xref: /openbmc/linux/kernel/kprobes.c (revision e3d786a3)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51 
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56 
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 
60 
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64 
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67 
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74 
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 					unsigned int __unused)
77 {
78 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80 
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83 	return &(kretprobe_table_locks[hash].lock);
84 }
85 
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88 
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91  * kprobe->ainsn.insn points to the copy of the instruction to be
92  * single-stepped. x86_64, POWER4 and above have no-exec support and
93  * stepping on the instruction on a vmalloced/kmalloced/data page
94  * is a recipe for disaster
95  */
96 struct kprobe_insn_page {
97 	struct list_head list;
98 	kprobe_opcode_t *insns;		/* Page of instruction slots */
99 	struct kprobe_insn_cache *cache;
100 	int nused;
101 	int ngarbage;
102 	char slot_used[];
103 };
104 
105 #define KPROBE_INSN_PAGE_SIZE(slots)			\
106 	(offsetof(struct kprobe_insn_page, slot_used) +	\
107 	 (sizeof(char) * (slots)))
108 
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113 
114 enum kprobe_slot_state {
115 	SLOT_CLEAN = 0,
116 	SLOT_DIRTY = 1,
117 	SLOT_USED = 2,
118 };
119 
120 void __weak *alloc_insn_page(void)
121 {
122 	return module_alloc(PAGE_SIZE);
123 }
124 
125 void __weak free_insn_page(void *page)
126 {
127 	module_memfree(page);
128 }
129 
130 struct kprobe_insn_cache kprobe_insn_slots = {
131 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 	.alloc = alloc_insn_page,
133 	.free = free_insn_page,
134 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 	.insn_size = MAX_INSN_SIZE,
136 	.nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139 
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146 	struct kprobe_insn_page *kip;
147 	kprobe_opcode_t *slot = NULL;
148 
149 	/* Since the slot array is not protected by rcu, we need a mutex */
150 	mutex_lock(&c->mutex);
151  retry:
152 	rcu_read_lock();
153 	list_for_each_entry_rcu(kip, &c->pages, list) {
154 		if (kip->nused < slots_per_page(c)) {
155 			int i;
156 			for (i = 0; i < slots_per_page(c); i++) {
157 				if (kip->slot_used[i] == SLOT_CLEAN) {
158 					kip->slot_used[i] = SLOT_USED;
159 					kip->nused++;
160 					slot = kip->insns + (i * c->insn_size);
161 					rcu_read_unlock();
162 					goto out;
163 				}
164 			}
165 			/* kip->nused is broken. Fix it. */
166 			kip->nused = slots_per_page(c);
167 			WARN_ON(1);
168 		}
169 	}
170 	rcu_read_unlock();
171 
172 	/* If there are any garbage slots, collect it and try again. */
173 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 		goto retry;
175 
176 	/* All out of space.  Need to allocate a new page. */
177 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 	if (!kip)
179 		goto out;
180 
181 	/*
182 	 * Use module_alloc so this page is within +/- 2GB of where the
183 	 * kernel image and loaded module images reside. This is required
184 	 * so x86_64 can correctly handle the %rip-relative fixups.
185 	 */
186 	kip->insns = c->alloc();
187 	if (!kip->insns) {
188 		kfree(kip);
189 		goto out;
190 	}
191 	INIT_LIST_HEAD(&kip->list);
192 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 	kip->slot_used[0] = SLOT_USED;
194 	kip->nused = 1;
195 	kip->ngarbage = 0;
196 	kip->cache = c;
197 	list_add_rcu(&kip->list, &c->pages);
198 	slot = kip->insns;
199 out:
200 	mutex_unlock(&c->mutex);
201 	return slot;
202 }
203 
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207 	kip->slot_used[idx] = SLOT_CLEAN;
208 	kip->nused--;
209 	if (kip->nused == 0) {
210 		/*
211 		 * Page is no longer in use.  Free it unless
212 		 * it's the last one.  We keep the last one
213 		 * so as not to have to set it up again the
214 		 * next time somebody inserts a probe.
215 		 */
216 		if (!list_is_singular(&kip->list)) {
217 			list_del_rcu(&kip->list);
218 			synchronize_rcu();
219 			kip->cache->free(kip->insns);
220 			kfree(kip);
221 		}
222 		return 1;
223 	}
224 	return 0;
225 }
226 
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229 	struct kprobe_insn_page *kip, *next;
230 
231 	/* Ensure no-one is interrupted on the garbages */
232 	synchronize_sched();
233 
234 	list_for_each_entry_safe(kip, next, &c->pages, list) {
235 		int i;
236 		if (kip->ngarbage == 0)
237 			continue;
238 		kip->ngarbage = 0;	/* we will collect all garbages */
239 		for (i = 0; i < slots_per_page(c); i++) {
240 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 				break;
242 		}
243 	}
244 	c->nr_garbage = 0;
245 	return 0;
246 }
247 
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249 		      kprobe_opcode_t *slot, int dirty)
250 {
251 	struct kprobe_insn_page *kip;
252 	long idx;
253 
254 	mutex_lock(&c->mutex);
255 	rcu_read_lock();
256 	list_for_each_entry_rcu(kip, &c->pages, list) {
257 		idx = ((long)slot - (long)kip->insns) /
258 			(c->insn_size * sizeof(kprobe_opcode_t));
259 		if (idx >= 0 && idx < slots_per_page(c))
260 			goto out;
261 	}
262 	/* Could not find this slot. */
263 	WARN_ON(1);
264 	kip = NULL;
265 out:
266 	rcu_read_unlock();
267 	/* Mark and sweep: this may sleep */
268 	if (kip) {
269 		/* Check double free */
270 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 		if (dirty) {
272 			kip->slot_used[idx] = SLOT_DIRTY;
273 			kip->ngarbage++;
274 			if (++c->nr_garbage > slots_per_page(c))
275 				collect_garbage_slots(c);
276 		} else {
277 			collect_one_slot(kip, idx);
278 		}
279 	}
280 	mutex_unlock(&c->mutex);
281 }
282 
283 /*
284  * Check given address is on the page of kprobe instruction slots.
285  * This will be used for checking whether the address on a stack
286  * is on a text area or not.
287  */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290 	struct kprobe_insn_page *kip;
291 	bool ret = false;
292 
293 	rcu_read_lock();
294 	list_for_each_entry_rcu(kip, &c->pages, list) {
295 		if (addr >= (unsigned long)kip->insns &&
296 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 			ret = true;
298 			break;
299 		}
300 	}
301 	rcu_read_unlock();
302 
303 	return ret;
304 }
305 
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 	.alloc = alloc_insn_page,
311 	.free = free_insn_page,
312 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 	/* .insn_size is initialized later */
314 	.nr_garbage = 0,
315 };
316 #endif
317 #endif
318 
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322 	__this_cpu_write(kprobe_instance, kp);
323 }
324 
325 static inline void reset_kprobe_instance(void)
326 {
327 	__this_cpu_write(kprobe_instance, NULL);
328 }
329 
330 /*
331  * This routine is called either:
332  * 	- under the kprobe_mutex - during kprobe_[un]register()
333  * 				OR
334  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
335  */
336 struct kprobe *get_kprobe(void *addr)
337 {
338 	struct hlist_head *head;
339 	struct kprobe *p;
340 
341 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 	hlist_for_each_entry_rcu(p, head, hlist) {
343 		if (p->addr == addr)
344 			return p;
345 	}
346 
347 	return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350 
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352 
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356 	return p->pre_handler == aggr_pre_handler;
357 }
358 
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 	       list_empty(&p->list);
364 }
365 
366 /*
367  * Keep all fields in the kprobe consistent
368  */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374 
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378 
379 /*
380  * Call all pre_handler on the list, but ignores its return value.
381  * This must be called from arch-dep optimized caller.
382  */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385 	struct kprobe *kp;
386 
387 	list_for_each_entry_rcu(kp, &p->list, list) {
388 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 			set_kprobe_instance(kp);
390 			kp->pre_handler(kp, regs);
391 		}
392 		reset_kprobe_instance();
393 	}
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396 
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400 	struct optimized_kprobe *op;
401 
402 	op = container_of(p, struct optimized_kprobe, kp);
403 	arch_remove_optimized_kprobe(op);
404 	arch_remove_kprobe(p);
405 	kfree(op);
406 }
407 
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411 	struct optimized_kprobe *op;
412 
413 	if (kprobe_aggrprobe(p)) {
414 		op = container_of(p, struct optimized_kprobe, kp);
415 		return arch_prepared_optinsn(&op->optinsn);
416 	}
417 
418 	return 0;
419 }
420 
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424 	struct optimized_kprobe *op;
425 
426 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 	if (!kprobe_aggrprobe(p))
428 		return kprobe_disabled(p);
429 
430 	op = container_of(p, struct optimized_kprobe, kp);
431 
432 	return kprobe_disabled(p) && list_empty(&op->list);
433 }
434 
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438 	struct optimized_kprobe *op;
439 
440 	if (kprobe_aggrprobe(p)) {
441 		op = container_of(p, struct optimized_kprobe, kp);
442 		if (!list_empty(&op->list))
443 			return 1;
444 	}
445 	return 0;
446 }
447 
448 /*
449  * Return an optimized kprobe whose optimizing code replaces
450  * instructions including addr (exclude breakpoint).
