1 /* 2 * Kernel Probes (KProbes) 3 * kernel/kprobes.c 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * Copyright (C) IBM Corporation, 2002, 2004 20 * 21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 22 * Probes initial implementation (includes suggestions from 23 * Rusty Russell). 24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 25 * hlists and exceptions notifier as suggested by Andi Kleen. 26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 27 * interface to access function arguments. 28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 29 * exceptions notifier to be first on the priority list. 30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 32 * <prasanna@in.ibm.com> added function-return probes. 33 */ 34 #include <linux/kprobes.h> 35 #include <linux/hash.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/stddef.h> 39 #include <linux/export.h> 40 #include <linux/moduleloader.h> 41 #include <linux/kallsyms.h> 42 #include <linux/freezer.h> 43 #include <linux/seq_file.h> 44 #include <linux/debugfs.h> 45 #include <linux/sysctl.h> 46 #include <linux/kdebug.h> 47 #include <linux/memory.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 #include <linux/jump_label.h> 51 52 #include <asm/sections.h> 53 #include <asm/cacheflush.h> 54 #include <asm/errno.h> 55 #include <linux/uaccess.h> 56 57 #define KPROBE_HASH_BITS 6 58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 59 60 61 /* 62 * Some oddball architectures like 64bit powerpc have function descriptors 63 * so this must be overridable. 64 */ 65 #ifndef kprobe_lookup_name 66 #define kprobe_lookup_name(name, addr) \ 67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name))) 68 #endif 69 70 static int kprobes_initialized; 71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 73 74 /* NOTE: change this value only with kprobe_mutex held */ 75 static bool kprobes_all_disarmed; 76 77 /* This protects kprobe_table and optimizing_list */ 78 static DEFINE_MUTEX(kprobe_mutex); 79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 80 static struct { 81 raw_spinlock_t lock ____cacheline_aligned_in_smp; 82 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 83 84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 85 { 86 return &(kretprobe_table_locks[hash].lock); 87 } 88 89 /* Blacklist -- list of struct kprobe_blacklist_entry */ 90 static LIST_HEAD(kprobe_blacklist); 91 92 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 93 /* 94 * kprobe->ainsn.insn points to the copy of the instruction to be 95 * single-stepped. x86_64, POWER4 and above have no-exec support and 96 * stepping on the instruction on a vmalloced/kmalloced/data page 97 * is a recipe for disaster 98 */ 99 struct kprobe_insn_page { 100 struct list_head list; 101 kprobe_opcode_t *insns; /* Page of instruction slots */ 102 struct kprobe_insn_cache *cache; 103 int nused; 104 int ngarbage; 105 char slot_used[]; 106 }; 107 108 #define KPROBE_INSN_PAGE_SIZE(slots) \ 109 (offsetof(struct kprobe_insn_page, slot_used) + \ 110 (sizeof(char) * (slots))) 111 112 static int slots_per_page(struct kprobe_insn_cache *c) 113 { 114 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 115 } 116 117 enum kprobe_slot_state { 118 SLOT_CLEAN = 0, 119 SLOT_DIRTY = 1, 120 SLOT_USED = 2, 121 }; 122 123 static void *alloc_insn_page(void) 124 { 125 return module_alloc(PAGE_SIZE); 126 } 127 128 static void free_insn_page(void *page) 129 { 130 module_memfree(page); 131 } 132 133 struct kprobe_insn_cache kprobe_insn_slots = { 134 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 135 .alloc = alloc_insn_page, 136 .free = free_insn_page, 137 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 138 .insn_size = MAX_INSN_SIZE, 139 .nr_garbage = 0, 140 }; 141 static int collect_garbage_slots(struct kprobe_insn_cache *c); 142 143 /** 144 * __get_insn_slot() - Find a slot on an executable page for an instruction. 145 * We allocate an executable page if there's no room on existing ones. 146 */ 147 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 148 { 149 struct kprobe_insn_page *kip; 150 kprobe_opcode_t *slot = NULL; 151 152 /* Since the slot array is not protected by rcu, we need a mutex */ 153 mutex_lock(&c->mutex); 154 retry: 155 rcu_read_lock(); 156 list_for_each_entry_rcu(kip, &c->pages, list) { 157 if (kip->nused < slots_per_page(c)) { 158 int i; 159 for (i = 0; i < slots_per_page(c); i++) { 160 if (kip->slot_used[i] == SLOT_CLEAN) { 161 kip->slot_used[i] = SLOT_USED; 162 kip->nused++; 163 slot = kip->insns + (i * c->insn_size); 164 rcu_read_unlock(); 165 goto out; 166 } 167 } 168 /* kip->nused is broken. Fix it. */ 169 kip->nused = slots_per_page(c); 170 WARN_ON(1); 171 } 172 } 173 rcu_read_unlock(); 174 175 /* If there are any garbage slots, collect it and try again. */ 176 if (c->nr_garbage && collect_garbage_slots(c) == 0) 177 goto retry; 178 179 /* All out of space. Need to allocate a new page. */ 180 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 181 if (!kip) 182 goto out; 183 184 /* 185 * Use module_alloc so this page is within +/- 2GB of where the 186 * kernel image and loaded module images reside. This is required 187 * so x86_64 can correctly handle the %rip-relative fixups. 188 */ 189 kip->insns = c->alloc(); 190 if (!kip->insns) { 191 kfree(kip); 192 goto out; 193 } 194 INIT_LIST_HEAD(&kip->list); 195 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 196 kip->slot_used[0] = SLOT_USED; 197 kip->nused = 1; 198 kip->ngarbage = 0; 199 kip->cache = c; 200 list_add_rcu(&kip->list, &c->pages); 201 slot = kip->insns; 202 out: 203 mutex_unlock(&c->mutex); 204 return slot; 205 } 206 207 /* Return 1 if all garbages are collected, otherwise 0. */ 208 static int collect_one_slot(struct kprobe_insn_page *kip, int idx) 209 { 210 kip->slot_used[idx] = SLOT_CLEAN; 211 kip->nused--; 212 if (kip->nused == 0) { 213 /* 214 * Page is no longer in use. Free it unless 215 * it's the last one. We keep the last one 216 * so as not to have to set it up again the 217 * next time somebody inserts a probe. 218 */ 219 if (!list_is_singular(&kip->list)) { 220 list_del_rcu(&kip->list); 221 synchronize_rcu(); 222 kip->cache->free(kip->insns); 223 kfree(kip); 224 } 225 return 1; 226 } 227 return 0; 228 } 229 230 static int collect_garbage_slots(struct kprobe_insn_cache *c) 231 { 232 struct kprobe_insn_page *kip, *next; 233 234 /* Ensure no-one is interrupted on the garbages */ 235 synchronize_sched(); 236 237 list_for_each_entry_safe(kip, next, &c->pages, list) { 238 int i; 239 if (kip->ngarbage == 0) 240 continue; 241 kip->ngarbage = 0; /* we will collect all garbages */ 242 for (i = 0; i < slots_per_page(c); i++) { 243 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 244 break; 245 } 246 } 247 c->nr_garbage = 0; 248 return 0; 249 } 250 251 void __free_insn_slot(struct kprobe_insn_cache *c, 252 kprobe_opcode_t *slot, int dirty) 253 { 254 struct kprobe_insn_page *kip; 255 long idx; 256 257 mutex_lock(&c->mutex); 258 rcu_read_lock(); 259 list_for_each_entry_rcu(kip, &c->pages, list) { 260 idx = ((long)slot - (long)kip->insns) / 261 (c->insn_size * sizeof(kprobe_opcode_t)); 262 if (idx >= 0 && idx < slots_per_page(c)) 263 goto out; 264 } 265 /* Could not find this slot. */ 266 WARN_ON(1); 267 kip = NULL; 268 out: 269 rcu_read_unlock(); 270 /* Mark and sweep: this may sleep */ 271 if (kip) { 272 /* Check double free */ 273 WARN_ON(kip->slot_used[idx] != SLOT_USED); 274 if (dirty) { 275 kip->slot_used[idx] = SLOT_DIRTY; 276 kip->ngarbage++; 277 if (++c->nr_garbage > slots_per_page(c)) 278 collect_garbage_slots(c); 279 } else { 280 collect_one_slot(kip, idx); 281 } 282 } 283 mutex_unlock(&c->mutex); 284 } 285 286 /* 287 * Check given address is on the page of kprobe instruction slots. 