1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * kernel/kprobes.c 5 * 6 * Copyright (C) IBM Corporation, 2002, 2004 7 * 8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 9 * Probes initial implementation (includes suggestions from 10 * Rusty Russell). 11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 12 * hlists and exceptions notifier as suggested by Andi Kleen. 13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 14 * interface to access function arguments. 15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 16 * exceptions notifier to be first on the priority list. 17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 19 * <prasanna@in.ibm.com> added function-return probes. 20 */ 21 #include <linux/kprobes.h> 22 #include <linux/hash.h> 23 #include <linux/init.h> 24 #include <linux/slab.h> 25 #include <linux/stddef.h> 26 #include <linux/export.h> 27 #include <linux/moduleloader.h> 28 #include <linux/kallsyms.h> 29 #include <linux/freezer.h> 30 #include <linux/seq_file.h> 31 #include <linux/debugfs.h> 32 #include <linux/sysctl.h> 33 #include <linux/kdebug.h> 34 #include <linux/memory.h> 35 #include <linux/ftrace.h> 36 #include <linux/cpu.h> 37 #include <linux/jump_label.h> 38 #include <linux/static_call.h> 39 #include <linux/perf_event.h> 40 41 #include <asm/sections.h> 42 #include <asm/cacheflush.h> 43 #include <asm/errno.h> 44 #include <linux/uaccess.h> 45 46 #define KPROBE_HASH_BITS 6 47 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 48 49 50 static int kprobes_initialized; 51 /* kprobe_table can be accessed by 52 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held. 53 * Or 54 * - RCU hlist traversal under disabling preempt (breakpoint handlers) 55 */ 56 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 57 58 /* NOTE: change this value only with kprobe_mutex held */ 59 static bool kprobes_all_disarmed; 60 61 /* This protects kprobe_table and optimizing_list */ 62 static DEFINE_MUTEX(kprobe_mutex); 63 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 64 65 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, 66 unsigned int __unused) 67 { 68 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); 69 } 70 71 /* Blacklist -- list of struct kprobe_blacklist_entry */ 72 static LIST_HEAD(kprobe_blacklist); 73 74 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 75 /* 76 * kprobe->ainsn.insn points to the copy of the instruction to be 77 * single-stepped. x86_64, POWER4 and above have no-exec support and 78 * stepping on the instruction on a vmalloced/kmalloced/data page 79 * is a recipe for disaster 80 */ 81 struct kprobe_insn_page { 82 struct list_head list; 83 kprobe_opcode_t *insns; /* Page of instruction slots */ 84 struct kprobe_insn_cache *cache; 85 int nused; 86 int ngarbage; 87 char slot_used[]; 88 }; 89 90 #define KPROBE_INSN_PAGE_SIZE(slots) \ 91 (offsetof(struct kprobe_insn_page, slot_used) + \ 92 (sizeof(char) * (slots))) 93 94 static int slots_per_page(struct kprobe_insn_cache *c) 95 { 96 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 97 } 98 99 enum kprobe_slot_state { 100 SLOT_CLEAN = 0, 101 SLOT_DIRTY = 1, 102 SLOT_USED = 2, 103 }; 104 105 void __weak *alloc_insn_page(void) 106 { 107 return module_alloc(PAGE_SIZE); 108 } 109 110 static void free_insn_page(void *page) 111 { 112 module_memfree(page); 113 } 114 115 struct kprobe_insn_cache kprobe_insn_slots = { 116 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 117 .alloc = alloc_insn_page, 118 .free = free_insn_page, 119 .sym = KPROBE_INSN_PAGE_SYM, 120 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 121 .insn_size = MAX_INSN_SIZE, 122 .nr_garbage = 0, 123 }; 124 static int collect_garbage_slots(struct kprobe_insn_cache *c); 125 126 /** 127 * __get_insn_slot() - Find a slot on an executable page for an instruction. 128 * We allocate an executable page if there's no room on existing ones. 129 */ 130 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 131 { 132 struct kprobe_insn_page *kip; 133 kprobe_opcode_t *slot = NULL; 134 135 /* Since the slot array is not protected by rcu, we need a mutex */ 136 mutex_lock(&c->mutex); 137 retry: 138 rcu_read_lock(); 139 list_for_each_entry_rcu(kip, &c->pages, list) { 140 if (kip->nused < slots_per_page(c)) { 141 int i; 142 for (i = 0; i < slots_per_page(c); i++) { 143 if (kip->slot_used[i] == SLOT_CLEAN) { 144 kip->slot_used[i] = SLOT_USED; 145 kip->nused++; 146 slot = kip->insns + (i * c->insn_size); 147 rcu_read_unlock(); 148 goto out; 149 } 150 } 151 /* kip->nused is broken. Fix it. */ 152 kip->nused = slots_per_page(c); 153 WARN_ON(1); 154 } 155 } 156 rcu_read_unlock(); 157 158 /* If there are any garbage slots, collect it and try again. */ 159 if (c->nr_garbage && collect_garbage_slots(c) == 0) 160 goto retry; 161 162 /* All out of space. Need to allocate a new page. */ 163 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 164 if (!kip) 165 goto out; 166 167 /* 168 * Use module_alloc so this page is within +/- 2GB of where the 169 * kernel image and loaded module images reside. This is required 170 * so x86_64 can correctly handle the %rip-relative fixups. 171 */ 172 kip->insns = c->alloc(); 173 if (!kip->insns) { 174 kfree(kip); 175 goto out; 176 } 177 INIT_LIST_HEAD(&kip->list); 178 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 179 kip->slot_used[0] = SLOT_USED; 180 kip->nused = 1; 181 kip->ngarbage = 0; 182 kip->cache = c; 183 list_add_rcu(&kip->list, &c->pages); 184 slot = kip->insns; 185 186 /* Record the perf ksymbol register event after adding the page */ 187 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns, 188 PAGE_SIZE, false, c->sym); 189 out: 190 mutex_unlock(&c->mutex); 191 return slot; 192 } 193 194 /* Return 1 if all garbages are collected, otherwise 0. */ 195 static int collect_one_slot(struct kprobe_insn_page *kip, int idx) 196 { 197 kip->slot_used[idx] = SLOT_CLEAN; 198 kip->nused--; 199 if (kip->nused == 0) { 200 /* 201 * Page is no longer in use. Free it unless 202 * it's the last one. We keep the last one 203 * so as not to have to set it up again the 204 * next time somebody inserts a probe. 205 */ 206 if (!list_is_singular(&kip->list)) { 207 /* 208 * Record perf ksymbol unregister event before removing 209 * the page. 210 */ 211 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 212 (unsigned long)kip->insns, PAGE_SIZE, true, 213 kip->cache->sym); 214 list_del_rcu(&kip->list); 215 synchronize_rcu(); 216 kip->cache->free(kip->insns); 217 kfree(kip); 218 } 219 return 1; 220 } 221 return 0; 222 } 223 224 static int collect_garbage_slots(struct kprobe_insn_cache *c) 225 { 226 struct kprobe_insn_page *kip, *next; 227 228 /* Ensure no-one is interrupted on the garbages */ 229 synchronize_rcu(); 230 231 list_for_each_entry_safe(kip, next, &c->pages, list) { 232 int i; 233 if (kip->ngarbage == 0) 234 continue; 235 kip->ngarbage = 0; /* we will collect all garbages */ 236 for (i = 0; i < slots_per_page(c); i++) { 237 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 238 break; 239 } 240 } 241 c->nr_garbage = 0; 242 return 0; 243 } 244 245 void __free_insn_slot(struct kprobe_insn_cache *c, 246 kprobe_opcode_t *slot, int dirty) 247 { 248 struct kprobe_insn_page *kip; 249 long idx; 250 251 mutex_lock(&c->mutex); 252 rcu_read_lock(); 253 list_for_each_entry_rcu(kip, &c->pages, list) { 254 idx = ((long)slot - (long)kip->insns) / 255 (c->insn_size * sizeof(kprobe_opcode_t)); 256 if (idx >= 0 && idx < slots_per_page(c)) 257 goto out; 258 } 259 /* Could not find this slot. */ 260 WARN_ON(1); 261 kip = NULL; 262 out: 263 rcu_read_unlock(); 264 /* Mark and sweep: this may sleep */ 265 if (kip) { 266 /* Check double free */ 267 WARN_ON(kip->slot_used[idx] != SLOT_USED); 268 if (dirty) { 269 kip->slot_used[idx] = SLOT_DIRTY; 270 kip->ngarbage++; 271 if (++c->nr_garbage > slots_per_page(c)) 272 collect_garbage_slots(c); 273 } else { 274 collect_one_slot(kip, idx); 275 } 276 } 277 mutex_unlock(&c->mutex); 278 } 279 280 /* 281 * Check given address is on the page of kprobe instruction slots. 282 * This will be used for checking whether the address on a stack 283 * is on a text area or not. 284 */ 285 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 286 { 287 struct kprobe_insn_page *kip; 288 bool ret = false; 289 290 rcu_read_lock(); 291 list_for_each_entry_rcu(kip, &c->pages, list) { 292 if (addr >= (unsigned long)kip->insns && 293 addr < (unsigned long)kip->insns + PAGE_SIZE) { 294 ret = true; 295 break; 296 } 297 } 298 rcu_read_unlock(); 299 300 return ret; 301 } 302 303 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum, 304 unsigned long *value, char *type, char *sym) 305 { 306 struct kprobe_insn_page *kip; 307 int ret = -ERANGE; 308 309 rcu_read_lock(); 310 list_for_each_entry_rcu(kip, &c->pages, list) { 311 if ((*symnum)--) 312 continue; 313 strlcpy(sym, c->sym, KSYM_NAME_LEN); 314 *type = 't'; 315 *value = (unsigned long)kip->insns; 316 ret = 0; 317 break; 318 } 319 rcu_read_unlock(); 320 321 return ret; 322 } 323 324 #ifdef CONFIG_OPTPROBES 325 void __weak *alloc_optinsn_page(void) 326 { 327 return alloc_insn_page(); 328 } 329 330 void __weak free_optinsn_page(void *page) 331 { 332 free_insn_page(page); 333 } 334 335 /* For optimized_kprobe buffer */ 336 struct kprobe_insn_cache kprobe_optinsn_slots = { 337 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 338 .alloc = alloc_optinsn_page, 339 .free = free_optinsn_page, 340 .sym = KPROBE_OPTINSN_PAGE_SYM, 341 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 342 /* .insn_size is initialized later */ 343 .nr_garbage = 0, 344 }; 345 #endif 346 #endif 347 348 /* We have preemption disabled.. so it