1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * kernel/kprobes.c 5 * 6 * Copyright (C) IBM Corporation, 2002, 2004 7 * 8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 9 * Probes initial implementation (includes suggestions from 10 * Rusty Russell). 11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 12 * hlists and exceptions notifier as suggested by Andi Kleen. 13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 14 * interface to access function arguments. 15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 16 * exceptions notifier to be first on the priority list. 17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 19 * <prasanna@in.ibm.com> added function-return probes. 20 */ 21 #include <linux/kprobes.h> 22 #include <linux/hash.h> 23 #include <linux/init.h> 24 #include <linux/slab.h> 25 #include <linux/stddef.h> 26 #include <linux/export.h> 27 #include <linux/moduleloader.h> 28 #include <linux/kallsyms.h> 29 #include <linux/freezer.h> 30 #include <linux/seq_file.h> 31 #include <linux/debugfs.h> 32 #include <linux/sysctl.h> 33 #include <linux/kdebug.h> 34 #include <linux/memory.h> 35 #include <linux/ftrace.h> 36 #include <linux/cpu.h> 37 #include <linux/jump_label.h> 38 #include <linux/perf_event.h> 39 #include <linux/static_call.h> 40 41 #include <asm/sections.h> 42 #include <asm/cacheflush.h> 43 #include <asm/errno.h> 44 #include <linux/uaccess.h> 45 46 #define KPROBE_HASH_BITS 6 47 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 48 49 50 static int kprobes_initialized; 51 /* kprobe_table can be accessed by 52 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held. 53 * Or 54 * - RCU hlist traversal under disabling preempt (breakpoint handlers) 55 */ 56 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 57 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 58 59 /* NOTE: change this value only with kprobe_mutex held */ 60 static bool kprobes_all_disarmed; 61 62 /* This protects kprobe_table and optimizing_list */ 63 static DEFINE_MUTEX(kprobe_mutex); 64 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 65 static struct { 66 raw_spinlock_t lock ____cacheline_aligned_in_smp; 67 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 68 69 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, 70 unsigned int __unused) 71 { 72 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); 73 } 74 75 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 76 { 77 return &(kretprobe_table_locks[hash].lock); 78 } 79 80 /* Blacklist -- list of struct kprobe_blacklist_entry */ 81 static LIST_HEAD(kprobe_blacklist); 82 83 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 84 /* 85 * kprobe->ainsn.insn points to the copy of the instruction to be 86 * single-stepped. x86_64, POWER4 and above have no-exec support and 87 * stepping on the instruction on a vmalloced/kmalloced/data page 88 * is a recipe for disaster 89 */ 90 struct kprobe_insn_page { 91 struct list_head list; 92 kprobe_opcode_t *insns; /* Page of instruction slots */ 93 struct kprobe_insn_cache *cache; 94 int nused; 95 int ngarbage; 96 char slot_used[]; 97 }; 98 99 #define KPROBE_INSN_PAGE_SIZE(slots) \ 100 (offsetof(struct kprobe_insn_page, slot_used) + \ 101 (sizeof(char) * (slots))) 102 103 static int slots_per_page(struct kprobe_insn_cache *c) 104 { 105 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 106 } 107 108 enum kprobe_slot_state { 109 SLOT_CLEAN = 0, 110 SLOT_DIRTY = 1, 111 SLOT_USED = 2, 112 }; 113 114 void __weak *alloc_insn_page(void) 115 { 116 return module_alloc(PAGE_SIZE); 117 } 118 119 void __weak free_insn_page(void *page) 120 { 121 module_memfree(page); 122 } 123 124 struct kprobe_insn_cache kprobe_insn_slots = { 125 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 126 .alloc = alloc_insn_page, 127 .free = free_insn_page, 128 .sym = KPROBE_INSN_PAGE_SYM, 129 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 130 .insn_size = MAX_INSN_SIZE, 131 .nr_garbage = 0, 132 }; 133 static int collect_garbage_slots(struct kprobe_insn_cache *c); 134 135 /** 136 * __get_insn_slot() - Find a slot on an executable page for an instruction. 137 * We allocate an executable page if there's no room on existing ones. 138 */ 139 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 140 { 141 struct kprobe_insn_page *kip; 142 kprobe_opcode_t *slot = NULL; 143 144 /* Since the slot array is not protected by rcu, we need a mutex */ 145 mutex_lock(&c->mutex); 146 retry: 147 rcu_read_lock(); 148 list_for_each_entry_rcu(kip, &c->pages, list) { 149 if (kip->nused < slots_per_page(c)) { 150 int i; 151 for (i = 0; i < slots_per_page(c); i++) { 152 if (kip->slot_used[i] == SLOT_CLEAN) { 153 kip->slot_used[i] = SLOT_USED; 154 kip->nused++; 155 slot = kip->insns + (i * c->insn_size); 156 rcu_read_unlock(); 157 goto out; 158 } 159 } 160 /* kip->nused is broken. Fix it. */ 161 kip->nused = slots_per_page(c); 162 WARN_ON(1); 163 } 164 } 165 rcu_read_unlock(); 166 167 /* If there are any garbage slots, collect it and try again. */ 168 if (c->nr_garbage && collect_garbage_slots(c) == 0) 169 goto retry; 170 171 /* All out of space. Need to allocate a new page. */ 172 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 173 if (!kip) 174 goto out; 175 176 /* 177 * Use module_alloc so this page is within +/- 2GB of where the 178 * kernel image and loaded module images reside. This is required 179 * so x86_64 can correctly handle the %rip-relative fixups. 180 */ 181 kip->insns = c->alloc(); 182 if (!kip->insns) { 183 kfree(kip); 184 goto out; 185 } 186 INIT_LIST_HEAD(&kip->list); 187 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 188 kip->slot_used[0] = SLOT_USED; 189 kip->nused = 1; 190 kip->ngarbage = 0; 191 kip->cache = c; 192 list_add_rcu(&kip->list, &c->pages); 193 slot = kip->insns; 194 195 /* Record the perf ksymbol register event after adding the page */ 196 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns, 197 PAGE_SIZE, false, c->sym); 198 out: 199 mutex_unlock(&c->mutex); 200 return slot; 201 } 202 203 /* Return 1 if all garbages are collected, otherwise 0. */ 204 static int collect_one_slot(struct kprobe_insn_page *kip, int idx) 205 { 206 kip->slot_used[idx] = SLOT_CLEAN; 207 kip->nused--; 208 if (kip->nused == 0) { 209 /* 210 * Page is no longer in use. Free it unless 211 * it's the last one. We keep the last one 212 * so as not to have to set it up again the 213 * next time somebody inserts a probe. 214 */ 215 if (!list_is_singular(&kip->list)) { 216 /* 217 * Record perf ksymbol unregister event before removing 218 * the page. 219 */ 220 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 221 (unsigned long)kip->insns, PAGE_SIZE, true, 222 kip->cache->sym); 223 list_del_rcu(&kip->list); 224 synchronize_rcu(); 225 kip->cache->free(kip->insns); 226 kfree(kip); 227 } 228 return 1; 229 } 230 return 0; 231 } 232 233 static int collect_garbage_slots(struct kprobe_insn_cache *c) 234 { 235 struct kprobe_insn_page *kip, *next; 236 237 /* Ensure no-one is interrupted on the garbages */ 238 synchronize_rcu(); 239 240 list_for_each_entry_safe(kip, next, &c->pages, list) { 241 int i; 242 if (kip->ngarbage == 0) 243 continue; 244 kip->ngarbage = 0; /* we will collect all garbages */ 245 for (i = 0; i < slots_per_page(c); i++) { 246 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 247 break; 248 } 249 } 250 c->nr_garbage = 0; 251 return 0; 252 } 253 254 void __free_insn_slot(struct kprobe_insn_cache *c, 255 kprobe_opcode_t *slot, int dirty) 256 { 257 struct kprobe_insn_page *kip; 258 long idx; 259 260 mutex_lock(&c->mutex); 261 rcu_read_lock(); 262 list_for_each_entry_rcu(kip, &c->pages, list) { 263 idx = ((long)slot - (long)kip->insns) / 264 (c->insn_size * sizeof(kprobe_opcode_t)); 265 if (idx >= 0 && idx < slots_per_page(c)) 266 goto out; 267 } 268 /* Could not find this slot. */ 269 WARN_ON(1); 270 kip = NULL; 271 out: 272 rcu_read_unlock(); 273 /* Mark and sweep: this may sleep */ 274 if (kip) { 275 /* Check double free */ 276 WARN_ON(kip->slot_used[idx] != SLOT_USED); 277 if (dirty) { 278 kip->slot_used[idx] = SLOT_DIRTY; 279 kip->ngarbage++; 280 if (++c->nr_garbage > slots_per_page(c)) 281 collect_garbage_slots(c); 282 } else { 283 collect_one_slot(kip, idx); 284 } 285 } 286 mutex_unlock(&c->mutex); 287 } 288 289 /* 290 * Check given address is on the page of kprobe instruction slots. 291 * This will be used for checking whether the address on a stack 292 * is on a text area or not. 293 */ 294 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 295 { 296 struct kprobe_insn_page *kip; 297 bool ret = false; 298 299 rcu_read_lock(); 300 list_for_each_entry_rcu(kip, &c->pages, list) { 301 if (addr >= (unsigned long)kip->insns && 302 addr < (unsigned long)kip->insns + PAGE_SIZE) { 303 ret = true; 304 break; 305 } 306 } 307 rcu_read_unlock(); 308 309 return ret; 310 } 311 312 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum, 313 unsigned long *value, char *type, char *sym) 314 { 315 struct kprobe_insn_page *kip; 316 int ret = -ERANGE; 317 318 rcu_read_lock(); 319 list_for_each_entry_rcu(kip, &c->pages, list) { 320 if ((*symnum)--) 321 continue; 322 strlcpy(sym, c->sym, KSYM_NAME_LEN); 323 *type = 't'; 324 *value = (unsigned long)kip->insns; 325 ret = 0; 326 break; 327 } 328 rcu_read_unlock(); 329 330 return ret; 331 } 332 333 #ifdef CONFIG_OPTPROBES 334 /* For optimized_kprobe buffer */ 335 struct kprobe_insn_cache kprobe_optinsn_slots = { 336 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 337 .alloc = alloc_insn_page, 338 .free = free_insn_page, 339 .sym = KPROBE_OPTINSN_PAGE_SYM, 340 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 341 /* .insn_size is initialized later */ 342 .nr_garbage = 0, 343 }; 344 #endif 345 #endif 346 347 /* We have preemption disabled.. so it is safe to use __ versions */ 348 static inline void set_kprobe_instance(struct kprobe *kp) 349 { 350 __this_cpu_write(kprobe_instance, kp); 351 } 352 353 static inline void reset_kprobe_instance(void) 354 { 355 __this_cpu_write(kprobe_instance, NULL); 356 } 357 358 /* 359 * This routine is called either: 360 * - under the kprobe_mutex - during kprobe_[un]register() 361 * OR 362 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 363 */ 364 struct kprobe *get_kprobe(void *addr) 365 { 366 struct hlist_head *head; 367 struct kprobe *p; 368 369 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 370 hlist_for_each_entry_rcu(p, head, hlist, 371 lockdep_is_held(&kprobe_mutex)) { 372 if (p->addr == addr) 373 return p; 374 } 375 376 return NULL; 377 } 378 NOKPROBE_SYMBOL(get_kprobe); 379 380 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 381 382 /* Return true if the kprobe is an aggregator */ 383 static inline int kprobe_aggrprobe(struct kprobe *p) 384 { 385 return p->pre_handler == aggr_pre_handler; 386 } 387 388 /* Return true(!0) if the kprobe is unused */ 389 static inline int kprobe_unused(struct kprobe *p) 390 { 391 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 392 list_empty(&p->list); 393 } 394 395 /* 396 * Keep all fields in the kprobe consistent 397 */ 398 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 399 { 400 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 401 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 402 } 403 404 #ifdef CONFIG_OPTPROBES 405 /* NOTE: change this value only with kprobe_mutex held */ 406 static bool kprobes_allow_optimization; 407 408 /* 409 * Call all pre_handler on the list, but ignores its return value. 