1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * kernel/kprobes.c 5 * 6 * Copyright (C) IBM Corporation, 2002, 2004 7 * 8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 9 * Probes initial implementation (includes suggestions from 10 * Rusty Russell). 11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 12 * hlists and exceptions notifier as suggested by Andi Kleen. 13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 14 * interface to access function arguments. 15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 16 * exceptions notifier to be first on the priority list. 17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 19 * <prasanna@in.ibm.com> added function-return probes. 20 */ 21 #include <linux/kprobes.h> 22 #include <linux/hash.h> 23 #include <linux/init.h> 24 #include <linux/slab.h> 25 #include <linux/stddef.h> 26 #include <linux/export.h> 27 #include <linux/moduleloader.h> 28 #include <linux/kallsyms.h> 29 #include <linux/freezer.h> 30 #include <linux/seq_file.h> 31 #include <linux/debugfs.h> 32 #include <linux/sysctl.h> 33 #include <linux/kdebug.h> 34 #include <linux/memory.h> 35 #include <linux/ftrace.h> 36 #include <linux/cpu.h> 37 #include <linux/jump_label.h> 38 #include <linux/perf_event.h> 39 40 #include <asm/sections.h> 41 #include <asm/cacheflush.h> 42 #include <asm/errno.h> 43 #include <linux/uaccess.h> 44 45 #define KPROBE_HASH_BITS 6 46 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 47 48 49 static int kprobes_initialized; 50 /* kprobe_table can be accessed by 51 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held. 52 * Or 53 * - RCU hlist traversal under disabling preempt (breakpoint handlers) 54 */ 55 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 56 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 57 58 /* NOTE: change this value only with kprobe_mutex held */ 59 static bool kprobes_all_disarmed; 60 61 /* This protects kprobe_table and optimizing_list */ 62 static DEFINE_MUTEX(kprobe_mutex); 63 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 64 static struct { 65 raw_spinlock_t lock ____cacheline_aligned_in_smp; 66 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 67 68 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, 69 unsigned int __unused) 70 { 71 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); 72 } 73 74 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 75 { 76 return &(kretprobe_table_locks[hash].lock); 77 } 78 79 /* Blacklist -- list of struct kprobe_blacklist_entry */ 80 static LIST_HEAD(kprobe_blacklist); 81 82 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 83 /* 84 * kprobe->ainsn.insn points to the copy of the instruction to be 85 * single-stepped. x86_64, POWER4 and above have no-exec support and 86 * stepping on the instruction on a vmalloced/kmalloced/data page 87 * is a recipe for disaster 88 */ 89 struct kprobe_insn_page { 90 struct list_head list; 91 kprobe_opcode_t *insns; /* Page of instruction slots */ 92 struct kprobe_insn_cache *cache; 93 int nused; 94 int ngarbage; 95 char slot_used[]; 96 }; 97 98 #define KPROBE_INSN_PAGE_SIZE(slots) \ 99 (offsetof(struct kprobe_insn_page, slot_used) + \ 100 (sizeof(char) * (slots))) 101 102 static int slots_per_page(struct kprobe_insn_cache *c) 103 { 104 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 105 } 106 107 enum kprobe_slot_state { 108 SLOT_CLEAN = 0, 109 SLOT_DIRTY = 1, 110 SLOT_USED = 2, 111 }; 112 113 void __weak *alloc_insn_page(void) 114 { 115 return module_alloc(PAGE_SIZE); 116 } 117 118 void __weak free_insn_page(void *page) 119 { 120 module_memfree(page); 121 } 122 123 struct kprobe_insn_cache kprobe_insn_slots = { 124 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 125 .alloc = alloc_insn_page, 126 .free = free_insn_page, 127 .sym = KPROBE_INSN_PAGE_SYM, 128 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 129 .insn_size = MAX_INSN_SIZE, 130 .nr_garbage = 0, 131 }; 132 static int collect_garbage_slots(struct kprobe_insn_cache *c); 133 134 /** 135 * __get_insn_slot() - Find a slot on an executable page for an instruction. 136 * We allocate an executable page if there's no room on existing ones. 137 */ 138 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 139 { 140 struct kprobe_insn_page *kip; 141 kprobe_opcode_t *slot = NULL; 142 143 /* Since the slot array is not protected by rcu, we need a mutex */ 144 mutex_lock(&c->mutex); 145 retry: 146 rcu_read_lock(); 147 list_for_each_entry_rcu(kip, &c->pages, list) { 148 if (kip->nused < slots_per_page(c)) { 149 int i; 150 for (i = 0; i < slots_per_page(c); i++) { 151 if (kip->slot_used[i] == SLOT_CLEAN) { 152 kip->slot_used[i] = SLOT_USED; 153 kip->nused++; 154 slot = kip->insns + (i * c->insn_size); 155 rcu_read_unlock(); 156 goto out; 157 } 158 } 159 /* kip->nused is broken. Fix it. */ 160 kip->nused = slots_per_page(c); 161 WARN_ON(1); 162 } 163 } 164 rcu_read_unlock(); 165 166 /* If there are any garbage slots, collect it and try again. */ 167 if (c->nr_garbage && collect_garbage_slots(c) == 0) 168 goto retry; 169 170 /* All out of space. Need to allocate a new page. */ 171 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 172 if (!kip) 173 goto out; 174 175 /* 176 * Use module_alloc so this page is within +/- 2GB of where the 177 * kernel image and loaded module images reside. This is required 178 * so x86_64 can correctly handle the %rip-relative fixups. 179 */ 180 kip->insns = c->alloc(); 181 if (!kip->insns) { 182 kfree(kip); 183 goto out; 184 } 185 INIT_LIST_HEAD(&kip->list); 186 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 187 kip->slot_used[0] = SLOT_USED; 188 kip->nused = 1; 189 kip->ngarbage = 0; 190 kip->cache = c; 191 list_add_rcu(&kip->list, &c->pages); 192 slot = kip->insns; 193 194 /* Record the perf ksymbol register event after adding the page */ 195 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns, 196 PAGE_SIZE, false, c->sym); 197 out: 198 mutex_unlock(&c->mutex); 199 return slot; 200 } 201 202 /* Return 1 if all garbages are collected, otherwise 0. */ 203 static int collect_one_slot(struct kprobe_insn_page *kip, int idx) 204 { 205 kip->slot_used[idx] = SLOT_CLEAN; 206 kip->nused--; 207 if (kip->nused == 0) { 208 /* 209 * Page is no longer in use. Free it unless 210 * it's the last one. We keep the last one 211 * so as not to have to set it up again the 212 * next time somebody inserts a probe. 213 */ 214 if (!list_is_singular(&kip->list)) { 215 /* 216 * Record perf ksymbol unregister event before removing 217 * the page. 218 */ 219 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 220 (unsigned long)kip->insns, PAGE_SIZE, true, 221 kip->cache->sym); 222 list_del_rcu(&kip->list); 223 synchronize_rcu(); 224 kip->cache->free(kip->insns); 225 kfree(kip); 226 } 227 return 1; 228 } 229 return 0; 230 } 231 232 static int collect_garbage_slots(struct kprobe_insn_cache *c) 233 { 234 struct kprobe_insn_page *kip, *next; 235 236 /* Ensure no-one is interrupted on the garbages */ 237 synchronize_rcu(); 238 239 list_for_each_entry_safe(kip, next, &c->pages, list) { 240 int i; 241 if (kip->ngarbage == 0) 242 continue; 243 kip->ngarbage = 0; /* we will collect all garbages */ 244 for (i = 0; i < slots_per_page(c); i++) { 245 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 246 break; 247 } 248 } 249 c->nr_garbage = 0; 250 return 0; 251 } 252 253 void __free_insn_slot(struct kprobe_insn_cache *c, 254 kprobe_opcode_t *slot, int dirty) 255 { 256 struct kprobe_insn_page *kip; 257 long idx; 258 259 mutex_lock(&c->mutex); 260 rcu_read_lock(); 261 list_for_each_entry_rcu(kip, &c->pages, list) { 262 idx = ((long)slot - (long)kip->insns) / 263 (c->insn_size * sizeof(kprobe_opcode_t)); 264 if (idx >= 0 && idx < slots_per_page(c)) 265 goto out; 266 } 267 /* Could not find this slot. */ 268 WARN_ON(1); 269 kip = NULL; 270 out: 271 rcu_read_unlock(); 272 /* Mark and sweep: this may sleep */ 273 if (kip) { 274 /* Check double free */ 275 WARN_ON(kip->slot_used[idx] != SLOT_USED); 276 if (dirty) { 277 kip->slot_used[idx] = SLOT_DIRTY; 278 kip->ngarbage++; 279 if (++c->nr_garbage > slots_per_page(c)) 280 collect_garbage_slots(c); 281 } else { 282 collect_one_slot(kip, idx); 283 } 284 } 285 mutex_unlock(&c->mutex); 286 } 287 288 /* 289 * Check given address is on the page of kprobe instruction slots. 