is safe to use __ versions */ 349 static inline void set_kprobe_instance(struct kprobe *kp) 350 { 351 __this_cpu_write(kprobe_instance, kp); 352 } 353 354 static inline void reset_kprobe_instance(void) 355 { 356 __this_cpu_write(kprobe_instance, NULL); 357 } 358 359 /* 360 * This routine is called either: 361 * - under the kprobe_mutex - during kprobe_[un]register() 362 * OR 363 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 364 */ 365 struct kprobe *get_kprobe(void *addr) 366 { 367 struct hlist_head *head; 368 struct kprobe *p; 369 370 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 371 hlist_for_each_entry_rcu(p, head, hlist, 372 lockdep_is_held(&kprobe_mutex)) { 373 if (p->addr == addr) 374 return p; 375 } 376 377 return NULL; 378 } 379 NOKPROBE_SYMBOL(get_kprobe); 380 381 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 382 383 /* Return true if the kprobe is an aggregator */ 384 static inline int kprobe_aggrprobe(struct kprobe *p) 385 { 386 return p->pre_handler == aggr_pre_handler; 387 } 388 389 /* Return true(!0) if the kprobe is unused */ 390 static inline int kprobe_unused(struct kprobe *p) 391 { 392 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 393 list_empty(&p->list); 394 } 395 396 /* 397 * Keep all fields in the kprobe consistent 398 */ 399 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 400 { 401 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 402 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 403 } 404 405 #ifdef CONFIG_OPTPROBES 406 /* NOTE: change this value only with kprobe_mutex held */ 407 static bool kprobes_allow_optimization; 408 409 /* 410 * Call all pre_handler on the list, but ignores its return value. 411 * This must be called from arch-dep optimized caller. 412 */ 413 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 414 { 415 struct kprobe *kp; 416 417 list_for_each_entry_rcu(kp, &p->list, list) { 418 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 419 set_kprobe_instance(kp); 420 kp->pre_handler(kp, regs); 421 } 422 reset_kprobe_instance(); 423 } 424 } 425 NOKPROBE_SYMBOL(opt_pre_handler); 426 427 /* Free optimized instructions and optimized_kprobe */ 428 static void free_aggr_kprobe(struct kprobe *p) 429 { 430 struct optimized_kprobe *op; 431 432 op = container_of(p, struct optimized_kprobe, kp); 433 arch_remove_optimized_kprobe(op); 434 arch_remove_kprobe(p); 435 kfree(op); 436 } 437 438 /* Return true(!0) if the kprobe is ready for optimization. */ 439 static inline int kprobe_optready(struct kprobe *p) 440 { 441 struct optimized_kprobe *op; 442 443 if (kprobe_aggrprobe(p)) { 444 op = container_of(p, struct optimized_kprobe, kp); 445 return arch_prepared_optinsn(&op->optinsn); 446 } 447 448 return 0; 449 } 450 451 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 452 static inline int kprobe_disarmed(struct kprobe *p) 453 { 454 struct optimized_kprobe *op; 455 456 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 457 if (!kprobe_aggrprobe(p)) 458 return kprobe_disabled(p); 459 460 op = container_of(p, struct optimized_kprobe, kp); 461 462 return kprobe_disabled(p) && list_empty(&op->list); 463 } 464 465 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 466 static int kprobe_queued(struct kprobe *p) 467 { 468 struct optimized_kprobe *op; 469 470 if (kprobe_aggrprobe(p)) { 471 op = container_of(p, struct optimized_kprobe, kp); 472 if (!list_empty(&op->list)) 473 return 1; 474 } 475 return 0; 476 } 477 478 /* 479 * Return an optimized kprobe whose optimizing code replaces 480 * instructions including addr (exclude breakpoint). 481 */ 482 static struct kprobe *get_optimized_kprobe(unsigned long addr) 483 { 484 int i; 485 struct kprobe *p = NULL; 486 struct optimized_kprobe *op; 487 488 /* Don't check i == 0, since that is a breakpoint case. */ 489 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 490 p = get_kprobe((void *)(addr - i)); 491 492 if (p && kprobe_optready(p)) { 493 op = container_of(p, struct optimized_kprobe, kp); 494 if (arch_within_optimized_kprobe(op, addr)) 495 return p; 496 } 497 498 return NULL; 499 } 500 501 /* Optimization staging list, protected by kprobe_mutex */ 502 static LIST_HEAD(optimizing_list); 503 static LIST_HEAD(unoptimizing_list); 504 static LIST_HEAD(freeing_list); 505 506 static void kprobe_optimizer(struct work_struct *work); 507 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 508 #define OPTIMIZE_DELAY 5 509 510 /* 511 * Optimize (replace a breakpoint with a jump) kprobes listed on 512 * optimizing_list. 513 */ 514 static void do_optimize_kprobes(void) 515 { 516 lockdep_assert_held(&text_mutex); 517 /* 518 * The optimization/unoptimization refers online_cpus via 519 * stop_machine() and cpu-hotplug modifies online_cpus. 520 * And same time, text_mutex will be held in cpu-hotplug and here. 521 * This combination can cause a deadlock (cpu-hotplug try to lock 522 * text_mutex but stop_machine can not be done because online_cpus 523 * has been changed) 524 * To avoid this deadlock, caller must have locked cpu hotplug 525 * for preventing cpu-hotplug outside of text_mutex locking. 526 */ 527 lockdep_assert_cpus_held(); 528 529 /* Optimization never be done when disarmed */ 530 if (kprobes_all_disarmed || !kprobes_allow_optimization || 531 list_empty(&optimizing_list)) 532 return; 533 534 arch_optimize_kprobes(&optimizing_list); 535 } 536 537 /* 538 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 539 * if need) kprobes listed on unoptimizing_list. 540 */ 541 static void do_unoptimize_kprobes(void) 542 { 543 struct optimized_kprobe *op, *tmp; 544 545 lockdep_assert_held(&text_mutex); 546 /* See comment in do_optimize_kprobes() */ 547 lockdep_assert_cpus_held(); 548 549 /* Unoptimization must be done anytime */ 550 if (list_empty(&unoptimizing_list)) 551 return; 552 553 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 554 /* Loop free_list for disarming */ 555 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 556 /* Switching from detour code to origin */ 557 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 558 /* Disarm probes if marked disabled */ 559 if (kprobe_disabled(&op->kp)) 560 arch_disarm_kprobe(&op->kp); 561 if (kprobe_unused(&op->kp)) { 562 /* 563 * Remove unused probes from hash list. After waiting 564 * for synchronization, these probes are reclaimed. 565 * (reclaiming is done by do_free_cleaned_kprobes.) 566 */ 567 hlist_del_rcu(&op->kp.hlist); 568 } else 569 list_del_init(&op->list); 570 } 571 } 572 573 /* Reclaim all kprobes on the free_list */ 574 static void do_free_cleaned_kprobes(void) 575 { 576 struct optimized_kprobe *op, *tmp; 577 578 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 579 list_del_init(&op->list); 580 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) { 581 /* 582 * This must not happen, but if there is a kprobe 583 * still in use, keep it on kprobes hash list. 584 */ 585 continue; 586 } 587 free_aggr_kprobe(&op->kp); 588 } 589 } 590 591 /* Start optimizer after OPTIMIZE_DELAY passed */ 592 static void kick_kprobe_optimizer(void) 593 { 594 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 595 } 596 597 /* Kprobe jump optimizer */ 598 static void kprobe_optimizer(struct work_struct *work) 599 { 600 mutex_lock(&kprobe_mutex); 601 cpus_read_lock(); 602 mutex_lock(&text_mutex); 603 604 /* 605 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 606 * kprobes before waiting for quiesence period. 607 */ 608 do_unoptimize_kprobes(); 609 610 /* 611 * Step 2: Wait for quiesence period to ensure all potentially 612 * preempted tasks to have normally scheduled. Because optprobe 613 * may modify multiple instructions, there is a chance that Nth 614 * instruction is preempted. In that case, such tasks can return 615 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. 616 * Note that on non-preemptive kernel, this is transparently converted 617 * to synchronoze_sched() to wait for all interrupts to have completed. 618 */ 619 synchronize_rcu_tasks(); 620 621 /* Step 3: Optimize kprobes after quiesence period */ 622 do_optimize_kprobes(); 623 624 /* Step 4: Free cleaned kprobes after quiesence period */ 625 do_free_cleaned_kprobes(); 626 627 mutex_unlock(&text_mutex); 628 cpus_read_unlock(); 629 630 /* Step 5: Kick optimizer again if needed */ 631 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 632 kick_kprobe_optimizer(); 633 634 mutex_unlock(&kprobe_mutex); 635 } 636 637 /* Wait for completing optimization and unoptimization */ 638 void wait_for_kprobe_optimizer(void) 639 { 640 mutex_lock(&kprobe_mutex); 641 642 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 643 mutex_unlock(&kprobe_mutex); 644 645 /* this will also make optimizing_work execute immmediately */ 646 flush_delayed_work(&optimizing_work); 647 /* @optimizing_work might not have been queued yet, relax */ 648 cpu_relax(); 649 650 mutex_lock(&kprobe_mutex); 651 } 652 653 mutex_unlock(&kprobe_mutex); 654 } 655 656 static bool optprobe_queued_unopt(struct optimized_kprobe *op) 657 { 658 struct optimized_kprobe *_op; 659 660 list_for_each_entry(_op, &unoptimizing_list, list) { 661 if (op == _op) 662 return true; 663 } 664 665 return false; 666 } 667 668 /* Optimize kprobe if p is ready to be optimized */ 669 static void optimize_kprobe(struct kprobe *p) 670 { 671 struct optimized_kprobe *op; 672 673 /* Check if the kprobe is disabled or not ready for optimization. */ 674 if (!kprobe_optready(p) || !kprobes_allow_optimization || 675 (kprobe_disabled(p) || kprobes_all_disarmed)) 676 return; 677 678 /* kprobes with post_handler can not be optimized */ 679 if (p->post_handler) 680 return; 681 682 op = container_of(p, struct