this kprobe */
2181 	p = __disable_kprobe(kp);
2182 	if (IS_ERR(p))
2183 		ret = PTR_ERR(p);
2184 
2185 	mutex_unlock(&kprobe_mutex);
2186 	return ret;
2187 }
2188 EXPORT_SYMBOL_GPL(disable_kprobe);
2189 
2190 /* Enable one kprobe */
2191 int enable_kprobe(struct kprobe *kp)
2192 {
2193 	int ret = 0;
2194 	struct kprobe *p;
2195 
2196 	mutex_lock(&kprobe_mutex);
2197 
2198 	/* Check whether specified probe is valid. */
2199 	p = __get_valid_kprobe(kp);
2200 	if (unlikely(p == NULL)) {
2201 		ret = -EINVAL;
2202 		goto out;
2203 	}
2204 
2205 	if (kprobe_gone(kp)) {
2206 		/* This kprobe has gone, we couldn't enable it. */
2207 		ret = -EINVAL;
2208 		goto out;
2209 	}
2210 
2211 	if (p != kp)
2212 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2213 
2214 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2215 		p->flags &= ~KPROBE_FLAG_DISABLED;
2216 		ret = arm_kprobe(p);
2217 		if (ret)
2218 			p->flags |= KPROBE_FLAG_DISABLED;
2219 	}
2220 out:
2221 	mutex_unlock(&kprobe_mutex);
2222 	return ret;
2223 }
2224 EXPORT_SYMBOL_GPL(enable_kprobe);
2225 
2226 /* Caller must NOT call this in usual path. This is only for critical case */
2227 void dump_kprobe(struct kprobe *kp)
2228 {
2229 	pr_err("Dumping kprobe:\n");
2230 	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2231 	       kp->symbol_name, kp->offset, kp->addr);
2232 }
2233 NOKPROBE_SYMBOL(dump_kprobe);
2234 
2235 int kprobe_add_ksym_blacklist(unsigned long entry)
2236 {
2237 	struct kprobe_blacklist_entry *ent;
2238 	unsigned long offset = 0, size = 0;
2239 
2240 	if (!kernel_text_address(entry) ||
2241 	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2242 		return -EINVAL;
2243 
2244 	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2245 	if (!ent)
2246 		return -ENOMEM;
2247 	ent->start_addr = entry;
2248 	ent->end_addr = entry + size;
2249 	INIT_LIST_HEAD(&ent->list);
2250 	list_add_tail(&ent->list, &kprobe_blacklist);
2251 
2252 	return (int)size;
2253 }
2254 
2255 /* Add all symbols in given area into kprobe blacklist */
2256 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2257 {
2258 	unsigned long entry;
2259 	int ret = 0;
2260 
2261 	for (entry = start; entry < end; entry += ret) {
2262 		ret = kprobe_add_ksym_blacklist(entry);
2263 		if (ret < 0)
2264 			return ret;
2265 		if (ret == 0)	/* In case of alias symbol */
2266 			ret = 1;
2267 	}
2268 	return 0;
2269 }
2270 
2271 /* Remove all symbols in given area from kprobe blacklist */
2272 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2273 {
2274 	struct kprobe_blacklist_entry *ent, *n;
2275 
2276 	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2277 		if (ent->start_addr < start || ent->start_addr >= end)
2278 			continue;
2279 		list_del(&ent->list);
2280 		kfree(ent);
2281 	}
2282 }
2283 
2284 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2285 {
2286 	kprobe_remove_area_blacklist(entry, entry + 1);
2287 }
2288 
2289 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2290 				   char *type, char *sym)
2291 {
2292 	return -ERANGE;
2293 }
2294 
2295 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2296 		       char *sym)
2297 {
2298 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2299 	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2300 		return 0;
2301 #ifdef CONFIG_OPTPROBES
2302 	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2303 		return 0;
2304 #endif
2305 #endif
2306 	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2307 		return 0;
2308 	return -ERANGE;
2309 }
2310 
2311 int __init __weak arch_populate_kprobe_blacklist(void)
2312 {
2313 	return 0;
2314 }
2315 
2316 /*
2317  * Lookup and populate the kprobe_blacklist.