410 * This must be called from arch-dep optimized caller. 411 */ 412 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 413 { 414 struct kprobe *kp; 415 416 list_for_each_entry_rcu(kp, &p->list, list) { 417 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 418 set_kprobe_instance(kp); 419 kp->pre_handler(kp, regs); 420 } 421 reset_kprobe_instance(); 422 } 423 } 424 NOKPROBE_SYMBOL(opt_pre_handler); 425 426 /* Free optimized instructions and optimized_kprobe */ 427 static void free_aggr_kprobe(struct kprobe *p) 428 { 429 struct optimized_kprobe *op; 430 431 op = container_of(p, struct optimized_kprobe, kp); 432 arch_remove_optimized_kprobe(op); 433 arch_remove_kprobe(p); 434 kfree(op); 435 } 436 437 /* Return true(!0) if the kprobe is ready for optimization. */ 438 static inline int kprobe_optready(struct kprobe *p) 439 { 440 struct optimized_kprobe *op; 441 442 if (kprobe_aggrprobe(p)) { 443 op = container_of(p, struct optimized_kprobe, kp); 444 return arch_prepared_optinsn(&op->optinsn); 445 } 446 447 return 0; 448 } 449 450 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 451 static inline int kprobe_disarmed(struct kprobe *p) 452 { 453 struct optimized_kprobe *op; 454 455 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 456 if (!kprobe_aggrprobe(p)) 457 return kprobe_disabled(p); 458 459 op = container_of(p, struct optimized_kprobe, kp); 460 461 return kprobe_disabled(p) && list_empty(&op->list); 462 } 463 464 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 465 static int kprobe_queued(struct kprobe *p) 466 { 467 struct optimized_kprobe *op; 468 469 if (kprobe_aggrprobe(p)) { 470 op = container_of(p, struct optimized_kprobe, kp); 471 if (!list_empty(&op->list)) 472 return 1; 473 } 474 return 0; 475 } 476 477 /* 478 * Return an optimized kprobe whose optimizing code replaces 479 * instructions including addr (exclude breakpoint). 480 */ 481 static struct kprobe *get_optimized_kprobe(unsigned long addr) 482 { 483 int i; 484 struct kprobe *p = NULL; 485 struct optimized_kprobe *op; 486 487 /* Don't check i == 0, since that is a breakpoint case. */ 488 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 489 p = get_kprobe((void *)(addr - i)); 490 491 if (p && kprobe_optready(p)) { 492 op = container_of(p, struct optimized_kprobe, kp); 493 if (arch_within_optimized_kprobe(op, addr)) 494 return p; 495 } 496 497 return NULL; 498 } 499 500 /* Optimization staging list, protected by kprobe_mutex */ 501 static LIST_HEAD(optimizing_list); 502 static LIST_HEAD(unoptimizing_list); 503 static LIST_HEAD(freeing_list); 504 505 static void kprobe_optimizer(struct work_struct *work); 506 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 507 #define OPTIMIZE_DELAY 5 508 509 /* 510 * Optimize (replace a breakpoint with a jump) kprobes listed on 511 * optimizing_list. 512 */ 513 static void do_optimize_kprobes(void) 514 { 515 lockdep_assert_held(&text_mutex); 516 /* 517 * The optimization/unoptimization refers online_cpus via 518 * stop_machine() and cpu-hotplug modifies online_cpus. 519 * And same time, text_mutex will be held in cpu-hotplug and here. 520 * This combination can cause a deadlock (cpu-hotplug try to lock 521 * text_mutex but stop_machine can not be done because online_cpus 522 * has been changed) 523 * To avoid this deadlock, caller must have locked cpu hotplug 524 * for preventing cpu-hotplug outside of text_mutex locking. 525 */ 526 lockdep_assert_cpus_held(); 527 528 /* Optimization never be done when disarmed */ 529 if (kprobes_all_disarmed || !kprobes_allow_optimization || 530 list_empty(&optimizing_list)) 531 return; 532 533 arch_optimize_kprobes(&optimizing_list); 534 } 535 536 /* 537 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 538 * if need) kprobes listed on unoptimizing_list. 539 */ 540 static void do_unoptimize_kprobes(void) 541 { 542 struct optimized_kprobe *op, *tmp; 543 544 lockdep_assert_held(&text_mutex); 545 /* See comment in do_optimize_kprobes() */ 546 lockdep_assert_cpus_held(); 547 548 /* Unoptimization must be done anytime */ 549 if (list_empty(&unoptimizing_list)) 550 return; 551 552 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 553 /* Loop free_list for disarming */ 554 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 555 /* Switching from detour code to origin */ 556 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 557 /* Disarm probes if marked disabled */ 558 if (kprobe_disabled(&op->kp)) 559 arch_disarm_kprobe(&op->kp); 560 if (kprobe_unused(&op->kp)) { 561 /* 562 * Remove unused probes from hash list. After waiting 563 * for synchronization, these probes are reclaimed. 564 * (reclaiming is done by do_free_cleaned_kprobes.) 565 */ 566 hlist_del_rcu(&op->kp.hlist); 567 } else 568 list_del_init(&op->list); 569 } 570 } 571 572 /* Reclaim all kprobes on the free_list */ 573 static void do_free_cleaned_kprobes(void) 574 { 575 struct optimized_kprobe *op, *tmp; 576 577 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 578 list_del_init(&op->list); 579 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) { 580 /* 581 * This must not happen, but if there is a kprobe 582 * still in use, keep it on kprobes hash list. 583 */ 584 continue; 585 } 586 free_aggr_kprobe(&op->kp); 587 } 588 } 589 590 /* Start optimizer after OPTIMIZE_DELAY passed */ 591 static void kick_kprobe_optimizer(void) 592 { 593 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 594 } 595 596 /* Kprobe jump optimizer */ 597 static void kprobe_optimizer(struct work_struct *work) 598 { 599 mutex_lock(&kprobe_mutex); 600 cpus_read_lock(); 601 mutex_lock(&text_mutex); 602 603 /* 604 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 605 * kprobes before waiting for quiesence period. 606 */ 607 do_unoptimize_kprobes(); 608 609 /* 610 * Step 2: Wait for quiesence period to ensure all potentially 611 * preempted tasks to have normally scheduled. Because optprobe 612 * may modify multiple instructions, there is a chance that Nth 613 * instruction is preempted. In that case, such tasks can return 614 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. 615 * Note that on non-preemptive kernel, this is transparently converted 616 * to synchronoze_sched() to wait for all interrupts to have completed. 617 */ 618 synchronize_rcu_tasks(); 619 620 /* Step 3: Optimize kprobes after quiesence period */ 621 do_optimize_kprobes(); 622 623 /* Step 4: Free cleaned kprobes after quiesence period */ 624 do_free_cleaned_kprobes(); 625 626 mutex_unlock(&text_mutex); 627 cpus_read_unlock(); 628 629 /* Step 5: Kick optimizer again if needed */ 630 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 631 kick_kprobe_optimizer(); 632 633 mutex_unlock(&kprobe_mutex); 634 } 635 636 /* Wait for completing optimization and unoptimization */ 637 void wait_for_kprobe_optimizer(void) 638 { 639 mutex_lock(&kprobe_mutex); 640 641 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 642 mutex_unlock(&kprobe_mutex); 643 644 /* this will also make optimizing_work execute immmediately */ 645 flush_delayed_work(&optimizing_work); 646 /* @optimizing_work might not have been queued yet, relax */ 647 cpu_relax(); 648 649 mutex_lock(&kprobe_mutex); 650 } 651 652 mutex_unlock(&kprobe_mutex); 653 } 654 655 static bool optprobe_queued_unopt(struct optimized_kprobe *op) 656 { 657 struct optimized_kprobe *_op; 658 659 list_for_each_entry(_op, &unoptimizing_list, list) { 660 if (op == _op) 661 return true; 662 } 663 664 return false; 665 } 666 667 /* Optimize kprobe if p is ready to be optimized */ 668 static void optimize_kprobe(struct kprobe *p) 669 { 670 struct optimized_kprobe *op; 671 672 /* Check if the kprobe is disabled or not ready for optimization. */ 673 if (!kprobe_optready(p) || !kprobes_allow_optimization || 674 (kprobe_disabled(p) || kprobes_all_disarmed)) 675 return; 676 677 /* kprobes with post_handler can not be optimized */ 678 if (p->post_handler) 679 return; 680 681 op = container_of(p, struct optimized_kprobe, kp); 682 683 /* Check there is no other kprobes at the optimized instructions */ 684 if (arch_check_optimized_kprobe(op) < 0) 685 return; 686 687 /* Check if it is already optimized. */ 688 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) { 689 if (optprobe_queued_unopt(op)) { 690 /* This is under unoptimizing. Just dequeue the probe */ 691 list_del_init(&op->list); 692 } 693 return; 694 } 695 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 696 697 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */ 698 if (WARN_ON_ONCE(!list_empty(&op->list))) 699 return; 700 701 list_add(&op->list, &optimizing_list); 702 kick_kprobe_optimizer(); 703 } 704 705 /* Short cut to direct unoptimizing */ 706 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 707 { 708 lockdep_assert_cpus_held(); 709 arch_unoptimize_kprobe(op); 710 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 711 } 712 713 /* Unoptimize a kprobe if p is optimized */ 714 static void unoptimize_kprobe(struct kprobe *p, bool force) 715 { 716 struct optimized_kprobe *op; 717 718 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 719 return; /* This is not an optprobe nor optimized */ 720 721 op = container_of(p, struct optimized_kprobe, kp); 722 if (!kprobe_optimized(p)) 723 return; 724 725 if (!list_empty(&op->list)) { 726 if (optprobe_queued_unopt(op)) { 727 /* Queued in unoptimizing queue */ 728 if (force) { 729 /* 730 * Forcibly unoptimize the kprobe here, and queue it 731 * in the freeing list for release afterwards. 