451  */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454 	int i;
455 	struct kprobe *p = NULL;
456 	struct optimized_kprobe *op;
457 
458 	/* Don't check i == 0, since that is a breakpoint case. */
459 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 		p = get_kprobe((void *)(addr - i));
461 
462 	if (p && kprobe_optready(p)) {
463 		op = container_of(p, struct optimized_kprobe, kp);
464 		if (arch_within_optimized_kprobe(op, addr))
465 			return p;
466 	}
467 
468 	return NULL;
469 }
470 
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475 
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479 
480 /*
481  * Optimize (replace a breakpoint with a jump) kprobes listed on
482  * optimizing_list.
483  */
484 static void do_optimize_kprobes(void)
485 {
486 	/*
487 	 * The optimization/unoptimization refers online_cpus via
488 	 * stop_machine() and cpu-hotplug modifies online_cpus.
489 	 * And same time, text_mutex will be held in cpu-hotplug and here.
490 	 * This combination can cause a deadlock (cpu-hotplug try to lock
491 	 * text_mutex but stop_machine can not be done because online_cpus
492 	 * has been changed)
493 	 * To avoid this deadlock, caller must have locked cpu hotplug
494 	 * for preventing cpu-hotplug outside of text_mutex locking.
495 	 */
496 	lockdep_assert_cpus_held();
497 
498 	/* Optimization never be done when disarmed */
499 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
500 	    list_empty(&optimizing_list))
501 		return;
502 
503 	mutex_lock(&text_mutex);
504 	arch_optimize_kprobes(&optimizing_list);
505 	mutex_unlock(&text_mutex);
506 }
507 
508 /*
509  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510  * if need) kprobes listed on unoptimizing_list.
511  */
512 static void do_unoptimize_kprobes(void)
513 {
514 	struct optimized_kprobe *op, *tmp;
515 
516 	/* See comment in do_optimize_kprobes() */
517 	lockdep_assert_cpus_held();
518 
519 	/* Unoptimization must be done anytime */
520 	if (list_empty(&unoptimizing_list))
521 		return;
522 
523 	mutex_lock(&text_mutex);
524 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
525 	/* Loop free_list for disarming */
526 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
527 		/* Disarm probes if marked disabled */
528 		if (kprobe_disabled(&op->kp))
529 			arch_disarm_kprobe(&op->kp);
530 		if (kprobe_unused(&op->kp)) {
531 			/*
532 			 * Remove unused probes from hash list. After waiting
533 			 * for synchronization, these probes are reclaimed.
534 			 * (reclaiming is done by do_free_cleaned_kprobes.)
535 			 */
536 			hlist_del_rcu(&op->kp.hlist);
537 		} else
538 			list_del_init(&op->list);
539 	}
540 	mutex_unlock(&text_mutex);
541 }
542 
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546 	struct optimized_kprobe *op, *tmp;
547 
548 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 		list_del_init(&op->list);
550 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
551 			/*
552 			 * This must not happen, but if there is a kprobe
553 			 * still in use, keep it on kprobes hash list.
554 			 */
555 			continue;
556 		}
557 		free_aggr_kprobe(&op->kp);
558 	}
559 }
560 
561 /* Start optimizer after OPTIMIZE_DELAY passed */
562 static void kick_kprobe_optimizer(void)
563 {
564 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
565 }
566 
567 /* Kprobe jump optimizer */
568 static void kprobe_optimizer(struct work_struct *work)
569 {
570 	mutex_lock(&kprobe_mutex);
571 	cpus_read_lock();
572 	/* Lock modules while optimizing kprobes */
573 	mutex_lock(&module_mutex);
574 
575 	/*
576 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
577 	 * kprobes before waiting for quiesence period.
578 	 */
579 	do_unoptimize_kprobes();
580 
581 	/*
582 	 * Step 2: Wait for quiesence period to ensure all potentially
583 	 * preempted tasks to have normally scheduled. Because optprobe
584 	 * may modify multiple instructions, there is a chance that Nth
585 	 * instruction is preempted. In that case, such tasks can return
586 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
587 	 * Note that on non-preemptive kernel, this is transparently converted
588 	 * to synchronoze_sched() to wait for all interrupts to have completed.
589 	 */
590 	synchronize_rcu_tasks();
591 
592 	/* Step 3: Optimize kprobes after quiesence period */
593 	do_optimize_kprobes();
594 
595 	/* Step 4: Free cleaned kprobes after quiesence period */
596 	do_free_cleaned_kprobes();
597 
598 	mutex_unlock(&module_mutex);
599 	cpus_read_unlock();
600 	mutex_unlock(&kprobe_mutex);
601 
602 	/* Step 5: Kick optimizer again if needed */
603 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
604 		kick_kprobe_optimizer();
605 }
606 
607 /* Wait for completing optimization and unoptimization */
608 void wait_for_kprobe_optimizer(void)
609 {
610 	mutex_lock(&kprobe_mutex);
611 
612 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
613 		mutex_unlock(&kprobe_mutex);
614 
615 		/* this will also make optimizing_work execute immmediately */
616 		flush_delayed_work(&optimizing_work);
617 		/* @optimizing_work might not have been queued yet, relax */
618 		cpu_relax();
619 
620 		mutex_lock(&kprobe_mutex);
621 	}
622 
623 	mutex_unlock(&kprobe_mutex);
624 }
625 
626 /* Optimize kprobe if p is ready to be optimized */
627 static void optimize_kprobe(struct kprobe *p)
628 {
629 	struct optimized_kprobe *op;
630 
631 	/* Check if the kprobe is disabled or not ready for optimization. */
632 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
633 	    (kprobe_disabled(p) || kprobes_all_disarmed))
634 		return;
635 
636 	/* kprobes with post_handler can not be optimized */
637 	if (p->post_handler)
638 		return;
639 
640 	op = container_of(p, struct optimized_kprobe, kp);
641 
642 	/* Check there is no other kprobes at the optimized instructions */
643 	if (arch_check_optimized_kprobe(op) < 0)
644 		return;
645 
646 	/* Check if it is already optimized. */
647 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
648 		return;
649 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
650 
651 	if (!list_empty(&op->list))
652 		/* This is under unoptimizing. Just dequeue the probe */
653 		list_del_init(&op->list);
654 	else {
655 		list_add(&op->list, &optimizing_list);
656 		kick_kprobe_optimizer();
657 	}
658 }
659 
660 /* Short cut to direct unoptimizing */
661 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
662 {
663 	lockdep_assert_cpus_held();
664 	arch_unoptimize_kprobe(op);
665 	if (kprobe_disabled(&op->kp))
666 		arch_disarm_kprobe(&op->kp);
667 }
668 
669 /* Unoptimize a kprobe if p is optimized */
670 static void unoptimize_kprobe(struct kprobe *p, bool force)
671 {
672 	struct optimized_kprobe *op;
673 
674 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
675 		return; /* This is not an optprobe nor optimized */
676 
677 	op = container_of(p, struct optimized_kprobe, kp);
678 	if (!kprobe_optimized(p)) {
679 		/* Unoptimized or unoptimizing case */
680 		if (force && !list_empty(&op->list)) {
681 			/*
682 			 * Only if this is unoptimizing kprobe and forced,
683 			 * forcibly unoptimize it. (No need to unoptimize
684 			 * unoptimized kprobe again :)
685 			 */
686 			list_del_init(&op->list);
687 			force_unoptimize_kprobe(op);
688 		}
689 		return;
690 	}
691 
692 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
693 	if (!list_empty(&op->list)) {
694 		/* Dequeue from the optimization queue */
695 		list_del_init(&op->list);
696 		return;
697 	}
698 	/* Optimized kprobe case */
699 	if (force)
700 		/* Forcibly update the code: this is a special case */
701 		force_unoptimize_kprobe(op);
702 	else {
703 		list_add(&op->list, &unoptimizing_list);
704 		kick_kprobe_optimizer();
705 	}
706 }
707 
708 /* Cancel unoptimizing for reusing */
709 static int reuse_unused_kprobe(struct kprobe *ap)
710 {
711 	struct optimized_kprobe *op;
712 	int ret;
713 
714 	/*
715 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
716 	 * there is still a relative jump) and disabled.
717 	 */
718 	op = container_of(ap, struct optimized_kprobe, kp);
719 	WARN_ON_ONCE(list_empty(&op->list));
720 	/* Enable the probe again */
721 	ap->flags &= ~KPROBE_FLAG_DISABLED;
722 	/* Optimize it again (remove from op->list) */
723 	ret = kprobe_optready(ap);
724 	if (ret)
725 		return ret;
726 
727 	optimize_kprobe(ap);
728 	return 0;
729 }
730 
731 /* Remove optimized instructions */
732 static void kill_optimized_kprobe(struct kprobe *p)
733 {
734 	struct optimized_kprobe *op;
735 
736 	op = container_of(p, struct optimized_kprobe, kp);
737 	if (!list_empty(&op->list))
738 		/* Dequeue from the (un)optimization queue */
739 		list_del_init(&op->list);
740 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
741 
742 	if (kprobe_unused(p)) {
743 		/* Enqueue if it is unused */
744 		list_add(&op->list, &freeing_list);
745 		/*
746 		 * Remove unused probes from the hash list. After waiting
747 		 * for synchronization, this probe is reclaimed.
748 		 * (reclaiming is done by do_free_cleaned_kprobes().)