2318  *
2319  * Unlike the kretprobe blacklist, we'll need to determine
2320  * the range of addresses that belong to the said functions,
2321  * since a kprobe need not necessarily be at the beginning
2322  * of a function.
2323  */
2324 static int __init populate_kprobe_blacklist(unsigned long *start,
2325 					     unsigned long *end)
2326 {
2327 	unsigned long entry;
2328 	unsigned long *iter;
2329 	int ret;
2330 
2331 	for (iter = start; iter < end; iter++) {
2332 		entry = arch_deref_entry_point((void *)*iter);
2333 		ret = kprobe_add_ksym_blacklist(entry);
2334 		if (ret == -EINVAL)
2335 			continue;
2336 		if (ret < 0)
2337 			return ret;
2338 	}
2339 
2340 	/* Symbols in __kprobes_text are blacklisted */
2341 	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2342 					(unsigned long)__kprobes_text_end);
2343 	if (ret)
2344 		return ret;
2345 
2346 	/* Symbols in noinstr section are blacklisted */
2347 	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2348 					(unsigned long)__noinstr_text_end);
2349 
2350 	return ret ? : arch_populate_kprobe_blacklist();
2351 }
2352 
2353 static void add_module_kprobe_blacklist(struct module *mod)
2354 {
2355 	unsigned long start, end;
2356 	int i;
2357 
2358 	if (mod->kprobe_blacklist) {
2359 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2360 			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2361 	}
2362 
2363 	start = (unsigned long)mod->kprobes_text_start;
2364 	if (start) {
2365 		end = start + mod->kprobes_text_size;
2366 		kprobe_add_area_blacklist(start, end);
2367 	}
2368 
2369 	start = (unsigned long)mod->noinstr_text_start;
2370 	if (start) {
2371 		end = start + mod->noinstr_text_size;
2372 		kprobe_add_area_blacklist(start, end);
2373 	}
2374 }
2375 
2376 static void remove_module_kprobe_blacklist(struct module *mod)
2377 {
2378 	unsigned long start, end;
2379 	int i;
2380 
2381 	if (mod->kprobe_blacklist) {
2382 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2383 			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2384 	}
2385 
2386 	start = (unsigned long)mod->kprobes_text_start;
2387 	if (start) {
2388 		end = start + mod->kprobes_text_size;
2389 		kprobe_remove_area_blacklist(start, end);
2390 	}
2391 
2392 	start = (unsigned long)mod->noinstr_text_start;
2393 	if (start) {
2394 		end = start + mod->noinstr_text_size;
2395 		kprobe_remove_area_blacklist(start, end);
2396 	}
2397 }
2398 
2399 /* Module notifier call back, checking kprobes on the module */
2400 static int kprobes_module_callback(struct notifier_block *nb,
2401 				   unsigned long val, void *data)
2402 {
2403 	struct module *mod = data;
2404 	struct hlist_head *head;
2405 	struct kprobe *p;
2406 	unsigned int i;
2407 	int checkcore = (val == MODULE_STATE_GOING);
2408 
2409 	if (val == MODULE_STATE_COMING) {
2410 		mutex_lock(&kprobe_mutex);
2411 		add_module_kprobe_blacklist(mod);
2412 		mutex_unlock(&kprobe_mutex);
2413 	}
2414 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2415 		return NOTIFY_DONE;
2416 
2417 	/*
2418 	 * When MODULE_STATE_GOING was notified, both of module .text and
2419 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2420 	 * notified, only .init.text section would be freed. We need to
2421 	 * disable kprobes which have been inserted in the sections.
2422 	 */
2423 	mutex_lock(&kprobe_mutex);
2424 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2425 		head = &kprobe_table[i];
2426 		hlist_for_each_entry(p, head, hlist) {
2427 			if (kprobe_gone(p))
2428 				continue;
2429 
2430 			if (within_module_init((unsigned long)p->addr, mod) ||
2431 			    (checkcore &&
2432 			     within_module_core((unsigned long)p->addr, mod))) {
2433 				/*
2434 				 * The vaddr this probe is installed will soon
2435 				 * be vfreed buy not synced to disk. Hence,
2436 				 * disarming the breakpoint isn't needed.