288 * This will be used for checking whether the address on a stack 289 * is on a text area or not. 290 */ 291 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 292 { 293 struct kprobe_insn_page *kip; 294 bool ret = false; 295 296 rcu_read_lock(); 297 list_for_each_entry_rcu(kip, &c->pages, list) { 298 if (addr >= (unsigned long)kip->insns && 299 addr < (unsigned long)kip->insns + PAGE_SIZE) { 300 ret = true; 301 break; 302 } 303 } 304 rcu_read_unlock(); 305 306 return ret; 307 } 308 309 #ifdef CONFIG_OPTPROBES 310 /* For optimized_kprobe buffer */ 311 struct kprobe_insn_cache kprobe_optinsn_slots = { 312 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 313 .alloc = alloc_insn_page, 314 .free = free_insn_page, 315 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 316 /* .insn_size is initialized later */ 317 .nr_garbage = 0, 318 }; 319 #endif 320 #endif 321 322 /* We have preemption disabled.. so it is safe to use __ versions */ 323 static inline void set_kprobe_instance(struct kprobe *kp) 324 { 325 __this_cpu_write(kprobe_instance, kp); 326 } 327 328 static inline void reset_kprobe_instance(void) 329 { 330 __this_cpu_write(kprobe_instance, NULL); 331 } 332 333 /* 334 * This routine is called either: 335 * - under the kprobe_mutex - during kprobe_[un]register() 336 * OR 337 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 338 */ 339 struct kprobe *get_kprobe(void *addr) 340 { 341 struct hlist_head *head; 342 struct kprobe *p; 343 344 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 345 hlist_for_each_entry_rcu(p, head, hlist) { 346 if (p->addr == addr) 347 return p; 348 } 349 350 return NULL; 351 } 352 NOKPROBE_SYMBOL(get_kprobe); 353 354 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 355 356 /* Return true if the kprobe is an aggregator */ 357 static inline int kprobe_aggrprobe(struct kprobe *p) 358 { 359 return p->pre_handler == aggr_pre_handler; 360 } 361 362 /* Return true(!0) if the kprobe is unused */ 363 static inline int kprobe_unused(struct kprobe *p) 364 { 365 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 366 list_empty(&p->list); 367 } 368 369 /* 370 * Keep all fields in the kprobe consistent 371 */ 372 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 373 { 374 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 375 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 376 } 377 378 #ifdef CONFIG_OPTPROBES 379 /* NOTE: change this value only with kprobe_mutex held */ 380 static bool kprobes_allow_optimization; 381 382 /* 383 * Call all pre_handler on the list, but ignores its return value. 384 * This must be called from arch-dep optimized caller. 385 */ 386 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 387 { 388 struct kprobe *kp; 389 390 list_for_each_entry_rcu(kp, &p->list, list) { 391 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 392 set_kprobe_instance(kp); 393 kp->pre_handler(kp, regs); 394 } 395 reset_kprobe_instance(); 396 } 397 } 398 NOKPROBE_SYMBOL(opt_pre_handler); 399 400 /* Free optimized instructions and optimized_kprobe */ 401 static void free_aggr_kprobe(struct kprobe *p) 402 { 403 struct optimized_kprobe *op; 404 405 op = container_of(p, struct optimized_kprobe, kp); 406 arch_remove_optimized_kprobe(op); 407 arch_remove_kprobe(p); 408 kfree(op); 409 } 410 411 /* Return true(!0) if the kprobe is ready for optimization. */ 412 static inline int kprobe_optready(struct kprobe *p) 413 { 414 struct optimized_kprobe *op; 415 416 if (kprobe_aggrprobe(p)) { 417 op = container_of(p, struct optimized_kprobe, kp); 418 return arch_prepared_optinsn(&op->optinsn); 419 } 420 421 return 0; 422 } 423 424 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 425 static inline int kprobe_disarmed(struct kprobe *p) 426 { 427 struct optimized_kprobe *op; 428 429 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 430 if (!kprobe_aggrprobe(p)) 431 return kprobe_disabled(p); 432 433 op = container_of(p, struct optimized_kprobe, kp); 434 435 return kprobe_disabled(p) && list_empty(&op->list); 436 } 437 438 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 439 static int kprobe_queued(struct kprobe *p) 440 { 441 struct optimized_kprobe *op; 442 443 if (kprobe_aggrprobe(p)) { 444 op = container_of(p, struct optimized_kprobe, kp); 445 if (!list_empty(&op->list)) 446 return 1; 447 } 448 return 0; 449 } 450 451 /* 452 * Return an optimized kprobe whose optimizing code replaces 453 * instructions including addr (exclude breakpoint). 454 */ 455 static struct kprobe *get_optimized_kprobe(unsigned long addr) 456 { 457 int i; 458 struct kprobe *p = NULL; 459 struct optimized_kprobe *op; 460 461 /* Don't check i == 0, since that is a breakpoint case. */ 462 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 463 p = get_kprobe((void *)(addr - i)); 464 465 if (p && kprobe_optready(p)) { 466 op = container_of(p, struct optimized_kprobe, kp); 467 if (arch_within_optimized_kprobe(op, addr)) 468 return p; 469 } 470 471 return NULL; 472 } 473 474 /* Optimization staging list, protected by kprobe_mutex */ 475 static LIST_HEAD(optimizing_list); 476 static LIST_HEAD(unoptimizing_list); 477 static LIST_HEAD(freeing_list); 478 479 static void kprobe_optimizer(struct work_struct *work); 480 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 481 #define OPTIMIZE_DELAY 5 482 483 /* 484 * Optimize (replace a breakpoint with a jump) kprobes listed on 485 * optimizing_list. 486 */ 487 static void do_optimize_kprobes(void) 488 { 489 /* Optimization never be done when disarmed */ 490 if (kprobes_all_disarmed || !kprobes_allow_optimization || 491 list_empty(&optimizing_list)) 492 return; 493 494 /* 495 * The optimization/unoptimization refers online_cpus via 496 * stop_machine() and cpu-hotplug modifies online_cpus. 497 * And same time, text_mutex will be held in cpu-hotplug and here. 498 * This combination can cause a deadlock (cpu-hotplug try to lock 499 * text_mutex but stop_machine can not be done because online_cpus 500 * has been changed) 501 * To avoid this deadlock, we need to call get_online_cpus() 502 * for preventing cpu-hotplug outside of text_mutex locking. 503 */ 504 get_online_cpus(); 505 mutex_lock(&text_mutex); 506 arch_optimize_kprobes(&optimizing_list); 507 mutex_unlock(&text_mutex); 508 put_online_cpus(); 509 } 510 511 /* 512 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 513 * if need) kprobes listed on unoptimizing_list. 514 */ 515 static void do_unoptimize_kprobes(void) 516 { 517 struct optimized_kprobe *op, *tmp; 518 519 /* Unoptimization must be done anytime */ 520 if (list_empty(&unoptimizing_list)) 521 return; 522 523 /* Ditto to do_optimize_kprobes */ 524 get_online_cpus(); 525 mutex_lock(&text_mutex); 526 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 527 /* Loop free_list for disarming */ 528 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 529 /* Disarm probes if marked disabled */ 530 if (kprobe_disabled(&op->kp)) 531 arch_disarm_kprobe(&op->kp); 532 if (kprobe_unused(&op->kp)) { 533 /* 534 * Remove unused probes from hash list. After waiting 535 * for synchronization, these probes are reclaimed. 536 * (reclaiming is done by do_free_cleaned_kprobes.) 537 */ 538 hlist_del_rcu(&op->kp.hlist); 539 } else 540 list_del_init(&op->list); 541 } 542 mutex_unlock(&text_mutex); 543 put_online_cpus(); 544 } 545 546 /* Reclaim all kprobes on the free_list */ 547 static void do_free_cleaned_kprobes(void) 548 { 549 struct optimized_kprobe *op, *tmp; 550 551 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 552 BUG_ON(!kprobe_unused(&op->kp)); 553 list_del_init(&op->list); 554 free_aggr_kprobe(&op->kp); 555 } 556 } 557 558 /* Start optimizer after OPTIMIZE_DELAY passed */ 559 static void kick_kprobe_optimizer(void) 560 { 561 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 562 } 563 564 /* Kprobe jump optimizer */ 565 static void kprobe_optimizer(struct work_struct *work) 566 { 567 mutex_lock(&kprobe_mutex); 568 /* Lock modules while optimizing kprobes */ 569 mutex_lock(&module_mutex); 570 571 /* 572 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 573 * kprobes before waiting for quiesence period. 574 */ 575 do_unoptimize_kprobes(); 576 577 /* 578 * Step 2: Wait for quiesence period to ensure all running interrupts 579 * are done. Because optprobe may modify multiple instructions 580 * there is a chance that Nth instruction is interrupted. In that 581 * case, running interrupt can return to 2nd-Nth byte of jump 582 * instruction. This wait is for avoiding it. 583 */ 584 synchronize_sched(); 585 586 /* Step 3: Optimize kprobes after quiesence period */ 587 do_optimize_kprobes(); 588 589 /* Step 4: Free cleaned kprobes after quiesence period */ 590 do_free_cleaned_kprobes(); 591 592 mutex_unlock(&module_mutex); 593 mutex_unlock(&kprobe_mutex); 594 595 /* Step 5: Kick optimizer again if needed */ 596 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 597 kick_kprobe_optimizer(); 598 } 599 600 /* Wait for completing optimization and unoptimization */ 601 static void wait_for_kprobe_optimizer(void) 602 { 603 mutex_lock(&kprobe_mutex); 604 605 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 606 mutex_unlock(&kprobe_mutex); 607 608 /* this will also make optimizing_work execute immmediately */ 609 flush_delayed_work(&optimizing_work); 610 /* @optimizing_work might not have been queued yet, relax */ 611 cpu_relax(); 612 613 mutex_lock(&kprobe_mutex); 614 } 615 616 mutex_unlock(&kprobe_mutex); 617 } 618 619 /* Optimize kprobe if p is ready to be optimized */ 620 static void optimize_kprobe(struct kprobe *p) 621 { 622 struct optimized_kprobe *op; 623 624 /* Check if the kprobe is disabled or not ready for optimization. */ 625 if (!kprobe_optready(p) || !kprobes_allow_optimization || 626 (kprobe_disabled(p) || kprobes_all_disarmed)) 627 return; 628 629 /* Both of break_handler and post_handler are not supported. */ 630 if (p->break_handler || p->post_handler) 631 return; 632 633 op = container_of(p, struct optimized_kprobe, kp); 634 635 /* Check there is no other kprobes at the optimized instructions */ 636 if (arch_check_optimized_kprobe(op) < 0) 637 return; 638 639 /* Check if it is already optimized. */ 640 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) 641 return; 642 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 643 644 if (!list_empty(&op->list)) 645 /* This is under unoptimizing. Just dequeue the probe */ 646 list_del_init(&op->list); 647 else { 648 list_add(&op->list, &optimizing_list); 649 kick_kprobe_optimizer(); 650 } 651 } 652 653 /* Short cut to direct unoptimizing */ 654 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 655 { 656 get_online_cpus(); 657 arch_unoptimize_kprobe(op); 658 put_online_cpus(); 659 if (kprobe_disabled(&op->kp)) 660 arch_disarm_kprobe(&op->kp); 661 } 662 663 /* Unoptimize a kprobe if p is optimized */ 664 static void unoptimize_kprobe(struct kprobe *p, bool force) 665 { 666 struct optimized_kprobe *op; 667 668 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 669 return; /* This is not an optprobe nor optimized */ 670 671 op = container_of(p, struct optimized_kprobe, kp); 672 if (!kprobe_optimized(p)) { 673 /* Unoptimized or unoptimizing case */ 674 if (force && !list_empty(&op->list)) { 675 /* 676 * Only if this is unoptimizing kprobe and forced, 677 * forcibly unoptimize it. (No need to unoptimize 678 * unoptimized kprobe again :) 679 */ 680 list_del_init(&op->list); 681 force_unoptimize_kprobe(op); 682 } 683 return; 684 } 685 686 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 687 if (!list_empty(&op->list)) { 688 /* Dequeue from the optimization queue */ 689 list_del_init(&op->list); 690 return; 691 } 692 /* Optimized kprobe case */ 693 if (force) 694 /* Forcibly update the code: this is a special case */ 695 force_unoptimize_kprobe(op); 696 else { 697 list_add(&op->list, &unoptimizing_list); 698 kick_kprobe_optimizer(); 699 } 700 } 701 702 /* Cancel unoptimizing for reusing */ 703 static void reuse_unused_kprobe(struct kprobe *ap) 704 { 705 struct optimized_kprobe *op; 706 707 BUG_ON(!kprobe_unused(ap)); 708 /* 709 * Unused kprobe MUST be on the way of delayed unoptimizing (means 710 * there is still a relative jump) and disabled. 711 */ 712 op = container_of(ap, struct optimized_kprobe, kp); 713 if (unlikely(list_empty(&op->list))) 714 printk(KERN_WARNING "Warning: found a stray unused " 715 "aggrprobe@%p\n", ap->addr); 716 /* Enable the probe again */ 717 ap->flags &= ~KPROBE_FLAG_DISABLED; 718 /* Optimize it again (remove from op->list) */ 719 BUG_ON(!kprobe_optready(ap)); 720 optimize_kprobe(ap); 721 } 722 723 /* Remove optimized instructions */ 724 static void kill_optimized_kprobe(struct kprobe *p) 725 { 726 struct optimized_kprobe *op; 727 728 op = container_of(p, struct optimized_kprobe, kp); 729 if (!list_empty(&op->list)) 730 /* Dequeue from the (un)optimization queue */ 731 list_del_init(&op->list); 732 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 733 734 if (kprobe_unused(p)) { 735 /* Enqueue if it is unused */ 736 list_add(&op->list, &freeing_list); 737 /* 738 * Remove unused probes from the hash list. After waiting 739 * for synchronization, this probe is reclaimed. 740 * (reclaiming is done by do_free_cleaned_kprobes().) 741 */ 742 hlist_del_rcu(&op->kp.hlist); 743 } 744 745 /* Don't touch the code, because it is already freed. */ 746 arch_remove_optimized_kprobe(op); 747 } 748 749 /* Try to prepare optimized instructions */ 750 static void prepare_optimized_kprobe(struct kprobe *p) 751 { 752 struct optimized_kprobe *op; 753 754 op = container_of(p, struct optimized_kprobe, kp); 755 arch_prepare_optimized_kprobe(op, p); 756 } 757 758 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 759 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 760 { 761 struct optimized_kprobe *op; 762 763 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 764 if (!op) 765 return NULL; 766 767 INIT_LIST_HEAD(&op->list); 768 op->kp.addr = p->addr; 769 arch_prepare_optimized_kprobe(op, p); 770 771 return &op->kp; 772 } 773 774 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 775 776 /* 777 * Prepare an optimized_kprobe and optimize it 778 * NOTE: p must be a normal registered kprobe 779 */ 780 static void try_to_optimize_kprobe(struct kprobe *p) 781 { 782 struct kprobe *ap; 783 struct optimized_kprobe *op; 784 785 /* Impossible to optimize ftrace-based kprobe */ 786 if (kprobe_ftrace(p)) 787 return; 788 789 /* For preparing optimization, jump_label_text_reserved() is called */ 790 jump_label_lock(); 791 mutex_lock(&text_mutex); 792 793 ap = alloc_aggr_kprobe(p); 794 if (!ap) 795 goto out; 796 797 op = container_of(ap, struct optimized_kprobe, kp); 798 if (!arch_prepared_optinsn(&op->optinsn)) { 799 /* If failed to setup optimizing, fallback to kprobe */ 800 arch_remove_optimized_kprobe(op); 801 kfree(op); 802 goto out; 803 } 804 805 init_aggr_kprobe(ap, p); 806 optimize_kprobe(ap); /* This just kicks optimizer thread */ 807 808 out: 809 mutex_unlock(&text_mutex); 810 jump_label_unlock(); 811 } 812 813 #ifdef CONFIG_SYSCTL 814 static void optimize_all_kprobes(void) 815 { 816 struct hlist_head *head; 817 struct kprobe *p; 818 unsigned int i; 819 820 mutex_lock(&kprobe_mutex); 821 /* If optimization is already allowed, just return */ 822 if (kprobes_allow_optimization) 823 goto out; 824 825 kprobes_allow_optimization = true; 826 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 827 head = &kprobe_table[i]; 828 hlist_for_each_entry_rcu(p, head, hlist) 829 if (!kprobe_disabled(p)) 830 optimize_kprobe(p); 831 } 832 printk(KERN_INFO "Kprobes globally optimized\n"); 833 out: 834 mutex_unlock(&kprobe_mutex); 835 } 836 837 static void unoptimize_all_kprobes(void) 838 { 839 struct hlist_head *head; 840 struct kprobe *p; 841 unsigned int i; 842 843 mutex_lock(&kprobe_mutex); 844 /* If optimization is already prohibited, just return */ 845 if (!kprobes_allow_optimization) { 846 mutex_unlock(&kprobe_mutex); 847 return; 848 } 849 850 kprobes_allow_optimization = false; 851 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 852 head = &kprobe_table[i]; 853 hlist_for_each_entry_rcu(p, head, hlist) { 854 if (!kprobe_disabled(p)) 855 unoptimize_kprobe(p, false); 856 } 857 } 858 mutex_unlock(&kprobe_mutex); 859 860 /* Wait for unoptimizing completion */ 861 wait_for_kprobe_optimizer(); 862 printk(KERN_INFO "Kprobes globally unoptimized\n"); 863 } 864 865 static DEFINE_MUTEX(kprobe_sysctl_mutex); 866 int sysctl_kprobes_optimization; 867 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 868 void __user *buffer, size_t *length, 869 loff_t *ppos) 870 { 871 int ret; 872 873 mutex_lock(&kprobe_sysctl_mutex); 874 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 875 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 876 877 if (sysctl_kprobes_optimization) 878 optimize_all_kprobes(); 879 else 880 unoptimize_all_kprobes(); 881 mutex_unlock(&kprobe_sysctl_mutex); 882 883 return ret; 884 } 885 #endif /* CONFIG_SYSCTL */ 886 887 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 888 static void __arm_kprobe(struct kprobe *p) 889 { 890 struct kprobe *_p; 891 892 /* Check collision with other optimized kprobes */ 893 _p = get_optimized_kprobe((unsigned long)p->addr); 894 if (unlikely(_p)) 895 /* Fallback to unoptimized kprobe */ 896 unoptimize_kprobe(_p, true); 897 898 arch_arm_kprobe(p); 899 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 900 } 901 902 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 903 static void __disarm_kprobe(struct kprobe *p, bool reopt) 904 { 905 struct kprobe *_p; 906 907 /* Try to unoptimize */ 908 unoptimize_kprobe(p, kprobes_all_disarmed); 909 910 if (!kprobe_queued(p)) { 911 arch_disarm_kprobe(p); 912 /* If another kprobe was blocked, optimize it. */ 913 _p = get_optimized_kprobe((unsigned long)p->addr); 914 if (unlikely(_p) && reopt) 915 optimize_kprobe(_p); 916 } 917 /* TODO: reoptimize others after unoptimized this probe */ 918 } 919 920 #else /* !CONFIG_OPTPROBES */ 921 922 #define optimize_kprobe(p) do {} while (0) 923 #define unoptimize_kprobe(p, f) do {} while (0) 924 #define kill_optimized_kprobe(p) do {} while (0) 925 #define prepare_optimized_kprobe(p) do {} while (0) 926 #define try_to_optimize_kprobe(p) do {} while (0) 927 #define __arm_kprobe(p) arch_arm_kprobe(p) 928 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 929 #define kprobe_disarmed(p) kprobe_disabled(p) 