optimized_kprobe, kp); 683 684 /* Check there is no other kprobes at the optimized instructions */ 685 if (arch_check_optimized_kprobe(op) < 0) 686 return; 687 688 /* Check if it is already optimized. */ 689 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) { 690 if (optprobe_queued_unopt(op)) { 691 /* This is under unoptimizing. Just dequeue the probe */ 692 list_del_init(&op->list); 693 } 694 return; 695 } 696 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 697 698 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */ 699 if (WARN_ON_ONCE(!list_empty(&op->list))) 700 return; 701 702 list_add(&op->list, &optimizing_list); 703 kick_kprobe_optimizer(); 704 } 705 706 /* Short cut to direct unoptimizing */ 707 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 708 { 709 lockdep_assert_cpus_held(); 710 arch_unoptimize_kprobe(op); 711 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 712 } 713 714 /* Unoptimize a kprobe if p is optimized */ 715 static void unoptimize_kprobe(struct kprobe *p, bool force) 716 { 717 struct optimized_kprobe *op; 718 719 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 720 return; /* This is not an optprobe nor optimized */ 721 722 op = container_of(p, struct optimized_kprobe, kp); 723 if (!kprobe_optimized(p)) 724 return; 725 726 if (!list_empty(&op->list)) { 727 if (optprobe_queued_unopt(op)) { 728 /* Queued in unoptimizing queue */ 729 if (force) { 730 /* 731 * Forcibly unoptimize the kprobe here, and queue it 732 * in the freeing list for release afterwards. 733 */ 734 force_unoptimize_kprobe(op); 735 list_move(&op->list, &freeing_list); 736 } 737 } else { 738 /* Dequeue from the optimizing queue */ 739 list_del_init(&op->list); 740 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 741 } 742 return; 743 } 744 745 /* Optimized kprobe case */ 746 if (force) { 747 /* Forcibly update the code: this is a special case */ 748 force_unoptimize_kprobe(op); 749 } else { 750 list_add(&op->list, &unoptimizing_list); 751 kick_kprobe_optimizer(); 752 } 753 } 754 755 /* Cancel unoptimizing for reusing */ 756 static int reuse_unused_kprobe(struct kprobe *ap) 757 { 758 struct optimized_kprobe *op; 759 760 /* 761 * Unused kprobe MUST be on the way of delayed unoptimizing (means 762 * there is still a relative jump) and disabled. 763 */ 764 op = container_of(ap, struct optimized_kprobe, kp); 765 WARN_ON_ONCE(list_empty(&op->list)); 766 /* Enable the probe again */ 767 ap->flags &= ~KPROBE_FLAG_DISABLED; 768 /* Optimize it again (remove from op->list) */ 769 if (!kprobe_optready(ap)) 770 return -EINVAL; 771 772 optimize_kprobe(ap); 773 return 0; 774 } 775 776 /* Remove optimized instructions */ 777 static void kill_optimized_kprobe(struct kprobe *p) 778 { 779 struct optimized_kprobe *op; 780 781 op = container_of(p, struct optimized_kprobe, kp); 782 if (!list_empty(&op->list)) 783 /* Dequeue from the (un)optimization queue */ 784 list_del_init(&op->list); 785 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 786 787 if (kprobe_unused(p)) { 788 /* Enqueue if it is unused */ 789 list_add(&op->list, &freeing_list); 790 /* 791 * Remove unused probes from the hash list. After waiting 792 * for synchronization, this probe is reclaimed. 793 * (reclaiming is done by do_free_cleaned_kprobes().) 794 */ 795 hlist_del_rcu(&op->kp.hlist); 796 } 797 798 /* Don't touch the code, because it is already freed. */ 799 arch_remove_optimized_kprobe(op); 800 } 801 802 static inline 803 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) 804 { 805 if (!kprobe_ftrace(p)) 806 arch_prepare_optimized_kprobe(op, p); 807 } 808 809 /* Try to prepare optimized instructions */ 810 static void prepare_optimized_kprobe(struct kprobe *p) 811 { 812 struct optimized_kprobe *op; 813 814 op = container_of(p, struct optimized_kprobe, kp); 815 __prepare_optimized_kprobe(op, p); 816 } 817 818 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 819 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 820 { 821 struct optimized_kprobe *op; 822 823 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 824 if (!op) 825 return NULL; 826 827 INIT_LIST_HEAD(&op->list); 828 op->kp.addr = p->addr; 829 __prepare_optimized_kprobe(op, p); 830 831 return &op->kp; 832 } 833 834 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 835 836 /* 837 * Prepare an optimized_kprobe and optimize it 838 * NOTE: p must be a normal registered kprobe 839 */ 840 static void try_to_optimize_kprobe(struct kprobe *p) 841 { 842 struct kprobe *ap; 843 struct optimized_kprobe *op; 844 845 /* Impossible to optimize ftrace-based kprobe */ 846 if (kprobe_ftrace(p)) 847 return; 848 849 /* For preparing optimization, jump_label_text_reserved() is called */ 850 cpus_read_lock(); 851 jump_label_lock(); 852 mutex_lock(&text_mutex); 853 854 ap = alloc_aggr_kprobe(p); 855 if (!ap) 856 goto out; 857 858 op = container_of(ap, struct optimized_kprobe, kp); 859 if (!arch_prepared_optinsn(&op->optinsn)) { 860 /* If failed to setup optimizing, fallback to kprobe */ 861 arch_remove_optimized_kprobe(op); 862 kfree(op); 863 goto out; 864 } 865 866 init_aggr_kprobe(ap, p); 867 optimize_kprobe(ap); /* This just kicks optimizer thread */ 868 869 out: 870 mutex_unlock(&text_mutex); 871 jump_label_unlock(); 872 cpus_read_unlock(); 873 } 874 875 static void optimize_all_kprobes(void) 876 { 877 struct hlist_head *head; 878 struct kprobe *p; 879 unsigned int i; 880 881 mutex_lock(&kprobe_mutex); 882 /* If optimization is already allowed, just return */ 883 if (kprobes_allow_optimization) 884 goto out; 885 886 cpus_read_lock(); 887 kprobes_allow_optimization = true; 888 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 889 head = &kprobe_table[i]; 890 hlist_for_each_entry(p, head, hlist) 891 if (!kprobe_disabled(p)) 892 optimize_kprobe(p); 893 } 894 cpus_read_unlock(); 895 printk(KERN_INFO "Kprobes globally optimized\n"); 896 out: 897 mutex_unlock(&kprobe_mutex); 898 } 899 900 #ifdef CONFIG_SYSCTL 901 static void unoptimize_all_kprobes(void) 902 { 903 struct hlist_head *head; 904 struct kprobe *p; 905 unsigned int i; 906 907 mutex_lock(&kprobe_mutex); 908 /* If optimization is already prohibited, just return */ 909 if (!kprobes_allow_optimization) { 910 mutex_unlock(&kprobe_mutex); 911 return; 912 } 913 914 cpus_read_lock(); 915 kprobes_allow_optimization = false; 916 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 917 head = &kprobe_table[i]; 918 hlist_for_each_entry(p, head, hlist) { 919 if (!kprobe_disabled(p)) 920 unoptimize_kprobe(p, false); 921 } 922 } 923 cpus_read_unlock(); 924 mutex_unlock(&kprobe_mutex); 925 926 /* Wait for unoptimizing completion */ 927 wait_for_kprobe_optimizer(); 928 printk(KERN_INFO "Kprobes globally unoptimized\n"); 929 } 930 931 static DEFINE_MUTEX(kprobe_sysctl_mutex); 932 int sysctl_kprobes_optimization; 933 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 934 void *buffer, size_t *length, 935 loff_t *ppos) 936 { 937 int ret; 938 939 mutex_lock(&kprobe_sysctl_mutex); 940 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 941 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 942 943 if (sysctl_kprobes_optimization) 944 optimize_all_kprobes(); 945 else 946 unoptimize_all_kprobes(); 947 mutex_unlock(&kprobe_sysctl_mutex); 948 949 return ret; 950 } 951 #endif /* CONFIG_SYSCTL */ 952 953 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 954 static void __arm_kprobe(struct kprobe *p) 955 { 956 struct kprobe *_p; 957 958 /* Check collision with other optimized kprobes */ 959 _p = get_optimized_kprobe((unsigned long)p->addr); 960 if (unlikely(_p)) 961 /* Fallback to unoptimized kprobe */ 962 unoptimize_kprobe(_p, true); 963 964 arch_arm_kprobe(p); 965 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 966 } 967 968 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 969 static void __disarm_kprobe(struct kprobe *p, bool reopt) 970 { 971 struct kprobe *_p; 972 973 /* Try to unoptimize */ 974 unoptimize_kprobe(p, kprobes_all_disarmed); 975 976 if (!kprobe_queued(p)) { 977 arch_disarm_kprobe(p); 978 /* If another kprobe was blocked, optimize it. */ 979 _p = get_optimized_kprobe((unsigned long)p->addr); 980 if (unlikely(_p) && reopt) 981 optimize_kprobe(_p); 982 } 983 /* TODO: reoptimize others after unoptimized this probe */ 984 } 985 986 #else /* !CONFIG_OPTPROBES */ 987 988 #define optimize_kprobe(p) do {} while (0) 989 #define unoptimize_kprobe(p, f) do {} while (0) 990 #define kill_optimized_kprobe(p) do {} while (0) 991 #define prepare_optimized_kprobe(p) do {} while (0) 992 #define try_to_optimize_kprobe(p) do {} while (0) 993 #define __arm_kprobe(p) arch_arm_kprobe(p) 994 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 995 #define kprobe_disarmed(p) kprobe_disabled(p) 996 #define wait_for_kprobe_optimizer() do {} while (0) 997 998 static int reuse_unused_kprobe(struct kprobe *ap) 999 { 1000 /* 1001 * If the optimized kprobe is NOT supported, the aggr kprobe is 1002 * released at the same time that the last aggregated kprobe is 1003 * unregistered. 1004 * Thus there should be no chance to reuse unused kprobe. 