749 		 */
750 		hlist_del_rcu(&op->kp.hlist);
751 	}
752 
753 	/* Don't touch the code, because it is already freed. */
754 	arch_remove_optimized_kprobe(op);
755 }
756 
757 static inline
758 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
759 {
760 	if (!kprobe_ftrace(p))
761 		arch_prepare_optimized_kprobe(op, p);
762 }
763 
764 /* Try to prepare optimized instructions */
765 static void prepare_optimized_kprobe(struct kprobe *p)
766 {
767 	struct optimized_kprobe *op;
768 
769 	op = container_of(p, struct optimized_kprobe, kp);
770 	__prepare_optimized_kprobe(op, p);
771 }
772 
773 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
774 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
775 {
776 	struct optimized_kprobe *op;
777 
778 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
779 	if (!op)
780 		return NULL;
781 
782 	INIT_LIST_HEAD(&op->list);
783 	op->kp.addr = p->addr;
784 	__prepare_optimized_kprobe(op, p);
785 
786 	return &op->kp;
787 }
788 
789 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
790 
791 /*
792  * Prepare an optimized_kprobe and optimize it
793  * NOTE: p must be a normal registered kprobe
794  */
795 static void try_to_optimize_kprobe(struct kprobe *p)
796 {
797 	struct kprobe *ap;
798 	struct optimized_kprobe *op;
799 
800 	/* Impossible to optimize ftrace-based kprobe */
801 	if (kprobe_ftrace(p))
802 		return;
803 
804 	/* For preparing optimization, jump_label_text_reserved() is called */
805 	cpus_read_lock();
806 	jump_label_lock();
807 	mutex_lock(&text_mutex);
808 
809 	ap = alloc_aggr_kprobe(p);
810 	if (!ap)
811 		goto out;
812 
813 	op = container_of(ap, struct optimized_kprobe, kp);
814 	if (!arch_prepared_optinsn(&op->optinsn)) {
815 		/* If failed to setup optimizing, fallback to kprobe */
816 		arch_remove_optimized_kprobe(op);
817 		kfree(op);
818 		goto out;
819 	}
820 
821 	init_aggr_kprobe(ap, p);
822 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
823 
824 out:
825 	mutex_unlock(&text_mutex);
826 	jump_label_unlock();
827 	cpus_read_unlock();
828 }
829 
830 #ifdef CONFIG_SYSCTL
831 static void optimize_all_kprobes(void)
832 {
833 	struct hlist_head *head;
834 	struct kprobe *p;
835 	unsigned int i;
836 
837 	mutex_lock(&kprobe_mutex);
838 	/* If optimization is already allowed, just return */
839 	if (kprobes_allow_optimization)
840 		goto out;
841 
842 	cpus_read_lock();
843 	kprobes_allow_optimization = true;
844 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
845 		head = &kprobe_table[i];
846 		hlist_for_each_entry_rcu(p, head, hlist)
847 			if (!kprobe_disabled(p))
848 				optimize_kprobe(p);
849 	}
850 	cpus_read_unlock();
851 	printk(KERN_INFO "Kprobes globally optimized\n");
852 out:
853 	mutex_unlock(&kprobe_mutex);
854 }
855 
856 static void unoptimize_all_kprobes(void)
857 {
858 	struct hlist_head *head;
859 	struct kprobe *p;
860 	unsigned int i;
861 
862 	mutex_lock(&kprobe_mutex);
863 	/* If optimization is already prohibited, just return */
864 	if (!kprobes_allow_optimization) {
865 		mutex_unlock(&kprobe_mutex);
866 		return;
867 	}
868 
869 	cpus_read_lock();
870 	kprobes_allow_optimization = false;
871 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
872 		head = &kprobe_table[i];
873 		hlist_for_each_entry_rcu(p, head, hlist) {
874 			if (!kprobe_disabled(p))
875 				unoptimize_kprobe(p, false);
876 		}
877 	}
878 	cpus_read_unlock();
879 	mutex_unlock(&kprobe_mutex);
880 
881 	/* Wait for unoptimizing completion */
882 	wait_for_kprobe_optimizer();
883 	printk(KERN_INFO "Kprobes globally unoptimized\n");
884 }
885 
886 static DEFINE_MUTEX(kprobe_sysctl_mutex);
887 int sysctl_kprobes_optimization;
888 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
889 				      void __user *buffer, size_t *length,
890 				      loff_t *ppos)
891 {
892 	int ret;
893 
894 	mutex_lock(&kprobe_sysctl_mutex);
895 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
896 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
897 
898 	if (sysctl_kprobes_optimization)
899 		optimize_all_kprobes();
900 	else
901 		unoptimize_all_kprobes();
902 	mutex_unlock(&kprobe_sysctl_mutex);
903 
904 	return ret;
905 }
906 #endif /* CONFIG_SYSCTL */
907 
908 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
909 static void __arm_kprobe(struct kprobe *p)
910 {
911 	struct kprobe *_p;
912 
913 	/* Check collision with other optimized kprobes */
914 	_p = get_optimized_kprobe((unsigned long)p->addr);
915 	if (unlikely(_p))
916 		/* Fallback to unoptimized kprobe */
917 		unoptimize_kprobe(_p, true);
918 
919 	arch_arm_kprobe(p);
920 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
921 }
922 
923 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
924 static void __disarm_kprobe(struct kprobe *p, bool reopt)
925 {
926 	struct kprobe *_p;
927 
928 	/* Try to unoptimize */
929 	unoptimize_kprobe(p, kprobes_all_disarmed);
930 
931 	if (!kprobe_queued(p)) {
932 		arch_disarm_kprobe(p);
933 		/* If another kprobe was blocked, optimize it. */
934 		_p = get_optimized_kprobe((unsigned long)p->addr);
935 		if (unlikely(_p) && reopt)
936 			optimize_kprobe(_p);
937 	}
938 	/* TODO: reoptimize others after unoptimized this probe */
939 }
940 
941 #else /* !CONFIG_OPTPROBES */
942 
943 #define optimize_kprobe(p)			do {} while (0)
944 #define unoptimize_kprobe(p, f)			do {} while (0)
945 #define kill_optimized_kprobe(p)		do {} while (0)
946 #define prepare_optimized_kprobe(p)		do {} while (0)
947 #define try_to_optimize_kprobe(p)		do {} while (0)
948 #define __arm_kprobe(p)				arch_arm_kprobe(p)
949 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
950 #define kprobe_disarmed(p)			kprobe_disabled(p)
951 #define wait_for_kprobe_optimizer()		do {} while (0)
952 
953 static int reuse_unused_kprobe(struct kprobe *ap)
954 {
955 	/*
956 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
957 	 * released at the same time that the last aggregated kprobe is
958 	 * unregistered.
959 	 * Thus there should be no chance to reuse unused kprobe.
960 	 */
961 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
962 	return -EINVAL;
963 }
964 
965 static void free_aggr_kprobe(struct kprobe *p)
966 {
967 	arch_remove_kprobe(p);
968 	kfree(p);
969 }
970 
971 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
972 {
973 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
974 }
975 #endif /* CONFIG_OPTPROBES */
976 
977 #ifdef CONFIG_KPROBES_ON_FTRACE
978 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
979 	.func = kprobe_ftrace_handler,
980 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
981 };
982 static int kprobe_ftrace_enabled;
983 
984 /* Must ensure p->addr is really on ftrace */
985 static int prepare_kprobe(struct kprobe *p)
986 {
987 	if (!kprobe_ftrace(p))
988 		return arch_prepare_kprobe(p);
989 
990 	return arch_prepare_kprobe_ftrace(p);
991 }
992 
993 /* Caller must lock kprobe_mutex */
994 static int arm_kprobe_ftrace(struct kprobe *p)
995 {
996 	int ret = 0;
997 
998 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
999 				   (unsigned long)p->addr, 0, 0);
1000 	if (ret) {
1001 		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1002 			 p->addr, ret);
1003 		return ret;
1004 	}
1005 
1006 	if (kprobe_ftrace_enabled == 0) {
1007 		ret = register_ftrace_function(&kprobe_ftrace_ops);
1008 		if (ret) {
1009 			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1010 			goto err_ftrace;
1011 		}
1012 	}
1013 
1014 	kprobe_ftrace_enabled++;
1015 	return ret;
1016 
1017 err_ftrace:
1018 	/*
1019 	 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1020 	 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1021 	 * empty filter_hash which would undesirably trace all functions.
