1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * kernel/kprobes.c 5 * 6 * Copyright (C) IBM Corporation, 2002, 2004 7 * 8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 9 * Probes initial implementation (includes suggestions from 10 * Rusty Russell). 11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 12 * hlists and exceptions notifier as suggested by Andi Kleen. 13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 14 * interface to access function arguments. 15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 16 * exceptions notifier to be first on the priority list. 17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 19 * <prasanna@in.ibm.com> added function-return probes. 20 */ 21 #include <linux/kprobes.h> 22 #include <linux/hash.h> 23 #include <linux/init.h> 24 #include <linux/slab.h> 25 #include <linux/stddef.h> 26 #include <linux/export.h> 27 #include <linux/moduleloader.h> 28 #include <linux/kallsyms.h> 29 #include <linux/freezer.h> 30 #include <linux/seq_file.h> 31 #include <linux/debugfs.h> 32 #include <linux/sysctl.h> 33 #include <linux/kdebug.h> 34 #include <linux/memory.h> 35 #include <linux/ftrace.h> 36 #include <linux/cpu.h> 37 #include <linux/jump_label.h> 38 39 #include <asm/sections.h> 40 #include <asm/cacheflush.h> 41 #include <asm/errno.h> 42 #include <linux/uaccess.h> 43 44 #define KPROBE_HASH_BITS 6 45 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 46 47 48 static int kprobes_initialized; 49 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 50 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 51 52 /* NOTE: change this value only with kprobe_mutex held */ 53 static bool kprobes_all_disarmed; 54 55 /* This protects kprobe_table and optimizing_list */ 56 static DEFINE_MUTEX(kprobe_mutex); 57 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 58 static struct { 59 raw_spinlock_t lock ____cacheline_aligned_in_smp; 60 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 61 62 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, 63 unsigned int __unused) 64 { 65 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); 66 } 67 68 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 69 { 70 return &(kretprobe_table_locks[hash].lock); 71 } 72 73 /* Blacklist -- list of struct kprobe_blacklist_entry */ 74 static LIST_HEAD(kprobe_blacklist); 75 76 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 77 /* 78 * kprobe->ainsn.insn points to the copy of the instruction to be 79 * single-stepped. x86_64, POWER4 and above have no-exec support and 80 * stepping on the instruction on a vmalloced/kmalloced/data page 81 * is a recipe for disaster 82 */ 83 struct kprobe_insn_page { 84 struct list_head list; 85 kprobe_opcode_t *insns; /* Page of instruction slots */ 86 struct kprobe_insn_cache *cache; 87 int nused; 88 int ngarbage; 89 char slot_used[]; 90 }; 91 92 #define KPROBE_INSN_PAGE_SIZE(slots) \ 93 (offsetof(struct kprobe_insn_page, slot_used) + \ 94 (sizeof(char) * (slots))) 95 96 static int slots_per_page(struct kprobe_insn_cache *c) 97 { 98 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 99 } 100 101 enum kprobe_slot_state { 102 SLOT_CLEAN = 0, 103 SLOT_DIRTY = 1, 104 SLOT_USED = 2, 105 }; 106 107 void __weak *alloc_insn_page(void) 108 { 109 return module_alloc(PAGE_SIZE); 110 } 111 112 void __weak free_insn_page(void *page) 113 { 114 module_memfree(page); 115 } 116 117 struct kprobe_insn_cache kprobe_insn_slots = { 118 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 119 .alloc = alloc_insn_page, 120 .free = free_insn_page, 121 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 122 .insn_size = MAX_INSN_SIZE, 123 .nr_garbage = 0, 124 }; 125 static int collect_garbage_slots(struct kprobe_insn_cache *c); 126 127 /** 128 * __get_insn_slot() - Find a slot on an executable page for an instruction. 129 * We allocate an executable page if there's no room on existing ones. 130 */ 131 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 132 { 133 struct kprobe_insn_page *kip; 134 kprobe_opcode_t *slot = NULL; 135 136 /* Since the slot array is not protected by rcu, we need a mutex */ 137 mutex_lock(&c->mutex); 138 retry: 139 rcu_read_lock(); 140 list_for_each_entry_rcu(kip, &c->pages, list) { 141 if (kip->nused < slots_per_page(c)) { 142 int i; 143 for (i = 0; i < slots_per_page(c); i++) { 144 if (kip->slot_used[i] == SLOT_CLEAN) { 145 kip->slot_used[i] = SLOT_USED; 146 kip->nused++; 147 slot = kip->insns + (i * c->insn_size); 148 rcu_read_unlock(); 149 goto out; 150 } 151 } 152 /* kip->nused is broken. Fix it. */ 153 kip->nused = slots_per_page(c); 154 WARN_ON(1); 155 } 156 } 157 rcu_read_unlock(); 158 159 /* If there are any garbage slots, collect it and try again. */ 160 if (c->nr_garbage && collect_garbage_slots(c) == 0) 161 goto retry; 162 163 /* All out of space. Need to allocate a new page. */ 164 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 165 if (!kip) 166 goto out; 167 168 /* 169 * Use module_alloc so this page is within +/- 2GB of where the 170 * kernel image and loaded module images reside. This is required 171 * so x86_64 can correctly handle the %rip-relative fixups. 172 */ 173 kip->insns = c->alloc(); 174 if (!kip->insns) { 175 kfree(kip); 176 goto out; 177 } 178 INIT_LIST_HEAD(&kip->list); 179 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 180 kip->slot_used[0] = SLOT_USED; 181 kip->nused = 1; 182 kip->ngarbage = 0; 183 kip->cache = c; 184 list_add_rcu(&kip->list, &c->pages); 185 slot = kip->insns; 186 out: 187 mutex_unlock(&c->mutex); 188 return slot; 189 } 190 191 /* Return 1 if all garbages are collected, otherwise 0. */ 192 static int collect_one_slot(struct kprobe_insn_page *kip, int idx) 193 { 194 kip->slot_used[idx] = SLOT_CLEAN; 195 kip->nused--; 196 if (kip->nused == 0) { 197 /* 198 * Page is no longer in use. Free it unless 199 * it's the last one. We keep the last one 200 * so as not to have to set it up again the 201 * next time somebody inserts a probe. 