1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * kernel/kprobes.c 5 * 6 * Copyright (C) IBM Corporation, 2002, 2004 7 * 8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 9 * Probes initial implementation (includes suggestions from 10 * Rusty Russell). 11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 12 * hlists and exceptions notifier as suggested by Andi Kleen. 13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 14 * interface to access function arguments. 15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 16 * exceptions notifier to be first on the priority list. 17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 19 * <prasanna@in.ibm.com> added function-return probes. 20 */ 21 #include <linux/kprobes.h> 22 #include <linux/hash.h> 23 #include <linux/init.h> 24 #include <linux/slab.h> 25 #include <linux/stddef.h> 26 #include <linux/export.h> 27 #include <linux/moduleloader.h> 28 #include <linux/kallsyms.h> 29 #include <linux/freezer.h> 30 #include <linux/seq_file.h> 31 #include <linux/debugfs.h> 32 #include <linux/sysctl.h> 33 #include <linux/kdebug.h> 34 #include <linux/memory.h> 35 #include <linux/ftrace.h> 36 #include <linux/cpu.h> 37 #include <linux/jump_label.h> 38 #include <linux/perf_event.h> 39 40 #include <asm/sections.h> 41 #include <asm/cacheflush.h> 42 #include <asm/errno.h> 43 #include <linux/uaccess.h> 44 45 #define KPROBE_HASH_BITS 6 46 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 47 48 49 static int kprobes_initialized; 50 /* kprobe_table can be accessed by 51 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held. 52 * Or 53 * - RCU hlist traversal under disabling preempt (breakpoint handlers) 54 */ 55 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 56 57 /* NOTE: change this value only with kprobe_mutex held */ 58 static bool kprobes_all_disarmed; 59 60 /* This protects kprobe_table and optimizing_list */ 61 static DEFINE_MUTEX(kprobe_mutex); 62 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 63 64 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, 65 unsigned int __unused) 66 { 67 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); 68 } 69 70 /* Blacklist -- list of struct kprobe_blacklist_entry */ 71 static LIST_HEAD(kprobe_blacklist); 72 73 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 74 /* 75 * kprobe->ainsn.insn points to the copy of the instruction to be 76 * single-stepped. x86_64, POWER4 and above have no-exec support and 77 * stepping on the instruction on a vmalloced/kmalloced/data page 78 * is a recipe for disaster 79 */ 80 struct kprobe_insn_page { 81 struct list_head list; 82 kprobe_opcode_t *insns; /* Page of instruction slots */ 83 struct kprobe_insn_cache *cache; 84 int nused; 85 int ngarbage; 86 char slot_used[]; 87 }; 88 89 #define KPROBE_INSN_PAGE_SIZE(slots) \ 90 (offsetof(struct kprobe_insn_page, slot_used) + \ 91 (sizeof(char) * (slots))) 92 93 static int slots_per_page(struct kprobe_insn_cache *c) 94 { 95 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 96 } 97 98 enum kprobe_slot_state { 99 SLOT_CLEAN = 0, 100 SLOT_DIRTY = 1, 101 SLOT_USED = 2, 102 }; 103 104 void __weak *alloc_insn_page(void) 105 { 106 return module_alloc(PAGE_SIZE); 107 } 108 109 void __weak free_insn_page(void *page) 110 { 111 module_memfree(page); 112 } 113 114 struct kprobe_insn_cache kprobe_insn_slots = { 115 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 116 .alloc = alloc_insn_page, 117 .free = free_insn_page, 118 .sym = KPROBE_INSN_PAGE_SYM, 119 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 120 .insn_size = MAX_INSN_SIZE, 121 .nr_garbage = 0, 122 }; 123 static int collect_garbage_slots(struct kprobe_insn_cache *c); 124 125 /** 126 * __get_insn_slot() - Find a slot on an executable page for an instruction. 127 * We allocate an executable page if there's no room on existing ones. 128 */ 129 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 130 { 131 struct kprobe_insn_page *kip; 132 kprobe_opcode_t *slot = NULL; 133 134 /* Since the slot array is not protected by rcu, we need a mutex */ 135 mutex_lock(&c->mutex); 136 retry: 137 rcu_read_lock(); 138 list_for_each_entry_rcu(kip, &c->pages, list) { 139 if (kip->nused < slots_per_page(c)) { 140 int i; 141 for (i = 0; i < slots_per_page(c); i++) { 142 if (kip->slot_used[i] == SLOT_CLEAN) { 143 kip->slot_used[i] = SLOT_USED; 144 kip->nused++; 145 slot = kip->insns + (i * c->insn_size); 146 rcu_read_unlock(); 147 goto out; 148 } 149 } 150 /* kip->nused is broken. Fix it. */ 151 kip->nused = slots_per_page(c); 152 WARN_ON(1); 153 } 154 } 155 rcu_read_unlock(); 156 157 /* If there are any garbage slots, collect it and try again. */ 158 if (c->nr_garbage && collect_garbage_slots(c) == 0) 159 goto retry; 160 161 /* All out of space. Need to allocate a new page. */ 162 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 163 if (!kip) 164 goto out; 165 166 /* 167 * Use module_alloc so this page is within +/- 2GB of where the 168 * kernel image and loaded module images reside. This is required 169 * so x86_64 can correctly handle the %rip-relative fixups. 170 */ 171 kip->insns = c->alloc(); 172 if (!kip->insns) { 173 kfree(kip); 174 goto out; 175 } 176 INIT_LIST_HEAD(&kip->list); 177 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 178 kip->slot_used[0] = SLOT_USED; 179 kip->nused = 1; 180 kip->ngarbage = 0; 181 kip->cache = c; 182 list_add_rcu(&kip->list, &c->pages); 183 slot = kip->insns; 184 185 /* Record the perf ksymbol register event after adding the page */ 186 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns, 187 PAGE_SIZE, false, c->sym); 188 out: 189 mutex_unlock(&c->mutex); 190 return slot; 191 } 192 193 /* Return 1 if all garbages are collected, otherwise 0. */ 194 static int collect_one_slot(struct kprobe_insn_page *kip, int idx) 195 { 196 kip->slot_used[idx] = SLOT_CLEAN; 197 kip->nused--; 198 if (kip->nused == 0) { 199 /* 200 * Page is no longer in use. Free it unless 201 * it's the last one. We keep the last one 202 * so as not to have to set it up again the 203 * next time somebody inserts a probe. 204 */ 205 if (!list_is_singular(&kip->list)) { 206 /* 207 * Record perf ksymbol unregister event before removing 208 * the page. 209 */ 210 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 211 (unsigned long)kip->insns, PAGE_SIZE, true, 212 kip->cache->sym); 213 list_del_rcu(&kip->list); 214 synchronize_rcu(); 215 kip->cache->free(kip->insns); 216 kfree(kip); 217 } 218 return 1; 219 } 220 return 0; 221 } 222 223 static int collect_garbage_slots(struct kprobe_insn_cache *c) 224 { 225 struct kprobe_insn_page *kip, *next; 226 227 /* Ensure no-one is interrupted on the garbages */ 228 synchronize_rcu(); 229 230 list_for_each_entry_safe(kip, next, &c->pages, list) { 231 int i; 232 if (kip->ngarbage == 0) 233 continue; 234 kip->ngarbage = 0; /* we will collect all garbages */ 235 for (i = 0; i < slots_per_page(c); i++) { 236 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 237 break; 238 } 239 } 240 c->nr_garbage = 0; 241 return 0; 242 } 243 244 void __free_insn_slot(struct kprobe_insn_cache *c, 245 kprobe_opcode_t *slot, int dirty) 246 { 247 struct kprobe_insn_page *kip; 248 long idx; 249 250 mutex_lock(&c->mutex); 251 rcu_read_lock(); 252 list_for_each_entry_rcu(kip, &c->pages, list) { 253 idx = ((long)slot - (long)kip->insns) / 254 (c->insn_size * sizeof(kprobe_opcode_t)); 255 if (idx >= 0 && idx < slots_per_page(c)) 256 goto out; 257 } 258 /* Could not find this slot. */ 259 WARN_ON(1); 260 kip = NULL; 261 out: 262 rcu_read_unlock(); 263 /* Mark and sweep: this may sleep */ 264 if (kip) { 265 /* Check double free */ 266 WARN_ON(kip->slot_used[idx] != SLOT_USED); 267 if (dirty) { 268 kip->slot_used[idx] = SLOT_DIRTY; 269 kip->ngarbage++; 270 if (++c->nr_garbage > slots_per_page(c)) 271 collect_garbage_slots(c); 272 } else { 273 collect_one_slot(kip, idx); 274 } 275 } 276 mutex_unlock(&c->mutex); 277 } 278 279 /* 280 * Check given address is on the page of kprobe instruction slots. 281 * This will be used for checking whether the address on a stack 282 * is on a text area or not. 283 */ 284 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 285 { 286 struct kprobe_insn_page *kip; 287 bool ret = false; 288 289 rcu_read_lock(); 290 list_for_each_entry_rcu(kip, &c->pages, list) { 291 if (addr >= (unsigned long)kip->insns && 292 addr < (unsigned long)kip->insns + PAGE_SIZE) { 293 ret = true; 294 break; 295 } 296 } 297 rcu_read_unlock(); 298 299 return ret; 300 } 301 302 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum, 303 unsigned long *value, char *type, char *sym) 304 { 305 struct kprobe_insn_page *kip; 306 int ret = -ERANGE; 307 308 rcu_read_lock(); 309 list_for_each_entry_rcu(kip, &c->pages, list) { 310 if ((*symnum)--) 311 continue; 312 strlcpy(sym, c->sym, KSYM_NAME_LEN); 313 *type = 't'; 314 *value = (unsigned long)kip->insns; 315 ret = 0; 316 break; 317 } 318 rcu_read_unlock(); 319 320 return ret; 321 } 322 323 #ifdef CONFIG_OPTPROBES 324 /* For optimized_kprobe buffer */ 325 struct kprobe_insn_cache kprobe_optinsn_slots = { 326 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 327 .alloc = alloc_insn_page, 328 .free = free_insn_page, 329 .sym = KPROBE_OPTINSN_PAGE_SYM, 330 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 331 /* .insn_size is initialized later */ 332 .nr_garbage = 0, 333 }; 334 #endif 335 #endif 336 337 /* We have preemption disabled.. so it is safe to use __ versions */ 338 static inline void set_kprobe_instance(struct kprobe *kp) 339 { 340 __this_cpu_write(kprobe_instance, kp); 341 } 342 343 static inline void reset_kprobe_instance(void) 344 { 345 __this_cpu_write(kprobe_instance, NULL); 346 } 347 348 /* 349 * This routine is called either: 350 * - under the kprobe_mutex - during kprobe_[un]register() 351 * OR 352 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 353 */ 354 struct kprobe *get_kprobe(void *addr) 355 { 356 struct hlist_head *head; 357 struct kprobe *p; 358 359 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 360 hlist_for_each_entry_rcu(p, head, hlist, 361 lockdep_is_held(&kprobe_mutex)) { 362 if (p->addr == addr) 363 return p; 364 } 365 366 return NULL; 367 } 368 NOKPROBE_SYMBOL(get_kprobe); 369 370 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 371 372 /* Return true if the kprobe is an aggregator */ 373 static inline int kprobe_aggrprobe(struct kprobe *p) 374 { 375 return p->pre_handler == aggr_pre_handler; 376 } 377 378 /* Return true(!0) if the kprobe is unused */ 379 static inline int kprobe_unused(struct kprobe *p) 380 { 381 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 382 list_empty(&p->list); 383 } 384 385 /* 386 * Keep all fields in the kprobe consistent 387 */ 388 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 389 { 390 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 391 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 392 } 393 394 #ifdef CONFIG_OPTPROBES 395 /* NOTE: change this value only with kprobe_mutex held */ 396 static bool kprobes_allow_optimization; 397 398 /* 399 * Call all pre_handler on the list, but ignores its return value. 