290 * This will be used for checking whether the address on a stack 291 * is on a text area or not. 292 */ 293 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 294 { 295 struct kprobe_insn_page *kip; 296 bool ret = false; 297 298 rcu_read_lock(); 299 list_for_each_entry_rcu(kip, &c->pages, list) { 300 if (addr >= (unsigned long)kip->insns && 301 addr < (unsigned long)kip->insns + PAGE_SIZE) { 302 ret = true; 303 break; 304 } 305 } 306 rcu_read_unlock(); 307 308 return ret; 309 } 310 311 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum, 312 unsigned long *value, char *type, char *sym) 313 { 314 struct kprobe_insn_page *kip; 315 int ret = -ERANGE; 316 317 rcu_read_lock(); 318 list_for_each_entry_rcu(kip, &c->pages, list) { 319 if ((*symnum)--) 320 continue; 321 strlcpy(sym, c->sym, KSYM_NAME_LEN); 322 *type = 't'; 323 *value = (unsigned long)kip->insns; 324 ret = 0; 325 break; 326 } 327 rcu_read_unlock(); 328 329 return ret; 330 } 331 332 #ifdef CONFIG_OPTPROBES 333 /* For optimized_kprobe buffer */ 334 struct kprobe_insn_cache kprobe_optinsn_slots = { 335 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 336 .alloc = alloc_insn_page, 337 .free = free_insn_page, 338 .sym = KPROBE_OPTINSN_PAGE_SYM, 339 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 340 /* .insn_size is initialized later */ 341 .nr_garbage = 0, 342 }; 343 #endif 344 #endif 345 346 /* We have preemption disabled.. so it is safe to use __ versions */ 347 static inline void set_kprobe_instance(struct kprobe *kp) 348 { 349 __this_cpu_write(kprobe_instance, kp); 350 } 351 352 static inline void reset_kprobe_instance(void) 353 { 354 __this_cpu_write(kprobe_instance, NULL); 355 } 356 357 /* 358 * This routine is called either: 359 * - under the kprobe_mutex - during kprobe_[un]register() 360 * OR 361 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 362 */ 363 struct kprobe *get_kprobe(void *addr) 364 { 365 struct hlist_head *head; 366 struct kprobe *p; 367 368 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 369 hlist_for_each_entry_rcu(p, head, hlist, 370 lockdep_is_held(&kprobe_mutex)) { 371 if (p->addr == addr) 372 return p; 373 } 374 375 return NULL; 376 } 377 NOKPROBE_SYMBOL(get_kprobe); 378 379 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 380 381 /* Return true if the kprobe is an aggregator */ 382 static inline int kprobe_aggrprobe(struct kprobe *p) 383 { 384 return p->pre_handler == aggr_pre_handler; 385 } 386 387 /* Return true(!0) if the kprobe is unused */ 388 static inline int kprobe_unused(struct kprobe *p) 389 { 390 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 391 list_empty(&p->list); 392 } 393 394 /* 395 * Keep all fields in the kprobe consistent 396 */ 397 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 398 { 399 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 400 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 401 } 402 403 #ifdef CONFIG_OPTPROBES 404 /* NOTE: change this value only with kprobe_mutex held */ 405 static bool kprobes_allow_optimization; 406 407 /* 408 * Call all pre_handler on the list, but ignores its return value. 409 * This must be called from arch-dep optimized caller. 410 */ 411 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 412 { 413 struct kprobe *kp; 414 415 list_for_each_entry_rcu(kp, &p->list, list) { 416 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 417 set_kprobe_instance(kp); 418 kp->pre_handler(kp, regs); 419 } 420 reset_kprobe_instance(); 421 } 422 } 423 NOKPROBE_SYMBOL(opt_pre_handler); 424 425 /* Free optimized instructions and optimized_kprobe */ 426 static void free_aggr_kprobe(struct kprobe *p) 427 { 428 struct optimized_kprobe *op; 429 430 op = container_of(p, struct optimized_kprobe, kp); 431 arch_remove_optimized_kprobe(op); 432 arch_remove_kprobe(p); 433 kfree(op); 434 } 435 436 /* Return true(!0) if the kprobe is ready for optimization. */ 437 static inline int kprobe_optready(struct kprobe *p) 438 { 439 struct optimized_kprobe *op; 440 441 if (kprobe_aggrprobe(p)) { 442 op = container_of(p, struct optimized_kprobe, kp); 443 return arch_prepared_optinsn(&op->optinsn); 444 } 445 446 return 0; 447 } 448 449 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 450 static inline int kprobe_disarmed(struct kprobe *p) 451 { 452 struct optimized_kprobe *op; 453 454 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 455 if (!kprobe_aggrprobe(p)) 456 return kprobe_disabled(p); 457 458 op = container_of(p, struct optimized_kprobe, kp); 459 460 return kprobe_disabled(p) && list_empty(&op->list); 461 } 462 463 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 464 static int kprobe_queued(struct kprobe *p) 465 { 466 struct optimized_kprobe *op; 467 468 if (kprobe_aggrprobe(p)) { 469 op = container_of(p, struct optimized_kprobe, kp); 470 if (!list_empty(&op->list)) 471 return 1; 472 } 473 return 0; 474 } 475 476 /* 477 * Return an optimized kprobe whose optimizing code replaces 478 * instructions including addr (exclude breakpoint). 479 */ 480 static struct kprobe *get_optimized_kprobe(unsigned long addr) 481 { 482 int i; 483 struct kprobe *p = NULL; 484 struct optimized_kprobe *op; 485 486 /* Don't check i == 0, since that is a breakpoint case. */ 487 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 488 p = get_kprobe((void *)(addr - i)); 489 490 if (p && kprobe_optready(p)) { 491 op = container_of(p, struct optimized_kprobe, kp); 492 if (arch_within_optimized_kprobe(op, addr)) 493 return p; 494 } 495 496 return NULL; 497 } 498 499 /* Optimization staging list, protected by kprobe_mutex */ 500 static LIST_HEAD(optimizing_list); 501 static LIST_HEAD(unoptimizing_list); 502 static LIST_HEAD(freeing_list); 503 504 static void kprobe_optimizer(struct work_struct *work); 505 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 506 #define OPTIMIZE_DELAY 5 507 508 /* 509 * Optimize (replace a breakpoint with a jump) kprobes listed on 510 * optimizing_list. 511 */ 512 static void do_optimize_kprobes(void) 513 { 514 lockdep_assert_held(&text_mutex); 515 /* 516 * The optimization/unoptimization refers online_cpus via 517 * stop_machine() and cpu-hotplug modifies online_cpus. 518 * And same time, text_mutex will be held in cpu-hotplug and here. 519 * This combination can cause a deadlock (cpu-hotplug try to lock 520 * text_mutex but stop_machine can not be done because online_cpus 521 * has been changed) 522 * To avoid this deadlock, caller must have locked cpu hotplug 523 * for preventing cpu-hotplug outside of text_mutex locking. 524 */ 525 lockdep_assert_cpus_held(); 526 527 /* Optimization never be done when disarmed */ 528 if (kprobes_all_disarmed || !kprobes_allow_optimization || 529 list_empty(&optimizing_list)) 530 return; 531 532 arch_optimize_kprobes(&optimizing_list); 533 } 534 535 /* 536 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 537 * if need) kprobes listed on unoptimizing_list. 538 */ 539 static void do_unoptimize_kprobes(void) 540 { 541 struct optimized_kprobe *op, *tmp; 542 543 lockdep_assert_held(&text_mutex); 544 /* See comment in do_optimize_kprobes() */ 545 lockdep_assert_cpus_held(); 546 547 /* Unoptimization must be done anytime */ 548 if (list_empty(&unoptimizing_list)) 549 return; 550 551 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 552 /* Loop free_list for disarming */ 553 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 554 /* Switching from detour code to origin */ 555 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 556 /* Disarm probes if marked disabled */ 557 if (kprobe_disabled(&op->kp)) 558 arch_disarm_kprobe(&op->kp); 559 if (kprobe_unused(&op->kp)) { 560 /* 561 * Remove unused probes from hash list. After waiting 562 * for synchronization, these probes are reclaimed. 563 * (reclaiming is done by do_free_cleaned_kprobes.) 564 */ 565 hlist_del_rcu(&op->kp.hlist); 566 } else 567 list_del_init(&op->list); 568 } 569 } 570 571 /* Reclaim all kprobes on the free_list */ 572 static void do_free_cleaned_kprobes(void) 573 { 574 struct optimized_kprobe *op, *tmp; 575 576 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 577 list_del_init(&op->list); 578 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) { 579 /* 580 * This must not happen, but if there is a kprobe 581 * still in use, keep it on kprobes hash list. 582 */ 583 continue; 584 } 585 free_aggr_kprobe(&op->kp); 586 } 587 } 588 589 /* Start optimizer after OPTIMIZE_DELAY passed */ 590 static void kick_kprobe_optimizer(void) 591 { 592 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 593 } 594 595 /* Kprobe jump optimizer */ 596 static void kprobe_optimizer(struct work_struct *work) 597 { 598 mutex_lock(&kprobe_mutex); 599 cpus_read_lock(); 600 mutex_lock(&text_mutex); 601 602 /* 603 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 604 * kprobes before waiting for quiesence period. 605 */ 606 do_unoptimize_kprobes(); 607 608 /* 609 * Step 2: Wait for quiesence period to ensure all potentially 610 * preempted tasks to have normally scheduled. Because optprobe 611 * may modify multiple instructions, there is a chance that Nth 612 * instruction is preempted. In that case, such tasks can return 613 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. 614 * Note that on non-preemptive kernel, this is transparently converted 615 * to synchronoze_sched() to wait for all interrupts to have completed. 616 */ 617 synchronize_rcu_tasks(); 618 619 /* Step 3: Optimize kprobes after quiesence period */ 620 do_optimize_kprobes(); 621 622 /* Step 4: Free cleaned kprobes after quiesence period */ 623 do_free_cleaned_kprobes(); 624 625 mutex_unlock(&text_mutex); 626 cpus_read_unlock(); 627 628 /* Step 5: Kick optimizer again if needed */ 629 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 630 kick_kprobe_optimizer(); 631 632 mutex_unlock(&kprobe_mutex); 633 } 634 635 /* Wait for completing optimization and unoptimization */ 636 void wait_for_kprobe_optimizer(void) 637 { 638 mutex_lock(&kprobe_mutex); 639 640 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 641 mutex_unlock(&kprobe_mutex); 642 643 /* this will also make optimizing_work execute immmediately */ 644 flush_delayed_work(&optimizing_work); 645 /* @optimizing_work might not have been queued yet, relax */ 646 cpu_relax(); 647 648 mutex_lock(&kprobe_mutex); 649 } 650 651 mutex_unlock(&kprobe_mutex); 652 } 653 654 static bool optprobe_queued_unopt(struct optimized_kprobe *op) 655 { 656 struct optimized_kprobe *_op; 657 658 list_for_each_entry(_op, &unoptimizing_list, list) { 659 if (op == _op) 660 return true; 661 } 662 663 return false; 664 } 665 666 /* Optimize kprobe if p is ready to be optimized */ 667 static void optimize_kprobe(struct kprobe *p) 668 { 669 struct optimized_kprobe *op; 670 671 /* Check if the kprobe is disabled or not ready for optimization. */ 672 if (!kprobe_optready(p) || !kprobes_allow_optimization || 673 (kprobe_disabled(p) || kprobes_all_disarmed)) 674 return; 675 676 /* kprobes with post_handler can not be optimized */ 677 if (p->post_handler) 678 return; 679 680 op = container_of(p, struct optimized_kprobe, kp); 681 682 /* Check there is no other kprobes at the optimized instructions */ 683 if (arch_check_optimized_kprobe(op) < 0) 684 return; 685 686 /* Check if it is already optimized. */ 687 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) { 688 if (optprobe_queued_unopt(op)) { 689 /* This is under unoptimizing. Just dequeue the probe */ 690 list_del_init(&op->list); 691 } 692 return; 693 } 694 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 695 696 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */ 697 if (WARN_ON_ONCE(!list_empty(&op->list))) 698 return; 699 700 list_add(&op->list, &optimizing_list); 701 kick_kprobe_optimizer(); 702 } 703 704 /* Short cut to direct unoptimizing */ 705 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 706 { 707 lockdep_assert_cpus_held(); 708 arch_unoptimize_kprobe(op); 709 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 710 } 711 712 /* Unoptimize a kprobe if p is optimized */ 713 static void unoptimize_kprobe(struct kprobe *p, bool force) 714 { 715 struct optimized_kprobe *op; 716 717 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 718 return; /* This is not an optprobe nor optimized */ 719 720 op = container_of(p, struct optimized_kprobe, kp); 721 if (!kprobe_optimized(p)) 722 return; 723 724 if (!list_empty(&op->list)) { 725 if (optprobe_queued_unopt(op)) { 726 /* Queued in unoptimizing queue */ 727 if (force) { 728 /* 729 * Forcibly unoptimize the kprobe here, and queue it 730 * in the freeing list for release afterwards. 