202 */ 203 if (!list_is_singular(&kip->list)) { 204 list_del_rcu(&kip->list); 205 synchronize_rcu(); 206 kip->cache->free(kip->insns); 207 kfree(kip); 208 } 209 return 1; 210 } 211 return 0; 212 } 213 214 static int collect_garbage_slots(struct kprobe_insn_cache *c) 215 { 216 struct kprobe_insn_page *kip, *next; 217 218 /* Ensure no-one is interrupted on the garbages */ 219 synchronize_rcu(); 220 221 list_for_each_entry_safe(kip, next, &c->pages, list) { 222 int i; 223 if (kip->ngarbage == 0) 224 continue; 225 kip->ngarbage = 0; /* we will collect all garbages */ 226 for (i = 0; i < slots_per_page(c); i++) { 227 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 228 break; 229 } 230 } 231 c->nr_garbage = 0; 232 return 0; 233 } 234 235 void __free_insn_slot(struct kprobe_insn_cache *c, 236 kprobe_opcode_t *slot, int dirty) 237 { 238 struct kprobe_insn_page *kip; 239 long idx; 240 241 mutex_lock(&c->mutex); 242 rcu_read_lock(); 243 list_for_each_entry_rcu(kip, &c->pages, list) { 244 idx = ((long)slot - (long)kip->insns) / 245 (c->insn_size * sizeof(kprobe_opcode_t)); 246 if (idx >= 0 && idx < slots_per_page(c)) 247 goto out; 248 } 249 /* Could not find this slot. */ 250 WARN_ON(1); 251 kip = NULL; 252 out: 253 rcu_read_unlock(); 254 /* Mark and sweep: this may sleep */ 255 if (kip) { 256 /* Check double free */ 257 WARN_ON(kip->slot_used[idx] != SLOT_USED); 258 if (dirty) { 259 kip->slot_used[idx] = SLOT_DIRTY; 260 kip->ngarbage++; 261 if (++c->nr_garbage > slots_per_page(c)) 262 collect_garbage_slots(c); 263 } else { 264 collect_one_slot(kip, idx); 265 } 266 } 267 mutex_unlock(&c->mutex); 268 } 269 270 /* 271 * Check given address is on the page of kprobe instruction slots. 272 * This will be used for checking whether the address on a stack 273 * is on a text area or not. 274 */ 275 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 276 { 277 struct kprobe_insn_page *kip; 278 bool ret = false; 279 280 rcu_read_lock(); 281 list_for_each_entry_rcu(kip, &c->pages, list) { 282 if (addr >= (unsigned long)kip->insns && 283 addr < (unsigned long)kip->insns + PAGE_SIZE) { 284 ret = true; 285 break; 286 } 287 } 288 rcu_read_unlock(); 289 290 return ret; 291 } 292 293 #ifdef CONFIG_OPTPROBES 294 /* For optimized_kprobe buffer */ 295 struct kprobe_insn_cache kprobe_optinsn_slots = { 296 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 297 .alloc = alloc_insn_page, 298 .free = free_insn_page, 299 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 300 /* .insn_size is initialized later */ 301 .nr_garbage = 0, 302 }; 303 #endif 304 #endif 305 306 /* We have preemption disabled.. so it is safe to use __ versions */ 307 static inline void set_kprobe_instance(struct kprobe *kp) 308 { 309 __this_cpu_write(kprobe_instance, kp); 310 } 311 312 static inline void reset_kprobe_instance(void) 313 { 314 __this_cpu_write(kprobe_instance, NULL); 315 } 316 317 /* 318 * This routine is called either: 319 * - under the kprobe_mutex - during kprobe_[un]register() 320 * OR 321 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 322 */ 323 struct kprobe *get_kprobe(void *addr) 324 { 325 struct hlist_head *head; 326 struct kprobe *p; 327 328 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 329 hlist_for_each_entry_rcu(p, head, hlist) { 330 if (p->addr == addr) 331 return p; 332 } 333 334 return NULL; 335 } 336 NOKPROBE_SYMBOL(get_kprobe); 337 338 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 339 340 /* Return true if the kprobe is an aggregator */ 341 static inline int kprobe_aggrprobe(struct kprobe *p) 342 { 343 return p->pre_handler == aggr_pre_handler; 344 } 345 346 /* Return true(!0) if the kprobe is unused */ 347 static inline int kprobe_unused(struct kprobe *p) 348 { 349 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 350 list_empty(&p->list); 351 } 352 353 /* 354 * Keep all fields in the kprobe consistent 355 */ 356 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 357 { 358 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 359 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 360 } 361 362 #ifdef CONFIG_OPTPROBES 363 /* NOTE: change this value only with kprobe_mutex held */ 364 static bool kprobes_allow_optimization; 365 366 /* 367 * Call all pre_handler on the list, but ignores its return value. 368 * This must be called from arch-dep optimized caller. 369 */ 370 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 371 { 372 struct kprobe *kp; 373 374 list_for_each_entry_rcu(kp, &p->list, list) { 375 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 376 set_kprobe_instance(kp); 377 kp->pre_handler(kp, regs); 378 } 379 reset_kprobe_instance(); 380 } 381 } 382 NOKPROBE_SYMBOL(opt_pre_handler); 383 384 /* Free optimized instructions and optimized_kprobe */ 385 static void free_aggr_kprobe(struct kprobe *p) 386 { 387 struct optimized_kprobe *op; 388 389 op = container_of(p, struct optimized_kprobe, kp); 390 arch_remove_optimized_kprobe(op); 391 arch_remove_kprobe(p); 392 kfree(op); 393 } 394 395 /* Return true(!0) if the kprobe is ready for optimization. */ 396 static inline int kprobe_optready(struct kprobe *p) 397 { 398 struct optimized_kprobe *op; 399 400 if (kprobe_aggrprobe(p)) { 401 op = container_of(p, struct optimized_kprobe, kp); 402 return arch_prepared_optinsn(&op->optinsn); 403 } 404 405 return 0; 406 } 407 408 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 409 static inline int kprobe_disarmed(struct kprobe *p) 410 { 411 struct optimized_kprobe *op; 412 413 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 414 if (!kprobe_aggrprobe(p)) 415 return kprobe_disabled(p); 416 417 op = container_of(p, struct optimized_kprobe, kp); 418 419 return kprobe_disabled(p) && list_empty(&op->list); 420 } 421 422 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 423 static int kprobe_queued(struct kprobe *p) 424 { 425 struct optimized_kprobe *op; 426 427 if (kprobe_aggrprobe(p)) { 428 op = container_of(p, struct optimized_kprobe, kp); 429 if (!list_empty(&op->list)) 430 return 1; 431 } 432 return 0; 433 } 434 435 /* 436 * Return an optimized kprobe whose optimizing code replaces 437 * instructions including addr (exclude breakpoint). 438 */ 439 static struct kprobe *get_optimized_kprobe(unsigned long addr) 440 { 441 int i; 442 struct kprobe *p = NULL; 443 struct optimized_kprobe *op; 444 445 /* Don't check i == 0, since that is a breakpoint case. */ 446 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 447 p = get_kprobe((void *)(addr - i)); 448 449 if (p && kprobe_optready(p)) { 450 op = container_of(p, struct optimized_kprobe, kp); 451 if (arch_within_optimized_kprobe(op, addr)) 452 return p; 453 } 454 455 return NULL; 456 } 457 458 /* Optimization staging list, protected by kprobe_mutex */ 459 static LIST_HEAD(optimizing_list); 460 static LIST_HEAD(unoptimizing_list); 461 static LIST_HEAD(freeing_list); 462 463 static void kprobe_optimizer(struct work_struct *work); 464 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 465 #define OPTIMIZE_DELAY 5 466 467 /* 468 * Optimize (replace a breakpoint with a jump) kprobes listed on 469 * optimizing_list. 470 */ 471 static void do_optimize_kprobes(void) 472 { 473 lockdep_assert_held(&text_mutex); 474 /* 475 * The optimization/unoptimization refers online_cpus via 476 * stop_machine() and cpu-hotplug modifies online_cpus. 477 * And same time, text_mutex will be held in cpu-hotplug and here. 478 * This combination can cause a deadlock (cpu-hotplug try to lock 479 * text_mutex but stop_machine can not be done because online_cpus 480 * has been changed) 481 * To avoid this deadlock, caller must have locked cpu hotplug 482 * for preventing cpu-hotplug outside of text_mutex locking. 