1022 	 */
1023 	ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1024 	return ret;
1025 }
1026 
1027 /* Caller must lock kprobe_mutex */
1028 static int disarm_kprobe_ftrace(struct kprobe *p)
1029 {
1030 	int ret = 0;
1031 
1032 	if (kprobe_ftrace_enabled == 1) {
1033 		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1034 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1035 			return ret;
1036 	}
1037 
1038 	kprobe_ftrace_enabled--;
1039 
1040 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1041 			   (unsigned long)p->addr, 1, 0);
1042 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1043 		  p->addr, ret);
1044 	return ret;
1045 }
1046 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1047 #define prepare_kprobe(p)	arch_prepare_kprobe(p)
1048 #define arm_kprobe_ftrace(p)	(-ENODEV)
1049 #define disarm_kprobe_ftrace(p)	(-ENODEV)
1050 #endif
1051 
1052 /* Arm a kprobe with text_mutex */
1053 static int arm_kprobe(struct kprobe *kp)
1054 {
1055 	if (unlikely(kprobe_ftrace(kp)))
1056 		return arm_kprobe_ftrace(kp);
1057 
1058 	cpus_read_lock();
1059 	mutex_lock(&text_mutex);
1060 	__arm_kprobe(kp);
1061 	mutex_unlock(&text_mutex);
1062 	cpus_read_unlock();
1063 
1064 	return 0;
1065 }
1066 
1067 /* Disarm a kprobe with text_mutex */
1068 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1069 {
1070 	if (unlikely(kprobe_ftrace(kp)))
1071 		return disarm_kprobe_ftrace(kp);
1072 
1073 	cpus_read_lock();
1074 	mutex_lock(&text_mutex);
1075 	__disarm_kprobe(kp, reopt);
1076 	mutex_unlock(&text_mutex);
1077 	cpus_read_unlock();
1078 
1079 	return 0;
1080 }
1081 
1082 /*
1083  * Aggregate handlers for multiple kprobes support - these handlers
1084  * take care of invoking the individual kprobe handlers on p->list
1085  */
1086 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1087 {
1088 	struct kprobe *kp;
1089 
1090 	list_for_each_entry_rcu(kp, &p->list, list) {
1091 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1092 			set_kprobe_instance(kp);
1093 			if (kp->pre_handler(kp, regs))
1094 				return 1;
1095 		}
1096 		reset_kprobe_instance();
1097 	}
1098 	return 0;
1099 }
1100 NOKPROBE_SYMBOL(aggr_pre_handler);
1101 
1102 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1103 			      unsigned long flags)
1104 {
1105 	struct kprobe *kp;
1106 
1107 	list_for_each_entry_rcu(kp, &p->list, list) {
1108 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1109 			set_kprobe_instance(kp);
1110 			kp->post_handler(kp, regs, flags);
1111 			reset_kprobe_instance();
1112 		}
1113 	}
1114 }
1115 NOKPROBE_SYMBOL(aggr_post_handler);
1116 
1117 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1118 			      int trapnr)
1119 {
1120 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1121 
1122 	/*
1123 	 * if we faulted "during" the execution of a user specified
1124 	 * probe handler, invoke just that probe's fault handler
1125 	 */
1126 	if (cur && cur->fault_handler) {
1127 		if (cur->fault_handler(cur, regs, trapnr))
1128 			return 1;
1129 	}
1130 	return 0;
1131 }
1132 NOKPROBE_SYMBOL(aggr_fault_handler);
1133 
1134 /* Walks the list and increments nmissed count for multiprobe case */
1135 void kprobes_inc_nmissed_count(struct kprobe *p)
1136 {
1137 	struct kprobe *kp;
1138 	if (!kprobe_aggrprobe(p)) {
1139 		p->nmissed++;
1140 	} else {
1141 		list_for_each_entry_rcu(kp, &p->list, list)
1142 			kp->nmissed++;
1143 	}
1144 	return;
1145 }
1146 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1147 
1148 void recycle_rp_inst(struct kretprobe_instance *ri,
1149 		     struct hlist_head *head)
1150 {
1151 	struct kretprobe *rp = ri->rp;
1152 
1153 	/* remove rp inst off the rprobe_inst_table */
1154 	hlist_del(&ri->hlist);
1155 	INIT_HLIST_NODE(&ri->hlist);
1156 	if (likely(rp)) {
1157 		raw_spin_lock(&rp->lock);
1158 		hlist_add_head(&ri->hlist, &rp->free_instances);
1159 		raw_spin_unlock(&rp->lock);
1160 	} else
1161 		/* Unregistering */
1162 		hlist_add_head(&ri->hlist, head);
1163 }
1164 NOKPROBE_SYMBOL(recycle_rp_inst);
1165 
1166 void kretprobe_hash_lock(struct task_struct *tsk,
1167 			 struct hlist_head **head, unsigned long *flags)
1168 __acquires(hlist_lock)
1169 {
1170 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1171 	raw_spinlock_t *hlist_lock;
1172 
1173 	*head = &kretprobe_inst_table[hash];
1174 	hlist_lock = kretprobe_table_lock_ptr(hash);
1175 	raw_spin_lock_irqsave(hlist_lock, *flags);
1176 }
1177 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1178 
1179 static void kretprobe_table_lock(unsigned long hash,
1180 				 unsigned long *flags)
1181 __acquires(hlist_lock)
1182 {
1183 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1184 	raw_spin_lock_irqsave(hlist_lock, *flags);
1185 }
1186 NOKPROBE_SYMBOL(kretprobe_table_lock);
1187 
1188 void kretprobe_hash_unlock(struct task_struct *tsk,
1189 			   unsigned long *flags)
1190 __releases(hlist_lock)
1191 {
1192 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1193 	raw_spinlock_t *hlist_lock;
1194 
1195 	hlist_lock = kretprobe_table_lock_ptr(hash);
1196 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1197 }
1198 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1199 
1200 static void kretprobe_table_unlock(unsigned long hash,
1201 				   unsigned long *flags)
1202 __releases(hlist_lock)
1203 {
1204 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1205 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1206 }
1207 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1208 
1209 /*
1210  * This function is called from finish_task_switch when task tk becomes dead,
1211  * so that we can recycle any function-return probe instances associated
1212  * with this task. These left over instances represent probed functions
1213  * that have been called but will never return.
1214  */
1215 void kprobe_flush_task(struct task_struct *tk)
1216 {
1217 	struct kretprobe_instance *ri;
1218 	struct hlist_head *head, empty_rp;
1219 	struct hlist_node *tmp;
1220 	unsigned long hash, flags = 0;
1221 
1222 	if (unlikely(!kprobes_initialized))
1223 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1224 		return;
1225 
1226 	INIT_HLIST_HEAD(&empty_rp);
1227 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1228 	head = &kretprobe_inst_table[hash];
1229 	kretprobe_table_lock(hash, &flags);
1230 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1231 		if (ri->task == tk)
1232 			recycle_rp_inst(ri, &empty_rp);
1233 	}
1234 	kretprobe_table_unlock(hash, &flags);
1235 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1236 		hlist_del(&ri->hlist);
1237 		kfree(ri);
1238 	}
1239 }
1240 NOKPROBE_SYMBOL(kprobe_flush_task);
1241 
1242 static inline void free_rp_inst(struct kretprobe *rp)
1243 {
1244 	struct kretprobe_instance *ri;
1245 	struct hlist_node *next;
1246 
1247 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1248 		hlist_del(&ri->hlist);
1249 		kfree(ri);
1250 	}
1251 }
1252 
1253 static void cleanup_rp_inst(struct kretprobe *rp)
1254 {
1255 	unsigned long flags, hash;
1256 	struct kretprobe_instance *ri;
1257 	struct hlist_node *next;
1258 	struct hlist_head *head;
1259 
1260 	/* No race here */
1261 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1262 		kretprobe_table_lock(hash, &flags);
1263 		head = &kretprobe_inst_table[hash];
1264 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1265 			if (ri->rp == rp)
1266 				ri->rp = NULL;
1267 		}
1268 		kretprobe_table_unlock(hash, &flags);
1269 	}
1270 	free_rp_inst(rp);
1271 }
1272 NOKPROBE_SYMBOL(cleanup_rp_inst);
1273 
1274 /* Add the new probe to ap->list */
1275 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1276 {
1277 	if (p->post_handler)
1278 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1279 
1280 	list_add_rcu(&p->list, &ap->list);
1281 	if (p->post_handler && !ap->post_handler)
1282 		ap->post_handler = aggr_post_handler;
1283 
1284 	return 0;
1285 }
1286 
1287 /*
1288  * Fill in the required fields of the "manager kprobe". Replace the
1289  * earlier kprobe in the hlist with the manager kprobe
1290  */
1291 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1292 {
1293 	/* Copy p's insn slot to ap */
1294 	copy_kprobe(p, ap);
1295 	flush_insn_slot(ap);
1296 	ap->addr = p->addr;
1297 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1298 	ap->pre_handler = aggr_pre_handler;
1299 	ap->fault_handler = aggr_fault_handler;
1300 	/* We don't care the kprobe which has gone. */
1301 	if (p->post_handler && !kprobe_gone(p))
1302 		ap->post_handler = aggr_post_handler;
1303 
1304 	INIT_LIST_HEAD(&ap->list);
1305 	INIT_HLIST_NODE(&ap->hlist);
1306 
1307 	list_add_rcu(&p->list, &ap->list);
1308 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1309 }
1310 
1311 /*
1312  * This is the second or subsequent kprobe at the address - handle
1313  * the intricacies
1314  */
1315 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1316 {
1317 	int ret = 0;
1318 	struct kprobe *ap = orig_p;
1319 
1320 	cpus_read_lock();
1321 
1322 	/* For preparing optimization, jump_label_text_reserved() is called */
1323 	jump_label_lock();
1324 	mutex_lock(&text_mutex);
1325 
1326 	if (!kprobe_aggrprobe(orig_p)) {
1327 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1328 		ap = alloc_aggr_kprobe(orig_p);
1329 		if (!ap) {
1330 			ret = -ENOMEM;
1331 			goto out;
1332 		}
1333 		init_aggr_kprobe(ap, orig_p);
1334 	} else if (kprobe_unused(ap)) {
1335 		/* This probe is going to die. Rescue it */
1336 		ret = reuse_unused_kprobe(ap);
1337 		if (ret)
1338 			goto out;
1339 	}
1340 
1341 	if (kprobe_gone(ap)) {
1342 		/*
1343 		 * Attempting to insert new probe at the same location that
1344 		 * had a probe in the module vaddr area which already
1345 		 * freed. So, the instruction slot has already been
1346 		 * released. We need a new slot for the new probe.
1347 		 */
1348 		ret = arch_prepare_kprobe(ap);
1349 		if (ret)
1350 			/*
1351 			 * Even if fail to allocate new slot, don't need to
1352 			 * free aggr_probe. It will be used next time, or
1353 			 * freed by unregister_kprobe.
1354 			 */
1355 			goto out;
1356 
1357 		/* Prepare optimized instructions if possible. */
1358 		prepare_optimized_kprobe(ap);
1359 
1360 		/*
1361 		 * Clear gone flag to prevent allocating new slot again, and
1362 		 * set disabled flag because it is not armed yet.