400 * This must be called from arch-dep optimized caller. 401 */ 402 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 403 { 404 struct kprobe *kp; 405 406 list_for_each_entry_rcu(kp, &p->list, list) { 407 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 408 set_kprobe_instance(kp); 409 kp->pre_handler(kp, regs); 410 } 411 reset_kprobe_instance(); 412 } 413 } 414 NOKPROBE_SYMBOL(opt_pre_handler); 415 416 /* Free optimized instructions and optimized_kprobe */ 417 static void free_aggr_kprobe(struct kprobe *p) 418 { 419 struct optimized_kprobe *op; 420 421 op = container_of(p, struct optimized_kprobe, kp); 422 arch_remove_optimized_kprobe(op); 423 arch_remove_kprobe(p); 424 kfree(op); 425 } 426 427 /* Return true(!0) if the kprobe is ready for optimization. */ 428 static inline int kprobe_optready(struct kprobe *p) 429 { 430 struct optimized_kprobe *op; 431 432 if (kprobe_aggrprobe(p)) { 433 op = container_of(p, struct optimized_kprobe, kp); 434 return arch_prepared_optinsn(&op->optinsn); 435 } 436 437 return 0; 438 } 439 440 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 441 static inline int kprobe_disarmed(struct kprobe *p) 442 { 443 struct optimized_kprobe *op; 444 445 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 446 if (!kprobe_aggrprobe(p)) 447 return kprobe_disabled(p); 448 449 op = container_of(p, struct optimized_kprobe, kp); 450 451 return kprobe_disabled(p) && list_empty(&op->list); 452 } 453 454 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 455 static int kprobe_queued(struct kprobe *p) 456 { 457 struct optimized_kprobe *op; 458 459 if (kprobe_aggrprobe(p)) { 460 op = container_of(p, struct optimized_kprobe, kp); 461 if (!list_empty(&op->list)) 462 return 1; 463 } 464 return 0; 465 } 466 467 /* 468 * Return an optimized kprobe whose optimizing code replaces 469 * instructions including addr (exclude breakpoint). 470 */ 471 static struct kprobe *get_optimized_kprobe(unsigned long addr) 472 { 473 int i; 474 struct kprobe *p = NULL; 475 struct optimized_kprobe *op; 476 477 /* Don't check i == 0, since that is a breakpoint case. */ 478 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 479 p = get_kprobe((void *)(addr - i)); 480 481 if (p && kprobe_optready(p)) { 482 op = container_of(p, struct optimized_kprobe, kp); 483 if (arch_within_optimized_kprobe(op, addr)) 484 return p; 485 } 486 487 return NULL; 488 } 489 490 /* Optimization staging list, protected by kprobe_mutex */ 491 static LIST_HEAD(optimizing_list); 492 static LIST_HEAD(unoptimizing_list); 493 static LIST_HEAD(freeing_list); 494 495 static void kprobe_optimizer(struct work_struct *work); 496 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 497 #define OPTIMIZE_DELAY 5 498 499 /* 500 * Optimize (replace a breakpoint with a jump) kprobes listed on 501 * optimizing_list. 502 */ 503 static void do_optimize_kprobes(void) 504 { 505 lockdep_assert_held(&text_mutex); 506 /* 507 * The optimization/unoptimization refers online_cpus via 508 * stop_machine() and cpu-hotplug modifies online_cpus. 509 * And same time, text_mutex will be held in cpu-hotplug and here. 510 * This combination can cause a deadlock (cpu-hotplug try to lock 511 * text_mutex but stop_machine can not be done because online_cpus 512 * has been changed) 513 * To avoid this deadlock, caller must have locked cpu hotplug 514 * for preventing cpu-hotplug outside of text_mutex locking. 515 */ 516 lockdep_assert_cpus_held(); 517 518 /* Optimization never be done when disarmed */ 519 if (kprobes_all_disarmed || !kprobes_allow_optimization || 520 list_empty(&optimizing_list)) 521 return; 522 523 arch_optimize_kprobes(&optimizing_list); 524 } 525 526 /* 527 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 528 * if need) kprobes listed on unoptimizing_list. 529 */ 530 static void do_unoptimize_kprobes(void) 531 { 532 struct optimized_kprobe *op, *tmp; 533 534 lockdep_assert_held(&text_mutex); 535 /* See comment in do_optimize_kprobes() */ 536 lockdep_assert_cpus_held(); 537 538 /* Unoptimization must be done anytime */ 539 if (list_empty(&unoptimizing_list)) 540 return; 541 542 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 543 /* Loop free_list for disarming */ 544 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 545 /* Switching from detour code to origin */ 546 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 547 /* Disarm probes if marked disabled */ 548 if (kprobe_disabled(&op->kp)) 549 arch_disarm_kprobe(&op->kp); 550 if (kprobe_unused(&op->kp)) { 551 /* 552 * Remove unused probes from hash list. After waiting 553 * for synchronization, these probes are reclaimed. 554 * (reclaiming is done by do_free_cleaned_kprobes.) 555 */ 556 hlist_del_rcu(&op->kp.hlist); 557 } else 558 list_del_init(&op->list); 559 } 560 } 561 562 /* Reclaim all kprobes on the free_list */ 563 static void do_free_cleaned_kprobes(void) 564 { 565 struct optimized_kprobe *op, *tmp; 566 567 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 568 list_del_init(&op->list); 569 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) { 570 /* 571 * This must not happen, but if there is a kprobe 572 * still in use, keep it on kprobes hash list. 573 */ 574 continue; 575 } 576 free_aggr_kprobe(&op->kp); 577 } 578 } 579 580 /* Start optimizer after OPTIMIZE_DELAY passed */ 581 static void kick_kprobe_optimizer(void) 582 { 583 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 584 } 585 586 /* Kprobe jump optimizer */ 587 static void kprobe_optimizer(struct work_struct *work) 588 { 589 mutex_lock(&kprobe_mutex); 590 cpus_read_lock(); 591 mutex_lock(&text_mutex); 592 593 /* 594 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 595 * kprobes before waiting for quiesence period. 596 */ 597 do_unoptimize_kprobes(); 598 599 /* 600 * Step 2: Wait for quiesence period to ensure all potentially 601 * preempted tasks to have normally scheduled. Because optprobe 602 * may modify multiple instructions, there is a chance that Nth 603 * instruction is preempted. In that case, such tasks can return 604 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. 605 * Note that on non-preemptive kernel, this is transparently converted 606 * to synchronoze_sched() to wait for all interrupts to have completed. 607 */ 608 synchronize_rcu_tasks(); 609 610 /* Step 3: Optimize kprobes after quiesence period */ 611 do_optimize_kprobes(); 612 613 /* Step 4: Free cleaned kprobes after quiesence period */ 614 do_free_cleaned_kprobes(); 615 616 mutex_unlock(&text_mutex); 617 cpus_read_unlock(); 618 619 /* Step 5: Kick optimizer again if needed */ 620 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 621 kick_kprobe_optimizer(); 622 623 mutex_unlock(&kprobe_mutex); 624 } 625 626 /* Wait for completing optimization and unoptimization */ 627 void wait_for_kprobe_optimizer(void) 628 { 629 mutex_lock(&kprobe_mutex); 630 631 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 632 mutex_unlock(&kprobe_mutex); 633 634 /* this will also make optimizing_work execute immmediately */ 635 flush_delayed_work(&optimizing_work); 636 /* @optimizing_work might not have been queued yet, relax */ 637 cpu_relax(); 638 639 mutex_lock(&kprobe_mutex); 640 } 641 642 mutex_unlock(&kprobe_mutex); 643 } 644 645 static bool optprobe_queued_unopt(struct optimized_kprobe *op) 646 { 647 struct optimized_kprobe *_op; 648 649 list_for_each_entry(_op, &unoptimizing_list, list) { 650 if (op == _op) 651 return true; 652 } 653 654 return false; 655 } 656 657 /* Optimize kprobe if p is ready to be optimized */ 658 static void optimize_kprobe(struct kprobe *p) 659 { 660 struct optimized_kprobe *op; 661 662 /* Check if the kprobe is disabled or not ready for optimization. */ 663 if (!kprobe_optready(p) || !kprobes_allow_optimization || 664 (kprobe_disabled(p) || kprobes_all_disarmed)) 665 return; 666 667 /* kprobes with post_handler can not be optimized */ 668 if (p->post_handler) 669 return; 670 671 op = container_of(p, struct optimized_kprobe, kp); 672 673 /* Check there is no other kprobes at the optimized instructions */ 674 if (arch_check_optimized_kprobe(op) < 0) 675 return; 676 677 /* Check if it is already optimized. */ 678 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) { 679 if (optprobe_queued_unopt(op)) { 680 /* This is under unoptimizing. Just dequeue the probe */ 681 list_del_init(&op->list); 682 } 683 return; 684 } 685 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 686 687 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */ 688 if (WARN_ON_ONCE(!list_empty(&op->list))) 689 return; 690 691 list_add(&op->list, &optimizing_list); 692 kick_kprobe_optimizer(); 693 } 694 695 /* Short cut to direct unoptimizing */ 696 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 697 { 698 lockdep_assert_cpus_held(); 699 arch_unoptimize_kprobe(op); 700 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 701 } 702 703 /* Unoptimize a kprobe if p is optimized */ 704 static void unoptimize_kprobe(struct kprobe *p, bool force) 705 { 706 struct optimized_kprobe *op; 707 708 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 709 return; /* This is not an optprobe nor optimized */ 710 711 op = container_of(p, struct optimized_kprobe, kp); 712 if (!kprobe_optimized(p)) 713 return; 714 715 if (!list_empty(&op->list)) { 716 if (optprobe_queued_unopt(op)) { 717 /* Queued in unoptimizing queue */ 718 if (force) { 719 /* 720 * Forcibly unoptimize the kprobe here, and queue it 721 * in the freeing list for release afterwards. 