1005 */ 1006 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 1007 return -EINVAL; 1008 } 1009 1010 static void free_aggr_kprobe(struct kprobe *p) 1011 { 1012 arch_remove_kprobe(p); 1013 kfree(p); 1014 } 1015 1016 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 1017 { 1018 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 1019 } 1020 #endif /* CONFIG_OPTPROBES */ 1021 1022 #ifdef CONFIG_KPROBES_ON_FTRACE 1023 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 1024 .func = kprobe_ftrace_handler, 1025 .flags = FTRACE_OPS_FL_SAVE_REGS, 1026 }; 1027 1028 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = { 1029 .func = kprobe_ftrace_handler, 1030 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 1031 }; 1032 1033 static int kprobe_ipmodify_enabled; 1034 static int kprobe_ftrace_enabled; 1035 1036 /* Must ensure p->addr is really on ftrace */ 1037 static int prepare_kprobe(struct kprobe *p) 1038 { 1039 if (!kprobe_ftrace(p)) 1040 return arch_prepare_kprobe(p); 1041 1042 return arch_prepare_kprobe_ftrace(p); 1043 } 1044 1045 /* Caller must lock kprobe_mutex */ 1046 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1047 int *cnt) 1048 { 1049 int ret = 0; 1050 1051 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0); 1052 if (ret) { 1053 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n", 1054 p->addr, ret); 1055 return ret; 1056 } 1057 1058 if (*cnt == 0) { 1059 ret = register_ftrace_function(ops); 1060 if (ret) { 1061 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret); 1062 goto err_ftrace; 1063 } 1064 } 1065 1066 (*cnt)++; 1067 return ret; 1068 1069 err_ftrace: 1070 /* 1071 * At this point, sinec ops is not registered, we should be sefe from 1072 * registering empty filter. 1073 */ 1074 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1075 return ret; 1076 } 1077 1078 static int arm_kprobe_ftrace(struct kprobe *p) 1079 { 1080 bool ipmodify = (p->post_handler != NULL); 1081 1082 return __arm_kprobe_ftrace(p, 1083 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1084 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1085 } 1086 1087 /* Caller must lock kprobe_mutex */ 1088 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1089 int *cnt) 1090 { 1091 int ret = 0; 1092 1093 if (*cnt == 1) { 1094 ret = unregister_ftrace_function(ops); 1095 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret)) 1096 return ret; 1097 } 1098 1099 (*cnt)--; 1100 1101 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1102 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n", 1103 p->addr, ret); 1104 return ret; 1105 } 1106 1107 static int disarm_kprobe_ftrace(struct kprobe *p) 1108 { 1109 bool ipmodify = (p->post_handler != NULL); 1110 1111 return __disarm_kprobe_ftrace(p, 1112 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1113 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1114 } 1115 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1116 static inline int prepare_kprobe(struct kprobe *p) 1117 { 1118 return arch_prepare_kprobe(p); 1119 } 1120 1121 static inline int arm_kprobe_ftrace(struct kprobe *p) 1122 { 1123 return -ENODEV; 1124 } 1125 1126 static inline int disarm_kprobe_ftrace(struct kprobe *p) 1127 { 1128 return -ENODEV; 1129 } 1130 #endif 1131 1132 /* Arm a kprobe with text_mutex */ 1133 static int arm_kprobe(struct kprobe *kp) 1134 { 1135 if (unlikely(kprobe_ftrace(kp))) 1136 return arm_kprobe_ftrace(kp); 1137 1138 cpus_read_lock(); 1139 mutex_lock(&text_mutex); 1140 __arm_kprobe(kp); 1141 mutex_unlock(&text_mutex); 1142 cpus_read_unlock(); 1143 1144 return 0; 1145 } 1146 1147 /* Disarm a kprobe with text_mutex */ 1148 static int disarm_kprobe(struct kprobe *kp, bool reopt) 1149 { 1150 if (unlikely(kprobe_ftrace(kp))) 1151 return disarm_kprobe_ftrace(kp); 1152 1153 cpus_read_lock(); 1154 mutex_lock(&text_mutex); 1155 __disarm_kprobe(kp, reopt); 1156 mutex_unlock(&text_mutex); 1157 cpus_read_unlock(); 1158 1159 return 0; 1160 } 1161 1162 /* 1163 * Aggregate handlers for multiple kprobes support - these handlers 1164 * take care of invoking the individual kprobe handlers on p->list 1165 */ 1166 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1167 { 1168 struct kprobe *kp; 1169 1170 list_for_each_entry_rcu(kp, &p->list, list) { 1171 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1172 set_kprobe_instance(kp); 1173 if (kp->pre_handler(kp, regs)) 1174 return 1; 1175 } 1176 reset_kprobe_instance(); 1177 } 1178 return 0; 1179 } 1180 NOKPROBE_SYMBOL(aggr_pre_handler); 1181 1182 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1183 unsigned long flags) 1184 { 1185 struct kprobe *kp; 1186 1187 list_for_each_entry_rcu(kp, &p->list, list) { 1188 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1189 set_kprobe_instance(kp); 1190 kp->post_handler(kp, regs, flags); 1191 reset_kprobe_instance(); 1192 } 1193 } 1194 } 1195 NOKPROBE_SYMBOL(aggr_post_handler); 1196 1197 /* Walks the list and increments nmissed count for multiprobe case */ 1198 void kprobes_inc_nmissed_count(struct kprobe *p) 1199 { 1200 struct kprobe *kp; 1201 if (!kprobe_aggrprobe(p)) { 1202 p->nmissed++; 1203 } else { 1204 list_for_each_entry_rcu(kp, &p->list, list) 1205 kp->nmissed++; 1206 } 1207 return; 1208 } 1209 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1210 1211 static void free_rp_inst_rcu(struct rcu_head *head) 1212 { 1213 struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu); 1214 1215 if (refcount_dec_and_test(&ri->rph->ref)) 1216 kfree(ri->rph); 1217 kfree(ri); 1218 } 1219 NOKPROBE_SYMBOL(free_rp_inst_rcu); 1220 1221 static void recycle_rp_inst(struct kretprobe_instance *ri) 1222 { 1223 struct kretprobe *rp = get_kretprobe(ri); 1224 1225 if (likely(rp)) { 1226 freelist_add(&ri->freelist, &rp->freelist); 1227 } else 1228 call_rcu(&ri->rcu, free_rp_inst_rcu); 1229 } 1230 NOKPROBE_SYMBOL(recycle_rp_inst); 1231 1232 static struct kprobe kprobe_busy = { 1233 .addr = (void *) get_kprobe, 1234 }; 1235 1236 void kprobe_busy_begin(void) 1237 { 1238 struct kprobe_ctlblk *kcb; 1239 1240 preempt_disable(); 1241 __this_cpu_write(current_kprobe, &kprobe_busy); 1242 kcb = get_kprobe_ctlblk(); 1243 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 1244 } 1245 1246 void kprobe_busy_end(void) 1247 { 1248 __this_cpu_write(current_kprobe, NULL); 1249 preempt_enable(); 1250 } 1251 1252 /* 1253 * This function is called from finish_task_switch when task tk becomes dead, 1254 * so that we can recycle any function-return probe instances associated 1255 * with this task. These left over instances represent probed functions 1256 * that have been called but will never return. 1257 */ 1258 void kprobe_flush_task(struct task_struct *tk) 1259 { 1260 struct kretprobe_instance *ri; 1261 struct llist_node *node; 1262 1263 /* Early boot, not yet initialized. */ 1264 if (unlikely(!kprobes_initialized)) 1265 return; 1266 1267 kprobe_busy_begin(); 1268 1269 node = __llist_del_all(&tk->kretprobe_instances); 1270 while (node) { 1271 ri = container_of(node, struct kretprobe_instance, llist); 1272 node = node->next; 1273 1274 recycle_rp_inst(ri); 1275 } 1276 1277 kprobe_busy_end(); 1278 } 1279 NOKPROBE_SYMBOL(kprobe_flush_task); 1280 1281 static inline void free_rp_inst(struct kretprobe *rp) 1282 { 1283 struct kretprobe_instance *ri; 1284 struct freelist_node *node; 1285 int count = 0; 1286 1287 node = rp->freelist.head; 1288 while (node) { 1289 ri = container_of(node, struct kretprobe_instance, freelist); 1290 node = node->next; 1291 1292 kfree(ri); 1293 count++; 1294 } 1295 1296 if (refcount_sub_and_test(count, &rp->rph->ref)) { 1297 kfree(rp->rph); 1298 rp->rph = NULL; 1299 } 1300 } 1301 1302 /* Add the new probe to ap->list */ 1303 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1304 { 1305 if (p->post_handler) 1306 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1307 1308 list_add_rcu(&p->list, &ap->list); 1309 if (p->post_handler && !ap->post_handler) 1310 ap->post_handler = aggr_post_handler; 1311 1312 return 0; 1313 } 1314 1315 /* 1316 * Fill in the required fields of the "manager kprobe". Replace the 1317 * earlier kprobe in the hlist with the manager kprobe 1318 */ 1319 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1320 { 1321 /* Copy p's insn slot to ap */ 1322 copy_kprobe(p, ap); 1323 flush_insn_slot(ap); 1324 ap->addr = p->addr; 1325 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1326 ap->pre_handler = aggr_pre_handler; 1327 /* We don't care the kprobe which has gone. */ 1328 if (p->post_handler && !kprobe_gone(p)) 1329 ap->post_handler = aggr_post_handler; 1330 1331 INIT_LIST_HEAD(&ap->list); 1332 INIT_HLIST_NODE(&ap->hlist); 1333 1334 list_add_rcu(&p->list, &ap->list); 1335 hlist_replace_rcu(&p->hlist, &ap->hlist); 1336 } 1337 1338 /* 1339 * This is the second or subsequent kprobe at the address - handle 1340 * the intricacies 1341 */ 1342 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1343 { 1344 int ret = 0; 1345 struct kprobe *ap = orig_p; 1346 1347 cpus_read_lock(); 1348 1349 /* For preparing optimization, jump_label_text_reserved() is called */ 1350 jump_label_lock(); 1351 mutex_lock(&text_mutex); 1352 1353 if (!kprobe_aggrprobe(orig_p)) { 1354 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1355 ap = alloc_aggr_kprobe(orig_p); 1356 if (!ap) { 1357 ret = -ENOMEM; 1358 goto out; 1359 } 1360 init_aggr_kprobe(ap, orig_p); 1361 } else if (kprobe_unused(ap)) { 1362 /* This probe is going to die. Rescue it */ 1363 ret = reuse_unused_kprobe(ap); 1364 if (ret) 1365 goto out; 1366 } 1367 1368 if (kprobe_gone(ap)) { 1369 /* 1370 * Attempting to insert new probe at the same location that 1371 * had a probe in the module vaddr area which already 1372 * freed. So, the instruction slot has already been 1373 * released. We need a new slot for the new probe. 1374 */ 1375 ret = arch_prepare_kprobe(ap); 1376 if (ret) 1377 /* 1378 * Even if fail to allocate new slot, don't need to 1379 * free aggr_probe. It will be used next time, or 1380 * freed by unregister_kprobe. 