1363 		 */
1364 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1365 			    | KPROBE_FLAG_DISABLED;
1366 	}
1367 
1368 	/* Copy ap's insn slot to p */
1369 	copy_kprobe(ap, p);
1370 	ret = add_new_kprobe(ap, p);
1371 
1372 out:
1373 	mutex_unlock(&text_mutex);
1374 	jump_label_unlock();
1375 	cpus_read_unlock();
1376 
1377 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1378 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1379 		if (!kprobes_all_disarmed) {
1380 			/* Arm the breakpoint again. */
1381 			ret = arm_kprobe(ap);
1382 			if (ret) {
1383 				ap->flags |= KPROBE_FLAG_DISABLED;
1384 				list_del_rcu(&p->list);
1385 				synchronize_sched();
1386 			}
1387 		}
1388 	}
1389 	return ret;
1390 }
1391 
1392 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1393 {
1394 	/* The __kprobes marked functions and entry code must not be probed */
1395 	return addr >= (unsigned long)__kprobes_text_start &&
1396 	       addr < (unsigned long)__kprobes_text_end;
1397 }
1398 
1399 bool within_kprobe_blacklist(unsigned long addr)
1400 {
1401 	struct kprobe_blacklist_entry *ent;
1402 
1403 	if (arch_within_kprobe_blacklist(addr))
1404 		return true;
1405 	/*
1406 	 * If there exists a kprobe_blacklist, verify and
1407 	 * fail any probe registration in the prohibited area
1408 	 */
1409 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1410 		if (addr >= ent->start_addr && addr < ent->end_addr)
1411 			return true;
1412 	}
1413 
1414 	return false;
1415 }
1416 
1417 /*
1418  * If we have a symbol_name argument, look it up and add the offset field
1419  * to it. This way, we can specify a relative address to a symbol.
1420  * This returns encoded errors if it fails to look up symbol or invalid
1421  * combination of parameters.
1422  */
1423 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1424 			const char *symbol_name, unsigned int offset)
1425 {
1426 	if ((symbol_name && addr) || (!symbol_name && !addr))
1427 		goto invalid;
1428 
1429 	if (symbol_name) {
1430 		addr = kprobe_lookup_name(symbol_name, offset);
1431 		if (!addr)
1432 			return ERR_PTR(-ENOENT);
1433 	}
1434 
1435 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1436 	if (addr)
1437 		return addr;
1438 
1439 invalid:
1440 	return ERR_PTR(-EINVAL);
1441 }
1442 
1443 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1444 {
1445 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1446 }
1447 
1448 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1449 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1450 {
1451 	struct kprobe *ap, *list_p;
1452 
1453 	ap = get_kprobe(p->addr);
1454 	if (unlikely(!ap))
1455 		return NULL;
1456 
1457 	if (p != ap) {
1458 		list_for_each_entry_rcu(list_p, &ap->list, list)
1459 			if (list_p == p)
1460 			/* kprobe p is a valid probe */
1461 				goto valid;
1462 		return NULL;
1463 	}
1464 valid:
1465 	return ap;
1466 }
1467 
1468 /* Return error if the kprobe is being re-registered */
1469 static inline int check_kprobe_rereg(struct kprobe *p)
1470 {
1471 	int ret = 0;
1472 
1473 	mutex_lock(&kprobe_mutex);
1474 	if (__get_valid_kprobe(p))
1475 		ret = -EINVAL;
1476 	mutex_unlock(&kprobe_mutex);
1477 
1478 	return ret;
1479 }
1480 
1481 int __weak arch_check_ftrace_location(struct kprobe *p)
1482 {
1483 	unsigned long ftrace_addr;
1484 
1485 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1486 	if (ftrace_addr) {
1487 #ifdef CONFIG_KPROBES_ON_FTRACE
1488 		/* Given address is not on the instruction boundary */
1489 		if ((unsigned long)p->addr != ftrace_addr)
1490 			return -EILSEQ;
1491 		p->flags |= KPROBE_FLAG_FTRACE;
1492 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1493 		return -EINVAL;
1494 #endif
1495 	}
1496 	return 0;
1497 }
1498 
1499 static int check_kprobe_address_safe(struct kprobe *p,
1500 				     struct module **probed_mod)
1501 {
1502 	int ret;
1503 
1504 	ret = arch_check_ftrace_location(p);
1505 	if (ret)
1506 		return ret;
1507 	jump_label_lock();
1508 	preempt_disable();
1509 
1510 	/* Ensure it is not in reserved area nor out of text */
1511 	if (!kernel_text_address((unsigned long) p->addr) ||
1512 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1513 	    jump_label_text_reserved(p->addr, p->addr)) {
1514 		ret = -EINVAL;
1515 		goto out;
1516 	}
1517 
1518 	/* Check if are we probing a module */
1519 	*probed_mod = __module_text_address((unsigned long) p->addr);
1520 	if (*probed_mod) {
1521 		/*
1522 		 * We must hold a refcount of the probed module while updating
1523 		 * its code to prohibit unexpected unloading.
1524 		 */
1525 		if (unlikely(!try_module_get(*probed_mod))) {
1526 			ret = -ENOENT;
1527 			goto out;
1528 		}
1529 
1530 		/*
1531 		 * If the module freed .init.text, we couldn't insert
1532 		 * kprobes in there.
1533 		 */
1534 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1535 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1536 			module_put(*probed_mod);
1537 			*probed_mod = NULL;
1538 			ret = -ENOENT;
1539 		}
1540 	}
1541 out:
1542 	preempt_enable();
1543 	jump_label_unlock();
1544 
1545 	return ret;
1546 }
1547 
1548 int register_kprobe(struct kprobe *p)
1549 {
1550 	int ret;
1551 	struct kprobe *old_p;
1552 	struct module *probed_mod;
1553 	kprobe_opcode_t *addr;
1554 
1555 	/* Adjust probe address from symbol */
1556 	addr = kprobe_addr(p);
1557 	if (IS_ERR(addr))
1558 		return PTR_ERR(addr);
1559 	p->addr = addr;
1560 
1561 	ret = check_kprobe_rereg(p);
1562 	if (ret)
1563 		return ret;
1564 
1565 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1566 	p->flags &= KPROBE_FLAG_DISABLED;
1567 	p->nmissed = 0;
1568 	INIT_LIST_HEAD(&p->list);
1569 
1570 	ret = check_kprobe_address_safe(p, &probed_mod);
1571 	if (ret)
1572 		return ret;
1573 
1574 	mutex_lock(&kprobe_mutex);
1575 
1576 	old_p = get_kprobe(p->addr);
1577 	if (old_p) {
1578 		/* Since this may unoptimize old_p, locking text_mutex. */
1579 		ret = register_aggr_kprobe(old_p, p);
1580 		goto out;
1581 	}
1582 
1583 	cpus_read_lock();
1584 	/* Prevent text modification */
1585 	mutex_lock(&text_mutex);
1586 	ret = prepare_kprobe(p);
1587 	mutex_unlock(&text_mutex);
1588 	cpus_read_unlock();
1589 	if (ret)
1590 		goto out;
1591 
1592 	INIT_HLIST_NODE(&p->hlist);
1593 	hlist_add_head_rcu(&p->hlist,
1594 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1595 
1596 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1597 		ret = arm_kprobe(p);
1598 		if (ret) {
1599 			hlist_del_rcu(&p->hlist);
1600 			synchronize_sched();
1601 			goto out;
1602 		}
1603 	}
1604 
1605 	/* Try to optimize kprobe */
1606 	try_to_optimize_kprobe(p);
1607 out:
1608 	mutex_unlock(&kprobe_mutex);
1609 
1610 	if (probed_mod)
1611 		module_put(probed_mod);
1612 
1613 	return ret;
1614 }
1615 EXPORT_SYMBOL_GPL(register_kprobe);
1616 
1617 /* Check if all probes on the aggrprobe are disabled */
1618 static int aggr_kprobe_disabled(struct kprobe *ap)
1619 {
1620 	struct kprobe *kp;
1621 
1622 	list_for_each_entry_rcu(kp, &ap->list, list)
1623 		if (!kprobe_disabled(kp))
1624 			/*
1625 			 * There is an active probe on the list.
1626 			 * We can't disable this ap.
1627 			 */
1628 			return 0;
1629 
1630 	return 1;
1631 }
1632 
1633 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1634 static struct kprobe *__disable_kprobe(struct kprobe *p)
1635 {
1636 	struct kprobe *orig_p;
1637 	int ret;
1638 
1639 	/* Get an original kprobe for return */
1640 	orig_p = __get_valid_kprobe(p);
1641 	if (unlikely(orig_p == NULL))
1642 		return ERR_PTR(-EINVAL);
1643 
1644 	if (!kprobe_disabled(p)) {
1645 		/* Disable probe if it is a child probe */
1646 		if (p != orig_p)
1647 			p->flags |= KPROBE_FLAG_DISABLED;
1648 
1649 		/* Try to disarm and disable this/parent probe */
1650 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1651 			/*
1652 			 * If kprobes_all_disarmed is set, orig_p
1653 			 * should have already been disarmed, so
1654 			 * skip unneed disarming process.
1655 			 */
1656 			if (!kprobes_all_disarmed) {
1657 				ret = disarm_kprobe(orig_p, true);
1658 				if (ret) {
1659 					p->flags &= ~KPROBE_FLAG_DISABLED;
1660 					return ERR_PTR(ret);
1661 				}
1662 			}
1663 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1664 		}
1665 	}
1666 
1667 	return orig_p;
1668 }
1669 
1670 /*
1671  * Unregister a kprobe without a scheduler synchronization.