930 #define wait_for_kprobe_optimizer() do {} while (0) 931 932 /* There should be no unused kprobes can be reused without optimization */ 933 static void reuse_unused_kprobe(struct kprobe *ap) 934 { 935 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 936 BUG_ON(kprobe_unused(ap)); 937 } 938 939 static void free_aggr_kprobe(struct kprobe *p) 940 { 941 arch_remove_kprobe(p); 942 kfree(p); 943 } 944 945 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 946 { 947 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 948 } 949 #endif /* CONFIG_OPTPROBES */ 950 951 #ifdef CONFIG_KPROBES_ON_FTRACE 952 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 953 .func = kprobe_ftrace_handler, 954 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 955 }; 956 static int kprobe_ftrace_enabled; 957 958 /* Must ensure p->addr is really on ftrace */ 959 static int prepare_kprobe(struct kprobe *p) 960 { 961 if (!kprobe_ftrace(p)) 962 return arch_prepare_kprobe(p); 963 964 return arch_prepare_kprobe_ftrace(p); 965 } 966 967 /* Caller must lock kprobe_mutex */ 968 static void arm_kprobe_ftrace(struct kprobe *p) 969 { 970 int ret; 971 972 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 973 (unsigned long)p->addr, 0, 0); 974 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret); 975 kprobe_ftrace_enabled++; 976 if (kprobe_ftrace_enabled == 1) { 977 ret = register_ftrace_function(&kprobe_ftrace_ops); 978 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret); 979 } 980 } 981 982 /* Caller must lock kprobe_mutex */ 983 static void disarm_kprobe_ftrace(struct kprobe *p) 984 { 985 int ret; 986 987 kprobe_ftrace_enabled--; 988 if (kprobe_ftrace_enabled == 0) { 989 ret = unregister_ftrace_function(&kprobe_ftrace_ops); 990 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret); 991 } 992 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 993 (unsigned long)p->addr, 1, 0); 994 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret); 995 } 996 #else /* !CONFIG_KPROBES_ON_FTRACE */ 997 #define prepare_kprobe(p) arch_prepare_kprobe(p) 998 #define arm_kprobe_ftrace(p) do {} while (0) 999 #define disarm_kprobe_ftrace(p) do {} while (0) 1000 #endif 1001 1002 /* Arm a kprobe with text_mutex */ 1003 static void arm_kprobe(struct kprobe *kp) 1004 { 1005 if (unlikely(kprobe_ftrace(kp))) { 1006 arm_kprobe_ftrace(kp); 1007 return; 1008 } 1009 /* 1010 * Here, since __arm_kprobe() doesn't use stop_machine(), 1011 * this doesn't cause deadlock on text_mutex. So, we don't 1012 * need get_online_cpus(). 1013 */ 1014 mutex_lock(&text_mutex); 1015 __arm_kprobe(kp); 1016 mutex_unlock(&text_mutex); 1017 } 1018 1019 /* Disarm a kprobe with text_mutex */ 1020 static void disarm_kprobe(struct kprobe *kp, bool reopt) 1021 { 1022 if (unlikely(kprobe_ftrace(kp))) { 1023 disarm_kprobe_ftrace(kp); 1024 return; 1025 } 1026 /* Ditto */ 1027 mutex_lock(&text_mutex); 1028 __disarm_kprobe(kp, reopt); 1029 mutex_unlock(&text_mutex); 1030 } 1031 1032 /* 1033 * Aggregate handlers for multiple kprobes support - these handlers 1034 * take care of invoking the individual kprobe handlers on p->list 1035 */ 1036 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1037 { 1038 struct kprobe *kp; 1039 1040 list_for_each_entry_rcu(kp, &p->list, list) { 1041 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1042 set_kprobe_instance(kp); 1043 if (kp->pre_handler(kp, regs)) 1044 return 1; 1045 } 1046 reset_kprobe_instance(); 1047 } 1048 return 0; 1049 } 1050 NOKPROBE_SYMBOL(aggr_pre_handler); 1051 1052 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1053 unsigned long flags) 1054 { 1055 struct kprobe *kp; 1056 1057 list_for_each_entry_rcu(kp, &p->list, list) { 1058 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1059 set_kprobe_instance(kp); 1060 kp->post_handler(kp, regs, flags); 1061 reset_kprobe_instance(); 1062 } 1063 } 1064 } 1065 NOKPROBE_SYMBOL(aggr_post_handler); 1066 1067 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 1068 int trapnr) 1069 { 1070 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1071 1072 /* 1073 * if we faulted "during" the execution of a user specified 1074 * probe handler, invoke just that probe's fault handler 1075 */ 1076 if (cur && cur->fault_handler) { 1077 if (cur->fault_handler(cur, regs, trapnr)) 1078 return 1; 1079 } 1080 return 0; 1081 } 1082 NOKPROBE_SYMBOL(aggr_fault_handler); 1083 1084 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs) 1085 { 1086 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1087 int ret = 0; 1088 1089 if (cur && cur->break_handler) { 1090 if (cur->break_handler(cur, regs)) 1091 ret = 1; 1092 } 1093 reset_kprobe_instance(); 1094 return ret; 1095 } 1096 NOKPROBE_SYMBOL(aggr_break_handler); 1097 1098 /* Walks the list and increments nmissed count for multiprobe case */ 1099 void kprobes_inc_nmissed_count(struct kprobe *p) 1100 { 1101 struct kprobe *kp; 1102 if (!kprobe_aggrprobe(p)) { 1103 p->nmissed++; 1104 } else { 1105 list_for_each_entry_rcu(kp, &p->list, list) 1106 kp->nmissed++; 1107 } 1108 return; 1109 } 1110 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1111 1112 void recycle_rp_inst(struct kretprobe_instance *ri, 1113 struct hlist_head *head) 1114 { 1115 struct kretprobe *rp = ri->rp; 1116 1117 /* remove rp inst off the rprobe_inst_table */ 1118 hlist_del(&ri->hlist); 1119 INIT_HLIST_NODE(&ri->hlist); 1120 if (likely(rp)) { 1121 raw_spin_lock(&rp->lock); 1122 hlist_add_head(&ri->hlist, &rp->free_instances); 1123 raw_spin_unlock(&rp->lock); 1124 } else 1125 /* Unregistering */ 1126 hlist_add_head(&ri->hlist, head); 1127 } 1128 NOKPROBE_SYMBOL(recycle_rp_inst); 1129 1130 void kretprobe_hash_lock(struct task_struct *tsk, 1131 struct hlist_head **head, unsigned long *flags) 1132 __acquires(hlist_lock) 1133 { 1134 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1135 raw_spinlock_t *hlist_lock; 1136 1137 *head = &kretprobe_inst_table[hash]; 1138 hlist_lock = kretprobe_table_lock_ptr(hash); 1139 raw_spin_lock_irqsave(hlist_lock, *flags); 1140 } 1141 NOKPROBE_SYMBOL(kretprobe_hash_lock); 1142 1143 static void kretprobe_table_lock(unsigned long hash, 1144 unsigned long *flags) 1145 __acquires(hlist_lock) 1146 { 1147 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1148 raw_spin_lock_irqsave(hlist_lock, *flags); 1149 } 1150 NOKPROBE_SYMBOL(kretprobe_table_lock); 1151 1152 void kretprobe_hash_unlock(struct task_struct *tsk, 1153 unsigned long *flags) 1154 __releases(hlist_lock) 1155 { 1156 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1157 raw_spinlock_t *hlist_lock; 1158 1159 hlist_lock = kretprobe_table_lock_ptr(hash); 1160 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1161 } 1162 NOKPROBE_SYMBOL(kretprobe_hash_unlock); 1163 1164 static void kretprobe_table_unlock(unsigned long hash, 1165 unsigned long *flags) 1166 __releases(hlist_lock) 1167 { 1168 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1169 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1170 } 1171 NOKPROBE_SYMBOL(kretprobe_table_unlock); 1172 1173 /* 1174 * This function is called from finish_task_switch when task tk becomes dead, 1175 * so that we can recycle any function-return probe instances associated 1176 * with this task. These left over instances represent probed functions 1177 * that have been called but will never return. 1178 */ 1179 void kprobe_flush_task(struct task_struct *tk) 1180 { 1181 struct kretprobe_instance *ri; 1182 struct hlist_head *head, empty_rp; 1183 struct hlist_node *tmp; 1184 unsigned long hash, flags = 0; 1185 1186 if (unlikely(!kprobes_initialized)) 1187 /* Early boot. kretprobe_table_locks not yet initialized. */ 1188 return; 1189 1190 INIT_HLIST_HEAD(&empty_rp); 1191 hash = hash_ptr(tk, KPROBE_HASH_BITS); 1192 head = &kretprobe_inst_table[hash]; 1193 kretprobe_table_lock(hash, &flags); 1194 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 1195 if (ri->task == tk) 1196 recycle_rp_inst(ri, &empty_rp); 1197 } 1198 kretprobe_table_unlock(hash, &flags); 1199 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 1200 hlist_del(&ri->hlist); 1201 kfree(ri); 1202 } 1203 } 1204 NOKPROBE_SYMBOL(kprobe_flush_task); 1205 1206 static inline void free_rp_inst(struct kretprobe *rp) 1207 { 1208 struct kretprobe_instance *ri; 1209 struct hlist_node *next; 1210 1211 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) { 1212 hlist_del(&ri->hlist); 1213 kfree(ri); 1214 } 1215 } 1216 1217 static void cleanup_rp_inst(struct kretprobe *rp) 1218 { 1219 unsigned long flags, hash; 1220 struct kretprobe_instance *ri; 1221 struct hlist_node *next; 1222 struct hlist_head *head; 1223 1224 /* No race here */ 1225 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 1226 kretprobe_table_lock(hash, &flags); 