732 */ 733 force_unoptimize_kprobe(op); 734 list_move(&op->list, &freeing_list); 735 } 736 } else { 737 /* Dequeue from the optimizing queue */ 738 list_del_init(&op->list); 739 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 740 } 741 return; 742 } 743 744 /* Optimized kprobe case */ 745 if (force) { 746 /* Forcibly update the code: this is a special case */ 747 force_unoptimize_kprobe(op); 748 } else { 749 list_add(&op->list, &unoptimizing_list); 750 kick_kprobe_optimizer(); 751 } 752 } 753 754 /* Cancel unoptimizing for reusing */ 755 static int reuse_unused_kprobe(struct kprobe *ap) 756 { 757 struct optimized_kprobe *op; 758 759 /* 760 * Unused kprobe MUST be on the way of delayed unoptimizing (means 761 * there is still a relative jump) and disabled. 762 */ 763 op = container_of(ap, struct optimized_kprobe, kp); 764 WARN_ON_ONCE(list_empty(&op->list)); 765 /* Enable the probe again */ 766 ap->flags &= ~KPROBE_FLAG_DISABLED; 767 /* Optimize it again (remove from op->list) */ 768 if (!kprobe_optready(ap)) 769 return -EINVAL; 770 771 optimize_kprobe(ap); 772 return 0; 773 } 774 775 /* Remove optimized instructions */ 776 static void kill_optimized_kprobe(struct kprobe *p) 777 { 778 struct optimized_kprobe *op; 779 780 op = container_of(p, struct optimized_kprobe, kp); 781 if (!list_empty(&op->list)) 782 /* Dequeue from the (un)optimization queue */ 783 list_del_init(&op->list); 784 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 785 786 if (kprobe_unused(p)) { 787 /* Enqueue if it is unused */ 788 list_add(&op->list, &freeing_list); 789 /* 790 * Remove unused probes from the hash list. After waiting 791 * for synchronization, this probe is reclaimed. 792 * (reclaiming is done by do_free_cleaned_kprobes().) 793 */ 794 hlist_del_rcu(&op->kp.hlist); 795 } 796 797 /* Don't touch the code, because it is already freed. */ 798 arch_remove_optimized_kprobe(op); 799 } 800 801 static inline 802 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) 803 { 804 if (!kprobe_ftrace(p)) 805 arch_prepare_optimized_kprobe(op, p); 806 } 807 808 /* Try to prepare optimized instructions */ 809 static void prepare_optimized_kprobe(struct kprobe *p) 810 { 811 struct optimized_kprobe *op; 812 813 op = container_of(p, struct optimized_kprobe, kp); 814 __prepare_optimized_kprobe(op, p); 815 } 816 817 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 818 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 819 { 820 struct optimized_kprobe *op; 821 822 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 823 if (!op) 824 return NULL; 825 826 INIT_LIST_HEAD(&op->list); 827 op->kp.addr = p->addr; 828 __prepare_optimized_kprobe(op, p); 829 830 return &op->kp; 831 } 832 833 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 834 835 /* 836 * Prepare an optimized_kprobe and optimize it 837 * NOTE: p must be a normal registered kprobe 838 */ 839 static void try_to_optimize_kprobe(struct kprobe *p) 840 { 841 struct kprobe *ap; 842 struct optimized_kprobe *op; 843 844 /* Impossible to optimize ftrace-based kprobe */ 845 if (kprobe_ftrace(p)) 846 return; 847 848 /* For preparing optimization, jump_label_text_reserved() is called */ 849 cpus_read_lock(); 850 jump_label_lock(); 851 mutex_lock(&text_mutex); 852 853 ap = alloc_aggr_kprobe(p); 854 if (!ap) 855 goto out; 856 857 op = container_of(ap, struct optimized_kprobe, kp); 858 if (!arch_prepared_optinsn(&op->optinsn)) { 859 /* If failed to setup optimizing, fallback to kprobe */ 860 arch_remove_optimized_kprobe(op); 861 kfree(op); 862 goto out; 863 } 864 865 init_aggr_kprobe(ap, p); 866 optimize_kprobe(ap); /* This just kicks optimizer thread */ 867 868 out: 869 mutex_unlock(&text_mutex); 870 jump_label_unlock(); 871 cpus_read_unlock(); 872 } 873 874 #ifdef CONFIG_SYSCTL 875 static void optimize_all_kprobes(void) 876 { 877 struct hlist_head *head; 878 struct kprobe *p; 879 unsigned int i; 880 881 mutex_lock(&kprobe_mutex); 882 /* If optimization is already allowed, just return */ 883 if (kprobes_allow_optimization) 884 goto out; 885 886 cpus_read_lock(); 887 kprobes_allow_optimization = true; 888 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 889 head = &kprobe_table[i]; 890 hlist_for_each_entry(p, head, hlist) 891 if (!kprobe_disabled(p)) 892 optimize_kprobe(p); 893 } 894 cpus_read_unlock(); 895 printk(KERN_INFO "Kprobes globally optimized\n"); 896 out: 897 mutex_unlock(&kprobe_mutex); 898 } 899 900 static void unoptimize_all_kprobes(void) 901 { 902 struct hlist_head *head; 903 struct kprobe *p; 904 unsigned int i; 905 906 mutex_lock(&kprobe_mutex); 907 /* If optimization is already prohibited, just return */ 908 if (!kprobes_allow_optimization) { 909 mutex_unlock(&kprobe_mutex); 910 return; 911 } 912 913 cpus_read_lock(); 914 kprobes_allow_optimization = false; 915 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 916 head = &kprobe_table[i]; 917 hlist_for_each_entry(p, head, hlist) { 918 if (!kprobe_disabled(p)) 919 unoptimize_kprobe(p, false); 920 } 921 } 922 cpus_read_unlock(); 923 mutex_unlock(&kprobe_mutex); 924 925 /* Wait for unoptimizing completion */ 926 wait_for_kprobe_optimizer(); 927 printk(KERN_INFO "Kprobes globally unoptimized\n"); 928 } 929 930 static DEFINE_MUTEX(kprobe_sysctl_mutex); 931 int sysctl_kprobes_optimization; 932 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 933 void *buffer, size_t *length, 934 loff_t *ppos) 935 { 936 int ret; 937 938 mutex_lock(&kprobe_sysctl_mutex); 939 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 940 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 941 942 if (sysctl_kprobes_optimization) 943 optimize_all_kprobes(); 944 else 945 unoptimize_all_kprobes(); 946 mutex_unlock(&kprobe_sysctl_mutex); 947 948 return ret; 949 } 950 #endif /* CONFIG_SYSCTL */ 951 952 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 953 static void __arm_kprobe(struct kprobe *p) 954 { 955 struct kprobe *_p; 956 957 /* Check collision with other optimized kprobes */ 958 _p = get_optimized_kprobe((unsigned long)p->addr); 959 if (unlikely(_p)) 960 /* Fallback to unoptimized kprobe */ 961 unoptimize_kprobe(_p, true); 962 963 arch_arm_kprobe(p); 964 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 965 } 966 967 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 968 static void __disarm_kprobe(struct kprobe *p, bool reopt) 969 { 970 struct kprobe *_p; 971 972 /* Try to unoptimize */ 973 unoptimize_kprobe(p, kprobes_all_disarmed); 974 975 if (!kprobe_queued(p)) { 976 arch_disarm_kprobe(p); 977 /* If another kprobe was blocked, optimize it. */ 978 _p = get_optimized_kprobe((unsigned long)p->addr); 979 if (unlikely(_p) && reopt) 980 optimize_kprobe(_p); 981 } 982 /* TODO: reoptimize others after unoptimized this probe */ 983 } 984 985 #else /* !CONFIG_OPTPROBES */ 986 987 #define optimize_kprobe(p) do {} while (0) 988 #define unoptimize_kprobe(p, f) do {} while (0) 989 #define kill_optimized_kprobe(p) do {} while (0) 990 #define prepare_optimized_kprobe(p) do {} while (0) 991 #define try_to_optimize_kprobe(p) do {} while (0) 992 #define __arm_kprobe(p) arch_arm_kprobe(p) 993 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 994 #define kprobe_disarmed(p) kprobe_disabled(p) 995 #define wait_for_kprobe_optimizer() do {} while (0) 996 997 static int reuse_unused_kprobe(struct kprobe *ap) 998 { 999 /* 1000 * If the optimized kprobe is NOT supported, the aggr kprobe is 1001 * released at the same time that the last aggregated kprobe is 1002 * unregistered. 1003 * Thus there should be no chance to reuse unused kprobe. 1004 */ 1005 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 1006 return -EINVAL; 1007 } 1008 1009 static void free_aggr_kprobe(struct kprobe *p) 1010 { 1011 arch_remove_kprobe(p); 1012 kfree(p); 1013 } 1014 1015 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 1016 { 1017 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 1018 } 1019 #endif /* CONFIG_OPTPROBES */ 1020 1021 #ifdef CONFIG_KPROBES_ON_FTRACE 1022 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 1023 .func = kprobe_ftrace_handler, 1024 .flags = FTRACE_OPS_FL_SAVE_REGS, 1025 }; 1026 1027 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = { 1028 .func = kprobe_ftrace_handler, 1029 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 1030 }; 1031 1032 static int kprobe_ipmodify_enabled; 1033 static int kprobe_ftrace_enabled; 1034 1035 /* Must ensure p->addr is really on ftrace */ 1036 static int prepare_kprobe(struct kprobe *p) 1037 { 1038 if (!kprobe_ftrace(p)) 1039 return arch_prepare_kprobe(p); 1040 1041 return arch_prepare_kprobe_ftrace(p); 1042 } 1043 1044 /* Caller must lock kprobe_mutex */ 1045 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1046 int *cnt) 1047 { 1048 int ret = 0; 1049 1050 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0); 1051 if (ret) { 1052 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n", 1053 p->addr, ret); 1054 return ret; 1055 } 1056 1057 if (*cnt == 0) { 1058 ret = register_ftrace_function(ops); 1059 if (ret) { 1060 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret); 1061 goto err_ftrace; 1062 } 1063 } 1064 1065 (*cnt)++; 1066 return ret; 1067 1068 err_ftrace: 1069 /* 1070 * At this point, sinec ops is not registered, we should be sefe from 1071 * registering empty filter. 