2437 				 *
2438 				 * Note, this will also move any optimized probes
2439 				 * that are pending to be removed from their
2440 				 * corresponding lists to the freeing_list and
2441 				 * will not be touched by the delayed
2442 				 * kprobe_optimizer work handler.
2443 				 */
2444 				kill_kprobe(p);
2445 			}
2446 		}
2447 	}
2448 	if (val == MODULE_STATE_GOING)
2449 		remove_module_kprobe_blacklist(mod);
2450 	mutex_unlock(&kprobe_mutex);
2451 	return NOTIFY_DONE;
2452 }
2453 
2454 static struct notifier_block kprobe_module_nb = {
2455 	.notifier_call = kprobes_module_callback,
2456 	.priority = 0
2457 };
2458 
2459 /* Markers of _kprobe_blacklist section */
2460 extern unsigned long __start_kprobe_blacklist[];
2461 extern unsigned long __stop_kprobe_blacklist[];
2462 
2463 void kprobe_free_init_mem(void)
2464 {
2465 	void *start = (void *)(&__init_begin);
2466 	void *end = (void *)(&__init_end);
2467 	struct hlist_head *head;
2468 	struct kprobe *p;
2469 	int i;
2470 
2471 	mutex_lock(&kprobe_mutex);
2472 
2473 	/* Kill all kprobes on initmem */
2474 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2475 		head = &kprobe_table[i];
2476 		hlist_for_each_entry(p, head, hlist) {
2477 			if (start <= (void *)p->addr && (void *)p->addr < end)
2478 				kill_kprobe(p);
2479 		}
2480 	}
2481 
2482 	mutex_unlock(&kprobe_mutex);
2483 }
2484 
2485 static int __init init_kprobes(void)
2486 {
2487 	int i, err = 0;
2488 
2489 	/* FIXME allocate the probe table, currently defined statically */
2490 	/* initialize all list heads */
2491 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2492 		INIT_HLIST_HEAD(&kprobe_table[i]);
2493 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2494 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2495 	}
2496 
2497 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2498 					__stop_kprobe_blacklist);
2499 	if (err) {
2500 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2501 		pr_err("Please take care of using kprobes.\n");
2502 	}
2503 
2504 	if (kretprobe_blacklist_size) {
2505 		/* lookup the function address from its name */
2506 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2507 			kretprobe_blacklist[i].addr =
2508 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2509 			if (!kretprobe_blacklist[i].addr)
2510 				printk("kretprobe: lookup failed: %s\n",
2511 				       kretprobe_blacklist[i].name);
2512 		}
2513 	}
2514 
2515 #if defined(CONFIG_OPTPROBES)
2516 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2517 	/* Init kprobe_optinsn_slots */
2518 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2519 #endif
2520 	/* By default, kprobes can be optimized */
2521 	kprobes_allow_optimization = true;
2522 #endif
2523 
2524 	/* By default, kprobes are armed */
2525 	kprobes_all_disarmed = false;
2526 
2527 	err = arch_init_kprobes();
2528 	if (!err)
2529 		err = register_die_notifier(&kprobe_exceptions_nb);
2530 	if (!err)
2531 		err = register_module_notifier(&kprobe_module_nb);
2532 
2533 	kprobes_initialized = (err == 0);
2534 
2535 	if (!err)
2536 		init_test_probes();
2537 	return err;
2538 }
2539 subsys_initcall(init_kprobes);
2540 
2541 #ifdef CONFIG_DEBUG_FS
2542 static void report_probe(struct seq_file *pi, struct kprobe *p,
2543 		const char *sym, int offset, char *modname, struct kprobe *pp)
2544 {
2545 	char *kprobe_type;
2546 	void *addr = p->addr;
2547 
2548 	if (p->pre_handler == pre_handler_kretprobe)
2549 		kprobe_type = "r";
2550 	else
2551 		kprobe_type = "k";
2552 
2553 	if (!kallsyms_show_value(pi->file->f_cred))
2554 		addr = NULL;
2555 
2556 	if (sym)
2557 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2558 			addr, kprobe_type, sym, offset,