1381 */ 1382 goto out; 1383 1384 /* Prepare optimized instructions if possible. */ 1385 prepare_optimized_kprobe(ap); 1386 1387 /* 1388 * Clear gone flag to prevent allocating new slot again, and 1389 * set disabled flag because it is not armed yet. 1390 */ 1391 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1392 | KPROBE_FLAG_DISABLED; 1393 } 1394 1395 /* Copy ap's insn slot to p */ 1396 copy_kprobe(ap, p); 1397 ret = add_new_kprobe(ap, p); 1398 1399 out: 1400 mutex_unlock(&text_mutex); 1401 jump_label_unlock(); 1402 cpus_read_unlock(); 1403 1404 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1405 ap->flags &= ~KPROBE_FLAG_DISABLED; 1406 if (!kprobes_all_disarmed) { 1407 /* Arm the breakpoint again. */ 1408 ret = arm_kprobe(ap); 1409 if (ret) { 1410 ap->flags |= KPROBE_FLAG_DISABLED; 1411 list_del_rcu(&p->list); 1412 synchronize_rcu(); 1413 } 1414 } 1415 } 1416 return ret; 1417 } 1418 1419 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1420 { 1421 /* The __kprobes marked functions and entry code must not be probed */ 1422 return addr >= (unsigned long)__kprobes_text_start && 1423 addr < (unsigned long)__kprobes_text_end; 1424 } 1425 1426 static bool __within_kprobe_blacklist(unsigned long addr) 1427 { 1428 struct kprobe_blacklist_entry *ent; 1429 1430 if (arch_within_kprobe_blacklist(addr)) 1431 return true; 1432 /* 1433 * If there exists a kprobe_blacklist, verify and 1434 * fail any probe registration in the prohibited area 1435 */ 1436 list_for_each_entry(ent, &kprobe_blacklist, list) { 1437 if (addr >= ent->start_addr && addr < ent->end_addr) 1438 return true; 1439 } 1440 return false; 1441 } 1442 1443 bool within_kprobe_blacklist(unsigned long addr) 1444 { 1445 char symname[KSYM_NAME_LEN], *p; 1446 1447 if (__within_kprobe_blacklist(addr)) 1448 return true; 1449 1450 /* Check if the address is on a suffixed-symbol */ 1451 if (!lookup_symbol_name(addr, symname)) { 1452 p = strchr(symname, '.'); 1453 if (!p) 1454 return false; 1455 *p = '\0'; 1456 addr = (unsigned long)kprobe_lookup_name(symname, 0); 1457 if (addr) 1458 return __within_kprobe_blacklist(addr); 1459 } 1460 return false; 1461 } 1462 1463 /* 1464 * If we have a symbol_name argument, look it up and add the offset field 1465 * to it. This way, we can specify a relative address to a symbol. 1466 * This returns encoded errors if it fails to look up symbol or invalid 1467 * combination of parameters. 1468 */ 1469 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr, 1470 const char *symbol_name, unsigned int offset) 1471 { 1472 if ((symbol_name && addr) || (!symbol_name && !addr)) 1473 goto invalid; 1474 1475 if (symbol_name) { 1476 addr = kprobe_lookup_name(symbol_name, offset); 1477 if (!addr) 1478 return ERR_PTR(-ENOENT); 1479 } 1480 1481 addr = (kprobe_opcode_t *)(((char *)addr) + offset); 1482 if (addr) 1483 return addr; 1484 1485 invalid: 1486 return ERR_PTR(-EINVAL); 1487 } 1488 1489 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1490 { 1491 return _kprobe_addr(p->addr, p->symbol_name, p->offset); 1492 } 1493 1494 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1495 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1496 { 1497 struct kprobe *ap, *list_p; 1498 1499 lockdep_assert_held(&kprobe_mutex); 1500 1501 ap = get_kprobe(p->addr); 1502 if (unlikely(!ap)) 1503 return NULL; 1504 1505 if (p != ap) { 1506 list_for_each_entry(list_p, &ap->list, list) 1507 if (list_p == p) 1508 /* kprobe p is a valid probe */ 1509 goto valid; 1510 return NULL; 1511 } 1512 valid: 1513 return ap; 1514 } 1515 1516 /* 1517 * Warn and return error if the kprobe is being re-registered since 1518 * there must be a software bug. 1519 */ 1520 static inline int warn_kprobe_rereg(struct kprobe *p) 1521 { 1522 int ret = 0; 1523 1524 mutex_lock(&kprobe_mutex); 1525 if (WARN_ON_ONCE(__get_valid_kprobe(p))) 1526 ret = -EINVAL; 1527 mutex_unlock(&kprobe_mutex); 1528 1529 return ret; 1530 } 1531 1532 int __weak arch_check_ftrace_location(struct kprobe *p) 1533 { 1534 unsigned long ftrace_addr; 1535 1536 ftrace_addr = ftrace_location((unsigned long)p->addr); 1537 if (ftrace_addr) { 1538 #ifdef CONFIG_KPROBES_ON_FTRACE 1539 /* Given address is not on the instruction boundary */ 1540 if ((unsigned long)p->addr != ftrace_addr) 1541 return -EILSEQ; 1542 p->flags |= KPROBE_FLAG_FTRACE; 1543 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1544 return -EINVAL; 1545 #endif 1546 } 1547 return 0; 1548 } 1549 1550 static int check_kprobe_address_safe(struct kprobe *p, 1551 struct module **probed_mod) 1552 { 1553 int ret; 1554 1555 ret = arch_check_ftrace_location(p); 1556 if (ret) 1557 return ret; 1558 jump_label_lock(); 1559 preempt_disable(); 1560 1561 /* Ensure it is not in reserved area nor out of text */ 1562 if (!kernel_text_address((unsigned long) p->addr) || 1563 within_kprobe_blacklist((unsigned long) p->addr) || 1564 jump_label_text_reserved(p->addr, p->addr) || 1565 static_call_text_reserved(p->addr, p->addr) || 1566 find_bug((unsigned long)p->addr)) { 1567 ret = -EINVAL; 1568 goto out; 1569 } 1570 1571 /* Check if are we probing a module */ 1572 *probed_mod = __module_text_address((unsigned long) p->addr); 1573 if (*probed_mod) { 1574 /* 1575 * We must hold a refcount of the probed module while updating 1576 * its code to prohibit unexpected unloading. 1577 */ 1578 if (unlikely(!try_module_get(*probed_mod))) { 1579 ret = -ENOENT; 1580 goto out; 1581 } 1582 1583 /* 1584 * If the module freed .init.text, we couldn't insert 1585 * kprobes in there. 1586 */ 1587 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1588 (*probed_mod)->state != MODULE_STATE_COMING) { 1589 module_put(*probed_mod); 1590 *probed_mod = NULL; 1591 ret = -ENOENT; 1592 } 1593 } 1594 out: 1595 preempt_enable(); 1596 jump_label_unlock(); 1597 1598 return ret; 1599 } 1600 1601 int register_kprobe(struct kprobe *p) 1602 { 1603 int ret; 1604 struct kprobe *old_p; 1605 struct module *probed_mod; 1606 kprobe_opcode_t *addr; 1607 1608 /* Adjust probe address from symbol */ 1609 addr = kprobe_addr(p); 1610 if (IS_ERR(addr)) 1611 return PTR_ERR(addr); 1612 p->addr = addr; 1613 1614 ret = warn_kprobe_rereg(p); 1615 if (ret) 1616 return ret; 1617 1618 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1619 p->flags &= KPROBE_FLAG_DISABLED; 1620 p->nmissed = 0; 1621 INIT_LIST_HEAD(&p->list); 1622 1623 ret = check_kprobe_address_safe(p, &probed_mod); 1624 if (ret) 1625 return ret; 1626 1627 mutex_lock(&kprobe_mutex); 1628 1629 old_p = get_kprobe(p->addr); 1630 if (old_p) { 1631 /* Since this may unoptimize old_p, locking text_mutex. */ 1632 ret = register_aggr_kprobe(old_p, p); 1633 goto out; 1634 } 1635 1636 cpus_read_lock(); 1637 /* Prevent text modification */ 1638 mutex_lock(&text_mutex); 1639 ret = prepare_kprobe(p); 1640 mutex_unlock(&text_mutex); 1641 cpus_read_unlock(); 1642 if (ret) 1643 goto out; 1644 1645 INIT_HLIST_NODE(&p->hlist); 1646 hlist_add_head_rcu(&p->hlist, 1647 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1648 1649 if (!kprobes_all_disarmed && !kprobe_disabled(p)) { 1650 ret = arm_kprobe(p); 1651 if (ret) { 1652 hlist_del_rcu(&p->hlist); 1653 synchronize_rcu(); 1654 goto out; 1655 } 1656 } 1657 1658 /* Try to optimize kprobe */ 1659 try_to_optimize_kprobe(p); 1660 out: 1661 mutex_unlock(&kprobe_mutex); 1662 1663 if (probed_mod) 1664 module_put(probed_mod); 1665 1666 return ret; 1667 } 1668 EXPORT_SYMBOL_GPL(register_kprobe); 1669 1670 /* Check if all probes on the aggrprobe are disabled */ 1671 static int aggr_kprobe_disabled(struct kprobe *ap) 1672 { 1673 struct kprobe *kp; 1674 1675 lockdep_assert_held(&kprobe_mutex); 1676 1677 list_for_each_entry(kp, &ap->list, list) 1678 if (!kprobe_disabled(kp)) 1679 /* 1680 * There is an active probe on the list. 1681 * We can't disable this ap. 1682 */ 1683 return 0; 1684 1685 return 1; 1686 } 1687 1688 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1689 static struct kprobe *__disable_kprobe(struct kprobe *p) 1690 { 1691 struct kprobe *orig_p; 1692 int ret; 1693 1694 /* Get an original kprobe for return */ 1695 orig_p = __get_valid_kprobe(p); 1696 if (unlikely(orig_p == NULL)) 1697 return ERR_PTR(-EINVAL); 1698 1699 if (!kprobe_disabled(p)) { 1700 /* Disable probe if it is a child probe */ 1701 if (p != orig_p) 1702 p->flags |= KPROBE_FLAG_DISABLED; 1703 1704 /* Try to disarm and disable this/parent probe */ 1705 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1706 /* 1707 * If kprobes_all_disarmed is set, orig_p 1708 * should have already been disarmed, so 1709 * skip unneed disarming process. 1710 */ 1711 if (!kprobes_all_disarmed) { 1712 ret = disarm_kprobe(orig_p, true); 1713 if (ret) { 1714 p->flags &= ~KPROBE_FLAG_DISABLED; 1715 return ERR_PTR(ret); 1716 } 1717 } 1718 orig_p->flags |= KPROBE_FLAG_DISABLED; 1719 } 1720 } 1721 1722 return orig_p; 1723 } 1724 1725 /* 1726 * Unregister a kprobe without a scheduler synchronization. 1727 */ 1728 static int __unregister_kprobe_top(struct kprobe *p) 1729 { 1730 struct kprobe *ap, *list_p; 1731 1732 /* Disable kprobe. This will disarm it if needed. */ 1733 ap = __disable_kprobe(p); 1734 if (IS_ERR(ap)) 1735 return PTR_ERR(ap); 1736 1737 if (ap == p) 1738 /* 1739 * This probe is an independent(and non-optimized) kprobe 1740 * (not an aggrprobe). Remove from the hash list. 1741 */ 1742 goto disarmed; 1743 1744 /* Following process expects this probe is an aggrprobe */ 1745 WARN_ON(!kprobe_aggrprobe(ap)); 1746 1747 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1748 /* 1749 * !disarmed could be happen if the probe is under delayed 1750 * unoptimizing. 1751 */ 1752 goto disarmed; 1753 else { 1754 /* If disabling probe has special handlers, update aggrprobe */ 1755 if (p->post_handler && !kprobe_gone(p)) { 1756 list_for_each_entry(list_p, &ap->list, list) { 1757 if ((list_p != p) && (list_p->post_handler)) 1758 goto noclean; 1759 } 1760 ap->post_handler = NULL; 1761 } 1762 noclean: 1763 /* 1764 * Remove from the aggrprobe: this path will do nothing in 1765 * __unregister_kprobe_bottom(). 