722 */ 723 force_unoptimize_kprobe(op); 724 list_move(&op->list, &freeing_list); 725 } 726 } else { 727 /* Dequeue from the optimizing queue */ 728 list_del_init(&op->list); 729 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 730 } 731 return; 732 } 733 734 /* Optimized kprobe case */ 735 if (force) { 736 /* Forcibly update the code: this is a special case */ 737 force_unoptimize_kprobe(op); 738 } else { 739 list_add(&op->list, &unoptimizing_list); 740 kick_kprobe_optimizer(); 741 } 742 } 743 744 /* Cancel unoptimizing for reusing */ 745 static int reuse_unused_kprobe(struct kprobe *ap) 746 { 747 struct optimized_kprobe *op; 748 749 /* 750 * Unused kprobe MUST be on the way of delayed unoptimizing (means 751 * there is still a relative jump) and disabled. 752 */ 753 op = container_of(ap, struct optimized_kprobe, kp); 754 WARN_ON_ONCE(list_empty(&op->list)); 755 /* Enable the probe again */ 756 ap->flags &= ~KPROBE_FLAG_DISABLED; 757 /* Optimize it again (remove from op->list) */ 758 if (!kprobe_optready(ap)) 759 return -EINVAL; 760 761 optimize_kprobe(ap); 762 return 0; 763 } 764 765 /* Remove optimized instructions */ 766 static void kill_optimized_kprobe(struct kprobe *p) 767 { 768 struct optimized_kprobe *op; 769 770 op = container_of(p, struct optimized_kprobe, kp); 771 if (!list_empty(&op->list)) 772 /* Dequeue from the (un)optimization queue */ 773 list_del_init(&op->list); 774 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 775 776 if (kprobe_unused(p)) { 777 /* Enqueue if it is unused */ 778 list_add(&op->list, &freeing_list); 779 /* 780 * Remove unused probes from the hash list. After waiting 781 * for synchronization, this probe is reclaimed. 782 * (reclaiming is done by do_free_cleaned_kprobes().) 783 */ 784 hlist_del_rcu(&op->kp.hlist); 785 } 786 787 /* Don't touch the code, because it is already freed. */ 788 arch_remove_optimized_kprobe(op); 789 } 790 791 static inline 792 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) 793 { 794 if (!kprobe_ftrace(p)) 795 arch_prepare_optimized_kprobe(op, p); 796 } 797 798 /* Try to prepare optimized instructions */ 799 static void prepare_optimized_kprobe(struct kprobe *p) 800 { 801 struct optimized_kprobe *op; 802 803 op = container_of(p, struct optimized_kprobe, kp); 804 __prepare_optimized_kprobe(op, p); 805 } 806 807 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 808 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 809 { 810 struct optimized_kprobe *op; 811 812 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 813 if (!op) 814 return NULL; 815 816 INIT_LIST_HEAD(&op->list); 817 op->kp.addr = p->addr; 818 __prepare_optimized_kprobe(op, p); 819 820 return &op->kp; 821 } 822 823 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 824 825 /* 826 * Prepare an optimized_kprobe and optimize it 827 * NOTE: p must be a normal registered kprobe 828 */ 829 static void try_to_optimize_kprobe(struct kprobe *p) 830 { 831 struct kprobe *ap; 832 struct optimized_kprobe *op; 833 834 /* Impossible to optimize ftrace-based kprobe */ 835 if (kprobe_ftrace(p)) 836 return; 837 838 /* For preparing optimization, jump_label_text_reserved() is called */ 839 cpus_read_lock(); 840 jump_label_lock(); 841 mutex_lock(&text_mutex); 842 843 ap = alloc_aggr_kprobe(p); 844 if (!ap) 845 goto out; 846 847 op = container_of(ap, struct optimized_kprobe, kp); 848 if (!arch_prepared_optinsn(&op->optinsn)) { 849 /* If failed to setup optimizing, fallback to kprobe */ 850 arch_remove_optimized_kprobe(op); 851 kfree(op); 852 goto out; 853 } 854 855 init_aggr_kprobe(ap, p); 856 optimize_kprobe(ap); /* This just kicks optimizer thread */ 857 858 out: 859 mutex_unlock(&text_mutex); 860 jump_label_unlock(); 861 cpus_read_unlock(); 862 } 863 864 static void optimize_all_kprobes(void) 865 { 866 struct hlist_head *head; 867 struct kprobe *p; 868 unsigned int i; 869 870 mutex_lock(&kprobe_mutex); 871 /* If optimization is already allowed, just return */ 872 if (kprobes_allow_optimization) 873 goto out; 874 875 cpus_read_lock(); 876 kprobes_allow_optimization = true; 877 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 878 head = &kprobe_table[i]; 879 hlist_for_each_entry(p, head, hlist) 880 if (!kprobe_disabled(p)) 881 optimize_kprobe(p); 882 } 883 cpus_read_unlock(); 884 printk(KERN_INFO "Kprobes globally optimized\n"); 885 out: 886 mutex_unlock(&kprobe_mutex); 887 } 888 889 #ifdef CONFIG_SYSCTL 890 static void unoptimize_all_kprobes(void) 891 { 892 struct hlist_head *head; 893 struct kprobe *p; 894 unsigned int i; 895 896 mutex_lock(&kprobe_mutex); 897 /* If optimization is already prohibited, just return */ 898 if (!kprobes_allow_optimization) { 899 mutex_unlock(&kprobe_mutex); 900 return; 901 } 902 903 cpus_read_lock(); 904 kprobes_allow_optimization = false; 905 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 906 head = &kprobe_table[i]; 907 hlist_for_each_entry(p, head, hlist) { 908 if (!kprobe_disabled(p)) 909 unoptimize_kprobe(p, false); 910 } 911 } 912 cpus_read_unlock(); 913 mutex_unlock(&kprobe_mutex); 914 915 /* Wait for unoptimizing completion */ 916 wait_for_kprobe_optimizer(); 917 printk(KERN_INFO "Kprobes globally unoptimized\n"); 918 } 919 920 static DEFINE_MUTEX(kprobe_sysctl_mutex); 921 int sysctl_kprobes_optimization; 922 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 923 void *buffer, size_t *length, 924 loff_t *ppos) 925 { 926 int ret; 927 928 mutex_lock(&kprobe_sysctl_mutex); 929 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 930 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 931 932 if (sysctl_kprobes_optimization) 933 optimize_all_kprobes(); 934 else 935 unoptimize_all_kprobes(); 936 mutex_unlock(&kprobe_sysctl_mutex); 937 938 return ret; 939 } 940 #endif /* CONFIG_SYSCTL */ 941 942 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 943 static void __arm_kprobe(struct kprobe *p) 944 { 945 struct kprobe *_p; 946 947 /* Check collision with other optimized kprobes */ 948 _p = get_optimized_kprobe((unsigned long)p->addr); 949 if (unlikely(_p)) 950 /* Fallback to unoptimized kprobe */ 951 unoptimize_kprobe(_p, true); 952 953 arch_arm_kprobe(p); 954 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 955 } 956 957 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 958 static void __disarm_kprobe(struct kprobe *p, bool reopt) 959 { 960 struct kprobe *_p; 961 962 /* Try to unoptimize */ 963 unoptimize_kprobe(p, kprobes_all_disarmed); 964 965 if (!kprobe_queued(p)) { 966 arch_disarm_kprobe(p); 967 /* If another kprobe was blocked, optimize it. */ 968 _p = get_optimized_kprobe((unsigned long)p->addr); 969 if (unlikely(_p) && reopt) 970 optimize_kprobe(_p); 971 } 972 /* TODO: reoptimize others after unoptimized this probe */ 973 } 974 975 #else /* !CONFIG_OPTPROBES */ 976 977 #define optimize_kprobe(p) do {} while (0) 978 #define unoptimize_kprobe(p, f) do {} while (0) 979 #define kill_optimized_kprobe(p) do {} while (0) 980 #define prepare_optimized_kprobe(p) do {} while (0) 981 #define try_to_optimize_kprobe(p) do {} while (0) 982 #define __arm_kprobe(p) arch_arm_kprobe(p) 983 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 984 #define kprobe_disarmed(p) kprobe_disabled(p) 985 #define wait_for_kprobe_optimizer() do {} while (0) 986 987 static int reuse_unused_kprobe(struct kprobe *ap) 988 { 989 /* 990 * If the optimized kprobe is NOT supported, the aggr kprobe is 991 * released at the same time that the last aggregated kprobe is 992 * unregistered. 993 * Thus there should be no chance to reuse unused kprobe. 994 */ 995 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 996 return -EINVAL; 997 } 998 999 static void free_aggr_kprobe(struct kprobe *p) 1000 { 1001 arch_remove_kprobe(p); 1002 kfree(p); 1003 } 1004 1005 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 1006 { 1007 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 1008 } 1009 #endif /* CONFIG_OPTPROBES */ 1010 1011 #ifdef CONFIG_KPROBES_ON_FTRACE 1012 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 1013 .func = kprobe_ftrace_handler, 1014 .flags = FTRACE_OPS_FL_SAVE_REGS, 1015 }; 1016 1017 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = { 1018 .func = kprobe_ftrace_handler, 1019 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 1020 }; 1021 1022 static int kprobe_ipmodify_enabled; 1023 static int kprobe_ftrace_enabled; 1024 1025 /* Must ensure p->addr is really on ftrace */ 1026 static int prepare_kprobe(struct kprobe *p) 1027 { 1028 if (!kprobe_ftrace(p)) 1029 return arch_prepare_kprobe(p); 1030 1031 return arch_prepare_kprobe_ftrace(p); 1032 } 1033 1034 /* Caller must lock kprobe_mutex */ 1035 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1036 int *cnt) 1037 { 1038 int ret = 0; 1039 1040 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0); 1041 if (ret) { 1042 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n", 1043 p->addr, ret); 1044 return ret; 1045 } 1046 1047 if (*cnt == 0) { 1048 ret = register_ftrace_function(ops); 1049 if (ret) { 1050 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret); 1051 goto err_ftrace; 1052 } 1053 } 1054 1055 (*cnt)++; 1056 return ret; 1057 1058 err_ftrace: 1059 /* 1060 * At this point, sinec ops is not registered, we should be sefe from 1061 * registering empty filter. 