1672  */
1673 static int __unregister_kprobe_top(struct kprobe *p)
1674 {
1675 	struct kprobe *ap, *list_p;
1676 
1677 	/* Disable kprobe. This will disarm it if needed. */
1678 	ap = __disable_kprobe(p);
1679 	if (IS_ERR(ap))
1680 		return PTR_ERR(ap);
1681 
1682 	if (ap == p)
1683 		/*
1684 		 * This probe is an independent(and non-optimized) kprobe
1685 		 * (not an aggrprobe). Remove from the hash list.
1686 		 */
1687 		goto disarmed;
1688 
1689 	/* Following process expects this probe is an aggrprobe */
1690 	WARN_ON(!kprobe_aggrprobe(ap));
1691 
1692 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1693 		/*
1694 		 * !disarmed could be happen if the probe is under delayed
1695 		 * unoptimizing.
1696 		 */
1697 		goto disarmed;
1698 	else {
1699 		/* If disabling probe has special handlers, update aggrprobe */
1700 		if (p->post_handler && !kprobe_gone(p)) {
1701 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1702 				if ((list_p != p) && (list_p->post_handler))
1703 					goto noclean;
1704 			}
1705 			ap->post_handler = NULL;
1706 		}
1707 noclean:
1708 		/*
1709 		 * Remove from the aggrprobe: this path will do nothing in
1710 		 * __unregister_kprobe_bottom().
1711 		 */
1712 		list_del_rcu(&p->list);
1713 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1714 			/*
1715 			 * Try to optimize this probe again, because post
1716 			 * handler may have been changed.
1717 			 */
1718 			optimize_kprobe(ap);
1719 	}
1720 	return 0;
1721 
1722 disarmed:
1723 	hlist_del_rcu(&ap->hlist);
1724 	return 0;
1725 }
1726 
1727 static void __unregister_kprobe_bottom(struct kprobe *p)
1728 {
1729 	struct kprobe *ap;
1730 
1731 	if (list_empty(&p->list))
1732 		/* This is an independent kprobe */
1733 		arch_remove_kprobe(p);
1734 	else if (list_is_singular(&p->list)) {
1735 		/* This is the last child of an aggrprobe */
1736 		ap = list_entry(p->list.next, struct kprobe, list);
1737 		list_del(&p->list);
1738 		free_aggr_kprobe(ap);
1739 	}
1740 	/* Otherwise, do nothing. */
1741 }
1742 
1743 int register_kprobes(struct kprobe **kps, int num)
1744 {
1745 	int i, ret = 0;
1746 
1747 	if (num <= 0)
1748 		return -EINVAL;
1749 	for (i = 0; i < num; i++) {
1750 		ret = register_kprobe(kps[i]);
1751 		if (ret < 0) {
1752 			if (i > 0)
1753 				unregister_kprobes(kps, i);
1754 			break;
1755 		}
1756 	}
1757 	return ret;
1758 }
1759 EXPORT_SYMBOL_GPL(register_kprobes);
1760 
1761 void unregister_kprobe(struct kprobe *p)
1762 {
1763 	unregister_kprobes(&p, 1);
1764 }
1765 EXPORT_SYMBOL_GPL(unregister_kprobe);
1766 
1767 void unregister_kprobes(struct kprobe **kps, int num)
1768 {
1769 	int i;
1770 
1771 	if (num <= 0)
1772 		return;
1773 	mutex_lock(&kprobe_mutex);
1774 	for (i = 0; i < num; i++)
1775 		if (__unregister_kprobe_top(kps[i]) < 0)
1776 			kps[i]->addr = NULL;
1777 	mutex_unlock(&kprobe_mutex);
1778 
1779 	synchronize_sched();
1780 	for (i = 0; i < num; i++)
1781 		if (kps[i]->addr)
1782 			__unregister_kprobe_bottom(kps[i]);
1783 }
1784 EXPORT_SYMBOL_GPL(unregister_kprobes);
1785 
1786 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1787 					unsigned long val, void *data)
1788 {
1789 	return NOTIFY_DONE;
1790 }
1791 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1792 
1793 static struct notifier_block kprobe_exceptions_nb = {
1794 	.notifier_call = kprobe_exceptions_notify,
1795 	.priority = 0x7fffffff /* we need to be notified first */
1796 };
1797 
1798 unsigned long __weak arch_deref_entry_point(void *entry)
1799 {
1800 	return (unsigned long)entry;
1801 }
1802 
1803 #ifdef CONFIG_KRETPROBES
1804 /*
1805  * This kprobe pre_handler is registered with every kretprobe. When probe
1806  * hits it will set up the return probe.
1807  */
1808 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1809 {
1810 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1811 	unsigned long hash, flags = 0;
1812 	struct kretprobe_instance *ri;
1813 
1814 	/*
1815 	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1816 	 * just skip the probe and increase the (inexact) 'nmissed'
1817 	 * statistical counter, so that the user is informed that
1818 	 * something happened:
1819 	 */
1820 	if (unlikely(in_nmi())) {
1821 		rp->nmissed++;
1822 		return 0;
1823 	}
1824 
1825 	/* TODO: consider to only swap the RA after the last pre_handler fired */
1826 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1827 	raw_spin_lock_irqsave(&rp->lock, flags);
1828 	if (!hlist_empty(&rp->free_instances)) {
1829 		ri = hlist_entry(rp->free_instances.first,
1830 				struct kretprobe_instance, hlist);
1831 		hlist_del(&ri->hlist);
1832 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1833 
1834 		ri->rp = rp;
1835 		ri->task = current;
1836 
1837 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1838 			raw_spin_lock_irqsave(&rp->lock, flags);
1839 			hlist_add_head(&ri->hlist, &rp->free_instances);
1840 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1841 			return 0;
1842 		}
1843 
1844 		arch_prepare_kretprobe(ri, regs);
1845 
1846 		/* XXX(hch): why is there no hlist_move_head? */
1847 		INIT_HLIST_NODE(&ri->hlist);
1848 		kretprobe_table_lock(hash, &flags);
1849 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1850 		kretprobe_table_unlock(hash, &flags);
1851 	} else {
1852 		rp->nmissed++;
1853 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1854 	}
1855 	return 0;
1856 }
1857 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1858 
1859 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1860 {
1861 	return !offset;
1862 }
1863 
1864 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1865 {
1866 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1867 
1868 	if (IS_ERR(kp_addr))
1869 		return false;
1870 
1871 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1872 						!arch_kprobe_on_func_entry(offset))
1873 		return false;
1874 
1875 	return true;
1876 }
1877 
1878 int register_kretprobe(struct kretprobe *rp)
1879 {
1880 	int ret = 0;
1881 	struct kretprobe_instance *inst;
1882 	int i;
1883 	void *addr;
1884 
1885 	if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1886 		return -EINVAL;
1887 
1888 	if (kretprobe_blacklist_size) {
1889 		addr = kprobe_addr(&rp->kp);
1890 		if (IS_ERR(addr))
1891 			return PTR_ERR(addr);
1892 
1893 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1894 			if (kretprobe_blacklist[i].addr == addr)
1895 				return -EINVAL;
1896 		}
1897 	}
1898 
1899 	rp->kp.pre_handler = pre_handler_kretprobe;
1900 	rp->kp.post_handler = NULL;
1901 	rp->kp.fault_handler = NULL;
1902 
1903 	/* Pre-allocate memory for max kretprobe instances */
1904 	if (rp->maxactive <= 0) {
1905 #ifdef CONFIG_PREEMPT
1906 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1907 #else
1908 		rp->maxactive = num_possible_cpus();
1909 #endif
1910 	}
1911 	raw_spin_lock_init(&rp->lock);
1912 	INIT_HLIST_HEAD(&rp->free_instances);
1913 	for (i = 0; i < rp->maxactive; i++) {
1914 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1915 			       rp->data_size, GFP_KERNEL);
1916 		if (inst == NULL) {
1917 			free_rp_inst(rp);
1918 			return -ENOMEM;
1919 		}
1920 		INIT_HLIST_NODE(&inst->hlist);
1921 		hlist_add_head(&inst->hlist, &rp->free_instances);
1922 	}
1923 
1924 	rp->nmissed = 0;
1925 	/* Establish function entry probe point */
1926 	ret = register_kprobe(&rp->kp);
1927 	if (ret != 0)
1928 		free_rp_inst(rp);
1929 	return ret;
1930 }
1931 EXPORT_SYMBOL_GPL(register_kretprobe);
1932 
1933 int register_kretprobes(struct kretprobe **rps, int num)
1934 {
1935 	int ret = 0, i;
1936 
1937 	if (num <= 0)
1938 		return -EINVAL;
1939 	for (i = 0; i < num; i++) {
1940 		ret = register_kretprobe(rps[i]);
1941 		if (ret < 0) {
1942 			if (i > 0)
1943 				unregister_kretprobes(rps, i);
1944 			break;
1945 		}
1946 	}
1947 	return ret;
1948 }
1949 EXPORT_SYMBOL_GPL(register_kretprobes);
1950 
1951 void unregister_kretprobe(struct kretprobe *rp)
1952 {
1953 	unregister_kretprobes(&rp, 1);
1954 }
1955 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1956 
1957 void unregister_kretprobes(struct kretprobe **rps, int num)
1958 {
1959 	int i;
1960 
1961 	if (num <= 0)
1962 		return;
1963 	mutex_lock(&kprobe_mutex);
1964 	for (i = 0; i < num; i++)
1965 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1966 			rps[i]->kp.addr = NULL;
1967 	mutex_unlock(&kprobe_mutex);
1968 
1969 	synchronize_sched();
1970 	for (i = 0; i < num; i++) {
1971 		if (rps[i]->kp.addr) {
1972 			__unregister_kprobe_bottom(&rps[i]->kp);
1973 			cleanup_rp_inst(rps[i]);
1974 		}
1975 	}
1976 }
1977 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1978 
1979 #else /* CONFIG_KRETPROBES */
1980 int register_kretprobe(struct kretprobe *rp)
1981 {
1982 	return -ENOSYS;
1983 }
1984 EXPORT_SYMBOL_GPL(register_kretprobe);
1985 
1986 int register_kretprobes(struct kretprobe **rps, int num)
1987 {
1988 	return -ENOSYS;
1989 }
1990 EXPORT_SYMBOL_GPL(register_kretprobes);
1991 
1992 void unregister_kretprobe(struct kretprobe *rp)
1993 {
1994 }
1995 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1996 
1997 void unregister_kretprobes(struct kretprobe **rps, int num)
1998 {
1999 }
2000 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2001 
2002 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2003 {
2004 	return 0;
2005 }
2006 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2007 
2008 #endif /* CONFIG_KRETPROBES */
2009 
2010 /* Set the kprobe gone and remove its instruction buffer. */
2011 static void kill_kprobe(struct kprobe *p)
2012 {
2013 	struct kprobe *kp;
2014 
2015 	p->flags |= KPROBE_FLAG_GONE;
2016 	if (kprobe_aggrprobe(p)) {
2017 		/*
2018 		 * If this is an aggr_kprobe, we have to list all the
2019 		 * chained probes and mark them GONE.