731 */ 732 force_unoptimize_kprobe(op); 733 list_move(&op->list, &freeing_list); 734 } 735 } else { 736 /* Dequeue from the optimizing queue */ 737 list_del_init(&op->list); 738 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 739 } 740 return; 741 } 742 743 /* Optimized kprobe case */ 744 if (force) { 745 /* Forcibly update the code: this is a special case */ 746 force_unoptimize_kprobe(op); 747 } else { 748 list_add(&op->list, &unoptimizing_list); 749 kick_kprobe_optimizer(); 750 } 751 } 752 753 /* Cancel unoptimizing for reusing */ 754 static int reuse_unused_kprobe(struct kprobe *ap) 755 { 756 struct optimized_kprobe *op; 757 758 /* 759 * Unused kprobe MUST be on the way of delayed unoptimizing (means 760 * there is still a relative jump) and disabled. 761 */ 762 op = container_of(ap, struct optimized_kprobe, kp); 763 WARN_ON_ONCE(list_empty(&op->list)); 764 /* Enable the probe again */ 765 ap->flags &= ~KPROBE_FLAG_DISABLED; 766 /* Optimize it again (remove from op->list) */ 767 if (!kprobe_optready(ap)) 768 return -EINVAL; 769 770 optimize_kprobe(ap); 771 return 0; 772 } 773 774 /* Remove optimized instructions */ 775 static void kill_optimized_kprobe(struct kprobe *p) 776 { 777 struct optimized_kprobe *op; 778 779 op = container_of(p, struct optimized_kprobe, kp); 780 if (!list_empty(&op->list)) 781 /* Dequeue from the (un)optimization queue */ 782 list_del_init(&op->list); 783 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 784 785 if (kprobe_unused(p)) { 786 /* Enqueue if it is unused */ 787 list_add(&op->list, &freeing_list); 788 /* 789 * Remove unused probes from the hash list. After waiting 790 * for synchronization, this probe is reclaimed. 791 * (reclaiming is done by do_free_cleaned_kprobes().) 792 */ 793 hlist_del_rcu(&op->kp.hlist); 794 } 795 796 /* Don't touch the code, because it is already freed. */ 797 arch_remove_optimized_kprobe(op); 798 } 799 800 static inline 801 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) 802 { 803 if (!kprobe_ftrace(p)) 804 arch_prepare_optimized_kprobe(op, p); 805 } 806 807 /* Try to prepare optimized instructions */ 808 static void prepare_optimized_kprobe(struct kprobe *p) 809 { 810 struct optimized_kprobe *op; 811 812 op = container_of(p, struct optimized_kprobe, kp); 813 __prepare_optimized_kprobe(op, p); 814 } 815 816 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 817 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 818 { 819 struct optimized_kprobe *op; 820 821 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 822 if (!op) 823 return NULL; 824 825 INIT_LIST_HEAD(&op->list); 826 op->kp.addr = p->addr; 827 __prepare_optimized_kprobe(op, p); 828 829 return &op->kp; 830 } 831 832 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 833 834 /* 835 * Prepare an optimized_kprobe and optimize it 836 * NOTE: p must be a normal registered kprobe 837 */ 838 static void try_to_optimize_kprobe(struct kprobe *p) 839 { 840 struct kprobe *ap; 841 struct optimized_kprobe *op; 842 843 /* Impossible to optimize ftrace-based kprobe */ 844 if (kprobe_ftrace(p)) 845 return; 846 847 /* For preparing optimization, jump_label_text_reserved() is called */ 848 cpus_read_lock(); 849 jump_label_lock(); 850 mutex_lock(&text_mutex); 851 852 ap = alloc_aggr_kprobe(p); 853 if (!ap) 854 goto out; 855 856 op = container_of(ap, struct optimized_kprobe, kp); 857 if (!arch_prepared_optinsn(&op->optinsn)) { 858 /* If failed to setup optimizing, fallback to kprobe */ 859 arch_remove_optimized_kprobe(op); 860 kfree(op); 861 goto out; 862 } 863 864 init_aggr_kprobe(ap, p); 865 optimize_kprobe(ap); /* This just kicks optimizer thread */ 866 867 out: 868 mutex_unlock(&text_mutex); 869 jump_label_unlock(); 870 cpus_read_unlock(); 871 } 872 873 #ifdef CONFIG_SYSCTL 874 static void optimize_all_kprobes(void) 875 { 876 struct hlist_head *head; 877 struct kprobe *p; 878 unsigned int i; 879 880 mutex_lock(&kprobe_mutex); 881 /* If optimization is already allowed, just return */ 882 if (kprobes_allow_optimization) 883 goto out; 884 885 cpus_read_lock(); 886 kprobes_allow_optimization = true; 887 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 888 head = &kprobe_table[i]; 889 hlist_for_each_entry(p, head, hlist) 890 if (!kprobe_disabled(p)) 891 optimize_kprobe(p); 892 } 893 cpus_read_unlock(); 894 printk(KERN_INFO "Kprobes globally optimized\n"); 895 out: 896 mutex_unlock(&kprobe_mutex); 897 } 898 899 static void unoptimize_all_kprobes(void) 900 { 901 struct hlist_head *head; 902 struct kprobe *p; 903 unsigned int i; 904 905 mutex_lock(&kprobe_mutex); 906 /* If optimization is already prohibited, just return */ 907 if (!kprobes_allow_optimization) { 908 mutex_unlock(&kprobe_mutex); 909 return; 910 } 911 912 cpus_read_lock(); 913 kprobes_allow_optimization = false; 914 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 915 head = &kprobe_table[i]; 916 hlist_for_each_entry(p, head, hlist) { 917 if (!kprobe_disabled(p)) 918 unoptimize_kprobe(p, false); 919 } 920 } 921 cpus_read_unlock(); 922 mutex_unlock(&kprobe_mutex); 923 924 /* Wait for unoptimizing completion */ 925 wait_for_kprobe_optimizer(); 926 printk(KERN_INFO "Kprobes globally unoptimized\n"); 927 } 928 929 static DEFINE_MUTEX(kprobe_sysctl_mutex); 930 int sysctl_kprobes_optimization; 931 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 932 void *buffer, size_t *length, 933 loff_t *ppos) 934 { 935 int ret; 936 937 mutex_lock(&kprobe_sysctl_mutex); 938 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 939 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 940 941 if (sysctl_kprobes_optimization) 942 optimize_all_kprobes(); 943 else 944 unoptimize_all_kprobes(); 945 mutex_unlock(&kprobe_sysctl_mutex); 946 947 return ret; 948 } 949 #endif /* CONFIG_SYSCTL */ 950 951 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 952 static void __arm_kprobe(struct kprobe *p) 953 { 954 struct kprobe *_p; 955 956 /* Check collision with other optimized kprobes */ 957 _p = get_optimized_kprobe((unsigned long)p->addr); 958 if (unlikely(_p)) 959 /* Fallback to unoptimized kprobe */ 960 unoptimize_kprobe(_p, true); 961 962 arch_arm_kprobe(p); 963 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 964 } 965 966 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 967 static void __disarm_kprobe(struct kprobe *p, bool reopt) 968 { 969 struct kprobe *_p; 970 971 /* Try to unoptimize */ 972 unoptimize_kprobe(p, kprobes_all_disarmed); 973 974 if (!kprobe_queued(p)) { 975 arch_disarm_kprobe(p); 976 /* If another kprobe was blocked, optimize it. */ 977 _p = get_optimized_kprobe((unsigned long)p->addr); 978 if (unlikely(_p) && reopt) 979 optimize_kprobe(_p); 980 } 981 /* TODO: reoptimize others after unoptimized this probe */ 982 } 983 984 #else /* !CONFIG_OPTPROBES */ 985 986 #define optimize_kprobe(p) do {} while (0) 987 #define unoptimize_kprobe(p, f) do {} while (0) 988 #define kill_optimized_kprobe(p) do {} while (0) 989 #define prepare_optimized_kprobe(p) do {} while (0) 990 #define try_to_optimize_kprobe(p) do {} while (0) 991 #define __arm_kprobe(p) arch_arm_kprobe(p) 992 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 993 #define kprobe_disarmed(p) kprobe_disabled(p) 994 #define wait_for_kprobe_optimizer() do {} while (0) 995 996 static int reuse_unused_kprobe(struct kprobe *ap) 997 { 998 /* 999 * If the optimized kprobe is NOT supported, the aggr kprobe is 1000 * released at the same time that the last aggregated kprobe is 1001 * unregistered. 1002 * Thus there should be no chance to reuse unused kprobe. 