2559 			(modname ? modname : " "));
2560 	else	/* try to use %pS */
2561 		seq_printf(pi, "%px  %s  %pS ",
2562 			addr, kprobe_type, p->addr);
2563 
2564 	if (!pp)
2565 		pp = p;
2566 	seq_printf(pi, "%s%s%s%s\n",
2567 		(kprobe_gone(p) ? "[GONE]" : ""),
2568 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2569 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2570 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2571 }
2572 
2573 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2574 {
2575 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2576 }
2577 
2578 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2579 {
2580 	(*pos)++;
2581 	if (*pos >= KPROBE_TABLE_SIZE)
2582 		return NULL;
2583 	return pos;
2584 }
2585 
2586 static void kprobe_seq_stop(struct seq_file *f, void *v)
2587 {
2588 	/* Nothing to do */
2589 }
2590 
2591 static int show_kprobe_addr(struct seq_file *pi, void *v)
2592 {
2593 	struct hlist_head *head;
2594 	struct kprobe *p, *kp;
2595 	const char *sym = NULL;
2596 	unsigned int i = *(loff_t *) v;
2597 	unsigned long offset = 0;
2598 	char *modname, namebuf[KSYM_NAME_LEN];
2599 
2600 	head = &kprobe_table[i];
2601 	preempt_disable();
2602 	hlist_for_each_entry_rcu(p, head, hlist) {
2603 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2604 					&offset, &modname, namebuf);
2605 		if (kprobe_aggrprobe(p)) {
2606 			list_for_each_entry_rcu(kp, &p->list, list)
2607 				report_probe(pi, kp, sym, offset, modname, p);
2608 		} else
2609 			report_probe(pi, p, sym, offset, modname, NULL);
2610 	}
2611 	preempt_enable();
2612 	return 0;
2613 }
2614 
2615 static const struct seq_operations kprobes_sops = {
2616 	.start = kprobe_seq_start,
2617 	.next  = kprobe_seq_next,
2618 	.stop  = kprobe_seq_stop,
2619 	.show  = show_kprobe_addr
2620 };
2621 
2622 DEFINE_SEQ_ATTRIBUTE(kprobes);
2623 
2624 /* kprobes/blacklist -- shows which functions can not be probed */
2625 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2626 {
2627 	mutex_lock(&kprobe_mutex);
2628 	return seq_list_start(&kprobe_blacklist, *pos);
2629 }
2630 
2631 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2632 {
2633 	return seq_list_next(v, &kprobe_blacklist, pos);
2634 }
2635 
2636 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2637 {
2638 	struct kprobe_blacklist_entry *ent =
2639 		list_entry(v, struct kprobe_blacklist_entry, list);
2640 
2641 	/*
2642 	 * If /proc/kallsyms is not showing kernel address, we won't
2643 	 * show them here either.
2644 	 */
2645 	if (!kallsyms_show_value(m->file->f_cred))
2646 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2647 			   (void *)ent->start_addr);
2648 	else
2649 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2650 			   (void *)ent->end_addr, (void *)ent->start_addr);
2651 	return 0;
2652 }
2653 
2654 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2655 {
2656 	mutex_unlock(&kprobe_mutex);
2657 }
2658 
2659 static const struct seq_operations kprobe_blacklist_sops = {
2660 	.start = kprobe_blacklist_seq_start,
2661 	.next  = kprobe_blacklist_seq_next,
2662 	.stop  = kprobe_blacklist_seq_stop,
2663 	.show  = kprobe_blacklist_seq_show,
2664 };
2665 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2666 
2667 static int arm_all_kprobes(void)
2668 {
2669 	struct hlist_head *head;
2670 	struct kprobe *p;
2671 	unsigned int i, total = 0, errors = 0;
2672 	int err, ret = 0;
2673 
2674 	mutex_lock(&kprobe_mutex);
2675 
2676 	/* If kprobes are armed, just return */
2677 	if (!kprobes_all_disarmed)
2678 		goto already_enabled;
2679 
2680 	/*
2681 	 * optimize_kprobe() called by arm_kprobe() checks
2682 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2683 	 * arm_kprobe.