1227 head = &kretprobe_inst_table[hash]; 1228 hlist_for_each_entry_safe(ri, next, head, hlist) { 1229 if (ri->rp == rp) 1230 ri->rp = NULL; 1231 } 1232 kretprobe_table_unlock(hash, &flags); 1233 } 1234 free_rp_inst(rp); 1235 } 1236 NOKPROBE_SYMBOL(cleanup_rp_inst); 1237 1238 /* 1239 * Add the new probe to ap->list. Fail if this is the 1240 * second jprobe at the address - two jprobes can't coexist 1241 */ 1242 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1243 { 1244 BUG_ON(kprobe_gone(ap) || kprobe_gone(p)); 1245 1246 if (p->break_handler || p->post_handler) 1247 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1248 1249 if (p->break_handler) { 1250 if (ap->break_handler) 1251 return -EEXIST; 1252 list_add_tail_rcu(&p->list, &ap->list); 1253 ap->break_handler = aggr_break_handler; 1254 } else 1255 list_add_rcu(&p->list, &ap->list); 1256 if (p->post_handler && !ap->post_handler) 1257 ap->post_handler = aggr_post_handler; 1258 1259 return 0; 1260 } 1261 1262 /* 1263 * Fill in the required fields of the "manager kprobe". Replace the 1264 * earlier kprobe in the hlist with the manager kprobe 1265 */ 1266 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1267 { 1268 /* Copy p's insn slot to ap */ 1269 copy_kprobe(p, ap); 1270 flush_insn_slot(ap); 1271 ap->addr = p->addr; 1272 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1273 ap->pre_handler = aggr_pre_handler; 1274 ap->fault_handler = aggr_fault_handler; 1275 /* We don't care the kprobe which has gone. */ 1276 if (p->post_handler && !kprobe_gone(p)) 1277 ap->post_handler = aggr_post_handler; 1278 if (p->break_handler && !kprobe_gone(p)) 1279 ap->break_handler = aggr_break_handler; 1280 1281 INIT_LIST_HEAD(&ap->list); 1282 INIT_HLIST_NODE(&ap->hlist); 1283 1284 list_add_rcu(&p->list, &ap->list); 1285 hlist_replace_rcu(&p->hlist, &ap->hlist); 1286 } 1287 1288 /* 1289 * This is the second or subsequent kprobe at the address - handle 1290 * the intricacies 1291 */ 1292 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1293 { 1294 int ret = 0; 1295 struct kprobe *ap = orig_p; 1296 1297 /* For preparing optimization, jump_label_text_reserved() is called */ 1298 jump_label_lock(); 1299 /* 1300 * Get online CPUs to avoid text_mutex deadlock.with stop machine, 1301 * which is invoked by unoptimize_kprobe() in add_new_kprobe() 1302 */ 1303 get_online_cpus(); 1304 mutex_lock(&text_mutex); 1305 1306 if (!kprobe_aggrprobe(orig_p)) { 1307 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1308 ap = alloc_aggr_kprobe(orig_p); 1309 if (!ap) { 1310 ret = -ENOMEM; 1311 goto out; 1312 } 1313 init_aggr_kprobe(ap, orig_p); 1314 } else if (kprobe_unused(ap)) 1315 /* This probe is going to die. Rescue it */ 1316 reuse_unused_kprobe(ap); 1317 1318 if (kprobe_gone(ap)) { 1319 /* 1320 * Attempting to insert new probe at the same location that 1321 * had a probe in the module vaddr area which already 1322 * freed. So, the instruction slot has already been 1323 * released. We need a new slot for the new probe. 1324 */ 1325 ret = arch_prepare_kprobe(ap); 1326 if (ret) 1327 /* 1328 * Even if fail to allocate new slot, don't need to 1329 * free aggr_probe. It will be used next time, or 1330 * freed by unregister_kprobe. 1331 */ 1332 goto out; 1333 1334 /* Prepare optimized instructions if possible. */ 1335 prepare_optimized_kprobe(ap); 1336 1337 /* 1338 * Clear gone flag to prevent allocating new slot again, and 1339 * set disabled flag because it is not armed yet. 1340 */ 1341 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1342 | KPROBE_FLAG_DISABLED; 1343 } 1344 1345 /* Copy ap's insn slot to p */ 1346 copy_kprobe(ap, p); 1347 ret = add_new_kprobe(ap, p); 1348 1349 out: 1350 mutex_unlock(&text_mutex); 1351 put_online_cpus(); 1352 jump_label_unlock(); 1353 1354 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1355 ap->flags &= ~KPROBE_FLAG_DISABLED; 1356 if (!kprobes_all_disarmed) 1357 /* Arm the breakpoint again. */ 1358 arm_kprobe(ap); 1359 } 1360 return ret; 1361 } 1362 1363 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1364 { 1365 /* The __kprobes marked functions and entry code must not be probed */ 1366 return addr >= (unsigned long)__kprobes_text_start && 1367 addr < (unsigned long)__kprobes_text_end; 1368 } 1369 1370 bool within_kprobe_blacklist(unsigned long addr) 1371 { 1372 struct kprobe_blacklist_entry *ent; 1373 1374 if (arch_within_kprobe_blacklist(addr)) 1375 return true; 1376 /* 1377 * If there exists a kprobe_blacklist, verify and 1378 * fail any probe registration in the prohibited area 1379 */ 1380 list_for_each_entry(ent, &kprobe_blacklist, list) { 1381 if (addr >= ent->start_addr && addr < ent->end_addr) 1382 return true; 1383 } 1384 1385 return false; 1386 } 1387 1388 /* 1389 * If we have a symbol_name argument, look it up and add the offset field 1390 * to it. This way, we can specify a relative address to a symbol. 1391 * This returns encoded errors if it fails to look up symbol or invalid 1392 * combination of parameters. 1393 */ 1394 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1395 { 1396 kprobe_opcode_t *addr = p->addr; 1397 1398 if ((p->symbol_name && p->addr) || 1399 (!p->symbol_name && !p->addr)) 1400 goto invalid; 1401 1402 if (p->symbol_name) { 1403 kprobe_lookup_name(p->symbol_name, addr); 1404 if (!addr) 1405 return ERR_PTR(-ENOENT); 1406 } 1407 1408 addr = (kprobe_opcode_t *)(((char *)addr) + p->offset); 1409 if (addr) 1410 return addr; 1411 1412 invalid: 1413 return ERR_PTR(-EINVAL); 1414 } 1415 1416 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1417 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1418 { 1419 struct kprobe *ap, *list_p; 1420 1421 ap = get_kprobe(p->addr); 1422 if (unlikely(!ap)) 1423 return NULL; 1424 1425 if (p != ap) { 1426 list_for_each_entry_rcu(list_p, &ap->list, list) 1427 if (list_p == p) 1428 /* kprobe p is a valid probe */ 1429 goto valid; 1430 return NULL; 1431 } 1432 valid: 1433 return ap; 1434 } 1435 1436 /* Return error if the kprobe is being re-registered */ 1437 static inline int check_kprobe_rereg(struct kprobe *p) 1438 { 1439 int ret = 0; 1440 1441 mutex_lock(&kprobe_mutex); 1442 if (__get_valid_kprobe(p)) 1443 ret = -EINVAL; 1444 mutex_unlock(&kprobe_mutex); 1445 1446 return ret; 1447 } 1448 1449 int __weak arch_check_ftrace_location(struct kprobe *p) 1450 { 1451 unsigned long ftrace_addr; 1452 1453 ftrace_addr = ftrace_location((unsigned long)p->addr); 1454 if (ftrace_addr) { 1455 #ifdef CONFIG_KPROBES_ON_FTRACE 1456 /* Given address is not on the instruction boundary */ 1457 if ((unsigned long)p->addr != ftrace_addr) 1458 return -EILSEQ; 1459 p->flags |= KPROBE_FLAG_FTRACE; 1460 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1461 return -EINVAL; 1462 #endif 1463 } 1464 return 0; 1465 } 1466 1467 static int check_kprobe_address_safe(struct kprobe *p, 1468 struct module **probed_mod) 1469 { 1470 int ret; 1471 1472 ret = arch_check_ftrace_location(p); 1473 if (ret) 1474 return ret; 1475 jump_label_lock(); 1476 preempt_disable(); 1477 1478 /* Ensure it is not in reserved area nor out of text */ 1479 if (!kernel_text_address((unsigned long) p->addr) || 1480 within_kprobe_blacklist((unsigned long) p->addr) || 1481 jump_label_text_reserved(p->addr, p->addr)) { 1482 ret = -EINVAL; 1483 goto out; 1484 } 1485 1486 /* Check if are we probing a module */ 1487 *probed_mod = __module_text_address((unsigned long) p->addr); 1488 if (*probed_mod) { 1489 /* 1490 * We must hold a refcount of the probed module while updating 1491 * its code to prohibit unexpected unloading. 1492 */ 1493 if (unlikely(!try_module_get(*probed_mod))) { 1494 ret = -ENOENT; 1495 goto out; 1496 } 1497 1498 /* 1499 * If the module freed .init.text, we couldn't insert 1500 * kprobes in there. 