1072 */ 1073 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1074 return ret; 1075 } 1076 1077 static int arm_kprobe_ftrace(struct kprobe *p) 1078 { 1079 bool ipmodify = (p->post_handler != NULL); 1080 1081 return __arm_kprobe_ftrace(p, 1082 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1083 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1084 } 1085 1086 /* Caller must lock kprobe_mutex */ 1087 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1088 int *cnt) 1089 { 1090 int ret = 0; 1091 1092 if (*cnt == 1) { 1093 ret = unregister_ftrace_function(ops); 1094 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret)) 1095 return ret; 1096 } 1097 1098 (*cnt)--; 1099 1100 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1101 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n", 1102 p->addr, ret); 1103 return ret; 1104 } 1105 1106 static int disarm_kprobe_ftrace(struct kprobe *p) 1107 { 1108 bool ipmodify = (p->post_handler != NULL); 1109 1110 return __disarm_kprobe_ftrace(p, 1111 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1112 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1113 } 1114 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1115 static inline int prepare_kprobe(struct kprobe *p) 1116 { 1117 return arch_prepare_kprobe(p); 1118 } 1119 1120 static inline int arm_kprobe_ftrace(struct kprobe *p) 1121 { 1122 return -ENODEV; 1123 } 1124 1125 static inline int disarm_kprobe_ftrace(struct kprobe *p) 1126 { 1127 return -ENODEV; 1128 } 1129 #endif 1130 1131 /* Arm a kprobe with text_mutex */ 1132 static int arm_kprobe(struct kprobe *kp) 1133 { 1134 if (unlikely(kprobe_ftrace(kp))) 1135 return arm_kprobe_ftrace(kp); 1136 1137 cpus_read_lock(); 1138 mutex_lock(&text_mutex); 1139 __arm_kprobe(kp); 1140 mutex_unlock(&text_mutex); 1141 cpus_read_unlock(); 1142 1143 return 0; 1144 } 1145 1146 /* Disarm a kprobe with text_mutex */ 1147 static int disarm_kprobe(struct kprobe *kp, bool reopt) 1148 { 1149 if (unlikely(kprobe_ftrace(kp))) 1150 return disarm_kprobe_ftrace(kp); 1151 1152 cpus_read_lock(); 1153 mutex_lock(&text_mutex); 1154 __disarm_kprobe(kp, reopt); 1155 mutex_unlock(&text_mutex); 1156 cpus_read_unlock(); 1157 1158 return 0; 1159 } 1160 1161 /* 1162 * Aggregate handlers for multiple kprobes support - these handlers 1163 * take care of invoking the individual kprobe handlers on p->list 1164 */ 1165 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1166 { 1167 struct kprobe *kp; 1168 1169 list_for_each_entry_rcu(kp, &p->list, list) { 1170 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1171 set_kprobe_instance(kp); 1172 if (kp->pre_handler(kp, regs)) 1173 return 1; 1174 } 1175 reset_kprobe_instance(); 1176 } 1177 return 0; 1178 } 1179 NOKPROBE_SYMBOL(aggr_pre_handler); 1180 1181 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1182 unsigned long flags) 1183 { 1184 struct kprobe *kp; 1185 1186 list_for_each_entry_rcu(kp, &p->list, list) { 1187 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1188 set_kprobe_instance(kp); 1189 kp->post_handler(kp, regs, flags); 1190 reset_kprobe_instance(); 1191 } 1192 } 1193 } 1194 NOKPROBE_SYMBOL(aggr_post_handler); 1195 1196 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 1197 int trapnr) 1198 { 1199 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1200 1201 /* 1202 * if we faulted "during" the execution of a user specified 1203 * probe handler, invoke just that probe's fault handler 1204 */ 1205 if (cur && cur->fault_handler) { 1206 if (cur->fault_handler(cur, regs, trapnr)) 1207 return 1; 1208 } 1209 return 0; 1210 } 1211 NOKPROBE_SYMBOL(aggr_fault_handler); 1212 1213 /* Walks the list and increments nmissed count for multiprobe case */ 1214 void kprobes_inc_nmissed_count(struct kprobe *p) 1215 { 1216 struct kprobe *kp; 1217 if (!kprobe_aggrprobe(p)) { 1218 p->nmissed++; 1219 } else { 1220 list_for_each_entry_rcu(kp, &p->list, list) 1221 kp->nmissed++; 1222 } 1223 return; 1224 } 1225 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1226 1227 static void recycle_rp_inst(struct kretprobe_instance *ri) 1228 { 1229 struct kretprobe *rp = ri->rp; 1230 1231 /* remove rp inst off the rprobe_inst_table */ 1232 hlist_del(&ri->hlist); 1233 INIT_HLIST_NODE(&ri->hlist); 1234 if (likely(rp)) { 1235 raw_spin_lock(&rp->lock); 1236 hlist_add_head(&ri->hlist, &rp->free_instances); 1237 raw_spin_unlock(&rp->lock); 1238 } else 1239 kfree_rcu(ri, rcu); 1240 } 1241 NOKPROBE_SYMBOL(recycle_rp_inst); 1242 1243 static void kretprobe_hash_lock(struct task_struct *tsk, 1244 struct hlist_head **head, unsigned long *flags) 1245 __acquires(hlist_lock) 1246 { 1247 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1248 raw_spinlock_t *hlist_lock; 1249 1250 *head = &kretprobe_inst_table[hash]; 1251 hlist_lock = kretprobe_table_lock_ptr(hash); 1252 /* 1253 * Nested is a workaround that will soon not be needed. 1254 * There's other protections that make sure the same lock 1255 * is not taken on the same CPU that lockdep is unaware of. 1256 * Differentiate when it is taken in NMI context. 1257 */ 1258 raw_spin_lock_irqsave_nested(hlist_lock, *flags, !!in_nmi()); 1259 } 1260 NOKPROBE_SYMBOL(kretprobe_hash_lock); 1261 1262 static void kretprobe_table_lock(unsigned long hash, 1263 unsigned long *flags) 1264 __acquires(hlist_lock) 1265 { 1266 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1267 /* 1268 * Nested is a workaround that will soon not be needed. 1269 * There's other protections that make sure the same lock 1270 * is not taken on the same CPU that lockdep is unaware of. 1271 * Differentiate when it is taken in NMI context. 1272 */ 1273 raw_spin_lock_irqsave_nested(hlist_lock, *flags, !!in_nmi()); 1274 } 1275 NOKPROBE_SYMBOL(kretprobe_table_lock); 1276 1277 static void kretprobe_hash_unlock(struct task_struct *tsk, 1278 unsigned long *flags) 1279 __releases(hlist_lock) 1280 { 1281 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1282 raw_spinlock_t *hlist_lock; 1283 1284 hlist_lock = kretprobe_table_lock_ptr(hash); 1285 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1286 } 1287 NOKPROBE_SYMBOL(kretprobe_hash_unlock); 1288 1289 static void kretprobe_table_unlock(unsigned long hash, 1290 unsigned long *flags) 1291 __releases(hlist_lock) 1292 { 1293 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1294 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1295 } 1296 NOKPROBE_SYMBOL(kretprobe_table_unlock); 1297 1298 static struct kprobe kprobe_busy = { 1299 .addr = (void *) get_kprobe, 1300 }; 1301 1302 void kprobe_busy_begin(void) 1303 { 1304 struct kprobe_ctlblk *kcb; 1305 1306 preempt_disable(); 1307 __this_cpu_write(current_kprobe, &kprobe_busy); 1308 kcb = get_kprobe_ctlblk(); 1309 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 1310 } 1311 1312 void kprobe_busy_end(void) 1313 { 1314 __this_cpu_write(current_kprobe, NULL); 1315 preempt_enable(); 1316 } 1317 1318 /* 1319 * This function is called from finish_task_switch when task tk becomes dead, 1320 * so that we can recycle any function-return probe instances associated 1321 * with this task. These left over instances represent probed functions 1322 * that have been called but will never return. 1323 */ 1324 void kprobe_flush_task(struct task_struct *tk) 1325 { 1326 struct kretprobe_instance *ri; 1327 struct hlist_head *head; 1328 struct hlist_node *tmp; 1329 unsigned long hash, flags = 0; 1330 1331 if (unlikely(!kprobes_initialized)) 1332 /* Early boot. kretprobe_table_locks not yet initialized. */ 1333 return; 1334 1335 kprobe_busy_begin(); 1336 1337 hash = hash_ptr(tk, KPROBE_HASH_BITS); 1338 head = &kretprobe_inst_table[hash]; 1339 kretprobe_table_lock(hash, &flags); 1340 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 1341 if (ri->task == tk) 1342 recycle_rp_inst(ri); 1343 } 1344 kretprobe_table_unlock(hash, &flags); 1345 1346 kprobe_busy_end(); 1347 } 1348 NOKPROBE_SYMBOL(kprobe_flush_task); 1349 1350 static inline void free_rp_inst(struct kretprobe *rp) 1351 { 1352 struct kretprobe_instance *ri; 1353 struct hlist_node *next; 1354 1355 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) { 1356 hlist_del(&ri->hlist); 1357 kfree(ri); 1358 } 1359 } 1360 1361 static void cleanup_rp_inst(struct kretprobe *rp) 1362 { 1363 unsigned long flags, hash; 1364 struct kretprobe_instance *ri; 1365 struct hlist_node *next; 1366 struct hlist_head *head; 1367 1368 /* To avoid recursive kretprobe by NMI, set kprobe busy here */ 1369 kprobe_busy_begin(); 1370 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 1371 kretprobe_table_lock(hash, &flags); 1372 head = &kretprobe_inst_table[hash]; 1373 hlist_for_each_entry_safe(ri, next, head, hlist) { 1374 if (ri->rp == rp) 1375 ri->rp = NULL; 1376 } 1377 kretprobe_table_unlock(hash, &flags); 1378 } 1379 kprobe_busy_end(); 1380 1381 free_rp_inst(rp); 1382 } 1383 NOKPROBE_SYMBOL(cleanup_rp_inst); 1384 1385 /* Add the new probe to ap->list */ 1386 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1387 { 1388 if (p->post_handler) 1389 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1390 1391 list_add_rcu(&p->list, &ap->list); 1392 if (p->post_handler && !ap->post_handler) 1393 ap->post_handler = aggr_post_handler; 1394 1395 return 0; 1396 } 1397 1398 /* 1399 * Fill in the required fields of the "manager kprobe". Replace the 1400 * earlier kprobe in the hlist with the manager kprobe 1401 */ 1402 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1403 { 1404 /* Copy p's insn slot to ap */ 1405 copy_kprobe(p, ap); 1406 flush_insn_slot(ap); 1407 ap->addr = p->addr; 1408 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1409 ap->pre_handler = aggr_pre_handler; 1410 ap->fault_handler = aggr_fault_handler; 1411 /* We don't care the kprobe which has gone. */ 1412 if (p->post_handler && !kprobe_gone(p)) 1413 ap->post_handler = aggr_post_handler; 1414 1415 INIT_LIST_HEAD(&ap->list); 1416 INIT_HLIST_NODE(&ap->hlist); 1417 1418 list_add_rcu(&p->list, &ap->list); 1419 hlist_replace_rcu(&p->hlist, &ap->hlist); 1420 } 1421 1422 /* 1423 * This is the second or subsequent kprobe at the address - handle 1424 * the intricacies 1425 */ 1426 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1427 { 1428 int ret = 0; 1429 struct kprobe *ap = orig_p; 1430 1431 cpus_read_lock(); 1432 1433 /* For preparing optimization, jump_label_text_reserved() is called */ 1434 jump_label_lock(); 1435 mutex_lock(&text_mutex); 1436 1437 if (!kprobe_aggrprobe(orig_p)) { 1438 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1439 ap = alloc_aggr_kprobe(orig_p); 1440 if (!ap) { 1441 ret = -ENOMEM; 1442 goto out; 1443 } 1444 init_aggr_kprobe(ap, orig_p); 1445 } else if (kprobe_unused(ap)) { 1446 /* This probe is going to die. Rescue it */ 1447 ret = reuse_unused_kprobe(ap); 1448 if (ret) 1449 goto out; 1450 } 1451 1452 if (kprobe_gone(ap)) { 1453 /* 1454 * Attempting to insert new probe at the same location that 1455 * had a probe in the module vaddr area which already 1456 * freed. So, the instruction slot has already been 1457 * released. We need a new slot for the new probe. 