2684 	 */
2685 	kprobes_all_disarmed = false;
2686 	/* Arming kprobes doesn't optimize kprobe itself */
2687 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2688 		head = &kprobe_table[i];
2689 		/* Arm all kprobes on a best-effort basis */
2690 		hlist_for_each_entry(p, head, hlist) {
2691 			if (!kprobe_disabled(p)) {
2692 				err = arm_kprobe(p);
2693 				if (err)  {
2694 					errors++;
2695 					ret = err;
2696 				}
2697 				total++;
2698 			}
2699 		}
2700 	}
2701 
2702 	if (errors)
2703 		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2704 			errors, total);
2705 	else
2706 		pr_info("Kprobes globally enabled\n");
2707 
2708 already_enabled:
2709 	mutex_unlock(&kprobe_mutex);
2710 	return ret;
2711 }
2712 
2713 static int disarm_all_kprobes(void)
2714 {
2715 	struct hlist_head *head;
2716 	struct kprobe *p;
2717 	unsigned int i, total = 0, errors = 0;
2718 	int err, ret = 0;
2719 
2720 	mutex_lock(&kprobe_mutex);
2721 
2722 	/* If kprobes are already disarmed, just return */
2723 	if (kprobes_all_disarmed) {
2724 		mutex_unlock(&kprobe_mutex);
2725 		return 0;
2726 	}
2727 
2728 	kprobes_all_disarmed = true;
2729 
2730 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2731 		head = &kprobe_table[i];
2732 		/* Disarm all kprobes on a best-effort basis */
2733 		hlist_for_each_entry(p, head, hlist) {
2734 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2735 				err = disarm_kprobe(p, false);
2736 				if (err) {
2737 					errors++;
2738 					ret = err;
2739 				}
2740 				total++;
2741 			}
2742 		}
2743 	}
2744 
2745 	if (errors)
2746 		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2747 			errors, total);
2748 	else
2749 		pr_info("Kprobes globally disabled\n");
2750 
2751 	mutex_unlock(&kprobe_mutex);
2752 
2753 	/* Wait for disarming all kprobes by optimizer */
2754 	wait_for_kprobe_optimizer();
2755 
2756 	return ret;
2757 }
2758 
2759 /*
2760  * XXX: The debugfs bool file interface doesn't allow for callbacks
2761  * when the bool state is switched. We can reuse that facility when
2762  * available
2763  */
2764 static ssize_t read_enabled_file_bool(struct file *file,
2765 	       char __user *user_buf, size_t count, loff_t *ppos)
2766 {
2767 	char buf[3];
2768 
2769 	if (!kprobes_all_disarmed)
2770 		buf[0] = '1';
2771 	else
2772 		buf[0] = '0';
2773 	buf[1] = '\n';
2774 	buf[2] = 0x00;
2775 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2776 }
2777 
2778 static ssize_t write_enabled_file_bool(struct file *file,
2779 	       const char __user *user_buf, size_t count, loff_t *ppos)
2780 {
2781 	char buf[32];
2782 	size_t buf_size;
2783 	int ret = 0;
2784 
2785 	buf_size = min(count, (sizeof(buf)-1));
2786 	if (copy_from_user(buf, user_buf, buf_size))
2787 		return -EFAULT;
2788 
2789 	buf[buf_size] = '\0';
2790 	switch (buf[0]) {
2791 	case 'y':
2792 	case 'Y':
2793 	case '1':
2794 		ret = arm_all_kprobes();
2795 		break;
2796 	case 'n':
2797 	case 'N':
2798 	case '0':
2799 		ret = disarm_all_kprobes();
2800 		break;
2801 	default:
2802 		return -EINVAL;
2803 	}
2804 
2805 	if (ret)
2806 		return ret;
2807 
2808 	return count;
2809 }
2810 
2811 static const struct file_operations fops_kp = {
2812 	.read =         read_enabled_file_bool,
2813 	.write =        write_enabled_file_bool,
2814 	.llseek =	default_llseek,
2815 };
2816 
2817 static int __init debugfs_kprobe_init(void)
2818 {
2819 	struct dentry *dir;
2820 	unsigned int value = 1;
2821 
2822 	dir = debugfs_create_dir("kprobes", NULL);
2823 
2824 	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2825 
2826 	debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2827 
2828 	debugfs_create_file("blacklist", 0400, dir, NULL,
2829 			    &kprobe_blacklist_fops);
2830 
2831 	return 0;
2832 }
2833 
2834 late_initcall(debugfs_kprobe_init);
2835 #endif /* CONFIG_DEBUG_FS */
2836