2020 		 */
2021 		list_for_each_entry_rcu(kp, &p->list, list)
2022 			kp->flags |= KPROBE_FLAG_GONE;
2023 		p->post_handler = NULL;
2024 		kill_optimized_kprobe(p);
2025 	}
2026 	/*
2027 	 * Here, we can remove insn_slot safely, because no thread calls
2028 	 * the original probed function (which will be freed soon) any more.
2029 	 */
2030 	arch_remove_kprobe(p);
2031 }
2032 
2033 /* Disable one kprobe */
2034 int disable_kprobe(struct kprobe *kp)
2035 {
2036 	int ret = 0;
2037 	struct kprobe *p;
2038 
2039 	mutex_lock(&kprobe_mutex);
2040 
2041 	/* Disable this kprobe */
2042 	p = __disable_kprobe(kp);
2043 	if (IS_ERR(p))
2044 		ret = PTR_ERR(p);
2045 
2046 	mutex_unlock(&kprobe_mutex);
2047 	return ret;
2048 }
2049 EXPORT_SYMBOL_GPL(disable_kprobe);
2050 
2051 /* Enable one kprobe */
2052 int enable_kprobe(struct kprobe *kp)
2053 {
2054 	int ret = 0;
2055 	struct kprobe *p;
2056 
2057 	mutex_lock(&kprobe_mutex);
2058 
2059 	/* Check whether specified probe is valid. */
2060 	p = __get_valid_kprobe(kp);
2061 	if (unlikely(p == NULL)) {
2062 		ret = -EINVAL;
2063 		goto out;
2064 	}
2065 
2066 	if (kprobe_gone(kp)) {
2067 		/* This kprobe has gone, we couldn't enable it. */
2068 		ret = -EINVAL;
2069 		goto out;
2070 	}
2071 
2072 	if (p != kp)
2073 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2074 
2075 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2076 		p->flags &= ~KPROBE_FLAG_DISABLED;
2077 		ret = arm_kprobe(p);
2078 		if (ret)
2079 			p->flags |= KPROBE_FLAG_DISABLED;
2080 	}
2081 out:
2082 	mutex_unlock(&kprobe_mutex);
2083 	return ret;
2084 }
2085 EXPORT_SYMBOL_GPL(enable_kprobe);
2086 
2087 /* Caller must NOT call this in usual path. This is only for critical case */
2088 void dump_kprobe(struct kprobe *kp)
2089 {
2090 	pr_err("Dumping kprobe:\n");
2091 	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2092 	       kp->symbol_name, kp->offset, kp->addr);
2093 }
2094 NOKPROBE_SYMBOL(dump_kprobe);
2095 
2096 /*
2097  * Lookup and populate the kprobe_blacklist.
2098  *
2099  * Unlike the kretprobe blacklist, we'll need to determine
2100  * the range of addresses that belong to the said functions,
2101  * since a kprobe need not necessarily be at the beginning
2102  * of a function.
2103  */
2104 static int __init populate_kprobe_blacklist(unsigned long *start,
2105 					     unsigned long *end)
2106 {
2107 	unsigned long *iter;
2108 	struct kprobe_blacklist_entry *ent;
2109 	unsigned long entry, offset = 0, size = 0;
2110 
2111 	for (iter = start; iter < end; iter++) {
2112 		entry = arch_deref_entry_point((void *)*iter);
2113 
2114 		if (!kernel_text_address(entry) ||
2115 		    !kallsyms_lookup_size_offset(entry, &size, &offset))
2116 			continue;
2117 
2118 		ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2119 		if (!ent)
2120 			return -ENOMEM;
2121 		ent->start_addr = entry;
2122 		ent->end_addr = entry + size;
2123 		INIT_LIST_HEAD(&ent->list);
2124 		list_add_tail(&ent->list, &kprobe_blacklist);
2125 	}
2126 	return 0;
2127 }
2128 
2129 /* Module notifier call back, checking kprobes on the module */
2130 static int kprobes_module_callback(struct notifier_block *nb,
2131 				   unsigned long val, void *data)
2132 {
2133 	struct module *mod = data;
2134 	struct hlist_head *head;
2135 	struct kprobe *p;
2136 	unsigned int i;
2137 	int checkcore = (val == MODULE_STATE_GOING);
2138 
2139 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2140 		return NOTIFY_DONE;
2141 
2142 	/*
2143 	 * When MODULE_STATE_GOING was notified, both of module .text and
2144 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2145 	 * notified, only .init.text section would be freed. We need to
2146 	 * disable kprobes which have been inserted in the sections.
2147 	 */
2148 	mutex_lock(&kprobe_mutex);
2149 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2150 		head = &kprobe_table[i];
2151 		hlist_for_each_entry_rcu(p, head, hlist)
2152 			if (within_module_init((unsigned long)p->addr, mod) ||
2153 			    (checkcore &&
2154 			     within_module_core((unsigned long)p->addr, mod))) {
2155 				/*
2156 				 * The vaddr this probe is installed will soon
2157 				 * be vfreed buy not synced to disk. Hence,
2158 				 * disarming the breakpoint isn't needed.
2159 				 *
2160 				 * Note, this will also move any optimized probes
2161 				 * that are pending to be removed from their
2162 				 * corresponding lists to the freeing_list and
2163 				 * will not be touched by the delayed
2164 				 * kprobe_optimizer work handler.