1458 */ 1459 ret = arch_prepare_kprobe(ap); 1460 if (ret) 1461 /* 1462 * Even if fail to allocate new slot, don't need to 1463 * free aggr_probe. It will be used next time, or 1464 * freed by unregister_kprobe. 1465 */ 1466 goto out; 1467 1468 /* Prepare optimized instructions if possible. */ 1469 prepare_optimized_kprobe(ap); 1470 1471 /* 1472 * Clear gone flag to prevent allocating new slot again, and 1473 * set disabled flag because it is not armed yet. 1474 */ 1475 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1476 | KPROBE_FLAG_DISABLED; 1477 } 1478 1479 /* Copy ap's insn slot to p */ 1480 copy_kprobe(ap, p); 1481 ret = add_new_kprobe(ap, p); 1482 1483 out: 1484 mutex_unlock(&text_mutex); 1485 jump_label_unlock(); 1486 cpus_read_unlock(); 1487 1488 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1489 ap->flags &= ~KPROBE_FLAG_DISABLED; 1490 if (!kprobes_all_disarmed) { 1491 /* Arm the breakpoint again. */ 1492 ret = arm_kprobe(ap); 1493 if (ret) { 1494 ap->flags |= KPROBE_FLAG_DISABLED; 1495 list_del_rcu(&p->list); 1496 synchronize_rcu(); 1497 } 1498 } 1499 } 1500 return ret; 1501 } 1502 1503 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1504 { 1505 /* The __kprobes marked functions and entry code must not be probed */ 1506 return addr >= (unsigned long)__kprobes_text_start && 1507 addr < (unsigned long)__kprobes_text_end; 1508 } 1509 1510 static bool __within_kprobe_blacklist(unsigned long addr) 1511 { 1512 struct kprobe_blacklist_entry *ent; 1513 1514 if (arch_within_kprobe_blacklist(addr)) 1515 return true; 1516 /* 1517 * If there exists a kprobe_blacklist, verify and 1518 * fail any probe registration in the prohibited area 1519 */ 1520 list_for_each_entry(ent, &kprobe_blacklist, list) { 1521 if (addr >= ent->start_addr && addr < ent->end_addr) 1522 return true; 1523 } 1524 return false; 1525 } 1526 1527 bool within_kprobe_blacklist(unsigned long addr) 1528 { 1529 char symname[KSYM_NAME_LEN], *p; 1530 1531 if (__within_kprobe_blacklist(addr)) 1532 return true; 1533 1534 /* Check if the address is on a suffixed-symbol */ 1535 if (!lookup_symbol_name(addr, symname)) { 1536 p = strchr(symname, '.'); 1537 if (!p) 1538 return false; 1539 *p = '\0'; 1540 addr = (unsigned long)kprobe_lookup_name(symname, 0); 1541 if (addr) 1542 return __within_kprobe_blacklist(addr); 1543 } 1544 return false; 1545 } 1546 1547 /* 1548 * If we have a symbol_name argument, look it up and add the offset field 1549 * to it. This way, we can specify a relative address to a symbol. 1550 * This returns encoded errors if it fails to look up symbol or invalid 1551 * combination of parameters. 1552 */ 1553 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr, 1554 const char *symbol_name, unsigned int offset) 1555 { 1556 if ((symbol_name && addr) || (!symbol_name && !addr)) 1557 goto invalid; 1558 1559 if (symbol_name) { 1560 addr = kprobe_lookup_name(symbol_name, offset); 1561 if (!addr) 1562 return ERR_PTR(-ENOENT); 1563 } 1564 1565 addr = (kprobe_opcode_t *)(((char *)addr) + offset); 1566 if (addr) 1567 return addr; 1568 1569 invalid: 1570 return ERR_PTR(-EINVAL); 1571 } 1572 1573 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1574 { 1575 return _kprobe_addr(p->addr, p->symbol_name, p->offset); 1576 } 1577 1578 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1579 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1580 { 1581 struct kprobe *ap, *list_p; 1582 1583 lockdep_assert_held(&kprobe_mutex); 1584 1585 ap = get_kprobe(p->addr); 1586 if (unlikely(!ap)) 1587 return NULL; 1588 1589 if (p != ap) { 1590 list_for_each_entry(list_p, &ap->list, list) 1591 if (list_p == p) 1592 /* kprobe p is a valid probe */ 1593 goto valid; 1594 return NULL; 1595 } 1596 valid: 1597 return ap; 1598 } 1599 1600 /* Return error if the kprobe is being re-registered */ 1601 static inline int check_kprobe_rereg(struct kprobe *p) 1602 { 1603 int ret = 0; 1604 1605 mutex_lock(&kprobe_mutex); 1606 if (__get_valid_kprobe(p)) 1607 ret = -EINVAL; 1608 mutex_unlock(&kprobe_mutex); 1609 1610 return ret; 1611 } 1612 1613 int __weak arch_check_ftrace_location(struct kprobe *p) 1614 { 1615 unsigned long ftrace_addr; 1616 1617 ftrace_addr = ftrace_location((unsigned long)p->addr); 1618 if (ftrace_addr) { 1619 #ifdef CONFIG_KPROBES_ON_FTRACE 1620 /* Given address is not on the instruction boundary */ 1621 if ((unsigned long)p->addr != ftrace_addr) 1622 return -EILSEQ; 1623 p->flags |= KPROBE_FLAG_FTRACE; 1624 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1625 return -EINVAL; 1626 #endif 1627 } 1628 return 0; 1629 } 1630 1631 static int check_kprobe_address_safe(struct kprobe *p, 1632 struct module **probed_mod) 1633 { 1634 int ret; 1635 1636 ret = arch_check_ftrace_location(p); 1637 if (ret) 1638 return ret; 1639 jump_label_lock(); 1640 preempt_disable(); 1641 1642 /* Ensure it is not in reserved area nor out of text */ 1643 if (!kernel_text_address((unsigned long) p->addr) || 1644 within_kprobe_blacklist((unsigned long) p->addr) || 1645 jump_label_text_reserved(p->addr, p->addr) || 1646 static_call_text_reserved(p->addr, p->addr) || 1647 find_bug((unsigned long)p->addr)) { 1648 ret = -EINVAL; 1649 goto out; 1650 } 1651 1652 /* Check if are we probing a module */ 1653 *probed_mod = __module_text_address((unsigned long) p->addr); 1654 if (*probed_mod) { 1655 /* 1656 * We must hold a refcount of the probed module while updating 1657 * its code to prohibit unexpected unloading. 1658 */ 1659 if (unlikely(!try_module_get(*probed_mod))) { 1660 ret = -ENOENT; 1661 goto out; 1662 } 1663 1664 /* 1665 * If the module freed .init.text, we couldn't insert 1666 * kprobes in there. 1667 */ 1668 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1669 (*probed_mod)->state != MODULE_STATE_COMING) { 1670 module_put(*probed_mod); 1671 *probed_mod = NULL; 1672 ret = -ENOENT; 1673 } 1674 } 1675 out: 1676 preempt_enable(); 1677 jump_label_unlock(); 1678 1679 return ret; 1680 } 1681 1682 int register_kprobe(struct kprobe *p) 1683 { 1684 int ret; 1685 struct kprobe *old_p; 1686 struct module *probed_mod; 1687 kprobe_opcode_t *addr; 1688 1689 /* Adjust probe address from symbol */ 1690 addr = kprobe_addr(p); 1691 if (IS_ERR(addr)) 1692 return PTR_ERR(addr); 1693 p->addr = addr; 1694 1695 ret = check_kprobe_rereg(p); 1696 if (ret) 1697 return ret; 1698 1699 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1700 p->flags &= KPROBE_FLAG_DISABLED; 1701 p->nmissed = 0; 1702 INIT_LIST_HEAD(&p->list); 1703 1704 ret = check_kprobe_address_safe(p, &probed_mod); 1705 if (ret) 1706 return ret; 1707 1708 mutex_lock(&kprobe_mutex); 1709 1710 old_p = get_kprobe(p->addr); 1711 if (old_p) { 1712 /* Since this may unoptimize old_p, locking text_mutex. */ 1713 ret = register_aggr_kprobe(old_p, p); 1714 goto out; 1715 } 1716 1717 cpus_read_lock(); 1718 /* Prevent text modification */ 1719 mutex_lock(&text_mutex); 1720 ret = prepare_kprobe(p); 1721 mutex_unlock(&text_mutex); 1722 cpus_read_unlock(); 1723 if (ret) 1724 goto out; 1725 1726 INIT_HLIST_NODE(&p->hlist); 1727 hlist_add_head_rcu(&p->hlist, 1728 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1729 1730 if (!kprobes_all_disarmed && !kprobe_disabled(p)) { 1731 ret = arm_kprobe(p); 1732 if (ret) { 1733 hlist_del_rcu(&p->hlist); 1734 synchronize_rcu(); 1735 goto out; 1736 } 1737 } 1738 1739 /* Try to optimize kprobe */ 1740 try_to_optimize_kprobe(p); 1741 out: 1742 mutex_unlock(&kprobe_mutex); 1743 1744 if (probed_mod) 1745 module_put(probed_mod); 1746 1747 return ret; 1748 } 1749 EXPORT_SYMBOL_GPL(register_kprobe); 1750 1751 /* Check if all probes on the aggrprobe are disabled */ 1752 static int aggr_kprobe_disabled(struct kprobe *ap) 1753 { 1754 struct kprobe *kp; 1755 1756 lockdep_assert_held(&kprobe_mutex); 1757 1758 list_for_each_entry(kp, &ap->list, list) 1759 if (!kprobe_disabled(kp)) 1760 /* 1761 * There is an active probe on the list. 1762 * We can't disable this ap. 1763 */ 1764 return 0; 1765 1766 return 1; 1767 } 1768 1769 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1770 static struct kprobe *__disable_kprobe(struct kprobe *p) 1771 { 1772 struct kprobe *orig_p; 1773 int ret; 1774 1775 /* Get an original kprobe for return */ 1776 orig_p = __get_valid_kprobe(p); 1777 if (unlikely(orig_p == NULL)) 1778 return ERR_PTR(-EINVAL); 1779 1780 if (!kprobe_disabled(p)) { 1781 /* Disable probe if it is a child probe */ 1782 if (p != orig_p) 1783 p->flags |= KPROBE_FLAG_DISABLED; 1784 1785 /* Try to disarm and disable this/parent probe */ 1786 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1787 /* 1788 * If kprobes_all_disarmed is set, orig_p 1789 * should have already been disarmed, so 1790 * skip unneed disarming process. 1791 */ 1792 if (!kprobes_all_disarmed) { 1793 ret = disarm_kprobe(orig_p, true); 1794 if (ret) { 1795 p->flags &= ~KPROBE_FLAG_DISABLED; 1796 return ERR_PTR(ret); 1797 } 1798 } 1799 orig_p->flags |= KPROBE_FLAG_DISABLED; 1800 } 1801 } 1802 1803 return orig_p; 1804 } 1805 1806 /* 1807 * Unregister a kprobe without a scheduler synchronization. 1808 */ 1809 static int __unregister_kprobe_top(struct kprobe *p) 1810 { 1811 struct kprobe *ap, *list_p; 1812 1813 /* Disable kprobe. This will disarm it if needed. */ 1814 ap = __disable_kprobe(p); 1815 if (IS_ERR(ap)) 1816 return PTR_ERR(ap); 1817 1818 if (ap == p) 1819 /* 1820 * This probe is an independent(and non-optimized) kprobe 1821 * (not an aggrprobe). Remove from the hash list. 1822 */ 1823 goto disarmed; 1824 1825 /* Following process expects this probe is an aggrprobe */ 1826 WARN_ON(!kprobe_aggrprobe(ap)); 1827 1828 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1829 /* 1830 * !disarmed could be happen if the probe is under delayed 1831 * unoptimizing. 