1501 */ 1502 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1503 (*probed_mod)->state != MODULE_STATE_COMING) { 1504 module_put(*probed_mod); 1505 *probed_mod = NULL; 1506 ret = -ENOENT; 1507 } 1508 } 1509 out: 1510 preempt_enable(); 1511 jump_label_unlock(); 1512 1513 return ret; 1514 } 1515 1516 int register_kprobe(struct kprobe *p) 1517 { 1518 int ret; 1519 struct kprobe *old_p; 1520 struct module *probed_mod; 1521 kprobe_opcode_t *addr; 1522 1523 /* Adjust probe address from symbol */ 1524 addr = kprobe_addr(p); 1525 if (IS_ERR(addr)) 1526 return PTR_ERR(addr); 1527 p->addr = addr; 1528 1529 ret = check_kprobe_rereg(p); 1530 if (ret) 1531 return ret; 1532 1533 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1534 p->flags &= KPROBE_FLAG_DISABLED; 1535 p->nmissed = 0; 1536 INIT_LIST_HEAD(&p->list); 1537 1538 ret = check_kprobe_address_safe(p, &probed_mod); 1539 if (ret) 1540 return ret; 1541 1542 mutex_lock(&kprobe_mutex); 1543 1544 old_p = get_kprobe(p->addr); 1545 if (old_p) { 1546 /* Since this may unoptimize old_p, locking text_mutex. */ 1547 ret = register_aggr_kprobe(old_p, p); 1548 goto out; 1549 } 1550 1551 mutex_lock(&text_mutex); /* Avoiding text modification */ 1552 ret = prepare_kprobe(p); 1553 mutex_unlock(&text_mutex); 1554 if (ret) 1555 goto out; 1556 1557 INIT_HLIST_NODE(&p->hlist); 1558 hlist_add_head_rcu(&p->hlist, 1559 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1560 1561 if (!kprobes_all_disarmed && !kprobe_disabled(p)) 1562 arm_kprobe(p); 1563 1564 /* Try to optimize kprobe */ 1565 try_to_optimize_kprobe(p); 1566 1567 out: 1568 mutex_unlock(&kprobe_mutex); 1569 1570 if (probed_mod) 1571 module_put(probed_mod); 1572 1573 return ret; 1574 } 1575 EXPORT_SYMBOL_GPL(register_kprobe); 1576 1577 /* Check if all probes on the aggrprobe are disabled */ 1578 static int aggr_kprobe_disabled(struct kprobe *ap) 1579 { 1580 struct kprobe *kp; 1581 1582 list_for_each_entry_rcu(kp, &ap->list, list) 1583 if (!kprobe_disabled(kp)) 1584 /* 1585 * There is an active probe on the list. 1586 * We can't disable this ap. 1587 */ 1588 return 0; 1589 1590 return 1; 1591 } 1592 1593 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1594 static struct kprobe *__disable_kprobe(struct kprobe *p) 1595 { 1596 struct kprobe *orig_p; 1597 1598 /* Get an original kprobe for return */ 1599 orig_p = __get_valid_kprobe(p); 1600 if (unlikely(orig_p == NULL)) 1601 return NULL; 1602 1603 if (!kprobe_disabled(p)) { 1604 /* Disable probe if it is a child probe */ 1605 if (p != orig_p) 1606 p->flags |= KPROBE_FLAG_DISABLED; 1607 1608 /* Try to disarm and disable this/parent probe */ 1609 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1610 /* 1611 * If kprobes_all_disarmed is set, orig_p 1612 * should have already been disarmed, so 1613 * skip unneed disarming process. 1614 */ 1615 if (!kprobes_all_disarmed) 1616 disarm_kprobe(orig_p, true); 1617 orig_p->flags |= KPROBE_FLAG_DISABLED; 1618 } 1619 } 1620 1621 return orig_p; 1622 } 1623 1624 /* 1625 * Unregister a kprobe without a scheduler synchronization. 1626 */ 1627 static int __unregister_kprobe_top(struct kprobe *p) 1628 { 1629 struct kprobe *ap, *list_p; 1630 1631 /* Disable kprobe. This will disarm it if needed. */ 1632 ap = __disable_kprobe(p); 1633 if (ap == NULL) 1634 return -EINVAL; 1635 1636 if (ap == p) 1637 /* 1638 * This probe is an independent(and non-optimized) kprobe 1639 * (not an aggrprobe). Remove from the hash list. 1640 */ 1641 goto disarmed; 1642 1643 /* Following process expects this probe is an aggrprobe */ 1644 WARN_ON(!kprobe_aggrprobe(ap)); 1645 1646 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1647 /* 1648 * !disarmed could be happen if the probe is under delayed 1649 * unoptimizing. 1650 */ 1651 goto disarmed; 1652 else { 1653 /* If disabling probe has special handlers, update aggrprobe */ 1654 if (p->break_handler && !kprobe_gone(p)) 1655 ap->break_handler = NULL; 1656 if (p->post_handler && !kprobe_gone(p)) { 1657 list_for_each_entry_rcu(list_p, &ap->list, list) { 1658 if ((list_p != p) && (list_p->post_handler)) 1659 goto noclean; 1660 } 1661 ap->post_handler = NULL; 1662 } 1663 noclean: 1664 /* 1665 * Remove from the aggrprobe: this path will do nothing in 1666 * __unregister_kprobe_bottom(). 1667 */ 1668 list_del_rcu(&p->list); 1669 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1670 /* 1671 * Try to optimize this probe again, because post 1672 * handler may have been changed. 1673 */ 1674 optimize_kprobe(ap); 1675 } 1676 return 0; 1677 1678 disarmed: 1679 BUG_ON(!kprobe_disarmed(ap)); 1680 hlist_del_rcu(&ap->hlist); 1681 return 0; 1682 } 1683 1684 static void __unregister_kprobe_bottom(struct kprobe *p) 1685 { 1686 struct kprobe *ap; 1687 1688 if (list_empty(&p->list)) 1689 /* This is an independent kprobe */ 1690 arch_remove_kprobe(p); 1691 else if (list_is_singular(&p->list)) { 1692 /* This is the last child of an aggrprobe */ 1693 ap = list_entry(p->list.next, struct kprobe, list); 1694 list_del(&p->list); 1695 free_aggr_kprobe(ap); 1696 } 1697 /* Otherwise, do nothing. */ 1698 } 1699 1700 int register_kprobes(struct kprobe **kps, int num) 1701 { 1702 int i, ret = 0; 1703 1704 if (num <= 0) 1705 return -EINVAL; 1706 for (i = 0; i < num; i++) { 1707 ret = register_kprobe(kps[i]); 1708 if (ret < 0) { 1709 if (i > 0) 1710 unregister_kprobes(kps, i); 1711 break; 1712 } 1713 } 1714 return ret; 1715 } 1716 EXPORT_SYMBOL_GPL(register_kprobes); 1717 1718 void unregister_kprobe(struct kprobe *p) 1719 { 1720 unregister_kprobes(&p, 1); 1721 } 1722 EXPORT_SYMBOL_GPL(unregister_kprobe); 1723 1724 void unregister_kprobes(struct kprobe **kps, int num) 1725 { 1726 int i; 1727 1728 if (num <= 0) 1729 return; 1730 mutex_lock(&kprobe_mutex); 1731 for (i = 0; i < num; i++) 1732 if (__unregister_kprobe_top(kps[i]) < 0) 1733 kps[i]->addr = NULL; 1734 mutex_unlock(&kprobe_mutex); 1735 1736 synchronize_sched(); 1737 for (i = 0; i < num; i++) 1738 if (kps[i]->addr) 1739 __unregister_kprobe_bottom(kps[i]); 1740 } 1741 EXPORT_SYMBOL_GPL(unregister_kprobes); 1742 1743 int __weak __kprobes kprobe_exceptions_notify(struct notifier_block *self, 1744 unsigned long val, void *data) 1745 { 1746 return NOTIFY_DONE; 1747 } 1748 1749 static struct notifier_block kprobe_exceptions_nb = { 1750 .notifier_call = kprobe_exceptions_notify, 1751 .priority = 0x7fffffff /* we need to be notified first */ 1752 }; 1753 1754 unsigned long __weak arch_deref_entry_point(void *entry) 1755 { 1756 return (unsigned long)entry; 1757 } 1758 1759 int register_jprobes(struct jprobe **jps, int num) 1760 { 1761 struct jprobe *jp; 1762 int ret = 0, i; 1763 1764 if (num <= 0) 1765 return -EINVAL; 1766 for (i = 0; i < num; i++) { 1767 unsigned long addr, offset; 1768 jp = jps[i]; 1769 addr = arch_deref_entry_point(jp->entry); 1770 1771 /* Verify probepoint is a function entry point */ 1772 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && 1773 offset == 0) { 1774 jp->kp.pre_handler = setjmp_pre_handler; 1775 jp->kp.break_handler = longjmp_break_handler; 1776 ret = register_kprobe(&jp->kp); 1777 } else 1778 ret = -EINVAL; 1779 1780 if (ret < 0) { 1781 if (i > 0) 1782 unregister_jprobes(jps, i); 1783 break; 1784 } 1785 } 1786 return ret; 1787 } 1788 EXPORT_SYMBOL_GPL(register_jprobes); 1789 1790 int register_jprobe(struct jprobe *jp) 1791 { 1792 return register_jprobes(&jp, 1); 1793 } 1794 EXPORT_SYMBOL_GPL(register_jprobe); 1795 1796 void unregister_jprobe(struct jprobe *jp) 1797 { 1798 unregister_jprobes(&jp, 1); 1799 } 1800 EXPORT_SYMBOL_GPL(unregister_jprobe); 1801 1802 void unregister_jprobes(struct jprobe **jps, int num) 1803 { 1804 int i; 1805 1806 if (num <= 0) 1807 return; 1808 mutex_lock(&kprobe_mutex); 1809 for (i = 0; i < num; i++) 1810 if (__unregister_kprobe_top(&jps[i]->kp) < 0) 1811 jps[i]->kp.addr = NULL; 1812 mutex_unlock(&kprobe_mutex); 1813 1814 synchronize_sched(); 1815 for (i = 0; i < num; i++) { 1816 if (jps[i]->kp.addr) 1817 __unregister_kprobe_bottom(&jps[i]->kp); 1818 } 1819 } 1820 EXPORT_SYMBOL_GPL(unregister_jprobes); 1821 1822 #ifdef CONFIG_KRETPROBES 1823 /* 1824 * This kprobe pre_handler is registered with every kretprobe. When probe 1825 * hits it will set up the return probe. 1826 */ 1827 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 1828 { 1829 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1830 unsigned long hash, flags = 0; 1831 struct kretprobe_instance *ri; 1832 1833 /* 1834 * To avoid deadlocks, prohibit return probing in NMI contexts, 1835 * just skip the probe and increase the (inexact) 'nmissed' 1836 * statistical counter, so that the user is informed that 1837 * something happened: 1838 */ 1839 if (unlikely(in_nmi())) { 1840 rp->nmissed++; 1841 return 0; 1842 } 1843 1844 /* TODO: consider to only swap the RA after the last pre_handler fired */ 1845 hash = hash_ptr(current, KPROBE_HASH_BITS); 1846 raw_spin_lock_irqsave(&rp->lock, flags); 1847 if (!hlist_empty(&rp->free_instances)) { 1848 ri = hlist_entry(rp->free_instances.first, 1849 struct kretprobe_instance, hlist); 1850 hlist_del(&ri->hlist); 1851 raw_spin_unlock_irqrestore(&rp->lock, flags); 1852 1853 ri->rp = rp; 1854 ri->task = current; 1855 1856 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 1857 raw_spin_lock_irqsave(&rp->lock, flags); 1858 hlist_add_head(&ri->hlist, &rp->free_instances); 1859 raw_spin_unlock_irqrestore(&rp->lock, flags); 1860 return 0; 1861 } 1862 1863 arch_prepare_kretprobe(ri, regs); 1864 1865 /* XXX(hch): why is there no hlist_move_head? */ 1866 INIT_HLIST_NODE(&ri->hlist); 1867 kretprobe_table_lock(hash, &flags); 1868 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 1869 kretprobe_table_unlock(hash, &flags); 1870 } else { 1871 