1003 */ 1004 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 1005 return -EINVAL; 1006 } 1007 1008 static void free_aggr_kprobe(struct kprobe *p) 1009 { 1010 arch_remove_kprobe(p); 1011 kfree(p); 1012 } 1013 1014 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 1015 { 1016 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 1017 } 1018 #endif /* CONFIG_OPTPROBES */ 1019 1020 #ifdef CONFIG_KPROBES_ON_FTRACE 1021 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 1022 .func = kprobe_ftrace_handler, 1023 .flags = FTRACE_OPS_FL_SAVE_REGS, 1024 }; 1025 1026 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = { 1027 .func = kprobe_ftrace_handler, 1028 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 1029 }; 1030 1031 static int kprobe_ipmodify_enabled; 1032 static int kprobe_ftrace_enabled; 1033 1034 /* Must ensure p->addr is really on ftrace */ 1035 static int prepare_kprobe(struct kprobe *p) 1036 { 1037 if (!kprobe_ftrace(p)) 1038 return arch_prepare_kprobe(p); 1039 1040 return arch_prepare_kprobe_ftrace(p); 1041 } 1042 1043 /* Caller must lock kprobe_mutex */ 1044 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1045 int *cnt) 1046 { 1047 int ret = 0; 1048 1049 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0); 1050 if (ret) { 1051 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n", 1052 p->addr, ret); 1053 return ret; 1054 } 1055 1056 if (*cnt == 0) { 1057 ret = register_ftrace_function(ops); 1058 if (ret) { 1059 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret); 1060 goto err_ftrace; 1061 } 1062 } 1063 1064 (*cnt)++; 1065 return ret; 1066 1067 err_ftrace: 1068 /* 1069 * At this point, sinec ops is not registered, we should be sefe from 1070 * registering empty filter. 1071 */ 1072 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1073 return ret; 1074 } 1075 1076 static int arm_kprobe_ftrace(struct kprobe *p) 1077 { 1078 bool ipmodify = (p->post_handler != NULL); 1079 1080 return __arm_kprobe_ftrace(p, 1081 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1082 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1083 } 1084 1085 /* Caller must lock kprobe_mutex */ 1086 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1087 int *cnt) 1088 { 1089 int ret = 0; 1090 1091 if (*cnt == 1) { 1092 ret = unregister_ftrace_function(ops); 1093 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret)) 1094 return ret; 1095 } 1096 1097 (*cnt)--; 1098 1099 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1100 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n", 1101 p->addr, ret); 1102 return ret; 1103 } 1104 1105 static int disarm_kprobe_ftrace(struct kprobe *p) 1106 { 1107 bool ipmodify = (p->post_handler != NULL); 1108 1109 return __disarm_kprobe_ftrace(p, 1110 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1111 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1112 } 1113 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1114 static inline int prepare_kprobe(struct kprobe *p) 1115 { 1116 return arch_prepare_kprobe(p); 1117 } 1118 1119 static inline int arm_kprobe_ftrace(struct kprobe *p) 1120 { 1121 return -ENODEV; 1122 } 1123 1124 static inline int disarm_kprobe_ftrace(struct kprobe *p) 1125 { 1126 return -ENODEV; 1127 } 1128 #endif 1129 1130 /* Arm a kprobe with text_mutex */ 1131 static int arm_kprobe(struct kprobe *kp) 1132 { 1133 if (unlikely(kprobe_ftrace(kp))) 1134 return arm_kprobe_ftrace(kp); 1135 1136 cpus_read_lock(); 1137 mutex_lock(&text_mutex); 1138 __arm_kprobe(kp); 1139 mutex_unlock(&text_mutex); 1140 cpus_read_unlock(); 1141 1142 return 0; 1143 } 1144 1145 /* Disarm a kprobe with text_mutex */ 1146 static int disarm_kprobe(struct kprobe *kp, bool reopt) 1147 { 1148 if (unlikely(kprobe_ftrace(kp))) 1149 return disarm_kprobe_ftrace(kp); 1150 1151 cpus_read_lock(); 1152 mutex_lock(&text_mutex); 1153 __disarm_kprobe(kp, reopt); 1154 mutex_unlock(&text_mutex); 1155 cpus_read_unlock(); 1156 1157 return 0; 1158 } 1159 1160 /* 1161 * Aggregate handlers for multiple kprobes support - these handlers 1162 * take care of invoking the individual kprobe handlers on p->list 1163 */ 1164 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1165 { 1166 struct kprobe *kp; 1167 1168 list_for_each_entry_rcu(kp, &p->list, list) { 1169 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1170 set_kprobe_instance(kp); 1171 if (kp->pre_handler(kp, regs)) 1172 return 1; 1173 } 1174 reset_kprobe_instance(); 1175 } 1176 return 0; 1177 } 1178 NOKPROBE_SYMBOL(aggr_pre_handler); 1179 1180 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1181 unsigned long flags) 1182 { 1183 struct kprobe *kp; 1184 1185 list_for_each_entry_rcu(kp, &p->list, list) { 1186 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1187 set_kprobe_instance(kp); 1188 kp->post_handler(kp, regs, flags); 1189 reset_kprobe_instance(); 1190 } 1191 } 1192 } 1193 NOKPROBE_SYMBOL(aggr_post_handler); 1194 1195 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 1196 int trapnr) 1197 { 1198 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1199 1200 /* 1201 * if we faulted "during" the execution of a user specified 1202 * probe handler, invoke just that probe's fault handler 1203 */ 1204 if (cur && cur->fault_handler) { 1205 if (cur->fault_handler(cur, regs, trapnr)) 1206 return 1; 1207 } 1208 return 0; 1209 } 1210 NOKPROBE_SYMBOL(aggr_fault_handler); 1211 1212 /* Walks the list and increments nmissed count for multiprobe case */ 1213 void kprobes_inc_nmissed_count(struct kprobe *p) 1214 { 1215 struct kprobe *kp; 1216 if (!kprobe_aggrprobe(p)) { 1217 p->nmissed++; 1218 } else { 1219 list_for_each_entry_rcu(kp, &p->list, list) 1220 kp->nmissed++; 1221 } 1222 return; 1223 } 1224 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1225 1226 void recycle_rp_inst(struct kretprobe_instance *ri, 1227 struct hlist_head *head) 1228 { 1229 struct kretprobe *rp = ri->rp; 1230 1231 /* remove rp inst off the rprobe_inst_table */ 1232 hlist_del(&ri->hlist); 1233 INIT_HLIST_NODE(&ri->hlist); 1234 if (likely(rp)) { 1235 raw_spin_lock(&rp->lock); 1236 hlist_add_head(&ri->hlist, &rp->free_instances); 1237 raw_spin_unlock(&rp->lock); 1238 } else 1239 /* Unregistering */ 1240 hlist_add_head(&ri->hlist, head); 1241 } 1242 NOKPROBE_SYMBOL(recycle_rp_inst); 1243 1244 void kretprobe_hash_lock(struct task_struct *tsk, 1245 struct hlist_head **head, unsigned long *flags) 1246 __acquires(hlist_lock) 1247 { 1248 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1249 raw_spinlock_t *hlist_lock; 1250 1251 *head = &kretprobe_inst_table[hash]; 1252 hlist_lock = kretprobe_table_lock_ptr(hash); 1253 raw_spin_lock_irqsave(hlist_lock, *flags); 1254 } 1255 NOKPROBE_SYMBOL(kretprobe_hash_lock); 1256 1257 static void kretprobe_table_lock(unsigned long hash, 1258 unsigned long *flags) 1259 __acquires(hlist_lock) 1260 { 1261 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1262 raw_spin_lock_irqsave(hlist_lock, *flags); 1263 } 1264 NOKPROBE_SYMBOL(kretprobe_table_lock); 1265 1266 void kretprobe_hash_unlock(struct task_struct *tsk, 1267 unsigned long *flags) 1268 __releases(hlist_lock) 1269 { 1270 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1271 raw_spinlock_t *hlist_lock; 1272 1273 hlist_lock = kretprobe_table_lock_ptr(hash); 1274 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1275 } 1276 NOKPROBE_SYMBOL(kretprobe_hash_unlock); 1277 1278 static void kretprobe_table_unlock(unsigned long hash, 1279 unsigned long *flags) 1280 __releases(hlist_lock) 1281 { 1282 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1283 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1284 } 1285 NOKPROBE_SYMBOL(kretprobe_table_unlock); 1286 1287 struct kprobe kprobe_busy = { 1288 .addr = (void *) get_kprobe, 1289 }; 1290 1291 void kprobe_busy_begin(void) 1292 { 1293 struct kprobe_ctlblk *kcb; 1294 1295 preempt_disable(); 1296 __this_cpu_write(current_kprobe, &kprobe_busy); 1297 kcb = get_kprobe_ctlblk(); 1298 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 1299 } 1300 1301 void kprobe_busy_end(void) 1302 { 1303 __this_cpu_write(current_kprobe, NULL); 1304 preempt_enable(); 1305 } 1306 1307 /* 1308 * This function is called from finish_task_switch when task tk becomes dead, 1309 * so that we can recycle any function-return probe instances associated 1310 * with this task. These left over instances represent probed functions 1311 * that have been called but will never return. 1312 */ 1313 void kprobe_flush_task(struct task_struct *tk) 1314 { 1315 struct kretprobe_instance *ri; 1316 struct hlist_head *head, empty_rp; 1317 struct hlist_node *tmp; 1318 unsigned long hash, flags = 0; 1319 1320 if (unlikely(!kprobes_initialized)) 1321 /* Early boot. kretprobe_table_locks not yet initialized. */ 1322 return; 1323 1324 kprobe_busy_begin(); 1325 1326 INIT_HLIST_HEAD(&empty_rp); 1327 hash = hash_ptr(tk, KPROBE_HASH_BITS); 1328 head = &kretprobe_inst_table[hash]; 1329 kretprobe_table_lock(hash, &flags); 1330 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 1331 if (ri->task == tk) 1332 recycle_rp_inst(ri, &empty_rp); 1333 } 1334 kretprobe_table_unlock(hash, &flags); 1335 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 1336 hlist_del(&ri->hlist); 1337 kfree(ri); 1338 } 1339 1340 kprobe_busy_end(); 1341 } 1342 NOKPROBE_SYMBOL(kprobe_flush_task); 1343 1344 static inline void free_rp_inst(struct kretprobe *rp) 1345 { 1346 struct kretprobe_instance *ri; 1347 struct hlist_node *next; 1348 1349 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) { 1350 hlist_del(&ri->hlist); 1351 kfree(ri); 1352 } 1353 } 1354 1355 static void cleanup_rp_inst(struct kretprobe *rp) 1356 { 1357 unsigned long flags, hash; 1358 struct kretprobe_instance *ri; 1359 struct hlist_node *next; 1360 struct hlist_head *head; 1361 1362 /* No race here */ 1363 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 1364 kretprobe_table_lock(hash, &flags); 1365 head = &kretprobe_inst_table[hash]; 1366 hlist_for_each_entry_safe(ri, next, head, hlist) { 1367 if (ri->rp == rp) 1368 ri->rp = NULL; 1369 } 1370 kretprobe_table_unlock(hash, &flags); 1371 } 1372 free_rp_inst(rp); 1373 } 1374 NOKPROBE_SYMBOL(cleanup_rp_inst); 1375 1376 /* Add the new probe to ap->list */ 1377 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1378 { 1379 if (p->post_handler) 1380 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1381 1382 list_add_rcu(&p->list, &ap->list); 1383 if (p->post_handler && !ap->post_handler) 1384 ap->post_handler = aggr_post_handler; 1385 1386 return 0; 1387 } 1388 1389 /* 1390 * Fill in the