483 */ 484 lockdep_assert_cpus_held(); 485 486 /* Optimization never be done when disarmed */ 487 if (kprobes_all_disarmed || !kprobes_allow_optimization || 488 list_empty(&optimizing_list)) 489 return; 490 491 arch_optimize_kprobes(&optimizing_list); 492 } 493 494 /* 495 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 496 * if need) kprobes listed on unoptimizing_list. 497 */ 498 static void do_unoptimize_kprobes(void) 499 { 500 struct optimized_kprobe *op, *tmp; 501 502 lockdep_assert_held(&text_mutex); 503 /* See comment in do_optimize_kprobes() */ 504 lockdep_assert_cpus_held(); 505 506 /* Unoptimization must be done anytime */ 507 if (list_empty(&unoptimizing_list)) 508 return; 509 510 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 511 /* Loop free_list for disarming */ 512 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 513 /* Disarm probes if marked disabled */ 514 if (kprobe_disabled(&op->kp)) 515 arch_disarm_kprobe(&op->kp); 516 if (kprobe_unused(&op->kp)) { 517 /* 518 * Remove unused probes from hash list. After waiting 519 * for synchronization, these probes are reclaimed. 520 * (reclaiming is done by do_free_cleaned_kprobes.) 521 */ 522 hlist_del_rcu(&op->kp.hlist); 523 } else 524 list_del_init(&op->list); 525 } 526 } 527 528 /* Reclaim all kprobes on the free_list */ 529 static void do_free_cleaned_kprobes(void) 530 { 531 struct optimized_kprobe *op, *tmp; 532 533 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 534 list_del_init(&op->list); 535 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) { 536 /* 537 * This must not happen, but if there is a kprobe 538 * still in use, keep it on kprobes hash list. 539 */ 540 continue; 541 } 542 free_aggr_kprobe(&op->kp); 543 } 544 } 545 546 /* Start optimizer after OPTIMIZE_DELAY passed */ 547 static void kick_kprobe_optimizer(void) 548 { 549 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 550 } 551 552 /* Kprobe jump optimizer */ 553 static void kprobe_optimizer(struct work_struct *work) 554 { 555 mutex_lock(&kprobe_mutex); 556 cpus_read_lock(); 557 mutex_lock(&text_mutex); 558 /* Lock modules while optimizing kprobes */ 559 mutex_lock(&module_mutex); 560 561 /* 562 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 563 * kprobes before waiting for quiesence period. 564 */ 565 do_unoptimize_kprobes(); 566 567 /* 568 * Step 2: Wait for quiesence period to ensure all potentially 569 * preempted tasks to have normally scheduled. Because optprobe 570 * may modify multiple instructions, there is a chance that Nth 571 * instruction is preempted. In that case, such tasks can return 572 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. 573 * Note that on non-preemptive kernel, this is transparently converted 574 * to synchronoze_sched() to wait for all interrupts to have completed. 575 */ 576 synchronize_rcu_tasks(); 577 578 /* Step 3: Optimize kprobes after quiesence period */ 579 do_optimize_kprobes(); 580 581 /* Step 4: Free cleaned kprobes after quiesence period */ 582 do_free_cleaned_kprobes(); 583 584 mutex_unlock(&module_mutex); 585 mutex_unlock(&text_mutex); 586 cpus_read_unlock(); 587 mutex_unlock(&kprobe_mutex); 588 589 /* Step 5: Kick optimizer again if needed */ 590 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 591 kick_kprobe_optimizer(); 592 } 593 594 /* Wait for completing optimization and unoptimization */ 595 void wait_for_kprobe_optimizer(void) 596 { 597 mutex_lock(&kprobe_mutex); 598 599 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 600 mutex_unlock(&kprobe_mutex); 601 602 /* this will also make optimizing_work execute immmediately */ 603 flush_delayed_work(&optimizing_work); 604 /* @optimizing_work might not have been queued yet, relax */ 605 cpu_relax(); 606 607 mutex_lock(&kprobe_mutex); 608 } 609 610 mutex_unlock(&kprobe_mutex); 611 } 612 613 /* Optimize kprobe if p is ready to be optimized */ 614 static void optimize_kprobe(struct kprobe *p) 615 { 616 struct optimized_kprobe *op; 617 618 /* Check if the kprobe is disabled or not ready for optimization. */ 619 if (!kprobe_optready(p) || !kprobes_allow_optimization || 620 (kprobe_disabled(p) || kprobes_all_disarmed)) 621 return; 622 623 /* kprobes with post_handler can not be optimized */ 624 if (p->post_handler) 625 return; 626 627 op = container_of(p, struct optimized_kprobe, kp); 628 629 /* Check there is no other kprobes at the optimized instructions */ 630 if (arch_check_optimized_kprobe(op) < 0) 631 return; 632 633 /* Check if it is already optimized. */ 634 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) 635 return; 636 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 637 638 if (!list_empty(&op->list)) 639 /* This is under unoptimizing. Just dequeue the probe */ 640 list_del_init(&op->list); 641 else { 642 list_add(&op->list, &optimizing_list); 643 kick_kprobe_optimizer(); 644 } 645 } 646 647 /* Short cut to direct unoptimizing */ 648 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 649 { 650 lockdep_assert_cpus_held(); 651 arch_unoptimize_kprobe(op); 652 if (kprobe_disabled(&op->kp)) 653 arch_disarm_kprobe(&op->kp); 654 } 655 656 /* Unoptimize a kprobe if p is optimized */ 657 static void unoptimize_kprobe(struct kprobe *p, bool force) 658 { 659 struct optimized_kprobe *op; 660 661 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 662 return; /* This is not an optprobe nor optimized */ 663 664 op = container_of(p, struct optimized_kprobe, kp); 665 if (!kprobe_optimized(p)) { 666 /* Unoptimized or unoptimizing case */ 667 if (force && !list_empty(&op->list)) { 668 /* 669 * Only if this is unoptimizing kprobe and forced, 670 * forcibly unoptimize it. (No need to unoptimize 671 * unoptimized kprobe again :) 672 */ 673 list_del_init(&op->list); 674 force_unoptimize_kprobe(op); 675 } 676 return; 677 } 678 679 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 680 if (!list_empty(&op->list)) { 681 /* Dequeue from the optimization queue */ 682 list_del_init(&op->list); 683 return; 684 } 685 /* Optimized kprobe case */ 686 if (force) 687 /* Forcibly update the code: this is a special case */ 688 force_unoptimize_kprobe(op); 689 else { 690 list_add(&op->list, &unoptimizing_list); 691 kick_kprobe_optimizer(); 692 } 693 } 694 695 /* Cancel unoptimizing for reusing */ 696 static int reuse_unused_kprobe(struct kprobe *ap) 697 { 698 struct optimized_kprobe *op; 699 700 /* 701 * Unused kprobe MUST be on the way of delayed unoptimizing (means 702 * there is still a relative jump) and disabled. 