rp->nmissed++; 1872 raw_spin_unlock_irqrestore(&rp->lock, flags); 1873 } 1874 return 0; 1875 } 1876 NOKPROBE_SYMBOL(pre_handler_kretprobe); 1877 1878 int register_kretprobe(struct kretprobe *rp) 1879 { 1880 int ret = 0; 1881 struct kretprobe_instance *inst; 1882 int i; 1883 void *addr; 1884 1885 if (kretprobe_blacklist_size) { 1886 addr = kprobe_addr(&rp->kp); 1887 if (IS_ERR(addr)) 1888 return PTR_ERR(addr); 1889 1890 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1891 if (kretprobe_blacklist[i].addr == addr) 1892 return -EINVAL; 1893 } 1894 } 1895 1896 rp->kp.pre_handler = pre_handler_kretprobe; 1897 rp->kp.post_handler = NULL; 1898 rp->kp.fault_handler = NULL; 1899 rp->kp.break_handler = NULL; 1900 1901 /* Pre-allocate memory for max kretprobe instances */ 1902 if (rp->maxactive <= 0) { 1903 #ifdef CONFIG_PREEMPT 1904 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 1905 #else 1906 rp->maxactive = num_possible_cpus(); 1907 #endif 1908 } 1909 raw_spin_lock_init(&rp->lock); 1910 INIT_HLIST_HEAD(&rp->free_instances); 1911 for (i = 0; i < rp->maxactive; i++) { 1912 inst = kmalloc(sizeof(struct kretprobe_instance) + 1913 rp->data_size, GFP_KERNEL); 1914 if (inst == NULL) { 1915 free_rp_inst(rp); 1916 return -ENOMEM; 1917 } 1918 INIT_HLIST_NODE(&inst->hlist); 1919 hlist_add_head(&inst->hlist, &rp->free_instances); 1920 } 1921 1922 rp->nmissed = 0; 1923 /* Establish function entry probe point */ 1924 ret = register_kprobe(&rp->kp); 1925 if (ret != 0) 1926 free_rp_inst(rp); 1927 return ret; 1928 } 1929 EXPORT_SYMBOL_GPL(register_kretprobe); 1930 1931 int register_kretprobes(struct kretprobe **rps, int num) 1932 { 1933 int ret = 0, i; 1934 1935 if (num <= 0) 1936 return -EINVAL; 1937 for (i = 0; i < num; i++) { 1938 ret = register_kretprobe(rps[i]); 1939 if (ret < 0) { 1940 if (i > 0) 1941 unregister_kretprobes(rps, i); 1942 break; 1943 } 1944 } 1945 return ret; 1946 } 1947 EXPORT_SYMBOL_GPL(register_kretprobes); 1948 1949 void unregister_kretprobe(struct kretprobe *rp) 1950 { 1951 unregister_kretprobes(&rp, 1); 1952 } 1953 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1954 1955 void unregister_kretprobes(struct kretprobe **rps, int num) 1956 { 1957 int i; 1958 1959 if (num <= 0) 1960 return; 1961 mutex_lock(&kprobe_mutex); 1962 for (i = 0; i < num; i++) 1963 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 1964 rps[i]->kp.addr = NULL; 1965 mutex_unlock(&kprobe_mutex); 1966 1967 synchronize_sched(); 1968 for (i = 0; i < num; i++) { 1969 if (rps[i]->kp.addr) { 1970 __unregister_kprobe_bottom(&rps[i]->kp); 1971 cleanup_rp_inst(rps[i]); 1972 } 1973 } 1974 } 1975 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1976 1977 #else /* CONFIG_KRETPROBES */ 1978 int register_kretprobe(struct kretprobe *rp) 1979 { 1980 return -ENOSYS; 1981 } 1982 EXPORT_SYMBOL_GPL(register_kretprobe); 1983 1984 int register_kretprobes(struct kretprobe **rps, int num) 1985 { 1986 return -ENOSYS; 1987 } 1988 EXPORT_SYMBOL_GPL(register_kretprobes); 1989 1990 void unregister_kretprobe(struct kretprobe *rp) 1991 { 1992 } 1993 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1994 1995 void unregister_kretprobes(struct kretprobe **rps, int num) 1996 { 1997 } 1998 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1999 2000 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2001 { 2002 return 0; 2003 } 2004 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2005 2006 #endif /* CONFIG_KRETPROBES */ 2007 2008 /* Set the kprobe gone and remove its instruction buffer. */ 2009 static void kill_kprobe(struct kprobe *p) 2010 { 2011 struct kprobe *kp; 2012 2013 p->flags |= KPROBE_FLAG_GONE; 2014 if (kprobe_aggrprobe(p)) { 2015 /* 2016 * If this is an aggr_kprobe, we have to list all the 2017 * chained probes and mark them GONE. 2018 */ 2019 list_for_each_entry_rcu(kp, &p->list, list) 2020 kp->flags |= KPROBE_FLAG_GONE; 2021 p->post_handler = NULL; 2022 p->break_handler = NULL; 2023 kill_optimized_kprobe(p); 2024 } 2025 /* 2026 * Here, we can remove insn_slot safely, because no thread calls 2027 * the original probed function (which will be freed soon) any more. 2028 */ 2029 arch_remove_kprobe(p); 2030 } 2031 2032 /* Disable one kprobe */ 2033 int disable_kprobe(struct kprobe *kp) 2034 { 2035 int ret = 0; 2036 2037 mutex_lock(&kprobe_mutex); 2038 2039 /* Disable this kprobe */ 2040 if (__disable_kprobe(kp) == NULL) 2041 ret = -EINVAL; 2042 2043 mutex_unlock(&kprobe_mutex); 2044 return ret; 2045 } 2046 EXPORT_SYMBOL_GPL(disable_kprobe); 2047 2048 /* Enable one kprobe */ 2049 int enable_kprobe(struct kprobe *kp) 2050 { 2051 int ret = 0; 2052 struct kprobe *p; 2053 2054 mutex_lock(&kprobe_mutex); 2055 2056 /* Check whether specified probe is valid. */ 2057 p = __get_valid_kprobe(kp); 2058 if (unlikely(p == NULL)) { 2059 ret = -EINVAL; 2060 goto out; 2061 } 2062 2063 if (kprobe_gone(kp)) { 2064 /* This kprobe has gone, we couldn't enable it. */ 2065 ret = -EINVAL; 2066 goto out; 2067 } 2068 2069 if (p != kp) 2070 kp->flags &= ~KPROBE_FLAG_DISABLED; 2071 2072 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2073 p->flags &= ~KPROBE_FLAG_DISABLED; 2074 arm_kprobe(p); 2075 } 2076 out: 2077 mutex_unlock(&kprobe_mutex); 2078 return ret; 2079 } 2080 EXPORT_SYMBOL_GPL(enable_kprobe); 2081 2082 void dump_kprobe(struct kprobe *kp) 2083 { 2084 printk(KERN_WARNING "Dumping kprobe:\n"); 2085 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n", 2086 kp->symbol_name, kp->addr, kp->offset); 2087 } 2088 NOKPROBE_SYMBOL(dump_kprobe); 2089 2090 /* 2091 * Lookup and populate the kprobe_blacklist. 2092 * 2093 * Unlike the kretprobe blacklist, we'll need to determine 2094 * the range of addresses that belong to the said functions, 2095 * since a kprobe need not necessarily be at the beginning 2096 * of a function. 2097 */ 2098 static int __init populate_kprobe_blacklist(unsigned long *start, 2099 unsigned long *end) 2100 { 2101 unsigned long *iter; 2102 struct kprobe_blacklist_entry *ent; 2103 unsigned long entry, offset = 0, size = 0; 2104 2105 for (iter = start; iter < end; iter++) { 2106 entry = arch_deref_entry_point((void *)*iter); 2107 2108 if (!kernel_text_address(entry) || 2109 !kallsyms_lookup_size_offset(entry, &size, &offset)) { 2110 pr_err("Failed to find blacklist at %p\n", 2111 (void *)entry); 2112 continue; 2113 } 2114 2115 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2116 if (!ent) 2117 return -ENOMEM; 2118 ent->start_addr = entry; 2119 ent->end_addr = entry + size; 2120 INIT_LIST_HEAD(&ent->list); 2121 list_add_tail(&ent->list, &kprobe_blacklist); 2122 } 2123 return 0; 2124 } 2125 2126 /* Module notifier call back, checking kprobes on the module */ 2127 static int kprobes_module_callback(struct notifier_block *nb, 2128 unsigned long val, void *data) 2129 { 2130 struct module *mod = data; 2131 struct hlist_head *head; 2132 struct kprobe *p; 2133 unsigned int i; 2134 int checkcore = (val == MODULE_STATE_GOING); 2135 2136 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2137 return NOTIFY_DONE; 2138 2139 /* 2140 * When MODULE_STATE_GOING was notified, both of module .text and 2141 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2142 * notified, only .init.text section would be freed. We need to 2143 * disable kprobes which have been inserted in the sections. 2144 */ 2145 mutex_lock(&kprobe_mutex); 2146 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2147 head = &kprobe_table[i]; 2148 hlist_for_each_entry_rcu(p, head, hlist) 2149 if (within_module_init((unsigned long)p->addr, mod) || 2150 (checkcore && 2151 within_module_core((unsigned long)p->addr, mod))) { 2152 /* 2153 * The vaddr this probe is installed will soon 2154 * be vfreed buy not synced to disk. Hence, 2155 * disarming the breakpoint isn't needed. 2156 */ 2157 kill_kprobe(p); 2158 } 2159 } 2160 mutex_unlock(&kprobe_mutex); 2161 return NOTIFY_DONE; 2162 } 2163 2164 static struct notifier_block kprobe_module_nb = { 2165 .notifier_call = kprobes_module_callback, 2166 .priority = 0 2167 }; 2168 2169 /* Markers of _kprobe_blacklist section */ 2170 extern unsigned long __start_kprobe_blacklist[]; 2171 extern unsigned long __stop_kprobe_blacklist[]; 2172 2173 static int __init init_kprobes(void) 2174 { 2175 int i, err = 0; 2176 2177 /* FIXME allocate the probe table, currently defined statically */ 2178 /* initialize all list heads */ 2179 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2180 INIT_HLIST_HEAD(&kprobe_table[i]); 2181 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 2182 raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); 2183 } 2184 2185 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2186 __stop_kprobe_blacklist); 2187 if (err) { 2188 pr_err("kprobes: failed to populate blacklist: %d\n", err); 2189 pr_err("Please take care of using kprobes.