required fields of the "manager kprobe". Replace the 1391 * earlier kprobe in the hlist with the manager kprobe 1392 */ 1393 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1394 { 1395 /* Copy p's insn slot to ap */ 1396 copy_kprobe(p, ap); 1397 flush_insn_slot(ap); 1398 ap->addr = p->addr; 1399 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1400 ap->pre_handler = aggr_pre_handler; 1401 ap->fault_handler = aggr_fault_handler; 1402 /* We don't care the kprobe which has gone. */ 1403 if (p->post_handler && !kprobe_gone(p)) 1404 ap->post_handler = aggr_post_handler; 1405 1406 INIT_LIST_HEAD(&ap->list); 1407 INIT_HLIST_NODE(&ap->hlist); 1408 1409 list_add_rcu(&p->list, &ap->list); 1410 hlist_replace_rcu(&p->hlist, &ap->hlist); 1411 } 1412 1413 /* 1414 * This is the second or subsequent kprobe at the address - handle 1415 * the intricacies 1416 */ 1417 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1418 { 1419 int ret = 0; 1420 struct kprobe *ap = orig_p; 1421 1422 cpus_read_lock(); 1423 1424 /* For preparing optimization, jump_label_text_reserved() is called */ 1425 jump_label_lock(); 1426 mutex_lock(&text_mutex); 1427 1428 if (!kprobe_aggrprobe(orig_p)) { 1429 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1430 ap = alloc_aggr_kprobe(orig_p); 1431 if (!ap) { 1432 ret = -ENOMEM; 1433 goto out; 1434 } 1435 init_aggr_kprobe(ap, orig_p); 1436 } else if (kprobe_unused(ap)) { 1437 /* This probe is going to die. Rescue it */ 1438 ret = reuse_unused_kprobe(ap); 1439 if (ret) 1440 goto out; 1441 } 1442 1443 if (kprobe_gone(ap)) { 1444 /* 1445 * Attempting to insert new probe at the same location that 1446 * had a probe in the module vaddr area which already 1447 * freed. So, the instruction slot has already been 1448 * released. We need a new slot for the new probe. 1449 */ 1450 ret = arch_prepare_kprobe(ap); 1451 if (ret) 1452 /* 1453 * Even if fail to allocate new slot, don't need to 1454 * free aggr_probe. It will be used next time, or 1455 * freed by unregister_kprobe. 1456 */ 1457 goto out; 1458 1459 /* Prepare optimized instructions if possible. */ 1460 prepare_optimized_kprobe(ap); 1461 1462 /* 1463 * Clear gone flag to prevent allocating new slot again, and 1464 * set disabled flag because it is not armed yet. 1465 */ 1466 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1467 | KPROBE_FLAG_DISABLED; 1468 } 1469 1470 /* Copy ap's insn slot to p */ 1471 copy_kprobe(ap, p); 1472 ret = add_new_kprobe(ap, p); 1473 1474 out: 1475 mutex_unlock(&text_mutex); 1476 jump_label_unlock(); 1477 cpus_read_unlock(); 1478 1479 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1480 ap->flags &= ~KPROBE_FLAG_DISABLED; 1481 if (!kprobes_all_disarmed) { 1482 /* Arm the breakpoint again. */ 1483 ret = arm_kprobe(ap); 1484 if (ret) { 1485 ap->flags |= KPROBE_FLAG_DISABLED; 1486 list_del_rcu(&p->list); 1487 synchronize_rcu(); 1488 } 1489 } 1490 } 1491 return ret; 1492 } 1493 1494 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1495 { 1496 /* The __kprobes marked functions and entry code must not be probed */ 1497 return addr >= (unsigned long)__kprobes_text_start && 1498 addr < (unsigned long)__kprobes_text_end; 1499 } 1500 1501 static bool __within_kprobe_blacklist(unsigned long addr) 1502 { 1503 struct kprobe_blacklist_entry *ent; 1504 1505 if (arch_within_kprobe_blacklist(addr)) 1506 return true; 1507 /* 1508 * If there exists a kprobe_blacklist, verify and 1509 * fail any probe registration in the prohibited area 1510 */ 1511 list_for_each_entry(ent, &kprobe_blacklist, list) { 1512 if (addr >= ent->start_addr && addr < ent->end_addr) 1513 return true; 1514 } 1515 return false; 1516 } 1517 1518 bool within_kprobe_blacklist(unsigned long addr) 1519 { 1520 char symname[KSYM_NAME_LEN], *p; 1521 1522 if (__within_kprobe_blacklist(addr)) 1523 return true; 1524 1525 /* Check if the address is on a suffixed-symbol */ 1526 if (!lookup_symbol_name(addr, symname)) { 1527 p = strchr(symname, '.'); 1528 if (!p) 1529 return false; 1530 *p = '\0'; 1531 addr = (unsigned long)kprobe_lookup_name(symname, 0); 1532 if (addr) 1533 return __within_kprobe_blacklist(addr); 1534 } 1535 return false; 1536 } 1537 1538 /* 1539 * If we have a symbol_name argument, look it up and add the offset field 1540 * to it. This way, we can specify a relative address to a symbol. 1541 * This returns encoded errors if it fails to look up symbol or invalid 1542 * combination of parameters. 1543 */ 1544 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr, 1545 const char *symbol_name, unsigned int offset) 1546 { 1547 if ((symbol_name && addr) || (!symbol_name && !addr)) 1548 goto invalid; 1549 1550 if (symbol_name) { 1551 addr = kprobe_lookup_name(symbol_name, offset); 1552 if (!addr) 1553 return ERR_PTR(-ENOENT); 1554 } 1555 1556 addr = (kprobe_opcode_t *)(((char *)addr) + offset); 1557 if (addr) 1558 return addr; 1559 1560 invalid: 1561 return ERR_PTR(-EINVAL); 1562 } 1563 1564 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1565 { 1566 return _kprobe_addr(p->addr, p->symbol_name, p->offset); 1567 } 1568 1569 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1570 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1571 { 1572 struct kprobe *ap, *list_p; 1573 1574 lockdep_assert_held(&kprobe_mutex); 1575 1576 ap = get_kprobe(p->addr); 1577 if (unlikely(!ap)) 1578 return NULL; 1579 1580 if (p != ap) { 1581 list_for_each_entry(list_p, &ap->list, list) 1582 if (list_p == p) 1583 /* kprobe p is a valid probe */ 1584 goto valid; 1585 return NULL; 1586 } 1587 valid: 1588 return ap; 1589 } 1590 1591 /* Return error if the kprobe is being re-registered */ 1592 static inline int check_kprobe_rereg(struct kprobe *p) 1593 { 1594 int ret = 0; 1595 1596 mutex_lock(&kprobe_mutex); 1597 if (__get_valid_kprobe(p)) 1598 ret = -EINVAL; 1599 mutex_unlock(&kprobe_mutex); 1600 1601 return ret; 1602 } 1603 1604 int __weak arch_check_ftrace_location(struct kprobe *p) 1605 { 1606 unsigned long ftrace_addr; 1607 1608 ftrace_addr = ftrace_location((unsigned long)p->addr); 1609 if (ftrace_addr) { 1610 #ifdef CONFIG_KPROBES_ON_FTRACE 1611 /* Given address is not on the instruction boundary */ 1612 if ((unsigned long)p->addr != ftrace_addr) 1613 return -EILSEQ; 1614 p->flags |= KPROBE_FLAG_FTRACE; 1615 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1616 return -EINVAL; 1617 #endif 1618 } 1619 return 0; 1620 } 1621 1622 static int check_kprobe_address_safe(struct kprobe *p, 1623 struct module **probed_mod) 1624 { 1625 int ret; 1626 1627 ret = arch_check_ftrace_location(p); 1628 if (ret) 1629 return ret; 1630 jump_label_lock(); 1631 preempt_disable(); 1632 1633 /* Ensure it is not in reserved area nor out of text */ 1634 if (!kernel_text_address((unsigned long) p->addr) || 1635 within_kprobe_blacklist((unsigned long) p->addr) || 1636 jump_label_text_reserved(p->addr, p->addr) || 1637 find_bug((unsigned long)p->addr)) { 1638 ret = -EINVAL; 1639 goto out; 1640 } 1641 1642 /* Check if are we probing a module */ 1643 *probed_mod = __module_text_address((unsigned long) p->addr); 1644 if (*probed_mod) { 1645 /* 1646 * We must hold a refcount of the probed module while updating 1647 * its code to prohibit unexpected unloading. 1648 */ 1649 if (unlikely(!try_module_get(*probed_mod))) { 1650 ret = -ENOENT; 1651 goto out; 1652 } 1653 1654 /* 1655 * If the module freed .init.text, we couldn't insert 1656 * kprobes in there. 1657 */ 1658 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1659 (*probed_mod)->state != MODULE_STATE_COMING) { 1660 module_put(*probed_mod); 1661 *probed_mod = NULL; 1662 ret = -ENOENT; 1663 } 1664 } 1665 out: 1666 preempt_enable(); 1667 jump_label_unlock(); 1668 1669 return ret; 1670 } 1671 1672 int register_kprobe(struct kprobe *p) 1673 { 1674 int ret; 1675 struct kprobe *old_p; 1676 struct module *probed_mod; 1677 kprobe_opcode_t *addr; 1678 1679 /* Adjust probe address from symbol */ 1680 addr = kprobe_addr(p); 1681 if (IS_ERR(addr)) 1682 return PTR_ERR(addr); 1683 p->addr = addr; 1684 1685 ret = check_kprobe_rereg(p); 1686 if (ret) 1687 return ret; 1688 1689 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1690 p->flags &= KPROBE_FLAG_DISABLED; 1691 p->nmissed = 0; 1692 INIT_LIST_HEAD(&p->list); 1693 1694 ret = check_kprobe_address_safe(p, &probed_mod); 1695 if (ret) 1696 return ret; 1697 1698 mutex_lock(&kprobe_mutex); 1699 1700 old_p = get_kprobe(p->addr); 1701 if (old_p) { 1702 /* Since this may unoptimize old_p, locking text_mutex. */ 1703 ret = register_aggr_kprobe(old_p, p); 1704 goto out; 1705 } 1706 1707 cpus_read_lock(); 1708 /* Prevent text modification */ 1709 mutex_lock(&text_mutex); 1710 ret = prepare_kprobe(p); 1711 mutex_unlock(&text_mutex); 1712 cpus_read_unlock(); 1713 if (ret) 1714 goto out; 1715 1716 INIT_HLIST_NODE(&p->hlist); 1717 hlist_add_head_rcu(&p->hlist, 1718 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1719 1720 if (!kprobes_all_disarmed && !kprobe_disabled(p)) { 1721 ret = arm_kprobe(p); 1722 if (ret) { 1723 hlist_del_rcu(&p->hlist); 1724 synchronize_rcu(); 1725 goto out; 1726 } 1727 } 1728 1729 /* Try to optimize kprobe */ 1730 try_to_optimize_kprobe(p); 1731 out: 1732 mutex_unlock(&kprobe_mutex); 1733 1734 if (probed_mod) 1735 module_put(probed_mod); 1736 1737 return ret; 1738 } 1739 EXPORT_SYMBOL_GPL(register_kprobe); 1740 1741 /* Check if all probes on the aggrprobe are disabled */ 1742 static int aggr_kprobe_disabled(struct kprobe *ap) 1743 { 1744 struct kprobe *kp; 1745 1746 lockdep_assert_held(&kprobe_mutex); 1747 1748 list_for_each_entry(kp, &ap->list, list) 1749 if (!kprobe_disabled(kp)) 1750 /* 1751 * There is an active probe on the list. 1752 * We can't disable this ap. 1753 */ 1754 return 0; 1755 1756 return 1; 1757 } 1758 1759 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1760 static struct kprobe *__disable_kprobe(struct kprobe *p) 1761 { 1762 struct kprobe *orig_p; 1763 int ret; 1764 1765 /* Get an original kprobe for return */ 1766 orig_p = __get_valid_kprobe(p); 1767 if (unlikely(orig_p == NULL)) 1768 return ERR_PTR(-EINVAL); 1769 1770 if (!kprobe_disabled(p)) { 1771 /* Disable probe if it is a child probe */ 1772 if (p != orig_p) 1773 p->flags |= KPROBE_FLAG_DISABLED; 1774 1775 /* Try to disarm and disable this/parent probe */ 1776 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1777 /* 1778 * If kprobes_all_disarmed is set, orig_p 1779 * should have already been disarmed, so 1780 * skip unneed disarming process. 