1062 */ 1063 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1064 return ret; 1065 } 1066 1067 static int arm_kprobe_ftrace(struct kprobe *p) 1068 { 1069 bool ipmodify = (p->post_handler != NULL); 1070 1071 return __arm_kprobe_ftrace(p, 1072 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1073 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1074 } 1075 1076 /* Caller must lock kprobe_mutex */ 1077 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1078 int *cnt) 1079 { 1080 int ret = 0; 1081 1082 if (*cnt == 1) { 1083 ret = unregister_ftrace_function(ops); 1084 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret)) 1085 return ret; 1086 } 1087 1088 (*cnt)--; 1089 1090 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1091 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n", 1092 p->addr, ret); 1093 return ret; 1094 } 1095 1096 static int disarm_kprobe_ftrace(struct kprobe *p) 1097 { 1098 bool ipmodify = (p->post_handler != NULL); 1099 1100 return __disarm_kprobe_ftrace(p, 1101 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1102 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1103 } 1104 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1105 static inline int prepare_kprobe(struct kprobe *p) 1106 { 1107 return arch_prepare_kprobe(p); 1108 } 1109 1110 static inline int arm_kprobe_ftrace(struct kprobe *p) 1111 { 1112 return -ENODEV; 1113 } 1114 1115 static inline int disarm_kprobe_ftrace(struct kprobe *p) 1116 { 1117 return -ENODEV; 1118 } 1119 #endif 1120 1121 /* Arm a kprobe with text_mutex */ 1122 static int arm_kprobe(struct kprobe *kp) 1123 { 1124 if (unlikely(kprobe_ftrace(kp))) 1125 return arm_kprobe_ftrace(kp); 1126 1127 cpus_read_lock(); 1128 mutex_lock(&text_mutex); 1129 __arm_kprobe(kp); 1130 mutex_unlock(&text_mutex); 1131 cpus_read_unlock(); 1132 1133 return 0; 1134 } 1135 1136 /* Disarm a kprobe with text_mutex */ 1137 static int disarm_kprobe(struct kprobe *kp, bool reopt) 1138 { 1139 if (unlikely(kprobe_ftrace(kp))) 1140 return disarm_kprobe_ftrace(kp); 1141 1142 cpus_read_lock(); 1143 mutex_lock(&text_mutex); 1144 __disarm_kprobe(kp, reopt); 1145 mutex_unlock(&text_mutex); 1146 cpus_read_unlock(); 1147 1148 return 0; 1149 } 1150 1151 /* 1152 * Aggregate handlers for multiple kprobes support - these handlers 1153 * take care of invoking the individual kprobe handlers on p->list 1154 */ 1155 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1156 { 1157 struct kprobe *kp; 1158 1159 list_for_each_entry_rcu(kp, &p->list, list) { 1160 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1161 set_kprobe_instance(kp); 1162 if (kp->pre_handler(kp, regs)) 1163 return 1; 1164 } 1165 reset_kprobe_instance(); 1166 } 1167 return 0; 1168 } 1169 NOKPROBE_SYMBOL(aggr_pre_handler); 1170 1171 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1172 unsigned long flags) 1173 { 1174 struct kprobe *kp; 1175 1176 list_for_each_entry_rcu(kp, &p->list, list) { 1177 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1178 set_kprobe_instance(kp); 1179 kp->post_handler(kp, regs, flags); 1180 reset_kprobe_instance(); 1181 } 1182 } 1183 } 1184 NOKPROBE_SYMBOL(aggr_post_handler); 1185 1186 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 1187 int trapnr) 1188 { 1189 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1190 1191 /* 1192 * if we faulted "during" the execution of a user specified 1193 * probe handler, invoke just that probe's fault handler 1194 */ 1195 if (cur && cur->fault_handler) { 1196 if (cur->fault_handler(cur, regs, trapnr)) 1197 return 1; 1198 } 1199 return 0; 1200 } 1201 NOKPROBE_SYMBOL(aggr_fault_handler); 1202 1203 /* Walks the list and increments nmissed count for multiprobe case */ 1204 void kprobes_inc_nmissed_count(struct kprobe *p) 1205 { 1206 struct kprobe *kp; 1207 if (!kprobe_aggrprobe(p)) { 1208 p->nmissed++; 1209 } else { 1210 list_for_each_entry_rcu(kp, &p->list, list) 1211 kp->nmissed++; 1212 } 1213 return; 1214 } 1215 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1216 1217 static void free_rp_inst_rcu(struct rcu_head *head) 1218 { 1219 struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu); 1220 1221 if (refcount_dec_and_test(&ri->rph->ref)) 1222 kfree(ri->rph); 1223 kfree(ri); 1224 } 1225 NOKPROBE_SYMBOL(free_rp_inst_rcu); 1226 1227 static void recycle_rp_inst(struct kretprobe_instance *ri) 1228 { 1229 struct kretprobe *rp = get_kretprobe(ri); 1230 1231 if (likely(rp)) { 1232 freelist_add(&ri->freelist, &rp->freelist); 1233 } else 1234 call_rcu(&ri->rcu, free_rp_inst_rcu); 1235 } 1236 NOKPROBE_SYMBOL(recycle_rp_inst); 1237 1238 static struct kprobe kprobe_busy = { 1239 .addr = (void *) get_kprobe, 1240 }; 1241 1242 void kprobe_busy_begin(void) 1243 { 1244 struct kprobe_ctlblk *kcb; 1245 1246 preempt_disable(); 1247 __this_cpu_write(current_kprobe, &kprobe_busy); 1248 kcb = get_kprobe_ctlblk(); 1249 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 1250 } 1251 1252 void kprobe_busy_end(void) 1253 { 1254 __this_cpu_write(current_kprobe, NULL); 1255 preempt_enable(); 1256 } 1257 1258 /* 1259 * This function is called from finish_task_switch when task tk becomes dead, 1260 * so that we can recycle any function-return probe instances associated 1261 * with this task. These left over instances represent probed functions 1262 * that have been called but will never return. 1263 */ 1264 void kprobe_flush_task(struct task_struct *tk) 1265 { 1266 struct kretprobe_instance *ri; 1267 struct llist_node *node; 1268 1269 /* Early boot, not yet initialized. */ 1270 if (unlikely(!kprobes_initialized)) 1271 return; 1272 1273 kprobe_busy_begin(); 1274 1275 node = __llist_del_all(&tk->kretprobe_instances); 1276 while (node) { 1277 ri = container_of(node, struct kretprobe_instance, llist); 1278 node = node->next; 1279 1280 recycle_rp_inst(ri); 1281 } 1282 1283 kprobe_busy_end(); 1284 } 1285 NOKPROBE_SYMBOL(kprobe_flush_task); 1286 1287 static inline void free_rp_inst(struct kretprobe *rp) 1288 { 1289 struct kretprobe_instance *ri; 1290 struct freelist_node *node; 1291 int count = 0; 1292 1293 node = rp->freelist.head; 1294 while (node) { 1295 ri = container_of(node, struct kretprobe_instance, freelist); 1296 node = node->next; 1297 1298 kfree(ri); 1299 count++; 1300 } 1301 1302 if (refcount_sub_and_test(count, &rp->rph->ref)) { 1303 kfree(rp->rph); 1304 rp->rph = NULL; 1305 } 1306 } 1307 1308 /* Add the new probe to ap->list */ 1309 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1310 { 1311 if (p->post_handler) 1312 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1313 1314 list_add_rcu(&p->list, &ap->list); 1315 if (p->post_handler && !ap->post_handler) 1316 ap->post_handler = aggr_post_handler; 1317 1318 return 0; 1319 } 1320 1321 /* 1322 * Fill in the required fields of the "manager kprobe". Replace the 1323 * earlier kprobe in the hlist with the manager kprobe 1324 */ 1325 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1326 { 1327 /* Copy p's insn slot to ap */ 1328 copy_kprobe(p, ap); 1329 flush_insn_slot(ap); 1330 ap->addr = p->addr; 1331 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1332 ap->pre_handler = aggr_pre_handler; 1333 ap->fault_handler = aggr_fault_handler; 1334 /* We don't care the kprobe which has gone. */ 1335 if (p->post_handler && !kprobe_gone(p)) 1336 ap->post_handler = aggr_post_handler; 1337 1338 INIT_LIST_HEAD(&ap->list); 1339 INIT_HLIST_NODE(&ap->hlist); 1340 1341 list_add_rcu(&p->list, &ap->list); 1342 hlist_replace_rcu(&p->hlist, &ap->hlist); 1343 } 1344 1345 /* 1346 * This is the second or subsequent kprobe at the address - handle 1347 * the intricacies 1348 */ 1349 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1350 { 1351 int ret = 0; 1352 struct kprobe *ap = orig_p; 1353 1354 cpus_read_lock(); 1355 1356 /* For preparing optimization, jump_label_text_reserved() is called */ 1357 jump_label_lock(); 1358 mutex_lock(&text_mutex); 1359 1360 if (!kprobe_aggrprobe(orig_p)) { 1361 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1362 ap = alloc_aggr_kprobe(orig_p); 1363 if (!ap) { 1364 ret = -ENOMEM; 1365 goto out; 1366 } 1367 init_aggr_kprobe(ap, orig_p); 1368 } else if (kprobe_unused(ap)) { 1369 /* This probe is going to die. Rescue it */ 1370 ret = reuse_unused_kprobe(ap); 1371 if (ret) 1372 goto out; 1373 } 1374 1375 if (kprobe_gone(ap)) { 1376 /* 1377 * Attempting to insert new probe at the same location that 1378 * had a probe in the module vaddr area which already 1379 * freed. So, the instruction slot has already been 1380 * released. We need a new slot for the new probe. 1381 */ 1382 ret = arch_prepare_kprobe(ap); 1383 if (ret) 1384 /* 1385 * Even if fail to allocate new slot, don't need to 1386 * free aggr_probe. It will be used next time, or 1387 * freed by unregister_kprobe. 