703 */ 704 op = container_of(ap, struct optimized_kprobe, kp); 705 WARN_ON_ONCE(list_empty(&op->list)); 706 /* Enable the probe again */ 707 ap->flags &= ~KPROBE_FLAG_DISABLED; 708 /* Optimize it again (remove from op->list) */ 709 if (!kprobe_optready(ap)) 710 return -EINVAL; 711 712 optimize_kprobe(ap); 713 return 0; 714 } 715 716 /* Remove optimized instructions */ 717 static void kill_optimized_kprobe(struct kprobe *p) 718 { 719 struct optimized_kprobe *op; 720 721 op = container_of(p, struct optimized_kprobe, kp); 722 if (!list_empty(&op->list)) 723 /* Dequeue from the (un)optimization queue */ 724 list_del_init(&op->list); 725 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 726 727 if (kprobe_unused(p)) { 728 /* Enqueue if it is unused */ 729 list_add(&op->list, &freeing_list); 730 /* 731 * Remove unused probes from the hash list. After waiting 732 * for synchronization, this probe is reclaimed. 733 * (reclaiming is done by do_free_cleaned_kprobes().) 734 */ 735 hlist_del_rcu(&op->kp.hlist); 736 } 737 738 /* Don't touch the code, because it is already freed. */ 739 arch_remove_optimized_kprobe(op); 740 } 741 742 static inline 743 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) 744 { 745 if (!kprobe_ftrace(p)) 746 arch_prepare_optimized_kprobe(op, p); 747 } 748 749 /* Try to prepare optimized instructions */ 750 static void prepare_optimized_kprobe(struct kprobe *p) 751 { 752 struct optimized_kprobe *op; 753 754 op = container_of(p, struct optimized_kprobe, kp); 755 __prepare_optimized_kprobe(op, p); 756 } 757 758 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 759 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 760 { 761 struct optimized_kprobe *op; 762 763 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 764 if (!op) 765 return NULL; 766 767 INIT_LIST_HEAD(&op->list); 768 op->kp.addr = p->addr; 769 __prepare_optimized_kprobe(op, p); 770 771 return &op->kp; 772 } 773 774 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 775 776 /* 777 * Prepare an optimized_kprobe and optimize it 778 * NOTE: p must be a normal registered kprobe 779 */ 780 static void try_to_optimize_kprobe(struct kprobe *p) 781 { 782 struct kprobe *ap; 783 struct optimized_kprobe *op; 784 785 /* Impossible to optimize ftrace-based kprobe */ 786 if (kprobe_ftrace(p)) 787 return; 788 789 /* For preparing optimization, jump_label_text_reserved() is called */ 790 cpus_read_lock(); 791 jump_label_lock(); 792 mutex_lock(&text_mutex); 793 794 ap = alloc_aggr_kprobe(p); 795 if (!ap) 796 goto out; 797 798 op = container_of(ap, struct optimized_kprobe, kp); 799 if (!arch_prepared_optinsn(&op->optinsn)) { 800 /* If failed to setup optimizing, fallback to kprobe */ 801 arch_remove_optimized_kprobe(op); 802 kfree(op); 803 goto out; 804 } 805 806 init_aggr_kprobe(ap, p); 807 optimize_kprobe(ap); /* This just kicks optimizer thread */ 808 809 out: 810 mutex_unlock(&text_mutex); 811 jump_label_unlock(); 812 cpus_read_unlock(); 813 } 814 815 #ifdef CONFIG_SYSCTL 816 static void optimize_all_kprobes(void) 817 { 818 struct hlist_head *head; 819 struct kprobe *p; 820 unsigned int i; 821 822 mutex_lock(&kprobe_mutex); 823 /* If optimization is already allowed, just return */ 824 if (kprobes_allow_optimization) 825 goto out; 826 827 cpus_read_lock(); 828 kprobes_allow_optimization = true; 829 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 830 head = &kprobe_table[i]; 831 hlist_for_each_entry_rcu(p, head, hlist) 832 if (!kprobe_disabled(p)) 833 optimize_kprobe(p); 834 } 835 cpus_read_unlock(); 836 printk(KERN_INFO "Kprobes globally optimized\n"); 837 out: 838 mutex_unlock(&kprobe_mutex); 839 } 840 841 static void unoptimize_all_kprobes(void) 842 { 843 struct hlist_head *head; 844 struct kprobe *p; 845 unsigned int i; 846 847 mutex_lock(&kprobe_mutex); 848 /* If optimization is already prohibited, just return */ 849 if (!kprobes_allow_optimization) { 850 mutex_unlock(&kprobe_mutex); 851 return; 852 } 853 854 cpus_read_lock(); 855 kprobes_allow_optimization = false; 856 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 857 head = &kprobe_table[i]; 858 hlist_for_each_entry_rcu(p, head, hlist) { 859 if (!kprobe_disabled(p)) 860 unoptimize_kprobe(p, false); 861 } 862 } 863 cpus_read_unlock(); 864 mutex_unlock(&kprobe_mutex); 865 866 /* Wait for unoptimizing completion */ 867 wait_for_kprobe_optimizer(); 868 printk(KERN_INFO "Kprobes globally unoptimized\n"); 869 } 870 871 static DEFINE_MUTEX(kprobe_sysctl_mutex); 872 int sysctl_kprobes_optimization; 873 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 874 void __user *buffer, size_t *length, 875 loff_t *ppos) 876 { 877 int ret; 878 879 mutex_lock(&kprobe_sysctl_mutex); 880 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 881 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 882 883 if (sysctl_kprobes_optimization) 884 optimize_all_kprobes(); 885 else 886 unoptimize_all_kprobes(); 887 mutex_unlock(&kprobe_sysctl_mutex); 888 889 return ret; 890 } 891 #endif /* CONFIG_SYSCTL */ 892 893 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 894 static void __arm_kprobe(struct kprobe *p) 895 { 896 struct kprobe *_p; 897 898 /* Check collision with other optimized kprobes */ 899 _p = get_optimized_kprobe((unsigned long)p->addr); 900 if (unlikely(_p)) 901 /* Fallback to unoptimized kprobe */ 902 unoptimize_kprobe(_p, true); 903 904 arch_arm_kprobe(p); 905 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 906 } 907 908 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 909 static void __disarm_kprobe(struct kprobe *p, bool reopt) 910 { 911 struct kprobe *_p; 912 913 /* Try to unoptimize */ 914 unoptimize_kprobe(p, kprobes_all_disarmed); 915 916 if (!kprobe_queued(p)) { 917 arch_disarm_kprobe(p); 918 /* If another kprobe was blocked, optimize it. */ 919 _p = get_optimized_kprobe((unsigned long)p->addr); 920 if (unlikely(_p) && reopt) 921 optimize_kprobe(_p); 922 } 923 /* TODO: reoptimize others after unoptimized this probe */ 924 } 925 926 #else /* !CONFIG_OPTPROBES */ 927 928 #define optimize_kprobe(p) do {} while (0) 929 #define unoptimize_kprobe(p, f) do {} while (0) 930 #define kill_optimized_kprobe(p) do {} while (0) 931 #define prepare_optimized_kprobe(p) do {} while (0) 932 #define try_to_optimize_kprobe(p) do {} while (0) 933 #define __arm_kprobe(p) arch_arm_kprobe(p) 934 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 935 #define kprobe_disarmed(p) kprobe_disabled(p) 936 #define wait_for_kprobe_optimizer() do {} while (0) 937 938 static int reuse_unused_kprobe(struct kprobe *ap) 939 { 940 /* 941 * If the optimized kprobe is NOT supported, the aggr kprobe is 942 * released at the same time that the last aggregated kprobe is 943 * unregistered. 