1781 */ 1782 if (!kprobes_all_disarmed) { 1783 ret = disarm_kprobe(orig_p, true); 1784 if (ret) { 1785 p->flags &= ~KPROBE_FLAG_DISABLED; 1786 return ERR_PTR(ret); 1787 } 1788 } 1789 orig_p->flags |= KPROBE_FLAG_DISABLED; 1790 } 1791 } 1792 1793 return orig_p; 1794 } 1795 1796 /* 1797 * Unregister a kprobe without a scheduler synchronization. 1798 */ 1799 static int __unregister_kprobe_top(struct kprobe *p) 1800 { 1801 struct kprobe *ap, *list_p; 1802 1803 /* Disable kprobe. This will disarm it if needed. */ 1804 ap = __disable_kprobe(p); 1805 if (IS_ERR(ap)) 1806 return PTR_ERR(ap); 1807 1808 if (ap == p) 1809 /* 1810 * This probe is an independent(and non-optimized) kprobe 1811 * (not an aggrprobe). Remove from the hash list. 1812 */ 1813 goto disarmed; 1814 1815 /* Following process expects this probe is an aggrprobe */ 1816 WARN_ON(!kprobe_aggrprobe(ap)); 1817 1818 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1819 /* 1820 * !disarmed could be happen if the probe is under delayed 1821 * unoptimizing. 1822 */ 1823 goto disarmed; 1824 else { 1825 /* If disabling probe has special handlers, update aggrprobe */ 1826 if (p->post_handler && !kprobe_gone(p)) { 1827 list_for_each_entry(list_p, &ap->list, list) { 1828 if ((list_p != p) && (list_p->post_handler)) 1829 goto noclean; 1830 } 1831 ap->post_handler = NULL; 1832 } 1833 noclean: 1834 /* 1835 * Remove from the aggrprobe: this path will do nothing in 1836 * __unregister_kprobe_bottom(). 1837 */ 1838 list_del_rcu(&p->list); 1839 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1840 /* 1841 * Try to optimize this probe again, because post 1842 * handler may have been changed. 1843 */ 1844 optimize_kprobe(ap); 1845 } 1846 return 0; 1847 1848 disarmed: 1849 hlist_del_rcu(&ap->hlist); 1850 return 0; 1851 } 1852 1853 static void __unregister_kprobe_bottom(struct kprobe *p) 1854 { 1855 struct kprobe *ap; 1856 1857 if (list_empty(&p->list)) 1858 /* This is an independent kprobe */ 1859 arch_remove_kprobe(p); 1860 else if (list_is_singular(&p->list)) { 1861 /* This is the last child of an aggrprobe */ 1862 ap = list_entry(p->list.next, struct kprobe, list); 1863 list_del(&p->list); 1864 free_aggr_kprobe(ap); 1865 } 1866 /* Otherwise, do nothing. */ 1867 } 1868 1869 int register_kprobes(struct kprobe **kps, int num) 1870 { 1871 int i, ret = 0; 1872 1873 if (num <= 0) 1874 return -EINVAL; 1875 for (i = 0; i < num; i++) { 1876 ret = register_kprobe(kps[i]); 1877 if (ret < 0) { 1878 if (i > 0) 1879 unregister_kprobes(kps, i); 1880 break; 1881 } 1882 } 1883 return ret; 1884 } 1885 EXPORT_SYMBOL_GPL(register_kprobes); 1886 1887 void unregister_kprobe(struct kprobe *p) 1888 { 1889 unregister_kprobes(&p, 1); 1890 } 1891 EXPORT_SYMBOL_GPL(unregister_kprobe); 1892 1893 void unregister_kprobes(struct kprobe **kps, int num) 1894 { 1895 int i; 1896 1897 if (num <= 0) 1898 return; 1899 mutex_lock(&kprobe_mutex); 1900 for (i = 0; i < num; i++) 1901 if (__unregister_kprobe_top(kps[i]) < 0) 1902 kps[i]->addr = NULL; 1903 mutex_unlock(&kprobe_mutex); 1904 1905 synchronize_rcu(); 1906 for (i = 0; i < num; i++) 1907 if (kps[i]->addr) 1908 __unregister_kprobe_bottom(kps[i]); 1909 } 1910 EXPORT_SYMBOL_GPL(unregister_kprobes); 1911 1912 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1913 unsigned long val, void *data) 1914 { 1915 return NOTIFY_DONE; 1916 } 1917 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1918 1919 static struct notifier_block kprobe_exceptions_nb = { 1920 .notifier_call = kprobe_exceptions_notify, 1921 .priority = 0x7fffffff /* we need to be notified first */ 1922 }; 1923 1924 unsigned long __weak arch_deref_entry_point(void *entry) 1925 { 1926 return (unsigned long)entry; 1927 } 1928 1929 #ifdef CONFIG_KRETPROBES 1930 /* 1931 * This kprobe pre_handler is registered with every kretprobe. When probe 1932 * hits it will set up the return probe. 1933 */ 1934 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 1935 { 1936 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1937 unsigned long hash, flags = 0; 1938 struct kretprobe_instance *ri; 1939 1940 /* 1941 * To avoid deadlocks, prohibit return probing in NMI contexts, 1942 * just skip the probe and increase the (inexact) 'nmissed' 1943 * statistical counter, so that the user is informed that 1944 * something happened: 1945 */ 1946 if (unlikely(in_nmi())) { 1947 rp->nmissed++; 1948 return 0; 1949 } 1950 1951 /* TODO: consider to only swap the RA after the last pre_handler fired */ 1952 hash = hash_ptr(current, KPROBE_HASH_BITS); 1953 raw_spin_lock_irqsave(&rp->lock, flags); 1954 if (!hlist_empty(&rp->free_instances)) { 1955 ri = hlist_entry(rp->free_instances.first, 1956 struct kretprobe_instance, hlist); 1957 hlist_del(&ri->hlist); 1958 raw_spin_unlock_irqrestore(&rp->lock, flags); 1959 1960 ri->rp = rp; 1961 ri->task = current; 1962 1963 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 1964 raw_spin_lock_irqsave(&rp->lock, flags); 1965 hlist_add_head(&ri->hlist, &rp->free_instances); 1966 raw_spin_unlock_irqrestore(&rp->lock, flags); 1967 return 0; 1968 } 1969 1970 arch_prepare_kretprobe(ri, regs); 1971 1972 /* XXX(hch): why is there no hlist_move_head? */ 1973 INIT_HLIST_NODE(&ri->hlist); 1974 kretprobe_table_lock(hash, &flags); 1975 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 1976 kretprobe_table_unlock(hash, &flags); 1977 } else { 1978 rp->nmissed++; 1979 raw_spin_unlock_irqrestore(&rp->lock, flags); 1980 } 1981 return 0; 1982 } 1983 NOKPROBE_SYMBOL(pre_handler_kretprobe); 1984 1985 bool __weak arch_kprobe_on_func_entry(unsigned long offset) 1986 { 1987 return !offset; 1988 } 1989 1990 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 1991 { 1992 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset); 1993 1994 if (IS_ERR(kp_addr)) 1995 return false; 1996 1997 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) || 1998 !arch_kprobe_on_func_entry(offset)) 1999 return false; 2000 2001 return true; 2002 } 2003 2004 int register_kretprobe(struct kretprobe *rp) 2005 { 2006 int ret = 0; 2007 struct kretprobe_instance *inst; 2008 int i; 2009 void *addr; 2010 2011 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset)) 2012 return -EINVAL; 2013 2014 if (kretprobe_blacklist_size) { 2015 addr = kprobe_addr(&rp->kp); 2016 if (IS_ERR(addr)) 2017 return PTR_ERR(addr); 2018 2019 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2020 if (kretprobe_blacklist[i].addr == addr) 2021 return -EINVAL; 2022 } 2023 } 2024 2025 rp->kp.pre_handler = pre_handler_kretprobe; 2026 rp->kp.post_handler = NULL; 2027 rp->kp.fault_handler = NULL; 2028 2029 /* Pre-allocate memory for max kretprobe instances */ 2030 if (rp->maxactive <= 0) { 2031 #ifdef CONFIG_PREEMPTION 2032 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 2033 #else 2034 rp->maxactive = num_possible_cpus(); 2035 #endif 2036 } 2037 raw_spin_lock_init(&rp->lock); 2038 INIT_HLIST_HEAD(&rp->free_instances); 2039 for (i = 0; i < rp->maxactive; i++) { 2040 inst = kmalloc(sizeof(struct kretprobe_instance) + 2041 rp->data_size, GFP_KERNEL); 2042 if (inst == NULL) { 2043 free_rp_inst(rp); 2044 return -ENOMEM; 2045 } 2046 INIT_HLIST_NODE(&inst->hlist); 2047 hlist_add_head(&inst->hlist, &rp->free_instances); 2048 } 2049 2050 rp->nmissed = 0; 2051 /* Establish function entry probe point */ 2052 ret = register_kprobe(&rp->kp); 2053 if (ret != 0) 2054 free_rp_inst(rp); 2055 return ret; 2056 } 2057 EXPORT_SYMBOL_GPL(register_kretprobe); 2058 2059 int register_kretprobes(struct kretprobe **rps, int num) 2060 { 2061 int ret = 0, i; 2062 2063 if (num <= 0) 2064 return -EINVAL; 2065 for (i = 0; i < num; i++) { 2066 ret = register_kretprobe(rps[i]); 2067 if (ret < 0) { 2068 if (i > 0) 2069 unregister_kretprobes(rps, i); 2070 break; 2071 } 2072 } 2073 return ret; 2074 } 2075 EXPORT_SYMBOL_GPL(register_kretprobes); 2076 2077 void unregister_kretprobe(struct kretprobe *rp) 2078 { 2079 unregister_kretprobes(&rp, 1); 2080 } 2081 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2082 2083 void unregister_kretprobes(struct kretprobe **rps, int num) 2084 { 2085 int i; 2086 2087 if (num <= 0) 2088 return; 2089 mutex_lock(&kprobe_mutex); 2090 for (i = 0; i < num; i++) 2091 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 2092 rps[i]->kp.addr = NULL; 2093 mutex_unlock(&kprobe_mutex); 2094 2095 synchronize_rcu(); 2096 for (i = 0; i < num; i++) { 2097 if (rps[i]->kp.addr) { 2098 __unregister_kprobe_bottom(&rps[i]->kp); 2099 cleanup_rp_inst(rps[i]); 2100 } 2101 } 2102 } 2103 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2104 2105 #else /* CONFIG_KRETPROBES */ 2106 int register_kretprobe(struct kretprobe *rp) 2107 { 2108 return -ENOSYS; 2109 } 2110 EXPORT_SYMBOL_GPL(register_kretprobe); 2111 2112 int register_kretprobes(struct kretprobe **rps, int num) 2113 { 2114 return -ENOSYS; 2115 } 2116 EXPORT_SYMBOL_GPL(register_kretprobes); 2117 2118 void unregister_kretprobe(struct kretprobe *rp) 2119 { 2120 } 2121 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2122 2123 void unregister_kretprobes(struct kretprobe **rps, int num) 2124 { 2125 } 2126 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2127 2128 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2129 { 2130 return 0; 2131 } 2132 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2133 2134 #endif /* CONFIG_KRETPROBES */ 2135 2136 /* Set the kprobe gone and remove its instruction buffer. */ 2137 static void kill_kprobe(struct kprobe *p) 2138 { 2139 struct kprobe *kp; 2140 2141 lockdep_assert_held(&kprobe_mutex); 2142 2143 if (WARN_ON_ONCE(kprobe_gone(p))) 2144 return; 2145 2146 p->flags |= KPROBE_FLAG_GONE; 2147 if (kprobe_aggrprobe(p)) { 2148 /* 2149 * If this is an aggr_kprobe, we have to list all the 2150 * chained probes and mark them GONE. 2151 */ 2152 list_for_each_entry(kp, &p->list, list) 2153 kp->flags |= KPROBE_FLAG_GONE; 2154 p->post_handler = NULL; 2155 kill_optimized_kprobe(p); 2156 } 2157 /* 2158 * Here, we can remove insn_slot safely, because no thread calls 2159 * the original probed function (which will be freed soon) any more. 2160 */ 2161 arch_remove_kprobe(p); 2162 2163 /* 2164 * The module is going away. We should disarm the kprobe which 2165 * is using ftrace, because ftrace framework is still available at 2166 * MODULE_STATE_GOING notification. 