1766 */ 1767 list_del_rcu(&p->list); 1768 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1769 /* 1770 * Try to optimize this probe again, because post 1771 * handler may have been changed. 1772 */ 1773 optimize_kprobe(ap); 1774 } 1775 return 0; 1776 1777 disarmed: 1778 hlist_del_rcu(&ap->hlist); 1779 return 0; 1780 } 1781 1782 static void __unregister_kprobe_bottom(struct kprobe *p) 1783 { 1784 struct kprobe *ap; 1785 1786 if (list_empty(&p->list)) 1787 /* This is an independent kprobe */ 1788 arch_remove_kprobe(p); 1789 else if (list_is_singular(&p->list)) { 1790 /* This is the last child of an aggrprobe */ 1791 ap = list_entry(p->list.next, struct kprobe, list); 1792 list_del(&p->list); 1793 free_aggr_kprobe(ap); 1794 } 1795 /* Otherwise, do nothing. */ 1796 } 1797 1798 int register_kprobes(struct kprobe **kps, int num) 1799 { 1800 int i, ret = 0; 1801 1802 if (num <= 0) 1803 return -EINVAL; 1804 for (i = 0; i < num; i++) { 1805 ret = register_kprobe(kps[i]); 1806 if (ret < 0) { 1807 if (i > 0) 1808 unregister_kprobes(kps, i); 1809 break; 1810 } 1811 } 1812 return ret; 1813 } 1814 EXPORT_SYMBOL_GPL(register_kprobes); 1815 1816 void unregister_kprobe(struct kprobe *p) 1817 { 1818 unregister_kprobes(&p, 1); 1819 } 1820 EXPORT_SYMBOL_GPL(unregister_kprobe); 1821 1822 void unregister_kprobes(struct kprobe **kps, int num) 1823 { 1824 int i; 1825 1826 if (num <= 0) 1827 return; 1828 mutex_lock(&kprobe_mutex); 1829 for (i = 0; i < num; i++) 1830 if (__unregister_kprobe_top(kps[i]) < 0) 1831 kps[i]->addr = NULL; 1832 mutex_unlock(&kprobe_mutex); 1833 1834 synchronize_rcu(); 1835 for (i = 0; i < num; i++) 1836 if (kps[i]->addr) 1837 __unregister_kprobe_bottom(kps[i]); 1838 } 1839 EXPORT_SYMBOL_GPL(unregister_kprobes); 1840 1841 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1842 unsigned long val, void *data) 1843 { 1844 return NOTIFY_DONE; 1845 } 1846 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1847 1848 static struct notifier_block kprobe_exceptions_nb = { 1849 .notifier_call = kprobe_exceptions_notify, 1850 .priority = 0x7fffffff /* we need to be notified first */ 1851 }; 1852 1853 unsigned long __weak arch_deref_entry_point(void *entry) 1854 { 1855 return (unsigned long)entry; 1856 } 1857 1858 #ifdef CONFIG_KRETPROBES 1859 1860 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs, 1861 void *trampoline_address, 1862 void *frame_pointer) 1863 { 1864 kprobe_opcode_t *correct_ret_addr = NULL; 1865 struct kretprobe_instance *ri = NULL; 1866 struct llist_node *first, *node; 1867 struct kretprobe *rp; 1868 1869 /* Find all nodes for this frame. */ 1870 first = node = current->kretprobe_instances.first; 1871 while (node) { 1872 ri = container_of(node, struct kretprobe_instance, llist); 1873 1874 BUG_ON(ri->fp != frame_pointer); 1875 1876 if (ri->ret_addr != trampoline_address) { 1877 correct_ret_addr = ri->ret_addr; 1878 /* 1879 * This is the real return address. Any other 1880 * instances associated with this task are for 1881 * other calls deeper on the call stack 1882 */ 1883 goto found; 1884 } 1885 1886 node = node->next; 1887 } 1888 pr_err("Oops! Kretprobe fails to find correct return address.\n"); 1889 BUG_ON(1); 1890 1891 found: 1892 /* Unlink all nodes for this frame. */ 1893 current->kretprobe_instances.first = node->next; 1894 node->next = NULL; 1895 1896 /* Run them.. */ 1897 while (first) { 1898 ri = container_of(first, struct kretprobe_instance, llist); 1899 first = first->next; 1900 1901 rp = get_kretprobe(ri); 1902 if (rp && rp->handler) { 1903 struct kprobe *prev = kprobe_running(); 1904 1905 __this_cpu_write(current_kprobe, &rp->kp); 1906 ri->ret_addr = correct_ret_addr; 1907 rp->handler(ri, regs); 1908 __this_cpu_write(current_kprobe, prev); 1909 } 1910 1911 recycle_rp_inst(ri); 1912 } 1913 1914 return (unsigned long)correct_ret_addr; 1915 } 1916 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler) 1917 1918 /* 1919 * This kprobe pre_handler is registered with every kretprobe. When probe 1920 * hits it will set up the return probe. 1921 */ 1922 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 1923 { 1924 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1925 struct kretprobe_instance *ri; 1926 struct freelist_node *fn; 1927 1928 fn = freelist_try_get(&rp->freelist); 1929 if (!fn) { 1930 rp->nmissed++; 1931 return 0; 1932 } 1933 1934 ri = container_of(fn, struct kretprobe_instance, freelist); 1935 1936 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 1937 freelist_add(&ri->freelist, &rp->freelist); 1938 return 0; 1939 } 1940 1941 arch_prepare_kretprobe(ri, regs); 1942 1943 __llist_add(&ri->llist, ¤t->kretprobe_instances); 1944 1945 return 0; 1946 } 1947 NOKPROBE_SYMBOL(pre_handler_kretprobe); 1948 1949 bool __weak arch_kprobe_on_func_entry(unsigned long offset) 1950 { 1951 return !offset; 1952 } 1953 1954 /** 1955 * kprobe_on_func_entry() -- check whether given address is function entry 1956 * @addr: Target address 1957 * @sym: Target symbol name 1958 * @offset: The offset from the symbol or the address 1959 * 1960 * This checks whether the given @addr+@offset or @sym+@offset is on the 1961 * function entry address or not. 1962 * This returns 0 if it is the function entry, or -EINVAL if it is not. 1963 * And also it returns -ENOENT if it fails the symbol or address lookup. 1964 * Caller must pass @addr or @sym (either one must be NULL), or this 1965 * returns -EINVAL. 1966 */ 1967 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 1968 { 1969 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset); 1970 1971 if (IS_ERR(kp_addr)) 1972 return PTR_ERR(kp_addr); 1973 1974 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset)) 1975 return -ENOENT; 1976 1977 if (!arch_kprobe_on_func_entry(offset)) 1978 return -EINVAL; 1979 1980 return 0; 1981 } 1982 1983 int register_kretprobe(struct kretprobe *rp) 1984 { 1985 int ret; 1986 struct kretprobe_instance *inst; 1987 int i; 1988 void *addr; 1989 1990 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset); 1991 if (ret) 1992 return ret; 1993 1994 /* If only rp->kp.addr is specified, check reregistering kprobes */ 1995 if (rp->kp.addr && warn_kprobe_rereg(&rp->kp)) 1996 return -EINVAL; 1997 1998 if (kretprobe_blacklist_size) { 1999 addr = kprobe_addr(&rp->kp); 2000 if (IS_ERR(addr)) 2001 return PTR_ERR(addr); 2002 2003 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2004 if (kretprobe_blacklist[i].addr == addr) 2005 return -EINVAL; 2006 } 2007 } 2008 2009 rp->kp.pre_handler = pre_handler_kretprobe; 2010 rp->kp.post_handler = NULL; 2011 2012 /* Pre-allocate memory for max kretprobe instances */ 2013 if (rp->maxactive <= 0) { 2014 #ifdef CONFIG_PREEMPTION 2015 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 2016 #else 2017 rp->maxactive = num_possible_cpus(); 2018 #endif 2019 } 2020 rp->freelist.head = NULL; 2021 rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL); 2022 if (!rp->rph) 2023 return -ENOMEM; 2024 2025 rp->rph->rp = rp; 2026 for (i = 0; i < rp->maxactive; i++) { 2027 inst = kzalloc(sizeof(struct kretprobe_instance) + 2028 rp->data_size, GFP_KERNEL); 2029 if (inst == NULL) { 2030 refcount_set(&rp->rph->ref, i); 2031 free_rp_inst(rp); 2032 return -ENOMEM; 2033 } 2034 inst->rph = rp->rph; 2035 freelist_add(&inst->freelist, &rp->freelist); 2036 } 2037 refcount_set(&rp->rph->ref, i); 2038 2039 rp->nmissed = 0; 2040 /* Establish function entry probe point */ 2041 ret = register_kprobe(&rp->kp); 2042 if (ret != 0) 2043 free_rp_inst(rp); 2044 return ret; 2045 } 2046 EXPORT_SYMBOL_GPL(register_kretprobe); 2047 2048 int register_kretprobes(struct kretprobe **rps, int num) 2049 { 2050 int ret = 0, i; 2051 2052 if (num <= 0) 2053 return -EINVAL; 2054 for (i = 0; i < num; i++) { 2055 ret = register_kretprobe(rps[i]); 2056 if (ret < 0) { 2057 if (i > 0) 2058 unregister_kretprobes(rps, i); 2059 break; 2060 } 2061 } 2062 return ret; 2063 } 2064 EXPORT_SYMBOL_GPL(register_kretprobes); 2065 2066 void unregister_kretprobe(struct kretprobe *rp) 2067 { 2068 unregister_kretprobes(&rp, 1); 2069 } 2070 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2071 2072 void unregister_kretprobes(struct kretprobe **rps, int num) 2073 { 2074 int i; 2075 2076 if (num <= 0) 2077 return; 2078 mutex_lock(&kprobe_mutex); 2079 for (i = 0; i < num; i++) { 2080 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 2081 rps[i]->kp.addr = NULL; 2082 rps[i]->rph->rp = NULL; 2083 } 2084 mutex_unlock(&kprobe_mutex); 2085 2086 synchronize_rcu(); 2087 for (i = 0; i < num; i++) { 2088 if (rps[i]->kp.addr) { 2089 __unregister_kprobe_bottom(&rps[i]->kp); 2090 free_rp_inst(rps[i]); 2091 } 2092 } 2093 } 2094 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2095 2096 #else /* CONFIG_KRETPROBES */ 2097 int register_kretprobe(struct kretprobe *rp) 2098 { 2099 return -ENOSYS; 2100 } 2101 EXPORT_SYMBOL_GPL(register_kretprobe); 2102 2103 int register_kretprobes(struct kretprobe **rps, int num) 2104 { 2105 return -ENOSYS; 2106 } 2107 EXPORT_SYMBOL_GPL(register_kretprobes); 2108 2109 void unregister_kretprobe(struct kretprobe *rp) 2110 { 2111 } 2112 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2113 2114 void unregister_kretprobes(struct kretprobe **rps, int num) 2115 { 2116 } 2117 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2118 2119 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2120 { 2121 return 0; 2122 } 2123 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2124 2125 #endif /* CONFIG_KRETPROBES */ 2126 2127 /* Set the kprobe gone and remove its instruction buffer. */ 2128 static void kill_kprobe(struct kprobe *p) 2129 { 2130 struct kprobe *kp; 2131 2132 lockdep_assert_held(&kprobe_mutex); 2133 2134 p->flags |= KPROBE_FLAG_GONE; 2135 if (kprobe_aggrprobe(p)) { 2136 /* 2137 * If this is an aggr_kprobe, we have to list all the 2138 * chained probes and mark them GONE. 2139 */ 2140 list_for_each_entry(kp, &p->list, list) 2141 kp->flags |= KPROBE_FLAG_GONE; 2142 p->post_handler = NULL; 2143 kill_optimized_kprobe(p); 2144 } 2145 /* 2146 * Here, we can remove insn_slot safely, because no thread calls 2147 * the original probed function (which will be freed soon) any more. 2148 */ 2149 arch_remove_kprobe(p); 2150 2151 /* 2152 * The module is going away. We should disarm the kprobe which 2153 * is using ftrace, because ftrace framework is still available at 2154 * MODULE_STATE_GOING notification. 