944 * Thus there should be no chance to reuse unused kprobe. 945 */ 946 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 947 return -EINVAL; 948 } 949 950 static void free_aggr_kprobe(struct kprobe *p) 951 { 952 arch_remove_kprobe(p); 953 kfree(p); 954 } 955 956 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 957 { 958 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 959 } 960 #endif /* CONFIG_OPTPROBES */ 961 962 #ifdef CONFIG_KPROBES_ON_FTRACE 963 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 964 .func = kprobe_ftrace_handler, 965 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 966 }; 967 static int kprobe_ftrace_enabled; 968 969 /* Must ensure p->addr is really on ftrace */ 970 static int prepare_kprobe(struct kprobe *p) 971 { 972 if (!kprobe_ftrace(p)) 973 return arch_prepare_kprobe(p); 974 975 return arch_prepare_kprobe_ftrace(p); 976 } 977 978 /* Caller must lock kprobe_mutex */ 979 static int arm_kprobe_ftrace(struct kprobe *p) 980 { 981 int ret = 0; 982 983 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 984 (unsigned long)p->addr, 0, 0); 985 if (ret) { 986 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n", 987 p->addr, ret); 988 return ret; 989 } 990 991 if (kprobe_ftrace_enabled == 0) { 992 ret = register_ftrace_function(&kprobe_ftrace_ops); 993 if (ret) { 994 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret); 995 goto err_ftrace; 996 } 997 } 998 999 kprobe_ftrace_enabled++; 1000 return ret; 1001 1002 err_ftrace: 1003 /* 1004 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a 1005 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental 1006 * empty filter_hash which would undesirably trace all functions. 1007 */ 1008 ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0); 1009 return ret; 1010 } 1011 1012 /* Caller must lock kprobe_mutex */ 1013 static int disarm_kprobe_ftrace(struct kprobe *p) 1014 { 1015 int ret = 0; 1016 1017 if (kprobe_ftrace_enabled == 1) { 1018 ret = unregister_ftrace_function(&kprobe_ftrace_ops); 1019 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret)) 1020 return ret; 1021 } 1022 1023 kprobe_ftrace_enabled--; 1024 1025 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 1026 (unsigned long)p->addr, 1, 0); 1027 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n", 1028 p->addr, ret); 1029 return ret; 1030 } 1031 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1032 #define prepare_kprobe(p) arch_prepare_kprobe(p) 1033 #define arm_kprobe_ftrace(p) (-ENODEV) 1034 #define disarm_kprobe_ftrace(p) (-ENODEV) 1035 #endif 1036 1037 /* Arm a kprobe with text_mutex */ 1038 static int arm_kprobe(struct kprobe *kp) 1039 { 1040 if (unlikely(kprobe_ftrace(kp))) 1041 return arm_kprobe_ftrace(kp); 1042 1043 cpus_read_lock(); 1044 mutex_lock(&text_mutex); 1045 __arm_kprobe(kp); 1046 mutex_unlock(&text_mutex); 1047 cpus_read_unlock(); 1048 1049 return 0; 1050 } 1051 1052 /* Disarm a kprobe with text_mutex */ 1053 static int disarm_kprobe(struct kprobe *kp, bool reopt) 1054 { 1055 if (unlikely(kprobe_ftrace(kp))) 1056 return disarm_kprobe_ftrace(kp); 1057 1058 cpus_read_lock(); 1059 mutex_lock(&text_mutex); 1060 __disarm_kprobe(kp, reopt); 1061 mutex_unlock(&text_mutex); 1062 cpus_read_unlock(); 1063 1064 return 0; 1065 } 1066 1067 /* 1068 * Aggregate handlers for multiple kprobes support - these handlers 1069 * take care of invoking the individual kprobe handlers on p->list 1070 */ 1071 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1072 { 1073 struct kprobe *kp; 1074 1075 list_for_each_entry_rcu(kp, &p->list, list) { 1076 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1077 set_kprobe_instance(kp); 1078 if (kp->pre_handler(kp, regs)) 1079 return 1; 1080 } 1081 reset_kprobe_instance(); 1082 } 1083 return 0; 1084 } 1085 NOKPROBE_SYMBOL(aggr_pre_handler); 1086 1087 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1088 unsigned long flags) 1089 { 1090 struct kprobe *kp; 1091 1092 list_for_each_entry_rcu(kp, &p->list, list) { 1093 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1094 set_kprobe_instance(kp); 1095 kp->post_handler(kp, regs, flags); 1096 reset_kprobe_instance(); 1097 } 1098 } 1099 } 1100 NOKPROBE_SYMBOL(aggr_post_handler); 1101 1102 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 1103 int trapnr) 1104 { 1105 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1106 1107 /* 1108 * if we faulted "during" the execution of a user specified 1109 * probe handler, invoke just that probe's fault handler 1110 */ 1111 if (cur && cur->fault_handler) { 1112 if (cur->fault_handler(cur, regs, trapnr)) 1113 return 1; 1114 } 1115 return 0; 1116 } 1117 NOKPROBE_SYMBOL(aggr_fault_handler); 1118 1119 /* Walks the list and increments nmissed count for multiprobe case */ 1120 void kprobes_inc_nmissed_count(struct kprobe *p) 1121 { 1122 struct kprobe *kp; 1123 if (!kprobe_aggrprobe(p)) { 1124 p->nmissed++; 1125 } else { 1126 list_for_each_entry_rcu(kp, &p->list, list) 1127 kp->nmissed++; 1128 } 1129 return; 1130 } 1131 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1132 1133 void recycle_rp_inst(struct kretprobe_instance *ri, 1134 struct hlist_head *head) 1135 { 1136 struct kretprobe *rp = ri->rp; 1137 1138 /* remove rp inst off the rprobe_inst_table */ 1139 hlist_del(&ri->hlist); 1140 INIT_HLIST_NODE(&ri->hlist); 1141 if (likely(rp)) { 1142 raw_spin_lock(&rp->lock); 1143 hlist_add_head(&ri->hlist, &rp->free_instances); 1144 raw_spin_unlock(&rp->lock); 1145 } else 1146 /* Unregistering */ 1147 hlist_add_head(&ri->hlist, head); 1148 } 1149 NOKPROBE_SYMBOL(recycle_rp_inst); 1150 1151 void kretprobe_hash_lock(struct task_struct *tsk, 1152 struct hlist_head **head, unsigned long *flags) 1153 __acquires(hlist_lock) 1154 { 1155 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1156 raw_spinlock_t *hlist_lock; 1157 1158 *head = &kretprobe_inst_table[hash]; 1159 hlist_lock = kretprobe_table_lock_ptr(hash); 1160 raw_spin_lock_irqsave(hlist_lock, *flags); 1161 } 1162 NOKPROBE_SYMBOL(kretprobe_hash_lock); 1163 1164 static void kretprobe_table_lock(unsigned long hash, 1165 unsigned long *flags) 1166 __acquires(hlist_lock) 