2167 */ 2168 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed) 2169 disarm_kprobe_ftrace(p); 2170 } 2171 2172 /* Disable one kprobe */ 2173 int disable_kprobe(struct kprobe *kp) 2174 { 2175 int ret = 0; 2176 struct kprobe *p; 2177 2178 mutex_lock(&kprobe_mutex); 2179 2180 /* Disable this kprobe */ 2181 p = __disable_kprobe(kp); 2182 if (IS_ERR(p)) 2183 ret = PTR_ERR(p); 2184 2185 mutex_unlock(&kprobe_mutex); 2186 return ret; 2187 } 2188 EXPORT_SYMBOL_GPL(disable_kprobe); 2189 2190 /* Enable one kprobe */ 2191 int enable_kprobe(struct kprobe *kp) 2192 { 2193 int ret = 0; 2194 struct kprobe *p; 2195 2196 mutex_lock(&kprobe_mutex); 2197 2198 /* Check whether specified probe is valid. */ 2199 p = __get_valid_kprobe(kp); 2200 if (unlikely(p == NULL)) { 2201 ret = -EINVAL; 2202 goto out; 2203 } 2204 2205 if (kprobe_gone(kp)) { 2206 /* This kprobe has gone, we couldn't enable it. */ 2207 ret = -EINVAL; 2208 goto out; 2209 } 2210 2211 if (p != kp) 2212 kp->flags &= ~KPROBE_FLAG_DISABLED; 2213 2214 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2215 p->flags &= ~KPROBE_FLAG_DISABLED; 2216 ret = arm_kprobe(p); 2217 if (ret) 2218 p->flags |= KPROBE_FLAG_DISABLED; 2219 } 2220 out: 2221 mutex_unlock(&kprobe_mutex); 2222 return ret; 2223 } 2224 EXPORT_SYMBOL_GPL(enable_kprobe); 2225 2226 /* Caller must NOT call this in usual path. This is only for critical case */ 2227 void dump_kprobe(struct kprobe *kp) 2228 { 2229 pr_err("Dumping kprobe:\n"); 2230 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n", 2231 kp->symbol_name, kp->offset, kp->addr); 2232 } 2233 NOKPROBE_SYMBOL(dump_kprobe); 2234 2235 int kprobe_add_ksym_blacklist(unsigned long entry) 2236 { 2237 struct kprobe_blacklist_entry *ent; 2238 unsigned long offset = 0, size = 0; 2239 2240 if (!kernel_text_address(entry) || 2241 !kallsyms_lookup_size_offset(entry, &size, &offset)) 2242 return -EINVAL; 2243 2244 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2245 if (!ent) 2246 return -ENOMEM; 2247 ent->start_addr = entry; 2248 ent->end_addr = entry + size; 2249 INIT_LIST_HEAD(&ent->list); 2250 list_add_tail(&ent->list, &kprobe_blacklist); 2251 2252 return (int)size; 2253 } 2254 2255 /* Add all symbols in given area into kprobe blacklist */ 2256 int kprobe_add_area_blacklist(unsigned long start, unsigned long end) 2257 { 2258 unsigned long entry; 2259 int ret = 0; 2260 2261 for (entry = start; entry < end; entry += ret) { 2262 ret = kprobe_add_ksym_blacklist(entry); 2263 if (ret < 0) 2264 return ret; 2265 if (ret == 0) /* In case of alias symbol */ 2266 ret = 1; 2267 } 2268 return 0; 2269 } 2270 2271 /* Remove all symbols in given area from kprobe blacklist */ 2272 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end) 2273 { 2274 struct kprobe_blacklist_entry *ent, *n; 2275 2276 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) { 2277 if (ent->start_addr < start || ent->start_addr >= end) 2278 continue; 2279 list_del(&ent->list); 2280 kfree(ent); 2281 } 2282 } 2283 2284 static void kprobe_remove_ksym_blacklist(unsigned long entry) 2285 { 2286 kprobe_remove_area_blacklist(entry, entry + 1); 2287 } 2288 2289 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value, 2290 char *type, char *sym) 2291 { 2292 return -ERANGE; 2293 } 2294 2295 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 2296 char *sym) 2297 { 2298 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 2299 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym)) 2300 return 0; 2301 #ifdef CONFIG_OPTPROBES 2302 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym)) 2303 return 0; 2304 #endif 2305 #endif 2306 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym)) 2307 return 0; 2308 return -ERANGE; 2309 } 2310 2311 int __init __weak arch_populate_kprobe_blacklist(void) 2312 { 2313 return 0; 2314 } 2315 2316 /* 2317 * Lookup and populate the kprobe_blacklist. 2318 * 2319 * Unlike the kretprobe blacklist, we'll need to determine 2320 * the range of addresses that belong to the said functions, 2321 * since a kprobe need not necessarily be at the beginning 2322 * of a function. 2323 */ 2324 static int __init populate_kprobe_blacklist(unsigned long *start, 2325 unsigned long *end) 2326 { 2327 unsigned long entry; 2328 unsigned long *iter; 2329 int ret; 2330 2331 for (iter = start; iter < end; iter++) { 2332 entry = arch_deref_entry_point((void *)*iter); 2333 ret = kprobe_add_ksym_blacklist(entry); 2334 if (ret == -EINVAL) 2335 continue; 2336 if (ret < 0) 2337 return ret; 2338 } 2339 2340 /* Symbols in __kprobes_text are blacklisted */ 2341 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start, 2342 (unsigned long)__kprobes_text_end); 2343 if (ret) 2344 return ret; 2345 2346 /* Symbols in noinstr section are blacklisted */ 2347 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start, 2348 (unsigned long)__noinstr_text_end); 2349 2350 return ret ? : arch_populate_kprobe_blacklist(); 2351 } 2352 2353 static void add_module_kprobe_blacklist(struct module *mod) 2354 { 2355 unsigned long start, end; 2356 int i; 2357 2358 if (mod->kprobe_blacklist) { 2359 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2360 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]); 2361 } 2362 2363 start = (unsigned long)mod->kprobes_text_start; 2364 if (start) { 2365 end = start + mod->kprobes_text_size; 2366 kprobe_add_area_blacklist(start, end); 2367 } 2368 2369 start = (unsigned long)mod->noinstr_text_start; 2370 if (start) { 2371 end = start + mod->noinstr_text_size; 2372 kprobe_add_area_blacklist(start, end); 2373 } 2374 } 2375 2376 static void remove_module_kprobe_blacklist(struct module *mod) 2377 { 2378 unsigned long start, end; 2379 int i; 2380 2381 if (mod->kprobe_blacklist) { 2382 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2383 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]); 2384 } 2385 2386 start = (unsigned long)mod->kprobes_text_start; 2387 if (start) { 2388 end = start + mod->kprobes_text_size; 2389 kprobe_remove_area_blacklist(start, end); 2390 } 2391 2392 start = (unsigned long)mod->noinstr_text_start; 2393 if (start) { 2394 end = start + mod->noinstr_text_size; 2395 kprobe_remove_area_blacklist(start, end); 2396 } 2397 } 2398 2399 /* Module notifier call back, checking kprobes on the module */ 2400 static int kprobes_module_callback(struct notifier_block *nb, 2401 unsigned long val, void *data) 2402 { 2403 struct module *mod = data; 2404 struct hlist_head *head; 2405 struct kprobe *p; 2406 unsigned int i; 2407 int checkcore = (val == MODULE_STATE_GOING); 2408 2409 if (val == MODULE_STATE_COMING) { 2410 mutex_lock(&kprobe_mutex); 2411 add_module_kprobe_blacklist(mod); 2412 mutex_unlock(&kprobe_mutex); 2413 } 2414 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2415 return NOTIFY_DONE; 2416 2417 /* 2418 * When MODULE_STATE_GOING was notified, both of module .text and 2419 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2420 * notified, only .init.text section would be freed. We need to 2421 * disable kprobes which have been inserted in the sections. 2422 */ 2423 mutex_lock(&kprobe_mutex); 2424 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2425 head = &kprobe_table[i]; 2426 hlist_for_each_entry(p, head, hlist) { 2427 if (kprobe_gone(p)) 2428 continue; 2429 2430 if (within_module_init((unsigned long)p->addr, mod) || 2431 (checkcore && 2432 within_module_core((unsigned long)p->addr, mod))) { 2433 /* 2434 * The vaddr this probe is installed will soon 2435 * be vfreed buy not synced to disk. Hence, 2436 * disarming the breakpoint isn't needed. 2437 * 2438 * Note, this will also move any optimized probes 2439 * that are pending to be removed from their 2440 * corresponding lists to the freeing_list and 2441 * will not be touched by the delayed 2442 * kprobe_optimizer work handler. 