2155 */ 2156 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed) 2157 disarm_kprobe_ftrace(p); 2158 } 2159 2160 /* Disable one kprobe */ 2161 int disable_kprobe(struct kprobe *kp) 2162 { 2163 int ret = 0; 2164 struct kprobe *p; 2165 2166 mutex_lock(&kprobe_mutex); 2167 2168 /* Disable this kprobe */ 2169 p = __disable_kprobe(kp); 2170 if (IS_ERR(p)) 2171 ret = PTR_ERR(p); 2172 2173 mutex_unlock(&kprobe_mutex); 2174 return ret; 2175 } 2176 EXPORT_SYMBOL_GPL(disable_kprobe); 2177 2178 /* Enable one kprobe */ 2179 int enable_kprobe(struct kprobe *kp) 2180 { 2181 int ret = 0; 2182 struct kprobe *p; 2183 2184 mutex_lock(&kprobe_mutex); 2185 2186 /* Check whether specified probe is valid. */ 2187 p = __get_valid_kprobe(kp); 2188 if (unlikely(p == NULL)) { 2189 ret = -EINVAL; 2190 goto out; 2191 } 2192 2193 if (kprobe_gone(kp)) { 2194 /* This kprobe has gone, we couldn't enable it. */ 2195 ret = -EINVAL; 2196 goto out; 2197 } 2198 2199 if (p != kp) 2200 kp->flags &= ~KPROBE_FLAG_DISABLED; 2201 2202 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2203 p->flags &= ~KPROBE_FLAG_DISABLED; 2204 ret = arm_kprobe(p); 2205 if (ret) 2206 p->flags |= KPROBE_FLAG_DISABLED; 2207 } 2208 out: 2209 mutex_unlock(&kprobe_mutex); 2210 return ret; 2211 } 2212 EXPORT_SYMBOL_GPL(enable_kprobe); 2213 2214 /* Caller must NOT call this in usual path. This is only for critical case */ 2215 void dump_kprobe(struct kprobe *kp) 2216 { 2217 pr_err("Dumping kprobe:\n"); 2218 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n", 2219 kp->symbol_name, kp->offset, kp->addr); 2220 } 2221 NOKPROBE_SYMBOL(dump_kprobe); 2222 2223 int kprobe_add_ksym_blacklist(unsigned long entry) 2224 { 2225 struct kprobe_blacklist_entry *ent; 2226 unsigned long offset = 0, size = 0; 2227 2228 if (!kernel_text_address(entry) || 2229 !kallsyms_lookup_size_offset(entry, &size, &offset)) 2230 return -EINVAL; 2231 2232 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2233 if (!ent) 2234 return -ENOMEM; 2235 ent->start_addr = entry; 2236 ent->end_addr = entry + size; 2237 INIT_LIST_HEAD(&ent->list); 2238 list_add_tail(&ent->list, &kprobe_blacklist); 2239 2240 return (int)size; 2241 } 2242 2243 /* Add all symbols in given area into kprobe blacklist */ 2244 int kprobe_add_area_blacklist(unsigned long start, unsigned long end) 2245 { 2246 unsigned long entry; 2247 int ret = 0; 2248 2249 for (entry = start; entry < end; entry += ret) { 2250 ret = kprobe_add_ksym_blacklist(entry); 2251 if (ret < 0) 2252 return ret; 2253 if (ret == 0) /* In case of alias symbol */ 2254 ret = 1; 2255 } 2256 return 0; 2257 } 2258 2259 /* Remove all symbols in given area from kprobe blacklist */ 2260 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end) 2261 { 2262 struct kprobe_blacklist_entry *ent, *n; 2263 2264 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) { 2265 if (ent->start_addr < start || ent->start_addr >= end) 2266 continue; 2267 list_del(&ent->list); 2268 kfree(ent); 2269 } 2270 } 2271 2272 static void kprobe_remove_ksym_blacklist(unsigned long entry) 2273 { 2274 kprobe_remove_area_blacklist(entry, entry + 1); 2275 } 2276 2277 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value, 2278 char *type, char *sym) 2279 { 2280 return -ERANGE; 2281 } 2282 2283 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 2284 char *sym) 2285 { 2286 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 2287 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym)) 2288 return 0; 2289 #ifdef CONFIG_OPTPROBES 2290 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym)) 2291 return 0; 2292 #endif 2293 #endif 2294 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym)) 2295 return 0; 2296 return -ERANGE; 2297 } 2298 2299 int __init __weak arch_populate_kprobe_blacklist(void) 2300 { 2301 return 0; 2302 } 2303 2304 /* 2305 * Lookup and populate the kprobe_blacklist. 2306 * 2307 * Unlike the kretprobe blacklist, we'll need to determine 2308 * the range of addresses that belong to the said functions, 2309 * since a kprobe need not necessarily be at the beginning 2310 * of a function. 2311 */ 2312 static int __init populate_kprobe_blacklist(unsigned long *start, 2313 unsigned long *end) 2314 { 2315 unsigned long entry; 2316 unsigned long *iter; 2317 int ret; 2318 2319 for (iter = start; iter < end; iter++) { 2320 entry = arch_deref_entry_point((void *)*iter); 2321 ret = kprobe_add_ksym_blacklist(entry); 2322 if (ret == -EINVAL) 2323 continue; 2324 if (ret < 0) 2325 return ret; 2326 } 2327 2328 /* Symbols in __kprobes_text are blacklisted */ 2329 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start, 2330 (unsigned long)__kprobes_text_end); 2331 if (ret) 2332 return ret; 2333 2334 /* Symbols in noinstr section are blacklisted */ 2335 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start, 2336 (unsigned long)__noinstr_text_end); 2337 2338 return ret ? : arch_populate_kprobe_blacklist(); 2339 } 2340 2341 static void add_module_kprobe_blacklist(struct module *mod) 2342 { 2343 unsigned long start, end; 2344 int i; 2345 2346 if (mod->kprobe_blacklist) { 2347 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2348 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]); 2349 } 2350 2351 start = (unsigned long)mod->kprobes_text_start; 2352 if (start) { 2353 end = start + mod->kprobes_text_size; 2354 kprobe_add_area_blacklist(start, end); 2355 } 2356 2357 start = (unsigned long)mod->noinstr_text_start; 2358 if (start) { 2359 end = start + mod->noinstr_text_size; 2360 kprobe_add_area_blacklist(start, end); 2361 } 2362 } 2363 2364 static void remove_module_kprobe_blacklist(struct module *mod) 2365 { 2366 unsigned long start, end; 2367 int i; 2368 2369 if (mod->kprobe_blacklist) { 2370 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2371 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]); 2372 } 2373 2374 start = (unsigned long)mod->kprobes_text_start; 2375 if (start) { 2376 end = start + mod->kprobes_text_size; 2377 kprobe_remove_area_blacklist(start, end); 2378 } 2379 2380 start = (unsigned long)mod->noinstr_text_start; 2381 if (start) { 2382 end = start + mod->noinstr_text_size; 2383 kprobe_remove_area_blacklist(start, end); 2384 } 2385 } 2386 2387 /* Module notifier call back, checking kprobes on the module */ 2388 static int kprobes_module_callback(struct notifier_block *nb, 2389 unsigned long val, void *data) 2390 { 2391 struct module *mod = data; 2392 struct hlist_head *head; 2393 struct kprobe *p; 2394 unsigned int i; 2395 int checkcore = (val == MODULE_STATE_GOING); 2396 2397 if (val == MODULE_STATE_COMING) { 2398 mutex_lock(&kprobe_mutex); 2399 add_module_kprobe_blacklist(mod); 2400 mutex_unlock(&kprobe_mutex); 2401 } 2402 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2403 return NOTIFY_DONE; 2404 2405 /* 2406 * When MODULE_STATE_GOING was notified, both of module .text and 2407 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2408 * notified, only .init.text section would be freed. We need to 2409 * disable kprobes which have been inserted in the sections. 2410 */ 2411 mutex_lock(&kprobe_mutex); 2412 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2413 head = &kprobe_table[i]; 2414 hlist_for_each_entry(p, head, hlist) 2415 if (within_module_init((unsigned long)p->addr, mod) || 2416 (checkcore && 2417 within_module_core((unsigned long)p->addr, mod))) { 2418 /* 2419 * The vaddr this probe is installed will soon 2420 * be vfreed buy not synced to disk. Hence, 2421 * disarming the breakpoint isn't needed. 2422 * 2423 * Note, this will also move any optimized probes 2424 * that are pending to be removed from their 2425 * corresponding lists to the freeing_list and 2426 * will not be touched by the delayed 2427 * kprobe_optimizer work handler. 2428 */ 2429 kill_kprobe(p); 2430 } 2431 } 2432 if (val == MODULE_STATE_GOING) 2433 remove_module_kprobe_blacklist(mod); 2434 mutex_unlock(&kprobe_mutex); 2435 return NOTIFY_DONE; 2436 } 2437 2438 static struct notifier_block kprobe_module_nb = { 2439 .notifier_call = kprobes_module_callback, 2440 .priority = 0 2441 }; 2442 2443 /* Markers of _kprobe_blacklist section */ 2444 extern unsigned long __start_kprobe_blacklist[]; 2445 extern unsigned long __stop_kprobe_blacklist[]; 2446 2447 void kprobe_free_init_mem(void) 2448 { 2449 void *start = (void *)(&__init_begin); 2450 void *end = (void *)(&__init_end); 2451 struct hlist_head *head; 2452 struct kprobe *p; 2453 int i; 2454 2455 mutex_lock(&kprobe_mutex); 2456 2457 /* Kill all kprobes on initmem */ 2458 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2459 head = &kprobe_table[i]; 2460 hlist_for_each_entry(p, head, hlist) { 2461 if (start <= (void *)p->addr && (void *)p->addr < end) 2462 kill_kprobe(p); 2463 } 2464 } 2465 2466 mutex_unlock(&kprobe_mutex); 2467 } 2468 2469 static int __init init_kprobes(void) 2470 { 2471 int i, err = 0; 2472 2473 /* FIXME allocate the probe table, currently defined statically */ 2474 /* initialize all list heads */ 2475 for (i = 0; i < KPROBE_TABLE_SIZE; i++) 2476 INIT_HLIST_HEAD(&kprobe_table[i]); 2477 2478 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2479 __stop_kprobe_blacklist); 2480 if (err) { 2481 pr_err("kprobes: failed to populate blacklist: %d\n", err); 2482 pr_err("Please take care of using kprobes.