1167 { 1168 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1169 raw_spin_lock_irqsave(hlist_lock, *flags); 1170 } 1171 NOKPROBE_SYMBOL(kretprobe_table_lock); 1172 1173 void kretprobe_hash_unlock(struct task_struct *tsk, 1174 unsigned long *flags) 1175 __releases(hlist_lock) 1176 { 1177 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1178 raw_spinlock_t *hlist_lock; 1179 1180 hlist_lock = kretprobe_table_lock_ptr(hash); 1181 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1182 } 1183 NOKPROBE_SYMBOL(kretprobe_hash_unlock); 1184 1185 static void kretprobe_table_unlock(unsigned long hash, 1186 unsigned long *flags) 1187 __releases(hlist_lock) 1188 { 1189 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1190 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1191 } 1192 NOKPROBE_SYMBOL(kretprobe_table_unlock); 1193 1194 /* 1195 * This function is called from finish_task_switch when task tk becomes dead, 1196 * so that we can recycle any function-return probe instances associated 1197 * with this task. These left over instances represent probed functions 1198 * that have been called but will never return. 1199 */ 1200 void kprobe_flush_task(struct task_struct *tk) 1201 { 1202 struct kretprobe_instance *ri; 1203 struct hlist_head *head, empty_rp; 1204 struct hlist_node *tmp; 1205 unsigned long hash, flags = 0; 1206 1207 if (unlikely(!kprobes_initialized)) 1208 /* Early boot. kretprobe_table_locks not yet initialized. */ 1209 return; 1210 1211 INIT_HLIST_HEAD(&empty_rp); 1212 hash = hash_ptr(tk, KPROBE_HASH_BITS); 1213 head = &kretprobe_inst_table[hash]; 1214 kretprobe_table_lock(hash, &flags); 1215 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 1216 if (ri->task == tk) 1217 recycle_rp_inst(ri, &empty_rp); 1218 } 1219 kretprobe_table_unlock(hash, &flags); 1220 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 1221 hlist_del(&ri->hlist); 1222 kfree(ri); 1223 } 1224 } 1225 NOKPROBE_SYMBOL(kprobe_flush_task); 1226 1227 static inline void free_rp_inst(struct kretprobe *rp) 1228 { 1229 struct kretprobe_instance *ri; 1230 struct hlist_node *next; 1231 1232 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) { 1233 hlist_del(&ri->hlist); 1234 kfree(ri); 1235 } 1236 } 1237 1238 static void cleanup_rp_inst(struct kretprobe *rp) 1239 { 1240 unsigned long flags, hash; 1241 struct kretprobe_instance *ri; 1242 struct hlist_node *next; 1243 struct hlist_head *head; 1244 1245 /* No race here */ 1246 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 1247 kretprobe_table_lock(hash, &flags); 1248 head = &kretprobe_inst_table[hash]; 1249 hlist_for_each_entry_safe(ri, next, head, hlist) { 1250 if (ri->rp == rp) 1251 ri->rp = NULL; 1252 } 1253 kretprobe_table_unlock(hash, &flags); 1254 } 1255 free_rp_inst(rp); 1256 } 1257 NOKPROBE_SYMBOL(cleanup_rp_inst); 1258 1259 /* Add the new probe to ap->list */ 1260 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1261 { 1262 if (p->post_handler) 1263 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1264 1265 list_add_rcu(&p->list, &ap->list); 1266 if (p->post_handler && !ap->post_handler) 1267 ap->post_handler = aggr_post_handler; 1268 1269 return 0; 1270 } 1271 1272 /* 1273 * Fill in the required fields of the "manager kprobe". Replace the 1274 * earlier kprobe in the hlist with the manager kprobe 1275 */ 1276 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1277 { 1278 /* Copy p's insn slot to ap */ 1279 copy_kprobe(p, ap); 1280 flush_insn_slot(ap); 1281 ap->addr = p->addr; 1282 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1283 ap->pre_handler = aggr_pre_handler; 1284 ap->fault_handler = aggr_fault_handler; 1285 /* We don't care the kprobe which has gone. */ 1286 if (p->post_handler && !kprobe_gone(p)) 1287 ap->post_handler = aggr_post_handler; 1288 1289 INIT_LIST_HEAD(&ap->list); 1290 INIT_HLIST_NODE(&ap->hlist); 1291 1292 list_add_rcu(&p->list, &ap->list); 1293 hlist_replace_rcu(&p->hlist, &ap->hlist); 1294 } 1295 1296 /* 1297 * This is the second or subsequent kprobe at the address - handle 1298 * the intricacies 1299 */ 1300 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1301 { 1302 int ret = 0; 1303 struct kprobe *ap = orig_p; 1304 1305 cpus_read_lock(); 1306 1307 /* For preparing optimization, jump_label_text_reserved() is called */ 1308 jump_label_lock(); 1309 mutex_lock(&text_mutex); 1310 1311 if (!kprobe_aggrprobe(orig_p)) { 1312 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1313 ap = alloc_aggr_kprobe(orig_p); 1314 if (!ap) { 1315 ret = -ENOMEM; 1316 goto out; 1317 } 1318 init_aggr_kprobe(ap, orig_p); 1319 } else if (kprobe_unused(ap)) { 1320 /* This probe is going to die. Rescue it */ 1321 ret = reuse_unused_kprobe(ap); 1322 if (ret) 1323 goto out; 1324 } 1325 1326 if (kprobe_gone(ap)) { 1327 /* 1328 * Attempting to insert new probe at the same location that 1329 * had a probe in the module vaddr area which already 1330 * freed. So, the instruction slot has already been 1331 * released. We need a new slot for the new probe. 1332 */ 1333 ret = arch_prepare_kprobe(ap); 1334 if (ret) 1335 /* 1336 * Even if fail to allocate new slot, don't need to 1337 * free aggr_probe. It will be used next time, or 1338 * freed by unregister_kprobe. 1339 */ 1340 goto out; 1341 1342 /* Prepare optimized instructions if possible. */ 1343 prepare_optimized_kprobe(ap); 1344 1345 /* 1346 * Clear gone flag to prevent allocating new slot again, and 1347 * set disabled flag because it is not armed yet. 1348 */ 1349 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1350 | KPROBE_FLAG_DISABLED; 1351 } 1352 1353 /* Copy ap's insn slot to p */ 1354 copy_kprobe(ap, p); 1355 ret = add_new_kprobe(ap, p); 1356 1357 out: 1358 mutex_unlock(&text_mutex); 1359 jump_label_unlock(); 1360 cpus_read_unlock(); 1361 1362 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1363 ap->flags &= ~KPROBE_FLAG_DISABLED; 1364 if (!kprobes_all_disarmed) { 1365 /* Arm the breakpoint again. */ 1366 ret = arm_kprobe(ap); 1367 if (ret) { 1368 ap->flags |= KPROBE_FLAG_DISABLED; 1369 list_del_rcu(&p->list); 1370 synchronize_rcu(); 1371 } 1372 } 1373 } 1374 return ret; 1375 } 1376 1377 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1378 { 1379 /* The __kprobes marked functions and entry code must not be probed */ 1380 return addr >= (unsigned long)__kprobes_text_start && 1381 addr < (unsigned long)__kprobes_text_end; 1382 } 1383 1384 static bool __within_kprobe_blacklist(unsigned long addr) 1385 { 1386 struct kprobe_blacklist_entry *ent; 1387 1388 if (arch_within_kprobe_blacklist(addr)) 1389 return true; 1390 /* 1391 * If there exists a kprobe_blacklist, verify and 1392 * fail any probe registration in the prohibited area 1393 */ 1394 list_for_each_entry(ent, &kprobe_blacklist, list) { 1395 if (addr >= ent->start_addr && addr < ent->end_addr) 1396 return true; 1397 } 1398 return false; 1399 } 1400 1401 bool within_kprobe_blacklist(unsigned long addr) 1402 { 1403 char symname[KSYM_NAME_LEN], *p; 1404 1405 if (__within_kprobe_blacklist(addr)) 1406 return true; 1407 1408 /* Check if the address is on a suffixed-symbol */ 1409 if (!lookup_symbol_name(addr, symname)) { 1410 p = strchr(symname, '.'); 1411 if (!p) 1412 return false; 1413 *p = '\0'; 1414 addr = (unsigned long)kprobe_lookup_name(symname, 0); 1415 if (addr) 1416 return __within_kprobe_blacklist(addr); 1417 } 1418 return false; 1419 } 1420 1421 /* 1422 * If we have a symbol_name argument, look it up and add the offset field 1423 * to it. This way, we can specify a relative address to a symbol. 