2443 */ 2444 kill_kprobe(p); 2445 } 2446 } 2447 } 2448 if (val == MODULE_STATE_GOING) 2449 remove_module_kprobe_blacklist(mod); 2450 mutex_unlock(&kprobe_mutex); 2451 return NOTIFY_DONE; 2452 } 2453 2454 static struct notifier_block kprobe_module_nb = { 2455 .notifier_call = kprobes_module_callback, 2456 .priority = 0 2457 }; 2458 2459 /* Markers of _kprobe_blacklist section */ 2460 extern unsigned long __start_kprobe_blacklist[]; 2461 extern unsigned long __stop_kprobe_blacklist[]; 2462 2463 void kprobe_free_init_mem(void) 2464 { 2465 void *start = (void *)(&__init_begin); 2466 void *end = (void *)(&__init_end); 2467 struct hlist_head *head; 2468 struct kprobe *p; 2469 int i; 2470 2471 mutex_lock(&kprobe_mutex); 2472 2473 /* Kill all kprobes on initmem */ 2474 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2475 head = &kprobe_table[i]; 2476 hlist_for_each_entry(p, head, hlist) { 2477 if (start <= (void *)p->addr && (void *)p->addr < end) 2478 kill_kprobe(p); 2479 } 2480 } 2481 2482 mutex_unlock(&kprobe_mutex); 2483 } 2484 2485 static int __init init_kprobes(void) 2486 { 2487 int i, err = 0; 2488 2489 /* FIXME allocate the probe table, currently defined statically */ 2490 /* initialize all list heads */ 2491 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2492 INIT_HLIST_HEAD(&kprobe_table[i]); 2493 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 2494 raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); 2495 } 2496 2497 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2498 __stop_kprobe_blacklist); 2499 if (err) { 2500 pr_err("kprobes: failed to populate blacklist: %d\n", err); 2501 pr_err("Please take care of using kprobes.\n"); 2502 } 2503 2504 if (kretprobe_blacklist_size) { 2505 /* lookup the function address from its name */ 2506 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2507 kretprobe_blacklist[i].addr = 2508 kprobe_lookup_name(kretprobe_blacklist[i].name, 0); 2509 if (!kretprobe_blacklist[i].addr) 2510 printk("kretprobe: lookup failed: %s\n", 2511 kretprobe_blacklist[i].name); 2512 } 2513 } 2514 2515 #if defined(CONFIG_OPTPROBES) 2516 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2517 /* Init kprobe_optinsn_slots */ 2518 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2519 #endif 2520 /* By default, kprobes can be optimized */ 2521 kprobes_allow_optimization = true; 2522 #endif 2523 2524 /* By default, kprobes are armed */ 2525 kprobes_all_disarmed = false; 2526 2527 err = arch_init_kprobes(); 2528 if (!err) 2529 err = register_die_notifier(&kprobe_exceptions_nb); 2530 if (!err) 2531 err = register_module_notifier(&kprobe_module_nb); 2532 2533 kprobes_initialized = (err == 0); 2534 2535 if (!err) 2536 init_test_probes(); 2537 return err; 2538 } 2539 subsys_initcall(init_kprobes); 2540 2541 #ifdef CONFIG_DEBUG_FS 2542 static void report_probe(struct seq_file *pi, struct kprobe *p, 2543 const char *sym, int offset, char *modname, struct kprobe *pp) 2544 { 2545 char *kprobe_type; 2546 void *addr = p->addr; 2547 2548 if (p->pre_handler == pre_handler_kretprobe) 2549 kprobe_type = "r"; 2550 else 2551 kprobe_type = "k"; 2552 2553 if (!kallsyms_show_value(pi->file->f_cred)) 2554 addr = NULL; 2555 2556 if (sym) 2557 seq_printf(pi, "%px %s %s+0x%x %s ", 2558 addr, kprobe_type, sym, offset, 2559 (modname ? modname : " ")); 2560 else /* try to use %pS */ 2561 seq_printf(pi, "%px %s %pS ", 2562 addr, kprobe_type, p->addr); 2563 2564 if (!pp) 2565 pp = p; 2566 seq_printf(pi, "%s%s%s%s\n", 2567 (kprobe_gone(p) ? "[GONE]" : ""), 2568 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2569 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2570 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2571 } 2572 2573 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2574 { 2575 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2576 } 2577 2578 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2579 { 2580 (*pos)++; 2581 if (*pos >= KPROBE_TABLE_SIZE) 2582 return NULL; 2583 return pos; 2584 } 2585 2586 static void kprobe_seq_stop(struct seq_file *f, void *v) 2587 { 2588 /* Nothing to do */ 2589 } 2590 2591 static int show_kprobe_addr(struct seq_file *pi, void *v) 2592 { 2593 struct hlist_head *head; 2594 struct kprobe *p, *kp; 2595 const char *sym = NULL; 2596 unsigned int i = *(loff_t *) v; 2597 unsigned long offset = 0; 2598 char *modname, namebuf[KSYM_NAME_LEN]; 2599 2600 head = &kprobe_table[i]; 2601 preempt_disable(); 2602 hlist_for_each_entry_rcu(p, head, hlist) { 2603 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2604 &offset, &modname, namebuf); 2605 if (kprobe_aggrprobe(p)) { 2606 list_for_each_entry_rcu(kp, &p->list, list) 2607 report_probe(pi, kp, sym, offset, modname, p); 2608 } else 2609 report_probe(pi, p, sym, offset, modname, NULL); 2610 } 2611 preempt_enable(); 2612 return 0; 2613 } 2614 2615 static const struct seq_operations kprobes_sops = { 2616 .start = kprobe_seq_start, 2617 .next = kprobe_seq_next, 2618 .stop = kprobe_seq_stop, 2619 .show = show_kprobe_addr 2620 }; 2621 2622 DEFINE_SEQ_ATTRIBUTE(kprobes); 2623 2624 /* kprobes/blacklist -- shows which functions can not be probed */ 2625 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2626 { 2627 mutex_lock(&kprobe_mutex); 2628 return seq_list_start(&kprobe_blacklist, *pos); 2629 } 2630 2631 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2632 { 2633 return seq_list_next(v, &kprobe_blacklist, pos); 2634 } 2635 2636 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2637 { 2638 struct kprobe_blacklist_entry *ent = 2639 list_entry(v, struct kprobe_blacklist_entry, list); 2640 2641 /* 2642 * If /proc/kallsyms is not showing kernel address, we won't 2643 * show them here either. 2644 */ 2645 if (!kallsyms_show_value(m->file->f_cred)) 2646 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL, 2647 (void *)ent->start_addr); 2648 else 2649 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr, 2650 (void *)ent->end_addr, (void *)ent->start_addr); 2651 return 0; 2652 } 2653 2654 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v) 2655 { 2656 mutex_unlock(&kprobe_mutex); 2657 } 2658 2659 static const struct seq_operations kprobe_blacklist_sops = { 2660 .start = kprobe_blacklist_seq_start, 2661 .next = kprobe_blacklist_seq_next, 2662 .stop = kprobe_blacklist_seq_stop, 2663 .show = kprobe_blacklist_seq_show, 2664 }; 2665 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist); 2666 2667 static int arm_all_kprobes(void) 2668 { 2669 struct hlist_head *head; 2670 struct kprobe *p; 2671 unsigned int i, total = 0, errors = 0; 2672 int err, ret = 0; 2673 2674 mutex_lock(&kprobe_mutex); 2675 2676 /* If kprobes are armed, just return */ 2677 if (!kprobes_all_disarmed) 2678 goto already_enabled; 2679 2680 /* 2681 * optimize_kprobe() called by arm_kprobe() checks 2682 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2683 * arm_kprobe. 2684 */ 2685 kprobes_all_disarmed = false; 2686 /* Arming kprobes doesn't optimize kprobe itself */ 2687 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2688 head = &kprobe_table[i]; 2689 /* Arm all kprobes on a best-effort basis */ 2690 hlist_for_each_entry(p, head, hlist) { 2691 if (!kprobe_disabled(p)) { 2692 err = arm_kprobe(p); 2693 if (err) { 2694 errors++; 2695 ret = err; 2696 } 2697 total++; 2698 } 2699 } 2700 } 2701 2702 if (errors) 2703 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n", 2704 errors, total); 2705 else 2706 pr_info("Kprobes globally enabled\n"); 2707 2708 already_enabled: 2709 mutex_unlock(&kprobe_mutex); 2710 return ret; 2711 } 2712 2713 static int disarm_all_kprobes(void) 2714 { 2715 struct hlist_head *head; 2716 struct kprobe *p; 2717 unsigned int i, total = 0, errors = 0; 2718 int err, ret = 0; 2719 2720 mutex_lock(&kprobe_mutex); 2721 2722 /* If kprobes are already disarmed, just return */ 2723 if (kprobes_all_disarmed) { 2724 mutex_unlock(&kprobe_mutex); 2725 return 0; 2726 } 2727 2728 kprobes_all_disarmed = true; 2729 2730 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2731 head = &kprobe_table[i]; 2732 /* Disarm all kprobes on a best-effort basis */ 2733 hlist_for_each_entry(p, head, hlist) { 2734 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { 2735 err = disarm_kprobe(p, false); 2736 if (err) { 2737 errors++; 2738 ret = err; 2739 } 2740 total++; 2741 } 2742 } 2743 } 2744 2745 if (errors) 2746 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n", 2747 errors, total); 2748 else 2749 pr_info("Kprobes globally disabled\n"); 2750 2751 mutex_unlock(&kprobe_mutex); 2752 2753 /* Wait for disarming all kprobes by optimizer */ 2754 wait_for_kprobe_optimizer(); 2755 2756 return ret; 2757 } 2758 2759 /* 2760 * XXX: The debugfs bool file interface doesn't allow for callbacks 2761 * when the bool state is switched. We can reuse that facility when 2762 * available 2763 */ 2764 static ssize_t read_enabled_file_bool(struct file *file, 2765 char __user *user_buf, size_t count, loff_t *ppos) 2766 { 2767 char buf[3]; 2768 2769 if (!kprobes_all_disarmed) 2770 buf[0] = '1'; 2771 else 2772 buf[0] = '0'; 2773 buf[1] = '\n'; 2774 buf[2] = 0x00; 2775 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2776 } 2777 2778 static ssize_t write_enabled_file_bool(struct file *file, 2779 const char __user *user_buf, size_t count, loff_t *ppos) 2780 { 2781 char buf[32]; 2782 size_t buf_size; 2783 int ret = 0; 2784 2785 buf_size = min(count, (sizeof(buf)-1)); 2786 if (copy_from_user(buf, user_buf, buf_size)) 2787 return -EFAULT; 2788 2789 buf[buf_size] = '\0'; 2790 switch (buf[0]) { 2791 case 'y': 2792 case 'Y': 2793 case '1': 2794 ret = arm_all_kprobes(); 2795 break; 2796 case 'n': 2797 case 'N': 2798 case '0': 2799 ret = disarm_all_kprobes(); 2800 break; 2801 default: 2802 return -EINVAL; 2803 } 2804 2805 if (ret) 2806 return ret; 2807 2808 return count; 2809 } 2810 2811 static const struct file_operations fops_kp = { 2812 .read = read_enabled_file_bool, 2813 .write = write_enabled_file_bool, 2814 .llseek = default_llseek, 2815 }; 2816 2817 static int __init debugfs_kprobe_init(void) 2818 { 2819 struct dentry *dir; 2820 unsigned int value = 1; 2821 2822 dir = debugfs_create_dir("kprobes", NULL); 2823 2824 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops); 2825 2826 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp); 2827 2828 debugfs_create_file("blacklist", 0400, dir, NULL, 2829 &kprobe_blacklist_fops); 2830 2831 return 0; 2832 } 2833 2834 late_initcall(debugfs_kprobe_init); 2835 #endif /* CONFIG_DEBUG_FS */ 2836