1832 */ 1833 goto disarmed; 1834 else { 1835 /* If disabling probe has special handlers, update aggrprobe */ 1836 if (p->post_handler && !kprobe_gone(p)) { 1837 list_for_each_entry(list_p, &ap->list, list) { 1838 if ((list_p != p) && (list_p->post_handler)) 1839 goto noclean; 1840 } 1841 ap->post_handler = NULL; 1842 } 1843 noclean: 1844 /* 1845 * Remove from the aggrprobe: this path will do nothing in 1846 * __unregister_kprobe_bottom(). 1847 */ 1848 list_del_rcu(&p->list); 1849 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1850 /* 1851 * Try to optimize this probe again, because post 1852 * handler may have been changed. 1853 */ 1854 optimize_kprobe(ap); 1855 } 1856 return 0; 1857 1858 disarmed: 1859 hlist_del_rcu(&ap->hlist); 1860 return 0; 1861 } 1862 1863 static void __unregister_kprobe_bottom(struct kprobe *p) 1864 { 1865 struct kprobe *ap; 1866 1867 if (list_empty(&p->list)) 1868 /* This is an independent kprobe */ 1869 arch_remove_kprobe(p); 1870 else if (list_is_singular(&p->list)) { 1871 /* This is the last child of an aggrprobe */ 1872 ap = list_entry(p->list.next, struct kprobe, list); 1873 list_del(&p->list); 1874 free_aggr_kprobe(ap); 1875 } 1876 /* Otherwise, do nothing. */ 1877 } 1878 1879 int register_kprobes(struct kprobe **kps, int num) 1880 { 1881 int i, ret = 0; 1882 1883 if (num <= 0) 1884 return -EINVAL; 1885 for (i = 0; i < num; i++) { 1886 ret = register_kprobe(kps[i]); 1887 if (ret < 0) { 1888 if (i > 0) 1889 unregister_kprobes(kps, i); 1890 break; 1891 } 1892 } 1893 return ret; 1894 } 1895 EXPORT_SYMBOL_GPL(register_kprobes); 1896 1897 void unregister_kprobe(struct kprobe *p) 1898 { 1899 unregister_kprobes(&p, 1); 1900 } 1901 EXPORT_SYMBOL_GPL(unregister_kprobe); 1902 1903 void unregister_kprobes(struct kprobe **kps, int num) 1904 { 1905 int i; 1906 1907 if (num <= 0) 1908 return; 1909 mutex_lock(&kprobe_mutex); 1910 for (i = 0; i < num; i++) 1911 if (__unregister_kprobe_top(kps[i]) < 0) 1912 kps[i]->addr = NULL; 1913 mutex_unlock(&kprobe_mutex); 1914 1915 synchronize_rcu(); 1916 for (i = 0; i < num; i++) 1917 if (kps[i]->addr) 1918 __unregister_kprobe_bottom(kps[i]); 1919 } 1920 EXPORT_SYMBOL_GPL(unregister_kprobes); 1921 1922 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1923 unsigned long val, void *data) 1924 { 1925 return NOTIFY_DONE; 1926 } 1927 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1928 1929 static struct notifier_block kprobe_exceptions_nb = { 1930 .notifier_call = kprobe_exceptions_notify, 1931 .priority = 0x7fffffff /* we need to be notified first */ 1932 }; 1933 1934 unsigned long __weak arch_deref_entry_point(void *entry) 1935 { 1936 return (unsigned long)entry; 1937 } 1938 1939 #ifdef CONFIG_KRETPROBES 1940 1941 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs, 1942 void *trampoline_address, 1943 void *frame_pointer) 1944 { 1945 struct kretprobe_instance *ri = NULL, *last = NULL; 1946 struct hlist_head *head; 1947 struct hlist_node *tmp; 1948 unsigned long flags; 1949 kprobe_opcode_t *correct_ret_addr = NULL; 1950 bool skipped = false; 1951 1952 kretprobe_hash_lock(current, &head, &flags); 1953 1954 /* 1955 * It is possible to have multiple instances associated with a given 1956 * task either because multiple functions in the call path have 1957 * return probes installed on them, and/or more than one 1958 * return probe was registered for a target function. 1959 * 1960 * We can handle this because: 1961 * - instances are always pushed into the head of the list 1962 * - when multiple return probes are registered for the same 1963 * function, the (chronologically) first instance's ret_addr 1964 * will be the real return address, and all the rest will 1965 * point to kretprobe_trampoline. 1966 */ 1967 hlist_for_each_entry(ri, head, hlist) { 1968 if (ri->task != current) 1969 /* another task is sharing our hash bucket */ 1970 continue; 1971 /* 1972 * Return probes must be pushed on this hash list correct 1973 * order (same as return order) so that it can be popped 1974 * correctly. However, if we find it is pushed it incorrect 1975 * order, this means we find a function which should not be 1976 * probed, because the wrong order entry is pushed on the 1977 * path of processing other kretprobe itself. 1978 */ 1979 if (ri->fp != frame_pointer) { 1980 if (!skipped) 1981 pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n"); 1982 skipped = true; 1983 continue; 1984 } 1985 1986 correct_ret_addr = ri->ret_addr; 1987 if (skipped) 1988 pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n", 1989 ri->rp->kp.addr); 1990 1991 if (correct_ret_addr != trampoline_address) 1992 /* 1993 * This is the real return address. Any other 1994 * instances associated with this task are for 1995 * other calls deeper on the call stack 1996 */ 1997 break; 1998 } 1999 2000 BUG_ON(!correct_ret_addr || (correct_ret_addr == trampoline_address)); 2001 last = ri; 2002 2003 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 2004 if (ri->task != current) 2005 /* another task is sharing our hash bucket */ 2006 continue; 2007 if (ri->fp != frame_pointer) 2008 continue; 2009 2010 if (ri->rp && ri->rp->handler) { 2011 struct kprobe *prev = kprobe_running(); 2012 2013 __this_cpu_write(current_kprobe, &ri->rp->kp); 2014 ri->ret_addr = correct_ret_addr; 2015 ri->rp->handler(ri, regs); 2016 __this_cpu_write(current_kprobe, prev); 2017 } 2018 2019 recycle_rp_inst(ri); 2020 2021 if (ri == last) 2022 break; 2023 } 2024 2025 kretprobe_hash_unlock(current, &flags); 2026 2027 return (unsigned long)correct_ret_addr; 2028 } 2029 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler) 2030 2031 /* 2032 * This kprobe pre_handler is registered with every kretprobe. When probe 2033 * hits it will set up the return probe. 2034 */ 2035 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2036 { 2037 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 2038 unsigned long hash, flags = 0; 2039 struct kretprobe_instance *ri; 2040 2041 /* TODO: consider to only swap the RA after the last pre_handler fired */ 2042 hash = hash_ptr(current, KPROBE_HASH_BITS); 2043 /* 2044 * Nested is a workaround that will soon not be needed. 2045 * There's other protections that make sure the same lock 2046 * is not taken on the same CPU that lockdep is unaware of. 2047 */ 2048 raw_spin_lock_irqsave_nested(&rp->lock, flags, 1); 2049 if (!hlist_empty(&rp->free_instances)) { 2050 ri = hlist_entry(rp->free_instances.first, 2051 struct kretprobe_instance, hlist); 2052 hlist_del(&ri->hlist); 2053 raw_spin_unlock_irqrestore(&rp->lock, flags); 2054 2055 ri->rp = rp; 2056 ri->task = current; 2057 2058 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 2059 raw_spin_lock_irqsave_nested(&rp->lock, flags, 1); 2060 hlist_add_head(&ri->hlist, &rp->free_instances); 2061 raw_spin_unlock_irqrestore(&rp->lock, flags); 2062 return 0; 2063 } 2064 2065 arch_prepare_kretprobe(ri, regs); 2066 2067 /* XXX(hch): why is there no hlist_move_head? */ 2068 INIT_HLIST_NODE(&ri->hlist); 2069 kretprobe_table_lock(hash, &flags); 2070 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 2071 kretprobe_table_unlock(hash, &flags); 2072 } else { 2073 rp->nmissed++; 2074 raw_spin_unlock_irqrestore(&rp->lock, flags); 2075 } 2076 return 0; 2077 } 2078 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2079 2080 bool __weak arch_kprobe_on_func_entry(unsigned long offset) 2081 { 2082 return !offset; 2083 } 2084 2085 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 2086 { 2087 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset); 2088 2089 if (IS_ERR(kp_addr)) 2090 return false; 2091 2092 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) || 2093 !arch_kprobe_on_func_entry(offset)) 2094 return false; 2095 2096 return true; 2097 } 2098 2099 int register_kretprobe(struct kretprobe *rp) 2100 { 2101 int ret = 0; 2102 struct kretprobe_instance *inst; 2103 int i; 2104 void *addr; 2105 2106 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset)) 2107 return -EINVAL; 2108 2109 if (kretprobe_blacklist_size) { 2110 addr = kprobe_addr(&rp->kp); 2111 if (IS_ERR(addr)) 2112 return PTR_ERR(addr); 2113 2114 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2115 if (kretprobe_blacklist[i].addr == addr) 2116 return -EINVAL; 2117 } 2118 } 2119 2120 rp->kp.pre_handler = pre_handler_kretprobe; 2121 rp->kp.post_handler = NULL; 2122 rp->kp.fault_handler = NULL; 2123 2124 /* Pre-allocate memory for max kretprobe instances */ 2125 if (rp->maxactive <= 0) { 2126 #ifdef CONFIG_PREEMPTION 2127 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 2128 #else 2129 rp->maxactive = num_possible_cpus(); 2130 #endif 2131 } 2132 raw_spin_lock_init(&rp->lock); 2133 INIT_HLIST_HEAD(&rp->free_instances); 2134 for (i = 0; i < rp->maxactive; i++) { 2135 inst = kmalloc(sizeof(struct kretprobe_instance) + 2136 rp->data_size, GFP_KERNEL); 2137 if (inst == NULL) { 2138 free_rp_inst(rp); 2139 return -ENOMEM; 2140 } 2141 INIT_HLIST_NODE(&inst->hlist); 2142 hlist_add_head(&inst->hlist, &rp->free_instances); 2143 } 2144 2145 rp->nmissed = 0; 2146 /* Establish function entry probe point */ 2147 ret = register_kprobe(&rp->kp); 2148 if (ret != 0) 2149 free_rp_inst(rp); 2150 return ret; 2151 } 2152 EXPORT_SYMBOL_GPL(register_kretprobe); 2153 2154 int register_kretprobes(struct kretprobe **rps, int num) 2155 { 2156 int ret = 0, i; 2157 2158 if (num <= 0) 2159 return -EINVAL; 2160 for (i = 0; i < num; i++) { 2161 ret = register_kretprobe(rps[i]); 2162 if (ret < 0) { 2163 if (i > 0) 2164 unregister_kretprobes(rps, i); 2165 break; 2166 } 2167 } 2168 return ret; 2169 } 2170 EXPORT_SYMBOL_GPL(register_kretprobes); 2171 2172 void unregister_kretprobe(struct kretprobe *rp) 2173 { 2174 unregister_kretprobes(&rp, 1); 2175 } 2176 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2177 2178 void unregister_kretprobes(struct kretprobe **rps, int num) 2179 { 2180 int i; 2181 2182 if (num <= 0) 2183 return; 2184 mutex_lock(&kprobe_mutex); 2185 for (i = 0; i < num; i++) 2186 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 