1424 * This returns encoded errors if it fails to look up symbol or invalid 1425 * combination of parameters. 1426 */ 1427 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr, 1428 const char *symbol_name, unsigned int offset) 1429 { 1430 if ((symbol_name && addr) || (!symbol_name && !addr)) 1431 goto invalid; 1432 1433 if (symbol_name) { 1434 addr = kprobe_lookup_name(symbol_name, offset); 1435 if (!addr) 1436 return ERR_PTR(-ENOENT); 1437 } 1438 1439 addr = (kprobe_opcode_t *)(((char *)addr) + offset); 1440 if (addr) 1441 return addr; 1442 1443 invalid: 1444 return ERR_PTR(-EINVAL); 1445 } 1446 1447 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1448 { 1449 return _kprobe_addr(p->addr, p->symbol_name, p->offset); 1450 } 1451 1452 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1453 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1454 { 1455 struct kprobe *ap, *list_p; 1456 1457 ap = get_kprobe(p->addr); 1458 if (unlikely(!ap)) 1459 return NULL; 1460 1461 if (p != ap) { 1462 list_for_each_entry_rcu(list_p, &ap->list, list) 1463 if (list_p == p) 1464 /* kprobe p is a valid probe */ 1465 goto valid; 1466 return NULL; 1467 } 1468 valid: 1469 return ap; 1470 } 1471 1472 /* Return error if the kprobe is being re-registered */ 1473 static inline int check_kprobe_rereg(struct kprobe *p) 1474 { 1475 int ret = 0; 1476 1477 mutex_lock(&kprobe_mutex); 1478 if (__get_valid_kprobe(p)) 1479 ret = -EINVAL; 1480 mutex_unlock(&kprobe_mutex); 1481 1482 return ret; 1483 } 1484 1485 int __weak arch_check_ftrace_location(struct kprobe *p) 1486 { 1487 unsigned long ftrace_addr; 1488 1489 ftrace_addr = ftrace_location((unsigned long)p->addr); 1490 if (ftrace_addr) { 1491 #ifdef CONFIG_KPROBES_ON_FTRACE 1492 /* Given address is not on the instruction boundary */ 1493 if ((unsigned long)p->addr != ftrace_addr) 1494 return -EILSEQ; 1495 p->flags |= KPROBE_FLAG_FTRACE; 1496 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1497 return -EINVAL; 1498 #endif 1499 } 1500 return 0; 1501 } 1502 1503 static int check_kprobe_address_safe(struct kprobe *p, 1504 struct module **probed_mod) 1505 { 1506 int ret; 1507 1508 ret = arch_check_ftrace_location(p); 1509 if (ret) 1510 return ret; 1511 jump_label_lock(); 1512 preempt_disable(); 1513 1514 /* Ensure it is not in reserved area nor out of text */ 1515 if (!kernel_text_address((unsigned long) p->addr) || 1516 within_kprobe_blacklist((unsigned long) p->addr) || 1517 jump_label_text_reserved(p->addr, p->addr)) { 1518 ret = -EINVAL; 1519 goto out; 1520 } 1521 1522 /* Check if are we probing a module */ 1523 *probed_mod = __module_text_address((unsigned long) p->addr); 1524 if (*probed_mod) { 1525 /* 1526 * We must hold a refcount of the probed module while updating 1527 * its code to prohibit unexpected unloading. 1528 */ 1529 if (unlikely(!try_module_get(*probed_mod))) { 1530 ret = -ENOENT; 1531 goto out; 1532 } 1533 1534 /* 1535 * If the module freed .init.text, we couldn't insert 1536 * kprobes in there. 1537 */ 1538 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1539 (*probed_mod)->state != MODULE_STATE_COMING) { 1540 module_put(*probed_mod); 1541 *probed_mod = NULL; 1542 ret = -ENOENT; 1543 } 1544 } 1545 out: 1546 preempt_enable(); 1547 jump_label_unlock(); 1548 1549 return ret; 1550 } 1551 1552 int register_kprobe(struct kprobe *p) 1553 { 1554 int ret; 1555 struct kprobe *old_p; 1556 struct module *probed_mod; 1557 kprobe_opcode_t *addr; 1558 1559 /* Adjust probe address from symbol */ 1560 addr = kprobe_addr(p); 1561 if (IS_ERR(addr)) 1562 return PTR_ERR(addr); 1563 p->addr = addr; 1564 1565 ret = check_kprobe_rereg(p); 1566 if (ret) 1567 return ret; 1568 1569 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1570 p->flags &= KPROBE_FLAG_DISABLED; 1571 p->nmissed = 0; 1572 INIT_LIST_HEAD(&p->list); 1573 1574 ret = check_kprobe_address_safe(p, &probed_mod); 1575 if (ret) 1576 return ret; 1577 1578 mutex_lock(&kprobe_mutex); 1579 1580 old_p = get_kprobe(p->addr); 1581 if (old_p) { 1582 /* Since this may unoptimize old_p, locking text_mutex. */ 1583 ret = register_aggr_kprobe(old_p, p); 1584 goto out; 1585 } 1586 1587 cpus_read_lock(); 1588 /* Prevent text modification */ 1589 mutex_lock(&text_mutex); 1590 ret = prepare_kprobe(p); 1591 mutex_unlock(&text_mutex); 1592 cpus_read_unlock(); 1593 if (ret) 1594 goto out; 1595 1596 INIT_HLIST_NODE(&p->hlist); 1597 hlist_add_head_rcu(&p->hlist, 1598 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1599 1600 if (!kprobes_all_disarmed && !kprobe_disabled(p)) { 1601 ret = arm_kprobe(p); 1602 if (ret) { 1603 hlist_del_rcu(&p->hlist); 1604 synchronize_rcu(); 1605 goto out; 1606 } 1607 } 1608 1609 /* Try to optimize kprobe */ 1610 try_to_optimize_kprobe(p); 1611 out: 1612 mutex_unlock(&kprobe_mutex); 1613 1614 if (probed_mod) 1615 module_put(probed_mod); 1616 1617 return ret; 1618 } 1619 EXPORT_SYMBOL_GPL(register_kprobe); 1620 1621 /* Check if all probes on the aggrprobe are disabled */ 1622 static int aggr_kprobe_disabled(struct kprobe *ap) 1623 { 1624 struct kprobe *kp; 1625 1626 list_for_each_entry_rcu(kp, &ap->list, list) 1627 if (!kprobe_disabled(kp)) 1628 /* 1629 * There is an active probe on the list. 1630 * We can't disable this ap. 1631 */ 1632 return 0; 1633 1634 return 1; 1635 } 1636 1637 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1638 static struct kprobe *__disable_kprobe(struct kprobe *p) 1639 { 1640 struct kprobe *orig_p; 1641 int ret; 1642 1643 /* Get an original kprobe for return */ 1644 orig_p = __get_valid_kprobe(p); 1645 if (unlikely(orig_p == NULL)) 1646 return ERR_PTR(-EINVAL); 1647 1648 if (!kprobe_disabled(p)) { 1649 /* Disable probe if it is a child probe */ 1650 if (p != orig_p) 1651 p->flags |= KPROBE_FLAG_DISABLED; 1652 1653 /* Try to disarm and disable this/parent probe */ 1654 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1655 /* 1656 * If kprobes_all_disarmed is set, orig_p 1657 * should have already been disarmed, so 1658 * skip unneed disarming process. 