1388 */ 1389 goto out; 1390 1391 /* Prepare optimized instructions if possible. */ 1392 prepare_optimized_kprobe(ap); 1393 1394 /* 1395 * Clear gone flag to prevent allocating new slot again, and 1396 * set disabled flag because it is not armed yet. 1397 */ 1398 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1399 | KPROBE_FLAG_DISABLED; 1400 } 1401 1402 /* Copy ap's insn slot to p */ 1403 copy_kprobe(ap, p); 1404 ret = add_new_kprobe(ap, p); 1405 1406 out: 1407 mutex_unlock(&text_mutex); 1408 jump_label_unlock(); 1409 cpus_read_unlock(); 1410 1411 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1412 ap->flags &= ~KPROBE_FLAG_DISABLED; 1413 if (!kprobes_all_disarmed) { 1414 /* Arm the breakpoint again. */ 1415 ret = arm_kprobe(ap); 1416 if (ret) { 1417 ap->flags |= KPROBE_FLAG_DISABLED; 1418 list_del_rcu(&p->list); 1419 synchronize_rcu(); 1420 } 1421 } 1422 } 1423 return ret; 1424 } 1425 1426 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1427 { 1428 /* The __kprobes marked functions and entry code must not be probed */ 1429 return addr >= (unsigned long)__kprobes_text_start && 1430 addr < (unsigned long)__kprobes_text_end; 1431 } 1432 1433 static bool __within_kprobe_blacklist(unsigned long addr) 1434 { 1435 struct kprobe_blacklist_entry *ent; 1436 1437 if (arch_within_kprobe_blacklist(addr)) 1438 return true; 1439 /* 1440 * If there exists a kprobe_blacklist, verify and 1441 * fail any probe registration in the prohibited area 1442 */ 1443 list_for_each_entry(ent, &kprobe_blacklist, list) { 1444 if (addr >= ent->start_addr && addr < ent->end_addr) 1445 return true; 1446 } 1447 return false; 1448 } 1449 1450 bool within_kprobe_blacklist(unsigned long addr) 1451 { 1452 char symname[KSYM_NAME_LEN], *p; 1453 1454 if (__within_kprobe_blacklist(addr)) 1455 return true; 1456 1457 /* Check if the address is on a suffixed-symbol */ 1458 if (!lookup_symbol_name(addr, symname)) { 1459 p = strchr(symname, '.'); 1460 if (!p) 1461 return false; 1462 *p = '\0'; 1463 addr = (unsigned long)kprobe_lookup_name(symname, 0); 1464 if (addr) 1465 return __within_kprobe_blacklist(addr); 1466 } 1467 return false; 1468 } 1469 1470 /* 1471 * If we have a symbol_name argument, look it up and add the offset field 1472 * to it. This way, we can specify a relative address to a symbol. 1473 * This returns encoded errors if it fails to look up symbol or invalid 1474 * combination of parameters. 1475 */ 1476 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr, 1477 const char *symbol_name, unsigned int offset) 1478 { 1479 if ((symbol_name && addr) || (!symbol_name && !addr)) 1480 goto invalid; 1481 1482 if (symbol_name) { 1483 addr = kprobe_lookup_name(symbol_name, offset); 1484 if (!addr) 1485 return ERR_PTR(-ENOENT); 1486 } 1487 1488 addr = (kprobe_opcode_t *)(((char *)addr) + offset); 1489 if (addr) 1490 return addr; 1491 1492 invalid: 1493 return ERR_PTR(-EINVAL); 1494 } 1495 1496 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1497 { 1498 return _kprobe_addr(p->addr, p->symbol_name, p->offset); 1499 } 1500 1501 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1502 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1503 { 1504 struct kprobe *ap, *list_p; 1505 1506 lockdep_assert_held(&kprobe_mutex); 1507 1508 ap = get_kprobe(p->addr); 1509 if (unlikely(!ap)) 1510 return NULL; 1511 1512 if (p != ap) { 1513 list_for_each_entry(list_p, &ap->list, list) 1514 if (list_p == p) 1515 /* kprobe p is a valid probe */ 1516 goto valid; 1517 return NULL; 1518 } 1519 valid: 1520 return ap; 1521 } 1522 1523 /* 1524 * Warn and return error if the kprobe is being re-registered since 1525 * there must be a software bug. 1526 */ 1527 static inline int warn_kprobe_rereg(struct kprobe *p) 1528 { 1529 int ret = 0; 1530 1531 mutex_lock(&kprobe_mutex); 1532 if (WARN_ON_ONCE(__get_valid_kprobe(p))) 1533 ret = -EINVAL; 1534 mutex_unlock(&kprobe_mutex); 1535 1536 return ret; 1537 } 1538 1539 int __weak arch_check_ftrace_location(struct kprobe *p) 1540 { 1541 unsigned long ftrace_addr; 1542 1543 ftrace_addr = ftrace_location((unsigned long)p->addr); 1544 if (ftrace_addr) { 1545 #ifdef CONFIG_KPROBES_ON_FTRACE 1546 /* Given address is not on the instruction boundary */ 1547 if ((unsigned long)p->addr != ftrace_addr) 1548 return -EILSEQ; 1549 p->flags |= KPROBE_FLAG_FTRACE; 1550 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1551 return -EINVAL; 1552 #endif 1553 } 1554 return 0; 1555 } 1556 1557 static int check_kprobe_address_safe(struct kprobe *p, 1558 struct module **probed_mod) 1559 { 1560 int ret; 1561 1562 ret = arch_check_ftrace_location(p); 1563 if (ret) 1564 return ret; 1565 jump_label_lock(); 1566 preempt_disable(); 1567 1568 /* Ensure it is not in reserved area nor out of text */ 1569 if (!kernel_text_address((unsigned long) p->addr) || 1570 within_kprobe_blacklist((unsigned long) p->addr) || 1571 jump_label_text_reserved(p->addr, p->addr) || 1572 find_bug((unsigned long)p->addr)) { 1573 ret = -EINVAL; 1574 goto out; 1575 } 1576 1577 /* Check if are we probing a module */ 1578 *probed_mod = __module_text_address((unsigned long) p->addr); 1579 if (*probed_mod) { 1580 /* 1581 * We must hold a refcount of the probed module while updating 1582 * its code to prohibit unexpected unloading. 1583 */ 1584 if (unlikely(!try_module_get(*probed_mod))) { 1585 ret = -ENOENT; 1586 goto out; 1587 } 1588 1589 /* 1590 * If the module freed .init.text, we couldn't insert 1591 * kprobes in there. 1592 */ 1593 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1594 (*probed_mod)->state != MODULE_STATE_COMING) { 1595 module_put(*probed_mod); 1596 *probed_mod = NULL; 1597 ret = -ENOENT; 1598 } 1599 } 1600 out: 1601 preempt_enable(); 1602 jump_label_unlock(); 1603 1604 return ret; 1605 } 1606 1607 int register_kprobe(struct kprobe *p) 1608 { 1609 int ret; 1610 struct kprobe *old_p; 1611 struct module *probed_mod; 1612 kprobe_opcode_t *addr; 1613 1614 /* Adjust probe address from symbol */ 1615 addr = kprobe_addr(p); 1616 if (IS_ERR(addr)) 1617 return PTR_ERR(addr); 1618 p->addr = addr; 1619 1620 ret = warn_kprobe_rereg(p); 1621 if (ret) 1622 return ret; 1623 1624 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1625 p->flags &= KPROBE_FLAG_DISABLED; 1626 p->nmissed = 0; 1627 INIT_LIST_HEAD(&p->list); 1628 1629 ret = check_kprobe_address_safe(p, &probed_mod); 1630 if (ret) 1631 return ret; 1632 1633 mutex_lock(&kprobe_mutex); 1634 1635 old_p = get_kprobe(p->addr); 1636 if (old_p) { 1637 /* Since this may unoptimize old_p, locking text_mutex. */ 1638 ret = register_aggr_kprobe(old_p, p); 1639 goto out; 1640 } 1641 1642 cpus_read_lock(); 1643 /* Prevent text modification */ 1644 mutex_lock(&text_mutex); 1645 ret = prepare_kprobe(p); 1646 mutex_unlock(&text_mutex); 1647 cpus_read_unlock(); 1648 if (ret) 1649 goto out; 1650 1651 INIT_HLIST_NODE(&p->hlist); 1652 hlist_add_head_rcu(&p->hlist, 1653 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1654 1655 if (!kprobes_all_disarmed && !kprobe_disabled(p)) { 1656 ret = arm_kprobe(p); 1657 if (ret) { 1658 hlist_del_rcu(&p->hlist); 1659 synchronize_rcu(); 1660 goto out; 1661 } 1662 } 1663 1664 /* Try to optimize kprobe */ 1665 try_to_optimize_kprobe(p); 1666 out: 1667 mutex_unlock(&kprobe_mutex); 1668 1669 if (probed_mod) 1670 module_put(probed_mod); 1671 1672 return ret; 1673 } 1674 EXPORT_SYMBOL_GPL(register_kprobe); 1675 1676 /* Check if all probes on the aggrprobe are disabled */ 1677 static int aggr_kprobe_disabled(struct kprobe *ap) 1678 { 1679 struct kprobe *kp; 1680 1681 lockdep_assert_held(&kprobe_mutex); 1682 1683 list_for_each_entry(kp, &ap->list, list) 1684 if (!kprobe_disabled(kp)) 1685 /* 1686 * There is an active probe on the list. 1687 * We can't disable this ap. 1688 */ 1689 return 0; 1690 1691 return 1; 1692 } 1693 1694 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1695 static struct kprobe *__disable_kprobe(struct kprobe *p) 1696 { 1697 struct kprobe *orig_p; 1698 int ret; 1699 1700 /* Get an original kprobe for return */ 1701 orig_p = __get_valid_kprobe(p); 1702 if (unlikely(orig_p == NULL)) 1703 return ERR_PTR(-EINVAL); 1704 1705 if (!kprobe_disabled(p)) { 1706 /* Disable probe if it is a child probe */ 1707 if (p != orig_p) 1708 p->flags |= KPROBE_FLAG_DISABLED; 1709 1710 /* Try to disarm and disable this/parent probe */ 1711 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1712 /* 1713 * If kprobes_all_disarmed is set, orig_p 1714 * should have already been disarmed, so 1715 * skip unneed disarming process. 1716 */ 1717 if (!kprobes_all_disarmed) { 1718 ret = disarm_kprobe(orig_p, true); 1719 if (ret) { 1720 p->flags &= ~KPROBE_FLAG_DISABLED; 1721 return ERR_PTR(ret); 1722 } 1723 } 1724 orig_p->flags |= KPROBE_FLAG_DISABLED; 1725 } 1726 } 1727 1728 return orig_p; 1729 } 1730 1731 /* 1732 * Unregister a kprobe without a scheduler synchronization. 1733 */ 1734 static int __unregister_kprobe_top(struct kprobe *p) 1735 { 1736 struct kprobe *ap, *list_p; 1737 1738 /* Disable kprobe. This will disarm it if needed. */ 1739 ap = __disable_kprobe(p); 1740 if (IS_ERR(ap)) 1741 return PTR_ERR(ap); 1742 1743 if (ap == p) 1744 /* 1745 * This probe is an independent(and non-optimized) kprobe 1746 * (not an aggrprobe). Remove from the hash list. 1747 */ 1748 goto disarmed; 1749 1750 /* Following process expects this probe is an aggrprobe */ 1751 WARN_ON(!kprobe_aggrprobe(ap)); 1752 1753 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1754 /* 1755 * !disarmed could be happen if the probe is under delayed 1756 * unoptimizing. 