2187 rps[i]->kp.addr = NULL; 2188 mutex_unlock(&kprobe_mutex); 2189 2190 synchronize_rcu(); 2191 for (i = 0; i < num; i++) { 2192 if (rps[i]->kp.addr) { 2193 __unregister_kprobe_bottom(&rps[i]->kp); 2194 cleanup_rp_inst(rps[i]); 2195 } 2196 } 2197 } 2198 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2199 2200 #else /* CONFIG_KRETPROBES */ 2201 int register_kretprobe(struct kretprobe *rp) 2202 { 2203 return -ENOSYS; 2204 } 2205 EXPORT_SYMBOL_GPL(register_kretprobe); 2206 2207 int register_kretprobes(struct kretprobe **rps, int num) 2208 { 2209 return -ENOSYS; 2210 } 2211 EXPORT_SYMBOL_GPL(register_kretprobes); 2212 2213 void unregister_kretprobe(struct kretprobe *rp) 2214 { 2215 } 2216 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2217 2218 void unregister_kretprobes(struct kretprobe **rps, int num) 2219 { 2220 } 2221 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2222 2223 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2224 { 2225 return 0; 2226 } 2227 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2228 2229 #endif /* CONFIG_KRETPROBES */ 2230 2231 /* Set the kprobe gone and remove its instruction buffer. */ 2232 static void kill_kprobe(struct kprobe *p) 2233 { 2234 struct kprobe *kp; 2235 2236 lockdep_assert_held(&kprobe_mutex); 2237 2238 if (WARN_ON_ONCE(kprobe_gone(p))) 2239 return; 2240 2241 p->flags |= KPROBE_FLAG_GONE; 2242 if (kprobe_aggrprobe(p)) { 2243 /* 2244 * If this is an aggr_kprobe, we have to list all the 2245 * chained probes and mark them GONE. 2246 */ 2247 list_for_each_entry(kp, &p->list, list) 2248 kp->flags |= KPROBE_FLAG_GONE; 2249 p->post_handler = NULL; 2250 kill_optimized_kprobe(p); 2251 } 2252 /* 2253 * Here, we can remove insn_slot safely, because no thread calls 2254 * the original probed function (which will be freed soon) any more. 2255 */ 2256 arch_remove_kprobe(p); 2257 2258 /* 2259 * The module is going away. We should disarm the kprobe which 2260 * is using ftrace, because ftrace framework is still available at 2261 * MODULE_STATE_GOING notification. 2262 */ 2263 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed) 2264 disarm_kprobe_ftrace(p); 2265 } 2266 2267 /* Disable one kprobe */ 2268 int disable_kprobe(struct kprobe *kp) 2269 { 2270 int ret = 0; 2271 struct kprobe *p; 2272 2273 mutex_lock(&kprobe_mutex); 2274 2275 /* Disable this kprobe */ 2276 p = __disable_kprobe(kp); 2277 if (IS_ERR(p)) 2278 ret = PTR_ERR(p); 2279 2280 mutex_unlock(&kprobe_mutex); 2281 return ret; 2282 } 2283 EXPORT_SYMBOL_GPL(disable_kprobe); 2284 2285 /* Enable one kprobe */ 2286 int enable_kprobe(struct kprobe *kp) 2287 { 2288 int ret = 0; 2289 struct kprobe *p; 2290 2291 mutex_lock(&kprobe_mutex); 2292 2293 /* Check whether specified probe is valid. */ 2294 p = __get_valid_kprobe(kp); 2295 if (unlikely(p == NULL)) { 2296 ret = -EINVAL; 2297 goto out; 2298 } 2299 2300 if (kprobe_gone(kp)) { 2301 /* This kprobe has gone, we couldn't enable it. */ 2302 ret = -EINVAL; 2303 goto out; 2304 } 2305 2306 if (p != kp) 2307 kp->flags &= ~KPROBE_FLAG_DISABLED; 2308 2309 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2310 p->flags &= ~KPROBE_FLAG_DISABLED; 2311 ret = arm_kprobe(p); 2312 if (ret) 2313 p->flags |= KPROBE_FLAG_DISABLED; 2314 } 2315 out: 2316 mutex_unlock(&kprobe_mutex); 2317 return ret; 2318 } 2319 EXPORT_SYMBOL_GPL(enable_kprobe); 2320 2321 /* Caller must NOT call this in usual path. This is only for critical case */ 2322 void dump_kprobe(struct kprobe *kp) 2323 { 2324 pr_err("Dumping kprobe:\n"); 2325 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n", 2326 kp->symbol_name, kp->offset, kp->addr); 2327 } 2328 NOKPROBE_SYMBOL(dump_kprobe); 2329 2330 int kprobe_add_ksym_blacklist(unsigned long entry) 2331 { 2332 struct kprobe_blacklist_entry *ent; 2333 unsigned long offset = 0, size = 0; 2334 2335 if (!kernel_text_address(entry) || 2336 !kallsyms_lookup_size_offset(entry, &size, &offset)) 2337 return -EINVAL; 2338 2339 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2340 if (!ent) 2341 return -ENOMEM; 2342 ent->start_addr = entry; 2343 ent->end_addr = entry + size; 2344 INIT_LIST_HEAD(&ent->list); 2345 list_add_tail(&ent->list, &kprobe_blacklist); 2346 2347 return (int)size; 2348 } 2349 2350 /* Add all symbols in given area into kprobe blacklist */ 2351 int kprobe_add_area_blacklist(unsigned long start, unsigned long end) 2352 { 2353 unsigned long entry; 2354 int ret = 0; 2355 2356 for (entry = start; entry < end; entry += ret) { 2357 ret = kprobe_add_ksym_blacklist(entry); 2358 if (ret < 0) 2359 return ret; 2360 if (ret == 0) /* In case of alias symbol */ 2361 ret = 1; 2362 } 2363 return 0; 2364 } 2365 2366 /* Remove all symbols in given area from kprobe blacklist */ 2367 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end) 2368 { 2369 struct kprobe_blacklist_entry *ent, *n; 2370 2371 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) { 2372 if (ent->start_addr < start || ent->start_addr >= end) 2373 continue; 2374 list_del(&ent->list); 2375 kfree(ent); 2376 } 2377 } 2378 2379 static void kprobe_remove_ksym_blacklist(unsigned long entry) 2380 { 2381 kprobe_remove_area_blacklist(entry, entry + 1); 2382 } 2383 2384 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value, 2385 char *type, char *sym) 2386 { 2387 return -ERANGE; 2388 } 2389 2390 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 2391 char *sym) 2392 { 2393 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 2394 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym)) 2395 return 0; 2396 #ifdef CONFIG_OPTPROBES 2397 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym)) 2398 return 0; 2399 #endif 2400 #endif 2401 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym)) 2402 return 0; 2403 return -ERANGE; 2404 } 2405 2406 int __init __weak arch_populate_kprobe_blacklist(void) 2407 { 2408 return 0; 2409 } 2410 2411 /* 2412 * Lookup and populate the kprobe_blacklist. 2413 * 2414 * Unlike the kretprobe blacklist, we'll need to determine 2415 * the range of addresses that belong to the said functions, 2416 * since a kprobe need not necessarily be at the beginning 2417 * of a function. 2418 */ 2419 static int __init populate_kprobe_blacklist(unsigned long *start, 2420 unsigned long *end) 2421 { 2422 unsigned long entry; 2423 unsigned long *iter; 2424 int ret; 2425 2426 for (iter = start; iter < end; iter++) { 2427 entry = arch_deref_entry_point((void *)*iter); 2428 ret = kprobe_add_ksym_blacklist(entry); 2429 if (ret == -EINVAL) 2430 continue; 2431 if (ret < 0) 2432 return ret; 2433 } 2434 2435 /* Symbols in __kprobes_text are blacklisted */ 2436 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start, 2437 (unsigned long)__kprobes_text_end); 2438 if (ret) 2439 return ret; 2440 2441 /* Symbols in noinstr section are blacklisted */ 2442 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start, 2443 (unsigned long)__noinstr_text_end); 2444 2445 return ret ? : arch_populate_kprobe_blacklist(); 2446 } 2447 2448 static void add_module_kprobe_blacklist(struct module *mod) 2449 { 2450 unsigned long start, end; 2451 int i; 2452 2453 if (mod->kprobe_blacklist) { 2454 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2455 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]); 2456 } 2457 2458 start = (unsigned long)mod->kprobes_text_start; 2459 if (start) { 2460 end = start + mod->kprobes_text_size; 2461 kprobe_add_area_blacklist(start, end); 2462 } 2463 2464 start = (unsigned long)mod->noinstr_text_start; 2465 if (start) { 2466 end = start + mod->noinstr_text_size; 2467 kprobe_add_area_blacklist(start, end); 2468 } 2469 } 2470 2471 static void remove_module_kprobe_blacklist(struct module *mod) 2472 { 2473 unsigned long start, end; 2474 int i; 2475 2476 if (mod->kprobe_blacklist) { 2477 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2478 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]); 2479 } 2480 2481 start = (unsigned long)mod->kprobes_text_start; 2482 if (start) { 2483 end = start + mod->kprobes_text_size; 2484 kprobe_remove_area_blacklist(start, end); 2485 } 2486 2487 start = (unsigned long)mod->noinstr_text_start; 2488 if (start) { 2489 end = start + mod->noinstr_text_size; 2490 kprobe_remove_area_blacklist(start, end); 2491 } 2492 } 2493 2494 /* Module notifier call back, checking kprobes on the module */ 2495 static int kprobes_module_callback(struct notifier_block *nb, 2496 unsigned long val, void *data) 2497 { 2498 struct module *mod = data; 2499 struct hlist_head *head; 2500 struct kprobe *p; 2501 unsigned int i; 2502 int checkcore = (val == MODULE_STATE_GOING); 2503 2504 if (val == MODULE_STATE_COMING) { 2505 mutex_lock(&kprobe_mutex); 2506 add_module_kprobe_blacklist(mod); 2507 mutex_unlock(&kprobe_mutex); 2508 } 2509 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2510 return NOTIFY_DONE; 2511 2512 /* 2513 * When MODULE_STATE_GOING was notified, both of module .text and 2514 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2515 * notified, only .init.text section would be freed. We need to 2516 * disable kprobes which have been inserted in the sections. 2517 */ 2518 mutex_lock(&kprobe_mutex); 2519 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2520 head = &kprobe_table[i]; 2521 hlist_for_each_entry(p, head, hlist) { 2522 if (kprobe_gone(p)) 2523 continue; 2524 2525 if (within_module_init((unsigned long)p->addr, mod) || 2526 (checkcore && 2527 within_module_core((unsigned long)p->addr, mod))) { 2528 /* 2529 * The vaddr this probe is installed will soon 2530 * be vfreed buy not synced to disk. Hence, 2531 * disarming the breakpoint isn't needed. 2532 * 2533 * Note, this will also move any optimized probes 2534 * that are pending to be removed from their 2535 * corresponding lists to the freeing_list and 2536 * will not be touched by the delayed 2537 * kprobe_optimizer work handler. 