2165 				 */
2166 				kill_kprobe(p);
2167 			}
2168 	}
2169 	mutex_unlock(&kprobe_mutex);
2170 	return NOTIFY_DONE;
2171 }
2172 
2173 static struct notifier_block kprobe_module_nb = {
2174 	.notifier_call = kprobes_module_callback,
2175 	.priority = 0
2176 };
2177 
2178 /* Markers of _kprobe_blacklist section */
2179 extern unsigned long __start_kprobe_blacklist[];
2180 extern unsigned long __stop_kprobe_blacklist[];
2181 
2182 static int __init init_kprobes(void)
2183 {
2184 	int i, err = 0;
2185 
2186 	/* FIXME allocate the probe table, currently defined statically */
2187 	/* initialize all list heads */
2188 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2189 		INIT_HLIST_HEAD(&kprobe_table[i]);
2190 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2191 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2192 	}
2193 
2194 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2195 					__stop_kprobe_blacklist);
2196 	if (err) {
2197 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2198 		pr_err("Please take care of using kprobes.\n");
2199 	}
2200 
2201 	if (kretprobe_blacklist_size) {
2202 		/* lookup the function address from its name */
2203 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2204 			kretprobe_blacklist[i].addr =
2205 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2206 			if (!kretprobe_blacklist[i].addr)
2207 				printk("kretprobe: lookup failed: %s\n",
2208 				       kretprobe_blacklist[i].name);
2209 		}
2210 	}
2211 
2212 #if defined(CONFIG_OPTPROBES)
2213 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2214 	/* Init kprobe_optinsn_slots */
2215 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2216 #endif
2217 	/* By default, kprobes can be optimized */
2218 	kprobes_allow_optimization = true;
2219 #endif
2220 
2221 	/* By default, kprobes are armed */
2222 	kprobes_all_disarmed = false;
2223 
2224 	err = arch_init_kprobes();
2225 	if (!err)
2226 		err = register_die_notifier(&kprobe_exceptions_nb);
2227 	if (!err)
2228 		err = register_module_notifier(&kprobe_module_nb);
2229 
2230 	kprobes_initialized = (err == 0);
2231 
2232 	if (!err)
2233 		init_test_probes();
2234 	return err;
2235 }
2236 
2237 #ifdef CONFIG_DEBUG_FS
2238 static void report_probe(struct seq_file *pi, struct kprobe *p,
2239 		const char *sym, int offset, char *modname, struct kprobe *pp)
2240 {
2241 	char *kprobe_type;
2242 	void *addr = p->addr;
2243 
2244 	if (p->pre_handler == pre_handler_kretprobe)
2245 		kprobe_type = "r";
2246 	else
2247 		kprobe_type = "k";
2248 
2249 	if (!kallsyms_show_value())
2250 		addr = NULL;
2251 
2252 	if (sym)
2253 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2254 			addr, kprobe_type, sym, offset,
2255 			(modname ? modname : " "));
2256 	else	/* try to use %pS */
2257 		seq_printf(pi, "%px  %s  %pS ",
2258 			addr, kprobe_type, p->addr);
2259 
2260 	if (!pp)
2261 		pp = p;
2262 	seq_printf(pi, "%s%s%s%s\n",
2263 		(kprobe_gone(p) ? "[GONE]" : ""),
2264 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2265 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2266 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2267 }
2268 
2269 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2270 {
2271 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2272 }
2273 
2274 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2275 {
2276 	(*pos)++;
2277 	if (*pos >= KPROBE_TABLE_SIZE)
2278 		return NULL;
2279 	return pos;
2280 }
2281 
2282 static void kprobe_seq_stop(struct seq_file *f, void *v)
2283 {
2284 	/* Nothing to do */
2285 }
2286 
2287 static int show_kprobe_addr(struct seq_file *pi, void *v)
2288 {
2289 	struct hlist_head *head;
2290 	struct kprobe *p, *kp;
2291 	const char *sym = NULL;
2292 	unsigned int i = *(loff_t *) v;
2293 	unsigned long offset = 0;
2294 	char *modname, namebuf[KSYM_NAME_LEN];
2295 
2296 	head = &kprobe_table[i];
2297 	preempt_disable();
2298 	hlist_for_each_entry_rcu(p, head, hlist) {
2299 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2300 					&offset, &modname, namebuf);
2301 		if (kprobe_aggrprobe(p)) {
2302 			list_for_each_entry_rcu(kp, &p->list, list)
2303 				report_probe(pi, kp, sym, offset, modname, p);
2304 		} else
2305 			report_probe(pi, p, sym, offset, modname, NULL);
2306 	}
2307 	preempt_enable();
2308 	return 0;
2309 }
2310 
2311 static const struct seq_operations kprobes_seq_ops = {
2312 	.start = kprobe_seq_start,
2313 	.next  = kprobe_seq_next,
2314 	.stop  = kprobe_seq_stop,
2315 	.show  = show_kprobe_addr
2316 };
2317 
2318 static int kprobes_open(struct inode *inode, struct file *filp)
2319 {
2320 	return seq_open(filp, &kprobes_seq_ops);
2321 }
2322 
2323 static const struct file_operations debugfs_kprobes_operations = {
2324 	.open           = kprobes_open,
2325 	.read           = seq_read,
2326 	.llseek         = seq_lseek,
2327 	.release        = seq_release,
2328 };
2329 
2330 /* kprobes/blacklist -- shows which functions can not be probed */
2331 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2332 {
2333 	return seq_list_start(&kprobe_blacklist, *pos);
2334 }
2335 
2336 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2337 {
2338 	return seq_list_next(v, &kprobe_blacklist, pos);
2339 }
2340 
2341 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2342 {
2343 	struct kprobe_blacklist_entry *ent =
2344 		list_entry(v, struct kprobe_blacklist_entry, list);
2345 
2346 	/*
2347 	 * If /proc/kallsyms is not showing kernel address, we won't
2348 	 * show them here either.
2349 	 */
2350 	if (!kallsyms_show_value())
2351 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2352 			   (void *)ent->start_addr);
2353 	else
2354 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2355 			   (void *)ent->end_addr, (void *)ent->start_addr);
2356 	return 0;
2357 }
2358 
2359 static const struct seq_operations kprobe_blacklist_seq_ops = {
2360 	.start = kprobe_blacklist_seq_start,
2361 	.next  = kprobe_blacklist_seq_next,
2362 	.stop  = kprobe_seq_stop,	/* Reuse void function */
2363 	.show  = kprobe_blacklist_seq_show,
2364 };
2365 
2366 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2367 {
2368 	return seq_open(filp, &kprobe_blacklist_seq_ops);
2369 }
2370 
2371 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2372 	.open           = kprobe_blacklist_open,
2373 	.read           = seq_read,
2374 	.llseek         = seq_lseek,
2375 	.release        = seq_release,
2376 };
2377 
2378 static int arm_all_kprobes(void)
2379 {
2380 	struct hlist_head *head;
2381 	struct kprobe *p;
2382 	unsigned int i, total = 0, errors = 0;
2383 	int err, ret = 0;
2384 
2385 	mutex_lock(&kprobe_mutex);
2386 
2387 	/* If kprobes are armed, just return */
2388 	if (!kprobes_all_disarmed)
2389 		goto already_enabled;
2390 
2391 	/*
2392 	 * optimize_kprobe() called by arm_kprobe() checks
2393 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2394 	 * arm_kprobe.
2395 	 */
2396 	kprobes_all_disarmed = false;
2397 	/* Arming kprobes doesn't optimize kprobe itself */
2398 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2399 		head = &kprobe_table[i];
2400 		/* Arm all kprobes on a best-effort basis */
2401 		hlist_for_each_entry_rcu(p, head, hlist) {
2402 			if (!kprobe_disabled(p)) {
2403 				err = arm_kprobe(p);
2404 				if (err)  {
2405 					errors++;
2406 					ret = err;
2407 				}
2408 				total++;
2409 			}
2410 		}
2411 	}
2412 
2413 	if (errors)
2414 		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2415 			errors, total);
2416 	else
2417 		pr_info("Kprobes globally enabled\n");
2418 
2419 already_enabled:
2420 	mutex_unlock(&kprobe_mutex);
2421 	return ret;
2422 }
2423 
2424 static int disarm_all_kprobes(void)
2425 {
2426 	struct hlist_head *head;
2427 	struct kprobe *p;
2428 	unsigned int i, total = 0, errors = 0;
2429 	int err, ret = 0;
2430 
2431 	mutex_lock(&kprobe_mutex);
2432 
2433 	/* If kprobes are already disarmed, just return */
2434 	if (kprobes_all_disarmed) {
2435 		mutex_unlock(&kprobe_mutex);
2436 		return 0;
2437 	}
2438 
2439 	kprobes_all_disarmed = true;
2440 
2441 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2442 		head = &kprobe_table[i];
2443 		/* Disarm all kprobes on a best-effort basis */
2444 		hlist_for_each_entry_rcu(p, head, hlist) {
2445 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2446 				err = disarm_kprobe(p, false);
2447 				if (err) {
2448 					errors++;
2449 					ret = err;
2450 				}
2451 				total++;
2452 			}
2453 		}
2454 	}
2455 
2456 	if (errors)
2457 		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2458 			errors, total);
2459 	else
2460 		pr_info("Kprobes globally disabled\n");
2461 
2462 	mutex_unlock(&kprobe_mutex);
2463 
2464 	/* Wait for disarming all kprobes by optimizer */
2465 	wait_for_kprobe_optimizer();
2466 
2467 	return ret;
2468 }
2469 
2470 /*
2471  * XXX: The debugfs bool file interface doesn't allow for callbacks
2472  * when the bool state is switched. We can reuse that facility when
2473  * available
2474  */
2475 static ssize_t read_enabled_file_bool(struct file *file,
2476 	       char __user *user_buf, size_t count, loff_t *ppos)
2477 {
2478 	char buf[3];
2479 
2480 	if (!kprobes_all_disarmed)
2481 		buf[0] = '1';
2482 	else
2483 		buf[0] = '0';
2484 	buf[1] = '\n';
2485 	buf[2] = 0x00;
2486 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2487 }
2488 
2489 static ssize_t write_enabled_file_bool(struct file *file,
2490 	       const char __user *user_buf, size_t count, loff_t *ppos)
2491 {
2492 	char buf[32];
2493 	size_t buf_size;
2494 	int ret = 0;
2495 
2496 	buf_size = min(count, (sizeof(buf)-1));
2497 	if (copy_from_user(buf, user_buf, buf_size))
2498 		return -EFAULT;
2499 
2500 	buf[buf_size] = '\0';
2501 	switch (buf[0]) {
2502 	case 'y':
2503 	case 'Y':
2504 	case '1':
2505 		ret = arm_all_kprobes();
2506 		break;
2507 	case 'n':
2508 	case 'N':
2509 	case '0':
2510 		ret = disarm_all_kprobes();
2511 		break;
2512 	default:
2513 		return -EINVAL;
2514 	}
2515 
2516 	if (ret)
2517 		return ret;
2518 
2519 	return count;
2520 }
2521 
2522 static const struct file_operations fops_kp = {
2523 	.read =         read_enabled_file_bool,
2524 	.write =        write_enabled_file_bool,
2525 	.llseek =	default_llseek,
2526 };
2527 
2528 static int __init debugfs_kprobe_init(void)
2529 {
2530 	struct dentry *dir, *file;
2531 	unsigned int value = 1;
2532 
2533 	dir = debugfs_create_dir("kprobes", NULL);
2534 	if (!dir)
2535 		return -ENOMEM;
2536 
2537 	file = debugfs_create_file("list", 0400, dir, NULL,
2538 				&debugfs_kprobes_operations);
2539 	if (!file)
2540 		goto error;
2541 
2542 	file = debugfs_create_file("enabled", 0600, dir,
2543 					&value, &fops_kp);
2544 	if (!file)
2545 		goto error;
2546 
2547 	file = debugfs_create_file("blacklist", 0400, dir, NULL,
2548 				&debugfs_kprobe_blacklist_ops);
2549 	if (!file)
2550 		goto error;
2551 
2552 	return 0;
2553 
2554 error:
2555 	debugfs_remove(dir);
2556 	return -ENOMEM;
2557 }
2558 
2559 late_initcall(debugfs_kprobe_init);
2560 #endif /* CONFIG_DEBUG_FS */
2561 
2562 module_init(init_kprobes);
2563