1757 */ 1758 goto disarmed; 1759 else { 1760 /* If disabling probe has special handlers, update aggrprobe */ 1761 if (p->post_handler && !kprobe_gone(p)) { 1762 list_for_each_entry(list_p, &ap->list, list) { 1763 if ((list_p != p) && (list_p->post_handler)) 1764 goto noclean; 1765 } 1766 ap->post_handler = NULL; 1767 } 1768 noclean: 1769 /* 1770 * Remove from the aggrprobe: this path will do nothing in 1771 * __unregister_kprobe_bottom(). 1772 */ 1773 list_del_rcu(&p->list); 1774 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1775 /* 1776 * Try to optimize this probe again, because post 1777 * handler may have been changed. 1778 */ 1779 optimize_kprobe(ap); 1780 } 1781 return 0; 1782 1783 disarmed: 1784 hlist_del_rcu(&ap->hlist); 1785 return 0; 1786 } 1787 1788 static void __unregister_kprobe_bottom(struct kprobe *p) 1789 { 1790 struct kprobe *ap; 1791 1792 if (list_empty(&p->list)) 1793 /* This is an independent kprobe */ 1794 arch_remove_kprobe(p); 1795 else if (list_is_singular(&p->list)) { 1796 /* This is the last child of an aggrprobe */ 1797 ap = list_entry(p->list.next, struct kprobe, list); 1798 list_del(&p->list); 1799 free_aggr_kprobe(ap); 1800 } 1801 /* Otherwise, do nothing. */ 1802 } 1803 1804 int register_kprobes(struct kprobe **kps, int num) 1805 { 1806 int i, ret = 0; 1807 1808 if (num <= 0) 1809 return -EINVAL; 1810 for (i = 0; i < num; i++) { 1811 ret = register_kprobe(kps[i]); 1812 if (ret < 0) { 1813 if (i > 0) 1814 unregister_kprobes(kps, i); 1815 break; 1816 } 1817 } 1818 return ret; 1819 } 1820 EXPORT_SYMBOL_GPL(register_kprobes); 1821 1822 void unregister_kprobe(struct kprobe *p) 1823 { 1824 unregister_kprobes(&p, 1); 1825 } 1826 EXPORT_SYMBOL_GPL(unregister_kprobe); 1827 1828 void unregister_kprobes(struct kprobe **kps, int num) 1829 { 1830 int i; 1831 1832 if (num <= 0) 1833 return; 1834 mutex_lock(&kprobe_mutex); 1835 for (i = 0; i < num; i++) 1836 if (__unregister_kprobe_top(kps[i]) < 0) 1837 kps[i]->addr = NULL; 1838 mutex_unlock(&kprobe_mutex); 1839 1840 synchronize_rcu(); 1841 for (i = 0; i < num; i++) 1842 if (kps[i]->addr) 1843 __unregister_kprobe_bottom(kps[i]); 1844 } 1845 EXPORT_SYMBOL_GPL(unregister_kprobes); 1846 1847 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1848 unsigned long val, void *data) 1849 { 1850 return NOTIFY_DONE; 1851 } 1852 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1853 1854 static struct notifier_block kprobe_exceptions_nb = { 1855 .notifier_call = kprobe_exceptions_notify, 1856 .priority = 0x7fffffff /* we need to be notified first */ 1857 }; 1858 1859 unsigned long __weak arch_deref_entry_point(void *entry) 1860 { 1861 return (unsigned long)entry; 1862 } 1863 1864 #ifdef CONFIG_KRETPROBES 1865 1866 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs, 1867 void *trampoline_address, 1868 void *frame_pointer) 1869 { 1870 kprobe_opcode_t *correct_ret_addr = NULL; 1871 struct kretprobe_instance *ri = NULL; 1872 struct llist_node *first, *node; 1873 struct kretprobe *rp; 1874 1875 /* Find all nodes for this frame. */ 1876 first = node = current->kretprobe_instances.first; 1877 while (node) { 1878 ri = container_of(node, struct kretprobe_instance, llist); 1879 1880 BUG_ON(ri->fp != frame_pointer); 1881 1882 if (ri->ret_addr != trampoline_address) { 1883 correct_ret_addr = ri->ret_addr; 1884 /* 1885 * This is the real return address. Any other 1886 * instances associated with this task are for 1887 * other calls deeper on the call stack 1888 */ 1889 goto found; 1890 } 1891 1892 node = node->next; 1893 } 1894 pr_err("Oops! Kretprobe fails to find correct return address.\n"); 1895 BUG_ON(1); 1896 1897 found: 1898 /* Unlink all nodes for this frame. */ 1899 current->kretprobe_instances.first = node->next; 1900 node->next = NULL; 1901 1902 /* Run them.. */ 1903 while (first) { 1904 ri = container_of(first, struct kretprobe_instance, llist); 1905 first = first->next; 1906 1907 rp = get_kretprobe(ri); 1908 if (rp && rp->handler) { 1909 struct kprobe *prev = kprobe_running(); 1910 1911 __this_cpu_write(current_kprobe, &rp->kp); 1912 ri->ret_addr = correct_ret_addr; 1913 rp->handler(ri, regs); 1914 __this_cpu_write(current_kprobe, prev); 1915 } 1916 1917 recycle_rp_inst(ri); 1918 } 1919 1920 return (unsigned long)correct_ret_addr; 1921 } 1922 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler) 1923 1924 /* 1925 * This kprobe pre_handler is registered with every kretprobe. When probe 1926 * hits it will set up the return probe. 1927 */ 1928 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 1929 { 1930 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1931 struct kretprobe_instance *ri; 1932 struct freelist_node *fn; 1933 1934 fn = freelist_try_get(&rp->freelist); 1935 if (!fn) { 1936 rp->nmissed++; 1937 return 0; 1938 } 1939 1940 ri = container_of(fn, struct kretprobe_instance, freelist); 1941 1942 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 1943 freelist_add(&ri->freelist, &rp->freelist); 1944 return 0; 1945 } 1946 1947 arch_prepare_kretprobe(ri, regs); 1948 1949 __llist_add(&ri->llist, ¤t->kretprobe_instances); 1950 1951 return 0; 1952 } 1953 NOKPROBE_SYMBOL(pre_handler_kretprobe); 1954 1955 bool __weak arch_kprobe_on_func_entry(unsigned long offset) 1956 { 1957 return !offset; 1958 } 1959 1960 /** 1961 * kprobe_on_func_entry() -- check whether given address is function entry 1962 * @addr: Target address 1963 * @sym: Target symbol name 1964 * @offset: The offset from the symbol or the address 1965 * 1966 * This checks whether the given @addr+@offset or @sym+@offset is on the 1967 * function entry address or not. 1968 * This returns 0 if it is the function entry, or -EINVAL if it is not. 1969 * And also it returns -ENOENT if it fails the symbol or address lookup. 1970 * Caller must pass @addr or @sym (either one must be NULL), or this 1971 * returns -EINVAL. 1972 */ 1973 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 1974 { 1975 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset); 1976 1977 if (IS_ERR(kp_addr)) 1978 return PTR_ERR(kp_addr); 1979 1980 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset)) 1981 return -ENOENT; 1982 1983 if (!arch_kprobe_on_func_entry(offset)) 1984 return -EINVAL; 1985 1986 return 0; 1987 } 1988 1989 int register_kretprobe(struct kretprobe *rp) 1990 { 1991 int ret; 1992 struct kretprobe_instance *inst; 1993 int i; 1994 void *addr; 1995 1996 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset); 1997 if (ret) 1998 return ret; 1999 2000 /* If only rp->kp.addr is specified, check reregistering kprobes */ 2001 if (rp->kp.addr && warn_kprobe_rereg(&rp->kp)) 2002 return -EINVAL; 2003 2004 if (kretprobe_blacklist_size) { 2005 addr = kprobe_addr(&rp->kp); 2006 if (IS_ERR(addr)) 2007 return PTR_ERR(addr); 2008 2009 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2010 if (kretprobe_blacklist[i].addr == addr) 2011 return -EINVAL; 2012 } 2013 } 2014 2015 rp->kp.pre_handler = pre_handler_kretprobe; 2016 rp->kp.post_handler = NULL; 2017 rp->kp.fault_handler = NULL; 2018 2019 /* Pre-allocate memory for max kretprobe instances */ 2020 if (rp->maxactive <= 0) { 2021 #ifdef CONFIG_PREEMPTION 2022 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 2023 #else 2024 rp->maxactive = num_possible_cpus(); 2025 #endif 2026 } 2027 rp->freelist.head = NULL; 2028 rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL); 2029 if (!rp->rph) 2030 return -ENOMEM; 2031 2032 rp->rph->rp = rp; 2033 for (i = 0; i < rp->maxactive; i++) { 2034 inst = kzalloc(sizeof(struct kretprobe_instance) + 2035 rp->data_size, GFP_KERNEL); 2036 if (inst == NULL) { 2037 refcount_set(&rp->rph->ref, i); 2038 free_rp_inst(rp); 2039 return -ENOMEM; 2040 } 2041 inst->rph = rp->rph; 2042 freelist_add(&inst->freelist, &rp->freelist); 2043 } 2044 refcount_set(&rp->rph->ref, i); 2045 2046 rp->nmissed = 0; 2047 /* Establish function entry probe point */ 2048 ret = register_kprobe(&rp->kp); 2049 if (ret != 0) 2050 free_rp_inst(rp); 2051 return ret; 2052 } 2053 EXPORT_SYMBOL_GPL(register_kretprobe); 2054 2055 int register_kretprobes(struct kretprobe **rps, int num) 2056 { 2057 int ret = 0, i; 2058 2059 if (num <= 0) 2060 return -EINVAL; 2061 for (i = 0; i < num; i++) { 2062 ret = register_kretprobe(rps[i]); 2063 if (ret < 0) { 2064 if (i > 0) 2065 unregister_kretprobes(rps, i); 2066 break; 2067 } 2068 } 2069 return ret; 2070 } 2071 EXPORT_SYMBOL_GPL(register_kretprobes); 2072 2073 void unregister_kretprobe(struct kretprobe *rp) 2074 { 2075 unregister_kretprobes(&rp, 1); 2076 } 2077 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2078 2079 void unregister_kretprobes(struct kretprobe **rps, int num) 2080 { 2081 int i; 2082 2083 if (num <= 0) 2084 return; 2085 mutex_lock(&kprobe_mutex); 2086 for (i = 0; i < num; i++) { 2087 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 2088 rps[i]->kp.addr = NULL; 2089 rps[i]->rph->rp = NULL; 2090 } 2091 mutex_unlock(&kprobe_mutex); 2092 2093 synchronize_rcu(); 2094 for (i = 0; i < num; i++) { 2095 if (rps[i]->kp.addr) { 2096 __unregister_kprobe_bottom(&rps[i]->kp); 2097 free_rp_inst(rps[i]); 2098 } 2099 } 2100 } 2101 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2102 2103 #else /* CONFIG_KRETPROBES */ 2104 int register_kretprobe(struct kretprobe *rp) 2105 { 2106 return -ENOSYS; 2107 } 2108 EXPORT_SYMBOL_GPL(register_kretprobe); 2109 2110 int register_kretprobes(struct kretprobe **rps, int num) 2111 { 2112 return -ENOSYS; 2113 } 2114 EXPORT_SYMBOL_GPL(register_kretprobes); 2115 2116 void unregister_kretprobe(struct kretprobe *rp) 2117 { 2118 } 2119 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2120 2121 void unregister_kretprobes(struct kretprobe **rps, int num) 2122 { 2123 } 2124 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2125 2126 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2127 { 2128 return 0; 2129 } 2130 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2131 2132 #endif /* CONFIG_KRETPROBES */ 2133 2134 /* Set the kprobe gone and remove its instruction buffer. */ 2135 static void kill_kprobe(struct kprobe *p) 2136 { 2137 struct kprobe *kp; 2138 2139 lockdep_assert_held(&kprobe_mutex); 2140 2141 p->flags |= KPROBE_FLAG_GONE; 2142 if (kprobe_aggrprobe(p)) { 2143 /* 2144 * If this is an aggr_kprobe, we have to list all the 2145 * chained probes and mark them GONE. 2146 */ 2147 list_for_each_entry(kp, &p->list, list) 2148 kp->flags |= KPROBE_FLAG_GONE; 2149 p->post_handler = NULL; 2150 kill_optimized_kprobe(p); 2151 } 2152 /* 2153 * Here, we can remove insn_slot safely, because no thread calls 2154 * the original probed function (which will be freed soon) any more. 2155 */ 2156 arch_remove_kprobe(p); 2157 2158 /* 2159 * The module is going away. We should disarm the kprobe which 2160 * is using ftrace, because ftrace framework is still available at 2161 * MODULE_STATE_GOING notification. 