2538 */ 2539 kill_kprobe(p); 2540 } 2541 } 2542 } 2543 if (val == MODULE_STATE_GOING) 2544 remove_module_kprobe_blacklist(mod); 2545 mutex_unlock(&kprobe_mutex); 2546 return NOTIFY_DONE; 2547 } 2548 2549 static struct notifier_block kprobe_module_nb = { 2550 .notifier_call = kprobes_module_callback, 2551 .priority = 0 2552 }; 2553 2554 /* Markers of _kprobe_blacklist section */ 2555 extern unsigned long __start_kprobe_blacklist[]; 2556 extern unsigned long __stop_kprobe_blacklist[]; 2557 2558 void kprobe_free_init_mem(void) 2559 { 2560 void *start = (void *)(&__init_begin); 2561 void *end = (void *)(&__init_end); 2562 struct hlist_head *head; 2563 struct kprobe *p; 2564 int i; 2565 2566 mutex_lock(&kprobe_mutex); 2567 2568 /* Kill all kprobes on initmem */ 2569 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2570 head = &kprobe_table[i]; 2571 hlist_for_each_entry(p, head, hlist) { 2572 if (start <= (void *)p->addr && (void *)p->addr < end) 2573 kill_kprobe(p); 2574 } 2575 } 2576 2577 mutex_unlock(&kprobe_mutex); 2578 } 2579 2580 static int __init init_kprobes(void) 2581 { 2582 int i, err = 0; 2583 2584 /* FIXME allocate the probe table, currently defined statically */ 2585 /* initialize all list heads */ 2586 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2587 INIT_HLIST_HEAD(&kprobe_table[i]); 2588 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 2589 raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); 2590 } 2591 2592 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2593 __stop_kprobe_blacklist); 2594 if (err) { 2595 pr_err("kprobes: failed to populate blacklist: %d\n", err); 2596 pr_err("Please take care of using kprobes.\n"); 2597 } 2598 2599 if (kretprobe_blacklist_size) { 2600 /* lookup the function address from its name */ 2601 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2602 kretprobe_blacklist[i].addr = 2603 kprobe_lookup_name(kretprobe_blacklist[i].name, 0); 2604 if (!kretprobe_blacklist[i].addr) 2605 printk("kretprobe: lookup failed: %s\n", 2606 kretprobe_blacklist[i].name); 2607 } 2608 } 2609 2610 #if defined(CONFIG_OPTPROBES) 2611 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2612 /* Init kprobe_optinsn_slots */ 2613 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2614 #endif 2615 /* By default, kprobes can be optimized */ 2616 kprobes_allow_optimization = true; 2617 #endif 2618 2619 /* By default, kprobes are armed */ 2620 kprobes_all_disarmed = false; 2621 2622 err = arch_init_kprobes(); 2623 if (!err) 2624 err = register_die_notifier(&kprobe_exceptions_nb); 2625 if (!err) 2626 err = register_module_notifier(&kprobe_module_nb); 2627 2628 kprobes_initialized = (err == 0); 2629 2630 if (!err) 2631 init_test_probes(); 2632 return err; 2633 } 2634 early_initcall(init_kprobes); 2635 2636 #ifdef CONFIG_DEBUG_FS 2637 static void report_probe(struct seq_file *pi, struct kprobe *p, 2638 const char *sym, int offset, char *modname, struct kprobe *pp) 2639 { 2640 char *kprobe_type; 2641 void *addr = p->addr; 2642 2643 if (p->pre_handler == pre_handler_kretprobe) 2644 kprobe_type = "r"; 2645 else 2646 kprobe_type = "k"; 2647 2648 if (!kallsyms_show_value(pi->file->f_cred)) 2649 addr = NULL; 2650 2651 if (sym) 2652 seq_printf(pi, "%px %s %s+0x%x %s ", 2653 addr, kprobe_type, sym, offset, 2654 (modname ? modname : " ")); 2655 else /* try to use %pS */ 2656 seq_printf(pi, "%px %s %pS ", 2657 addr, kprobe_type, p->addr); 2658 2659 if (!pp) 2660 pp = p; 2661 seq_printf(pi, "%s%s%s%s\n", 2662 (kprobe_gone(p) ? "[GONE]" : ""), 2663 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2664 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2665 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2666 } 2667 2668 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2669 { 2670 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2671 } 2672 2673 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2674 { 2675 (*pos)++; 2676 if (*pos >= KPROBE_TABLE_SIZE) 2677 return NULL; 2678 return pos; 2679 } 2680 2681 static void kprobe_seq_stop(struct seq_file *f, void *v) 2682 { 2683 /* Nothing to do */ 2684 } 2685 2686 static int show_kprobe_addr(struct seq_file *pi, void *v) 2687 { 2688 struct hlist_head *head; 2689 struct kprobe *p, *kp; 2690 const char *sym = NULL; 2691 unsigned int i = *(loff_t *) v; 2692 unsigned long offset = 0; 2693 char *modname, namebuf[KSYM_NAME_LEN]; 2694 2695 head = &kprobe_table[i]; 2696 preempt_disable(); 2697 hlist_for_each_entry_rcu(p, head, hlist) { 2698 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2699 &offset, &modname, namebuf); 2700 if (kprobe_aggrprobe(p)) { 2701 list_for_each_entry_rcu(kp, &p->list, list) 2702 report_probe(pi, kp, sym, offset, modname, p); 2703 } else 2704 report_probe(pi, p, sym, offset, modname, NULL); 2705 } 2706 preempt_enable(); 2707 return 0; 2708 } 2709 2710 static const struct seq_operations kprobes_sops = { 2711 .start = kprobe_seq_start, 2712 .next = kprobe_seq_next, 2713 .stop = kprobe_seq_stop, 2714 .show = show_kprobe_addr 2715 }; 2716 2717 DEFINE_SEQ_ATTRIBUTE(kprobes); 2718 2719 /* kprobes/blacklist -- shows which functions can not be probed */ 2720 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2721 { 2722 mutex_lock(&kprobe_mutex); 2723 return seq_list_start(&kprobe_blacklist, *pos); 2724 } 2725 2726 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2727 { 2728 return seq_list_next(v, &kprobe_blacklist, pos); 2729 } 2730 2731 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2732 { 2733 struct kprobe_blacklist_entry *ent = 2734 list_entry(v, struct kprobe_blacklist_entry, list); 2735 2736 /* 2737 * If /proc/kallsyms is not showing kernel address, we won't 2738 * show them here either. 2739 */ 2740 if (!kallsyms_show_value(m->file->f_cred)) 2741 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL, 2742 (void *)ent->start_addr); 2743 else 2744 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr, 2745 (void *)ent->end_addr, (void *)ent->start_addr); 2746 return 0; 2747 } 2748 2749 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v) 2750 { 2751 mutex_unlock(&kprobe_mutex); 2752 } 2753 2754 static const struct seq_operations kprobe_blacklist_sops = { 2755 .start = kprobe_blacklist_seq_start, 2756 .next = kprobe_blacklist_seq_next, 2757 .stop = kprobe_blacklist_seq_stop, 2758 .show = kprobe_blacklist_seq_show, 2759 }; 2760 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist); 2761 2762 static int arm_all_kprobes(void) 2763 { 2764 struct hlist_head *head; 2765 struct kprobe *p; 2766 unsigned int i, total = 0, errors = 0; 2767 int err, ret = 0; 2768 2769 mutex_lock(&kprobe_mutex); 2770 2771 /* If kprobes are armed, just return */ 2772 if (!kprobes_all_disarmed) 2773 goto already_enabled; 2774 2775 /* 2776 * optimize_kprobe() called by arm_kprobe() checks 2777 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2778 * arm_kprobe. 2779 */ 2780 kprobes_all_disarmed = false; 2781 /* Arming kprobes doesn't optimize kprobe itself */ 2782 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2783 head = &kprobe_table[i]; 2784 /* Arm all kprobes on a best-effort basis */ 2785 hlist_for_each_entry(p, head, hlist) { 2786 if (!kprobe_disabled(p)) { 2787 err = arm_kprobe(p); 2788 if (err) { 2789 errors++; 2790 ret = err; 2791 } 2792 total++; 2793 } 2794 } 2795 } 2796 2797 if (errors) 2798 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n", 2799 errors, total); 2800 else 2801 pr_info("Kprobes globally enabled\n"); 2802 2803 already_enabled: 2804 mutex_unlock(&kprobe_mutex); 2805 return ret; 2806 } 2807 2808 static int disarm_all_kprobes(void) 2809 { 2810 struct hlist_head *head; 2811 struct kprobe *p; 2812 unsigned int i, total = 0, errors = 0; 2813 int err, ret = 0; 2814 2815 mutex_lock(&kprobe_mutex); 2816 2817 /* If kprobes are already disarmed, just return */ 2818 if (kprobes_all_disarmed) { 2819 mutex_unlock(&kprobe_mutex); 2820 return 0; 2821 } 2822 2823 kprobes_all_disarmed = true; 2824 2825 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2826 head = &kprobe_table[i]; 2827 /* Disarm all kprobes on a best-effort basis */ 2828 hlist_for_each_entry(p, head, hlist) { 2829 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { 2830 err = disarm_kprobe(p, false); 2831 if (err) { 2832 errors++; 2833 ret = err; 2834 } 2835 total++; 2836 } 2837 } 2838 } 2839 2840 if (errors) 2841 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n", 2842 errors, total); 2843 else 2844 pr_info("Kprobes globally disabled\n"); 2845 2846 mutex_unlock(&kprobe_mutex); 2847 2848 /* Wait for disarming all kprobes by optimizer */ 2849 wait_for_kprobe_optimizer(); 2850 2851 return ret; 2852 } 2853 2854 /* 2855 * XXX: The debugfs bool file interface doesn't allow for callbacks 2856 * when the bool state is switched. We can reuse that facility when 2857 * available 2858 */ 2859 static ssize_t read_enabled_file_bool(struct file *file, 2860 char __user *user_buf, size_t count, loff_t *ppos) 2861 { 2862 char buf[3]; 2863 2864 if (!kprobes_all_disarmed) 2865 buf[0] = '1'; 2866 else 2867 buf[0] = '0'; 2868 buf[1] = '\n'; 2869 buf[2] = 0x00; 2870 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2871 } 2872 2873 static ssize_t write_enabled_file_bool(struct file *file, 2874 const char __user *user_buf, size_t count, loff_t *ppos) 2875 { 2876 char buf[32]; 2877 size_t buf_size; 2878 int ret = 0; 2879 2880 buf_size = min(count, (sizeof(buf)-1)); 2881 if (copy_from_user(buf, user_buf, buf_size)) 2882 return -EFAULT; 2883 2884 buf[buf_size] = '\0'; 2885 switch (buf[0]) { 2886 case 'y': 2887 case 'Y': 2888 case '1': 2889 ret = arm_all_kprobes(); 2890 break; 2891 case 'n': 2892 case 'N': 2893 case '0': 2894 ret = disarm_all_kprobes(); 2895 break; 2896 default: 2897 return -EINVAL; 2898 } 2899 2900 if (ret) 2901 return ret; 2902 2903 return count; 2904 } 2905 2906 static const struct file_operations fops_kp = { 2907 .read = read_enabled_file_bool, 2908 .write = write_enabled_file_bool, 2909 .llseek = default_llseek, 2910 }; 2911 2912 static int __init debugfs_kprobe_init(void) 2913 { 2914 struct dentry *dir; 2915 unsigned int value = 1; 2916 2917 dir = debugfs_create_dir("kprobes", NULL); 2918 2919 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops); 2920 2921 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp); 2922 2923 debugfs_create_file("blacklist", 0400, dir, NULL, 2924 &kprobe_blacklist_fops); 2925 2926 return 0; 2927 } 2928 2929 late_initcall(debugfs_kprobe_init); 2930 #endif /* CONFIG_DEBUG_FS */ 2931