\n"); 2190 } 2191 2192 if (kretprobe_blacklist_size) { 2193 /* lookup the function address from its name */ 2194 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2195 kprobe_lookup_name(kretprobe_blacklist[i].name, 2196 kretprobe_blacklist[i].addr); 2197 if (!kretprobe_blacklist[i].addr) 2198 printk("kretprobe: lookup failed: %s\n", 2199 kretprobe_blacklist[i].name); 2200 } 2201 } 2202 2203 #if defined(CONFIG_OPTPROBES) 2204 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2205 /* Init kprobe_optinsn_slots */ 2206 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2207 #endif 2208 /* By default, kprobes can be optimized */ 2209 kprobes_allow_optimization = true; 2210 #endif 2211 2212 /* By default, kprobes are armed */ 2213 kprobes_all_disarmed = false; 2214 2215 err = arch_init_kprobes(); 2216 if (!err) 2217 err = register_die_notifier(&kprobe_exceptions_nb); 2218 if (!err) 2219 err = register_module_notifier(&kprobe_module_nb); 2220 2221 kprobes_initialized = (err == 0); 2222 2223 if (!err) 2224 init_test_probes(); 2225 return err; 2226 } 2227 2228 #ifdef CONFIG_DEBUG_FS 2229 static void report_probe(struct seq_file *pi, struct kprobe *p, 2230 const char *sym, int offset, char *modname, struct kprobe *pp) 2231 { 2232 char *kprobe_type; 2233 2234 if (p->pre_handler == pre_handler_kretprobe) 2235 kprobe_type = "r"; 2236 else if (p->pre_handler == setjmp_pre_handler) 2237 kprobe_type = "j"; 2238 else 2239 kprobe_type = "k"; 2240 2241 if (sym) 2242 seq_printf(pi, "%p %s %s+0x%x %s ", 2243 p->addr, kprobe_type, sym, offset, 2244 (modname ? modname : " ")); 2245 else 2246 seq_printf(pi, "%p %s %p ", 2247 p->addr, kprobe_type, p->addr); 2248 2249 if (!pp) 2250 pp = p; 2251 seq_printf(pi, "%s%s%s%s\n", 2252 (kprobe_gone(p) ? "[GONE]" : ""), 2253 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2254 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2255 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2256 } 2257 2258 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2259 { 2260 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2261 } 2262 2263 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2264 { 2265 (*pos)++; 2266 if (*pos >= KPROBE_TABLE_SIZE) 2267 return NULL; 2268 return pos; 2269 } 2270 2271 static void kprobe_seq_stop(struct seq_file *f, void *v) 2272 { 2273 /* Nothing to do */ 2274 } 2275 2276 static int show_kprobe_addr(struct seq_file *pi, void *v) 2277 { 2278 struct hlist_head *head; 2279 struct kprobe *p, *kp; 2280 const char *sym = NULL; 2281 unsigned int i = *(loff_t *) v; 2282 unsigned long offset = 0; 2283 char *modname, namebuf[KSYM_NAME_LEN]; 2284 2285 head = &kprobe_table[i]; 2286 preempt_disable(); 2287 hlist_for_each_entry_rcu(p, head, hlist) { 2288 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2289 &offset, &modname, namebuf); 2290 if (kprobe_aggrprobe(p)) { 2291 list_for_each_entry_rcu(kp, &p->list, list) 2292 report_probe(pi, kp, sym, offset, modname, p); 2293 } else 2294 report_probe(pi, p, sym, offset, modname, NULL); 2295 } 2296 preempt_enable(); 2297 return 0; 2298 } 2299 2300 static const struct seq_operations kprobes_seq_ops = { 2301 .start = kprobe_seq_start, 2302 .next = kprobe_seq_next, 2303 .stop = kprobe_seq_stop, 2304 .show = show_kprobe_addr 2305 }; 2306 2307 static int kprobes_open(struct inode *inode, struct file *filp) 2308 { 2309 return seq_open(filp, &kprobes_seq_ops); 2310 } 2311 2312 static const struct file_operations debugfs_kprobes_operations = { 2313 .open = kprobes_open, 2314 .read = seq_read, 2315 .llseek = seq_lseek, 2316 .release = seq_release, 2317 }; 2318 2319 /* kprobes/blacklist -- shows which functions can not be probed */ 2320 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2321 { 2322 return seq_list_start(&kprobe_blacklist, *pos); 2323 } 2324 2325 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2326 { 2327 return seq_list_next(v, &kprobe_blacklist, pos); 2328 } 2329 2330 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2331 { 2332 struct kprobe_blacklist_entry *ent = 2333 list_entry(v, struct kprobe_blacklist_entry, list); 2334 2335 seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr, 2336 (void *)ent->end_addr, (void *)ent->start_addr); 2337 return 0; 2338 } 2339 2340 static const struct seq_operations kprobe_blacklist_seq_ops = { 2341 .start = kprobe_blacklist_seq_start, 2342 .next = kprobe_blacklist_seq_next, 2343 .stop = kprobe_seq_stop, /* Reuse void function */ 2344 .show = kprobe_blacklist_seq_show, 2345 }; 2346 2347 static int kprobe_blacklist_open(struct inode *inode, struct file *filp) 2348 { 2349 return seq_open(filp, &kprobe_blacklist_seq_ops); 2350 } 2351 2352 static const struct file_operations debugfs_kprobe_blacklist_ops = { 2353 .open = kprobe_blacklist_open, 2354 .read = seq_read, 2355 .llseek = seq_lseek, 2356 .release = seq_release, 2357 }; 2358 2359 static void arm_all_kprobes(void) 2360 { 2361 struct hlist_head *head; 2362 struct kprobe *p; 2363 unsigned int i; 2364 2365 mutex_lock(&kprobe_mutex); 2366 2367 /* If kprobes are armed, just return */ 2368 if (!kprobes_all_disarmed) 2369 goto already_enabled; 2370 2371 /* 2372 * optimize_kprobe() called by arm_kprobe() checks 2373 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2374 * arm_kprobe. 2375 */ 2376 kprobes_all_disarmed = false; 2377 /* Arming kprobes doesn't optimize kprobe itself */ 2378 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2379 head = &kprobe_table[i]; 2380 hlist_for_each_entry_rcu(p, head, hlist) 2381 if (!kprobe_disabled(p)) 2382 arm_kprobe(p); 2383 } 2384 2385 printk(KERN_INFO "Kprobes globally enabled\n"); 2386 2387 already_enabled: 2388 mutex_unlock(&kprobe_mutex); 2389 return; 2390 } 2391 2392 static void disarm_all_kprobes(void) 2393 { 2394 struct hlist_head *head; 2395 struct kprobe *p; 2396 unsigned int i; 2397 2398 mutex_lock(&kprobe_mutex); 2399 2400 /* If kprobes are already disarmed, just return */ 2401 if (kprobes_all_disarmed) { 2402 mutex_unlock(&kprobe_mutex); 2403 return; 2404 } 2405 2406 kprobes_all_disarmed = true; 2407 printk(KERN_INFO "Kprobes globally disabled\n"); 2408 2409 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2410 head = &kprobe_table[i]; 2411 hlist_for_each_entry_rcu(p, head, hlist) { 2412 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) 2413 disarm_kprobe(p, false); 2414 } 2415 } 2416 mutex_unlock(&kprobe_mutex); 2417 2418 /* Wait for disarming all kprobes by optimizer */ 2419 wait_for_kprobe_optimizer(); 2420 } 2421 2422 /* 2423 * XXX: The debugfs bool file interface doesn't allow for callbacks 2424 * when the bool state is switched. We can reuse that facility when 2425 * available 2426 */ 2427 static ssize_t read_enabled_file_bool(struct file *file, 2428 char __user *user_buf, size_t count, loff_t *ppos) 2429 { 2430 char buf[3]; 2431 2432 if (!kprobes_all_disarmed) 2433 buf[0] = '1'; 2434 else 2435 buf[0] = '0'; 2436 buf[1] = '\n'; 2437 buf[2] = 0x00; 2438 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2439 } 2440 2441 static ssize_t write_enabled_file_bool(struct file *file, 2442 const char __user *user_buf, size_t count, loff_t *ppos) 2443 { 2444 char buf[32]; 2445 size_t buf_size; 2446 2447 buf_size = min(count, (sizeof(buf)-1)); 2448 if (copy_from_user(buf, user_buf, buf_size)) 2449 return -EFAULT; 2450 2451 buf[buf_size] = '\0'; 2452 switch (buf[0]) { 2453 case 'y': 2454 case 'Y': 2455 case '1': 2456 arm_all_kprobes(); 2457 break; 2458 case 'n': 2459 case 'N': 2460 case '0': 2461 disarm_all_kprobes(); 2462 break; 2463 default: 2464 return -EINVAL; 2465 } 2466 2467 return count; 2468 } 2469 2470 static const struct file_operations fops_kp = { 2471 .read = read_enabled_file_bool, 2472 .write = write_enabled_file_bool, 2473 .llseek = default_llseek, 2474 }; 2475 2476 static int __init debugfs_kprobe_init(void) 2477 { 2478 struct dentry *dir, *file; 2479 unsigned int value = 1; 2480 2481 dir = debugfs_create_dir("kprobes", NULL); 2482 if (!dir) 2483 return -ENOMEM; 2484 2485 file = debugfs_create_file("list", 0444, dir, NULL, 2486 &debugfs_kprobes_operations); 2487 if (!file) 2488 goto error; 2489 2490 file = debugfs_create_file("enabled", 0600, dir, 2491 &value, &fops_kp); 2492 if (!file) 2493 goto error; 2494 2495 file = debugfs_create_file("blacklist", 0444, dir, NULL, 2496 &debugfs_kprobe_blacklist_ops); 2497 if (!file) 2498 goto error; 2499 2500 return 0; 2501 2502 error: 2503 debugfs_remove(dir); 2504 return -ENOMEM; 2505 } 2506 2507 late_initcall(debugfs_kprobe_init); 2508 #endif /* CONFIG_DEBUG_FS */ 2509 2510 module_init(init_kprobes); 2511 2512 /* defined in arch/.../kernel/kprobes.c */ 2513 EXPORT_SYMBOL_GPL(jprobe_return); 2514