2162 */ 2163 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed) 2164 disarm_kprobe_ftrace(p); 2165 } 2166 2167 /* Disable one kprobe */ 2168 int disable_kprobe(struct kprobe *kp) 2169 { 2170 int ret = 0; 2171 struct kprobe *p; 2172 2173 mutex_lock(&kprobe_mutex); 2174 2175 /* Disable this kprobe */ 2176 p = __disable_kprobe(kp); 2177 if (IS_ERR(p)) 2178 ret = PTR_ERR(p); 2179 2180 mutex_unlock(&kprobe_mutex); 2181 return ret; 2182 } 2183 EXPORT_SYMBOL_GPL(disable_kprobe); 2184 2185 /* Enable one kprobe */ 2186 int enable_kprobe(struct kprobe *kp) 2187 { 2188 int ret = 0; 2189 struct kprobe *p; 2190 2191 mutex_lock(&kprobe_mutex); 2192 2193 /* Check whether specified probe is valid. */ 2194 p = __get_valid_kprobe(kp); 2195 if (unlikely(p == NULL)) { 2196 ret = -EINVAL; 2197 goto out; 2198 } 2199 2200 if (kprobe_gone(kp)) { 2201 /* This kprobe has gone, we couldn't enable it. */ 2202 ret = -EINVAL; 2203 goto out; 2204 } 2205 2206 if (p != kp) 2207 kp->flags &= ~KPROBE_FLAG_DISABLED; 2208 2209 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2210 p->flags &= ~KPROBE_FLAG_DISABLED; 2211 ret = arm_kprobe(p); 2212 if (ret) 2213 p->flags |= KPROBE_FLAG_DISABLED; 2214 } 2215 out: 2216 mutex_unlock(&kprobe_mutex); 2217 return ret; 2218 } 2219 EXPORT_SYMBOL_GPL(enable_kprobe); 2220 2221 /* Caller must NOT call this in usual path. This is only for critical case */ 2222 void dump_kprobe(struct kprobe *kp) 2223 { 2224 pr_err("Dumping kprobe:\n"); 2225 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n", 2226 kp->symbol_name, kp->offset, kp->addr); 2227 } 2228 NOKPROBE_SYMBOL(dump_kprobe); 2229 2230 int kprobe_add_ksym_blacklist(unsigned long entry) 2231 { 2232 struct kprobe_blacklist_entry *ent; 2233 unsigned long offset = 0, size = 0; 2234 2235 if (!kernel_text_address(entry) || 2236 !kallsyms_lookup_size_offset(entry, &size, &offset)) 2237 return -EINVAL; 2238 2239 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2240 if (!ent) 2241 return -ENOMEM; 2242 ent->start_addr = entry; 2243 ent->end_addr = entry + size; 2244 INIT_LIST_HEAD(&ent->list); 2245 list_add_tail(&ent->list, &kprobe_blacklist); 2246 2247 return (int)size; 2248 } 2249 2250 /* Add all symbols in given area into kprobe blacklist */ 2251 int kprobe_add_area_blacklist(unsigned long start, unsigned long end) 2252 { 2253 unsigned long entry; 2254 int ret = 0; 2255 2256 for (entry = start; entry < end; entry += ret) { 2257 ret = kprobe_add_ksym_blacklist(entry); 2258 if (ret < 0) 2259 return ret; 2260 if (ret == 0) /* In case of alias symbol */ 2261 ret = 1; 2262 } 2263 return 0; 2264 } 2265 2266 /* Remove all symbols in given area from kprobe blacklist */ 2267 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end) 2268 { 2269 struct kprobe_blacklist_entry *ent, *n; 2270 2271 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) { 2272 if (ent->start_addr < start || ent->start_addr >= end) 2273 continue; 2274 list_del(&ent->list); 2275 kfree(ent); 2276 } 2277 } 2278 2279 static void kprobe_remove_ksym_blacklist(unsigned long entry) 2280 { 2281 kprobe_remove_area_blacklist(entry, entry + 1); 2282 } 2283 2284 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value, 2285 char *type, char *sym) 2286 { 2287 return -ERANGE; 2288 } 2289 2290 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 2291 char *sym) 2292 { 2293 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 2294 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym)) 2295 return 0; 2296 #ifdef CONFIG_OPTPROBES 2297 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym)) 2298 return 0; 2299 #endif 2300 #endif 2301 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym)) 2302 return 0; 2303 return -ERANGE; 2304 } 2305 2306 int __init __weak arch_populate_kprobe_blacklist(void) 2307 { 2308 return 0; 2309 } 2310 2311 /* 2312 * Lookup and populate the kprobe_blacklist. 2313 * 2314 * Unlike the kretprobe blacklist, we'll need to determine 2315 * the range of addresses that belong to the said functions, 2316 * since a kprobe need not necessarily be at the beginning 2317 * of a function. 2318 */ 2319 static int __init populate_kprobe_blacklist(unsigned long *start, 2320 unsigned long *end) 2321 { 2322 unsigned long entry; 2323 unsigned long *iter; 2324 int ret; 2325 2326 for (iter = start; iter < end; iter++) { 2327 entry = arch_deref_entry_point((void *)*iter); 2328 ret = kprobe_add_ksym_blacklist(entry); 2329 if (ret == -EINVAL) 2330 continue; 2331 if (ret < 0) 2332 return ret; 2333 } 2334 2335 /* Symbols in __kprobes_text are blacklisted */ 2336 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start, 2337 (unsigned long)__kprobes_text_end); 2338 if (ret) 2339 return ret; 2340 2341 /* Symbols in noinstr section are blacklisted */ 2342 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start, 2343 (unsigned long)__noinstr_text_end); 2344 2345 return ret ? : arch_populate_kprobe_blacklist(); 2346 } 2347 2348 static void add_module_kprobe_blacklist(struct module *mod) 2349 { 2350 unsigned long start, end; 2351 int i; 2352 2353 if (mod->kprobe_blacklist) { 2354 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2355 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]); 2356 } 2357 2358 start = (unsigned long)mod->kprobes_text_start; 2359 if (start) { 2360 end = start + mod->kprobes_text_size; 2361 kprobe_add_area_blacklist(start, end); 2362 } 2363 2364 start = (unsigned long)mod->noinstr_text_start; 2365 if (start) { 2366 end = start + mod->noinstr_text_size; 2367 kprobe_add_area_blacklist(start, end); 2368 } 2369 } 2370 2371 static void remove_module_kprobe_blacklist(struct module *mod) 2372 { 2373 unsigned long start, end; 2374 int i; 2375 2376 if (mod->kprobe_blacklist) { 2377 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2378 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]); 2379 } 2380 2381 start = (unsigned long)mod->kprobes_text_start; 2382 if (start) { 2383 end = start + mod->kprobes_text_size; 2384 kprobe_remove_area_blacklist(start, end); 2385 } 2386 2387 start = (unsigned long)mod->noinstr_text_start; 2388 if (start) { 2389 end = start + mod->noinstr_text_size; 2390 kprobe_remove_area_blacklist(start, end); 2391 } 2392 } 2393 2394 /* Module notifier call back, checking kprobes on the module */ 2395 static int kprobes_module_callback(struct notifier_block *nb, 2396 unsigned long val, void *data) 2397 { 2398 struct module *mod = data; 2399 struct hlist_head *head; 2400 struct kprobe *p; 2401 unsigned int i; 2402 int checkcore = (val == MODULE_STATE_GOING); 2403 2404 if (val == MODULE_STATE_COMING) { 2405 mutex_lock(&kprobe_mutex); 2406 add_module_kprobe_blacklist(mod); 2407 mutex_unlock(&kprobe_mutex); 2408 } 2409 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2410 return NOTIFY_DONE; 2411 2412 /* 2413 * When MODULE_STATE_GOING was notified, both of module .text and 2414 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2415 * notified, only .init.text section would be freed. We need to 2416 * disable kprobes which have been inserted in the sections. 2417 */ 2418 mutex_lock(&kprobe_mutex); 2419 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2420 head = &kprobe_table[i]; 2421 hlist_for_each_entry(p, head, hlist) 2422 if (within_module_init((unsigned long)p->addr, mod) || 2423 (checkcore && 2424 within_module_core((unsigned long)p->addr, mod))) { 2425 /* 2426 * The vaddr this probe is installed will soon 2427 * be vfreed buy not synced to disk. Hence, 2428 * disarming the breakpoint isn't needed. 2429 * 2430 * Note, this will also move any optimized probes 2431 * that are pending to be removed from their 2432 * corresponding lists to the freeing_list and 2433 * will not be touched by the delayed 2434 * kprobe_optimizer work handler. 2435 */ 2436 kill_kprobe(p); 2437 } 2438 } 2439 if (val == MODULE_STATE_GOING) 2440 remove_module_kprobe_blacklist(mod); 2441 mutex_unlock(&kprobe_mutex); 2442 return NOTIFY_DONE; 2443 } 2444 2445 static struct notifier_block kprobe_module_nb = { 2446 .notifier_call = kprobes_module_callback, 2447 .priority = 0 2448 }; 2449 2450 /* Markers of _kprobe_blacklist section */ 2451 extern unsigned long __start_kprobe_blacklist[]; 2452 extern unsigned long __stop_kprobe_blacklist[]; 2453 2454 void kprobe_free_init_mem(void) 2455 { 2456 void *start = (void *)(&__init_begin); 2457 void *end = (void *)(&__init_end); 2458 struct hlist_head *head; 2459 struct kprobe *p; 2460 int i; 2461 2462 mutex_lock(&kprobe_mutex); 2463 2464 /* Kill all kprobes on initmem */ 2465 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2466 head = &kprobe_table[i]; 2467 hlist_for_each_entry(p, head, hlist) { 2468 if (start <= (void *)p->addr && (void *)p->addr < end) 2469 kill_kprobe(p); 2470 } 2471 } 2472 2473 mutex_unlock(&kprobe_mutex); 2474 } 2475 2476 static int __init init_kprobes(void) 2477 { 2478 int i, err = 0; 2479 2480 /* FIXME allocate the probe table, currently defined statically */ 2481 /* initialize all list heads */ 2482 for (i = 0; i < KPROBE_TABLE_SIZE; i++) 2483 INIT_HLIST_HEAD(&kprobe_table[i]); 2484 2485 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2486 __stop_kprobe_blacklist); 2487 if (err) { 2488 pr_err("kprobes: failed to populate blacklist: %d\n", err); 2489 pr_err("Please take care of using kprobes.