\n"); 2483 } 2484 2485 if (kretprobe_blacklist_size) { 2486 /* lookup the function address from its name */ 2487 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2488 kretprobe_blacklist[i].addr = 2489 kprobe_lookup_name(kretprobe_blacklist[i].name, 0); 2490 if (!kretprobe_blacklist[i].addr) 2491 printk("kretprobe: lookup failed: %s\n", 2492 kretprobe_blacklist[i].name); 2493 } 2494 } 2495 2496 /* By default, kprobes are armed */ 2497 kprobes_all_disarmed = false; 2498 2499 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2500 /* Init kprobe_optinsn_slots for allocation */ 2501 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2502 #endif 2503 2504 err = arch_init_kprobes(); 2505 if (!err) 2506 err = register_die_notifier(&kprobe_exceptions_nb); 2507 if (!err) 2508 err = register_module_notifier(&kprobe_module_nb); 2509 2510 kprobes_initialized = (err == 0); 2511 2512 if (!err) 2513 init_test_probes(); 2514 return err; 2515 } 2516 early_initcall(init_kprobes); 2517 2518 #if defined(CONFIG_OPTPROBES) 2519 static int __init init_optprobes(void) 2520 { 2521 /* 2522 * Enable kprobe optimization - this kicks the optimizer which 2523 * depends on synchronize_rcu_tasks() and ksoftirqd, that is 2524 * not spawned in early initcall. So delay the optimization. 2525 */ 2526 optimize_all_kprobes(); 2527 2528 return 0; 2529 } 2530 subsys_initcall(init_optprobes); 2531 #endif 2532 2533 #ifdef CONFIG_DEBUG_FS 2534 static void report_probe(struct seq_file *pi, struct kprobe *p, 2535 const char *sym, int offset, char *modname, struct kprobe *pp) 2536 { 2537 char *kprobe_type; 2538 void *addr = p->addr; 2539 2540 if (p->pre_handler == pre_handler_kretprobe) 2541 kprobe_type = "r"; 2542 else 2543 kprobe_type = "k"; 2544 2545 if (!kallsyms_show_value(pi->file->f_cred)) 2546 addr = NULL; 2547 2548 if (sym) 2549 seq_printf(pi, "%px %s %s+0x%x %s ", 2550 addr, kprobe_type, sym, offset, 2551 (modname ? modname : " ")); 2552 else /* try to use %pS */ 2553 seq_printf(pi, "%px %s %pS ", 2554 addr, kprobe_type, p->addr); 2555 2556 if (!pp) 2557 pp = p; 2558 seq_printf(pi, "%s%s%s%s\n", 2559 (kprobe_gone(p) ? "[GONE]" : ""), 2560 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2561 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2562 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2563 } 2564 2565 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2566 { 2567 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2568 } 2569 2570 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2571 { 2572 (*pos)++; 2573 if (*pos >= KPROBE_TABLE_SIZE) 2574 return NULL; 2575 return pos; 2576 } 2577 2578 static void kprobe_seq_stop(struct seq_file *f, void *v) 2579 { 2580 /* Nothing to do */ 2581 } 2582 2583 static int show_kprobe_addr(struct seq_file *pi, void *v) 2584 { 2585 struct hlist_head *head; 2586 struct kprobe *p, *kp; 2587 const char *sym = NULL; 2588 unsigned int i = *(loff_t *) v; 2589 unsigned long offset = 0; 2590 char *modname, namebuf[KSYM_NAME_LEN]; 2591 2592 head = &kprobe_table[i]; 2593 preempt_disable(); 2594 hlist_for_each_entry_rcu(p, head, hlist) { 2595 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2596 &offset, &modname, namebuf); 2597 if (kprobe_aggrprobe(p)) { 2598 list_for_each_entry_rcu(kp, &p->list, list) 2599 report_probe(pi, kp, sym, offset, modname, p); 2600 } else 2601 report_probe(pi, p, sym, offset, modname, NULL); 2602 } 2603 preempt_enable(); 2604 return 0; 2605 } 2606 2607 static const struct seq_operations kprobes_sops = { 2608 .start = kprobe_seq_start, 2609 .next = kprobe_seq_next, 2610 .stop = kprobe_seq_stop, 2611 .show = show_kprobe_addr 2612 }; 2613 2614 DEFINE_SEQ_ATTRIBUTE(kprobes); 2615 2616 /* kprobes/blacklist -- shows which functions can not be probed */ 2617 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2618 { 2619 mutex_lock(&kprobe_mutex); 2620 return seq_list_start(&kprobe_blacklist, *pos); 2621 } 2622 2623 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2624 { 2625 return seq_list_next(v, &kprobe_blacklist, pos); 2626 } 2627 2628 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2629 { 2630 struct kprobe_blacklist_entry *ent = 2631 list_entry(v, struct kprobe_blacklist_entry, list); 2632 2633 /* 2634 * If /proc/kallsyms is not showing kernel address, we won't 2635 * show them here either. 2636 */ 2637 if (!kallsyms_show_value(m->file->f_cred)) 2638 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL, 2639 (void *)ent->start_addr); 2640 else 2641 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr, 2642 (void *)ent->end_addr, (void *)ent->start_addr); 2643 return 0; 2644 } 2645 2646 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v) 2647 { 2648 mutex_unlock(&kprobe_mutex); 2649 } 2650 2651 static const struct seq_operations kprobe_blacklist_sops = { 2652 .start = kprobe_blacklist_seq_start, 2653 .next = kprobe_blacklist_seq_next, 2654 .stop = kprobe_blacklist_seq_stop, 2655 .show = kprobe_blacklist_seq_show, 2656 }; 2657 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist); 2658 2659 static int arm_all_kprobes(void) 2660 { 2661 struct hlist_head *head; 2662 struct kprobe *p; 2663 unsigned int i, total = 0, errors = 0; 2664 int err, ret = 0; 2665 2666 mutex_lock(&kprobe_mutex); 2667 2668 /* If kprobes are armed, just return */ 2669 if (!kprobes_all_disarmed) 2670 goto already_enabled; 2671 2672 /* 2673 * optimize_kprobe() called by arm_kprobe() checks 2674 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2675 * arm_kprobe. 2676 */ 2677 kprobes_all_disarmed = false; 2678 /* Arming kprobes doesn't optimize kprobe itself */ 2679 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2680 head = &kprobe_table[i]; 2681 /* Arm all kprobes on a best-effort basis */ 2682 hlist_for_each_entry(p, head, hlist) { 2683 if (!kprobe_disabled(p)) { 2684 err = arm_kprobe(p); 2685 if (err) { 2686 errors++; 2687 ret = err; 2688 } 2689 total++; 2690 } 2691 } 2692 } 2693 2694 if (errors) 2695 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n", 2696 errors, total); 2697 else 2698 pr_info("Kprobes globally enabled\n"); 2699 2700 already_enabled: 2701 mutex_unlock(&kprobe_mutex); 2702 return ret; 2703 } 2704 2705 static int disarm_all_kprobes(void) 2706 { 2707 struct hlist_head *head; 2708 struct kprobe *p; 2709 unsigned int i, total = 0, errors = 0; 2710 int err, ret = 0; 2711 2712 mutex_lock(&kprobe_mutex); 2713 2714 /* If kprobes are already disarmed, just return */ 2715 if (kprobes_all_disarmed) { 2716 mutex_unlock(&kprobe_mutex); 2717 return 0; 2718 } 2719 2720 kprobes_all_disarmed = true; 2721 2722 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2723 head = &kprobe_table[i]; 2724 /* Disarm all kprobes on a best-effort basis */ 2725 hlist_for_each_entry(p, head, hlist) { 2726 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { 2727 err = disarm_kprobe(p, false); 2728 if (err) { 2729 errors++; 2730 ret = err; 2731 } 2732 total++; 2733 } 2734 } 2735 } 2736 2737 if (errors) 2738 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n", 2739 errors, total); 2740 else 2741 pr_info("Kprobes globally disabled\n"); 2742 2743 mutex_unlock(&kprobe_mutex); 2744 2745 /* Wait for disarming all kprobes by optimizer */ 2746 wait_for_kprobe_optimizer(); 2747 2748 return ret; 2749 } 2750 2751 /* 2752 * XXX: The debugfs bool file interface doesn't allow for callbacks 2753 * when the bool state is switched. We can reuse that facility when 2754 * available 2755 */ 2756 static ssize_t read_enabled_file_bool(struct file *file, 2757 char __user *user_buf, size_t count, loff_t *ppos) 2758 { 2759 char buf[3]; 2760 2761 if (!kprobes_all_disarmed) 2762 buf[0] = '1'; 2763 else 2764 buf[0] = '0'; 2765 buf[1] = '\n'; 2766 buf[2] = 0x00; 2767 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2768 } 2769 2770 static ssize_t write_enabled_file_bool(struct file *file, 2771 const char __user *user_buf, size_t count, loff_t *ppos) 2772 { 2773 char buf[32]; 2774 size_t buf_size; 2775 int ret = 0; 2776 2777 buf_size = min(count, (sizeof(buf)-1)); 2778 if (copy_from_user(buf, user_buf, buf_size)) 2779 return -EFAULT; 2780 2781 buf[buf_size] = '\0'; 2782 switch (buf[0]) { 2783 case 'y': 2784 case 'Y': 2785 case '1': 2786 ret = arm_all_kprobes(); 2787 break; 2788 case 'n': 2789 case 'N': 2790 case '0': 2791 ret = disarm_all_kprobes(); 2792 break; 2793 default: 2794 return -EINVAL; 2795 } 2796 2797 if (ret) 2798 return ret; 2799 2800 return count; 2801 } 2802 2803 static const struct file_operations fops_kp = { 2804 .read = read_enabled_file_bool, 2805 .write = write_enabled_file_bool, 2806 .llseek = default_llseek, 2807 }; 2808 2809 static int __init debugfs_kprobe_init(void) 2810 { 2811 struct dentry *dir; 2812 unsigned int value = 1; 2813 2814 dir = debugfs_create_dir("kprobes", NULL); 2815 2816 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops); 2817 2818 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp); 2819 2820 debugfs_create_file("blacklist", 0400, dir, NULL, 2821 &kprobe_blacklist_fops); 2822 2823 return 0; 2824 } 2825 2826 late_initcall(debugfs_kprobe_init); 2827 #endif /* CONFIG_DEBUG_FS */ 2828