\n"); 2490 } 2491 2492 if (kretprobe_blacklist_size) { 2493 /* lookup the function address from its name */ 2494 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2495 kretprobe_blacklist[i].addr = 2496 kprobe_lookup_name(kretprobe_blacklist[i].name, 0); 2497 if (!kretprobe_blacklist[i].addr) 2498 printk("kretprobe: lookup failed: %s\n", 2499 kretprobe_blacklist[i].name); 2500 } 2501 } 2502 2503 /* By default, kprobes are armed */ 2504 kprobes_all_disarmed = false; 2505 2506 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2507 /* Init kprobe_optinsn_slots for allocation */ 2508 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2509 #endif 2510 2511 err = arch_init_kprobes(); 2512 if (!err) 2513 err = register_die_notifier(&kprobe_exceptions_nb); 2514 if (!err) 2515 err = register_module_notifier(&kprobe_module_nb); 2516 2517 kprobes_initialized = (err == 0); 2518 2519 if (!err) 2520 init_test_probes(); 2521 return err; 2522 } 2523 early_initcall(init_kprobes); 2524 2525 #if defined(CONFIG_OPTPROBES) 2526 static int __init init_optprobes(void) 2527 { 2528 /* 2529 * Enable kprobe optimization - this kicks the optimizer which 2530 * depends on synchronize_rcu_tasks() and ksoftirqd, that is 2531 * not spawned in early initcall. So delay the optimization. 2532 */ 2533 optimize_all_kprobes(); 2534 2535 return 0; 2536 } 2537 subsys_initcall(init_optprobes); 2538 #endif 2539 2540 #ifdef CONFIG_DEBUG_FS 2541 static void report_probe(struct seq_file *pi, struct kprobe *p, 2542 const char *sym, int offset, char *modname, struct kprobe *pp) 2543 { 2544 char *kprobe_type; 2545 void *addr = p->addr; 2546 2547 if (p->pre_handler == pre_handler_kretprobe) 2548 kprobe_type = "r"; 2549 else 2550 kprobe_type = "k"; 2551 2552 if (!kallsyms_show_value(pi->file->f_cred)) 2553 addr = NULL; 2554 2555 if (sym) 2556 seq_printf(pi, "%px %s %s+0x%x %s ", 2557 addr, kprobe_type, sym, offset, 2558 (modname ? modname : " ")); 2559 else /* try to use %pS */ 2560 seq_printf(pi, "%px %s %pS ", 2561 addr, kprobe_type, p->addr); 2562 2563 if (!pp) 2564 pp = p; 2565 seq_printf(pi, "%s%s%s%s\n", 2566 (kprobe_gone(p) ? "[GONE]" : ""), 2567 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2568 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2569 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2570 } 2571 2572 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2573 { 2574 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2575 } 2576 2577 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2578 { 2579 (*pos)++; 2580 if (*pos >= KPROBE_TABLE_SIZE) 2581 return NULL; 2582 return pos; 2583 } 2584 2585 static void kprobe_seq_stop(struct seq_file *f, void *v) 2586 { 2587 /* Nothing to do */ 2588 } 2589 2590 static int show_kprobe_addr(struct seq_file *pi, void *v) 2591 { 2592 struct hlist_head *head; 2593 struct kprobe *p, *kp; 2594 const char *sym = NULL; 2595 unsigned int i = *(loff_t *) v; 2596 unsigned long offset = 0; 2597 char *modname, namebuf[KSYM_NAME_LEN]; 2598 2599 head = &kprobe_table[i]; 2600 preempt_disable(); 2601 hlist_for_each_entry_rcu(p, head, hlist) { 2602 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2603 &offset, &modname, namebuf); 2604 if (kprobe_aggrprobe(p)) { 2605 list_for_each_entry_rcu(kp, &p->list, list) 2606 report_probe(pi, kp, sym, offset, modname, p); 2607 } else 2608 report_probe(pi, p, sym, offset, modname, NULL); 2609 } 2610 preempt_enable(); 2611 return 0; 2612 } 2613 2614 static const struct seq_operations kprobes_sops = { 2615 .start = kprobe_seq_start, 2616 .next = kprobe_seq_next, 2617 .stop = kprobe_seq_stop, 2618 .show = show_kprobe_addr 2619 }; 2620 2621 DEFINE_SEQ_ATTRIBUTE(kprobes); 2622 2623 /* kprobes/blacklist -- shows which functions can not be probed */ 2624 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2625 { 2626 mutex_lock(&kprobe_mutex); 2627 return seq_list_start(&kprobe_blacklist, *pos); 2628 } 2629 2630 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2631 { 2632 return seq_list_next(v, &kprobe_blacklist, pos); 2633 } 2634 2635 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2636 { 2637 struct kprobe_blacklist_entry *ent = 2638 list_entry(v, struct kprobe_blacklist_entry, list); 2639 2640 /* 2641 * If /proc/kallsyms is not showing kernel address, we won't 2642 * show them here either. 2643 */ 2644 if (!kallsyms_show_value(m->file->f_cred)) 2645 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL, 2646 (void *)ent->start_addr); 2647 else 2648 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr, 2649 (void *)ent->end_addr, (void *)ent->start_addr); 2650 return 0; 2651 } 2652 2653 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v) 2654 { 2655 mutex_unlock(&kprobe_mutex); 2656 } 2657 2658 static const struct seq_operations kprobe_blacklist_sops = { 2659 .start = kprobe_blacklist_seq_start, 2660 .next = kprobe_blacklist_seq_next, 2661 .stop = kprobe_blacklist_seq_stop, 2662 .show = kprobe_blacklist_seq_show, 2663 }; 2664 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist); 2665 2666 static int arm_all_kprobes(void) 2667 { 2668 struct hlist_head *head; 2669 struct kprobe *p; 2670 unsigned int i, total = 0, errors = 0; 2671 int err, ret = 0; 2672 2673 mutex_lock(&kprobe_mutex); 2674 2675 /* If kprobes are armed, just return */ 2676 if (!kprobes_all_disarmed) 2677 goto already_enabled; 2678 2679 /* 2680 * optimize_kprobe() called by arm_kprobe() checks 2681 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2682 * arm_kprobe. 2683 */ 2684 kprobes_all_disarmed = false; 2685 /* Arming kprobes doesn't optimize kprobe itself */ 2686 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2687 head = &kprobe_table[i]; 2688 /* Arm all kprobes on a best-effort basis */ 2689 hlist_for_each_entry(p, head, hlist) { 2690 if (!kprobe_disabled(p)) { 2691 err = arm_kprobe(p); 2692 if (err) { 2693 errors++; 2694 ret = err; 2695 } 2696 total++; 2697 } 2698 } 2699 } 2700 2701 if (errors) 2702 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n", 2703 errors, total); 2704 else 2705 pr_info("Kprobes globally enabled\n"); 2706 2707 already_enabled: 2708 mutex_unlock(&kprobe_mutex); 2709 return ret; 2710 } 2711 2712 static int disarm_all_kprobes(void) 2713 { 2714 struct hlist_head *head; 2715 struct kprobe *p; 2716 unsigned int i, total = 0, errors = 0; 2717 int err, ret = 0; 2718 2719 mutex_lock(&kprobe_mutex); 2720 2721 /* If kprobes are already disarmed, just return */ 2722 if (kprobes_all_disarmed) { 2723 mutex_unlock(&kprobe_mutex); 2724 return 0; 2725 } 2726 2727 kprobes_all_disarmed = true; 2728 2729 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2730 head = &kprobe_table[i]; 2731 /* Disarm all kprobes on a best-effort basis */ 2732 hlist_for_each_entry(p, head, hlist) { 2733 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { 2734 err = disarm_kprobe(p, false); 2735 if (err) { 2736 errors++; 2737 ret = err; 2738 } 2739 total++; 2740 } 2741 } 2742 } 2743 2744 if (errors) 2745 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n", 2746 errors, total); 2747 else 2748 pr_info("Kprobes globally disabled\n"); 2749 2750 mutex_unlock(&kprobe_mutex); 2751 2752 /* Wait for disarming all kprobes by optimizer */ 2753 wait_for_kprobe_optimizer(); 2754 2755 return ret; 2756 } 2757 2758 /* 2759 * XXX: The debugfs bool file interface doesn't allow for callbacks 2760 * when the bool state is switched. We can reuse that facility when 2761 * available 2762 */ 2763 static ssize_t read_enabled_file_bool(struct file *file, 2764 char __user *user_buf, size_t count, loff_t *ppos) 2765 { 2766 char buf[3]; 2767 2768 if (!kprobes_all_disarmed) 2769 buf[0] = '1'; 2770 else 2771 buf[0] = '0'; 2772 buf[1] = '\n'; 2773 buf[2] = 0x00; 2774 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2775 } 2776 2777 static ssize_t write_enabled_file_bool(struct file *file, 2778 const char __user *user_buf, size_t count, loff_t *ppos) 2779 { 2780 char buf[32]; 2781 size_t buf_size; 2782 int ret = 0; 2783 2784 buf_size = min(count, (sizeof(buf)-1)); 2785 if (copy_from_user(buf, user_buf, buf_size)) 2786 return -EFAULT; 2787 2788 buf[buf_size] = '\0'; 2789 switch (buf[0]) { 2790 case 'y': 2791 case 'Y': 2792 case '1': 2793 ret = arm_all_kprobes(); 2794 break; 2795 case 'n': 2796 case 'N': 2797 case '0': 2798 ret = disarm_all_kprobes(); 2799 break; 2800 default: 2801 return -EINVAL; 2802 } 2803 2804 if (ret) 2805 return ret; 2806 2807 return count; 2808 } 2809 2810 static const struct file_operations fops_kp = { 2811 .read = read_enabled_file_bool, 2812 .write = write_enabled_file_bool, 2813 .llseek = default_llseek, 2814 }; 2815 2816 static int __init debugfs_kprobe_init(void) 2817 { 2818 struct dentry *dir; 2819 unsigned int value = 1; 2820 2821 dir = debugfs_create_dir("kprobes", NULL); 2822 2823 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops); 2824 2825 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp); 2826 2827 debugfs_create_file("blacklist", 0400, dir, NULL, 2828 &kprobe_blacklist_fops); 2829 2830 return 0; 2831 } 2832 2833 late_initcall(debugfs_kprobe_init); 2834 #endif /* CONFIG_DEBUG_FS */ 2835