1659 */ 1660 if (!kprobes_all_disarmed) { 1661 ret = disarm_kprobe(orig_p, true); 1662 if (ret) { 1663 p->flags &= ~KPROBE_FLAG_DISABLED; 1664 return ERR_PTR(ret); 1665 } 1666 } 1667 orig_p->flags |= KPROBE_FLAG_DISABLED; 1668 } 1669 } 1670 1671 return orig_p; 1672 } 1673 1674 /* 1675 * Unregister a kprobe without a scheduler synchronization. 1676 */ 1677 static int __unregister_kprobe_top(struct kprobe *p) 1678 { 1679 struct kprobe *ap, *list_p; 1680 1681 /* Disable kprobe. This will disarm it if needed. */ 1682 ap = __disable_kprobe(p); 1683 if (IS_ERR(ap)) 1684 return PTR_ERR(ap); 1685 1686 if (ap == p) 1687 /* 1688 * This probe is an independent(and non-optimized) kprobe 1689 * (not an aggrprobe). Remove from the hash list. 1690 */ 1691 goto disarmed; 1692 1693 /* Following process expects this probe is an aggrprobe */ 1694 WARN_ON(!kprobe_aggrprobe(ap)); 1695 1696 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1697 /* 1698 * !disarmed could be happen if the probe is under delayed 1699 * unoptimizing. 1700 */ 1701 goto disarmed; 1702 else { 1703 /* If disabling probe has special handlers, update aggrprobe */ 1704 if (p->post_handler && !kprobe_gone(p)) { 1705 list_for_each_entry_rcu(list_p, &ap->list, list) { 1706 if ((list_p != p) && (list_p->post_handler)) 1707 goto noclean; 1708 } 1709 ap->post_handler = NULL; 1710 } 1711 noclean: 1712 /* 1713 * Remove from the aggrprobe: this path will do nothing in 1714 * __unregister_kprobe_bottom(). 1715 */ 1716 list_del_rcu(&p->list); 1717 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1718 /* 1719 * Try to optimize this probe again, because post 1720 * handler may have been changed. 1721 */ 1722 optimize_kprobe(ap); 1723 } 1724 return 0; 1725 1726 disarmed: 1727 hlist_del_rcu(&ap->hlist); 1728 return 0; 1729 } 1730 1731 static void __unregister_kprobe_bottom(struct kprobe *p) 1732 { 1733 struct kprobe *ap; 1734 1735 if (list_empty(&p->list)) 1736 /* This is an independent kprobe */ 1737 arch_remove_kprobe(p); 1738 else if (list_is_singular(&p->list)) { 1739 /* This is the last child of an aggrprobe */ 1740 ap = list_entry(p->list.next, struct kprobe, list); 1741 list_del(&p->list); 1742 free_aggr_kprobe(ap); 1743 } 1744 /* Otherwise, do nothing. */ 1745 } 1746 1747 int register_kprobes(struct kprobe **kps, int num) 1748 { 1749 int i, ret = 0; 1750 1751 if (num <= 0) 1752 return -EINVAL; 1753 for (i = 0; i < num; i++) { 1754 ret = register_kprobe(kps[i]); 1755 if (ret < 0) { 1756 if (i > 0) 1757 unregister_kprobes(kps, i); 1758 break; 1759 } 1760 } 1761 return ret; 1762 } 1763 EXPORT_SYMBOL_GPL(register_kprobes); 1764 1765 void unregister_kprobe(struct kprobe *p) 1766 { 1767 unregister_kprobes(&p, 1); 1768 } 1769 EXPORT_SYMBOL_GPL(unregister_kprobe); 1770 1771 void unregister_kprobes(struct kprobe **kps, int num) 1772 { 1773 int i; 1774 1775 if (num <= 0) 1776 return; 1777 mutex_lock(&kprobe_mutex); 1778 for (i = 0; i < num; i++) 1779 if (__unregister_kprobe_top(kps[i]) < 0) 1780 kps[i]->addr = NULL; 1781 mutex_unlock(&kprobe_mutex); 1782 1783 synchronize_rcu(); 1784 for (i = 0; i < num; i++) 1785 if (kps[i]->addr) 1786 __unregister_kprobe_bottom(kps[i]); 1787 } 1788 EXPORT_SYMBOL_GPL(unregister_kprobes); 1789 1790 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1791 unsigned long val, void *data) 1792 { 1793 return NOTIFY_DONE; 1794 } 1795 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1796 1797 static struct notifier_block kprobe_exceptions_nb = { 1798 .notifier_call = kprobe_exceptions_notify, 1799 .priority = 0x7fffffff /* we need to be notified first */ 1800 }; 1801 1802 unsigned long __weak arch_deref_entry_point(void *entry) 1803 { 1804 return (unsigned long)entry; 1805 } 1806 1807 #ifdef CONFIG_KRETPROBES 1808 /* 1809 * This kprobe pre_handler is registered with every kretprobe. When probe 1810 * hits it will set up the return probe. 1811 */ 1812 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 1813 { 1814 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1815 unsigned long hash, flags = 0; 1816 struct kretprobe_instance *ri; 1817 1818 /* 1819 * To avoid deadlocks, prohibit return probing in NMI contexts, 1820 * just skip the probe and increase the (inexact) 'nmissed' 1821 * statistical counter, so that the user is informed that 1822 * something happened: 1823 */ 1824 if (unlikely(in_nmi())) { 1825 rp->nmissed++; 1826 return 0; 1827 } 1828 1829 /* TODO: consider to only swap the RA after the last pre_handler fired */ 1830 hash = hash_ptr(current, KPROBE_HASH_BITS); 1831 raw_spin_lock_irqsave(&rp->lock, flags); 1832 if (!hlist_empty(&rp->free_instances)) { 1833 ri = hlist_entry(rp->free_instances.first, 1834 struct kretprobe_instance, hlist); 1835 hlist_del(&ri->hlist); 1836 raw_spin_unlock_irqrestore(&rp->lock, flags); 1837 1838 ri->rp = rp; 1839 ri->task = current; 1840 1841 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 1842 raw_spin_lock_irqsave(&rp->lock, flags); 1843 hlist_add_head(&ri->hlist, &rp->free_instances); 1844 raw_spin_unlock_irqrestore(&rp->lock, flags); 1845 return 0; 1846 } 1847 1848 arch_prepare_kretprobe(ri, regs); 1849 1850 /* XXX(hch): why is there no hlist_move_head? */ 1851 INIT_HLIST_NODE(&ri->hlist); 1852 kretprobe_table_lock(hash, &flags); 1853 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 1854 kretprobe_table_unlock(hash, &flags); 1855 } else { 1856 rp->nmissed++; 1857 raw_spin_unlock_irqrestore(&rp->lock, flags); 1858 } 1859 return 0; 1860 } 1861 NOKPROBE_SYMBOL(pre_handler_kretprobe); 1862 1863 bool __weak arch_kprobe_on_func_entry(unsigned long offset) 1864 { 1865 return !offset; 1866 } 1867 1868 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 1869 { 1870 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset); 1871 1872 if (IS_ERR(kp_addr)) 1873 return false; 1874 1875 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) || 1876 !arch_kprobe_on_func_entry(offset)) 1877 return false; 1878 1879 return true; 1880 } 1881 1882 int register_kretprobe(struct kretprobe *rp) 1883 { 1884 int ret = 0; 1885 struct kretprobe_instance *inst; 1886 int i; 1887 void *addr; 1888 1889 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset)) 1890 return -EINVAL; 1891 1892 if (kretprobe_blacklist_size) { 1893 addr = kprobe_addr(&rp->kp); 1894 if (IS_ERR(addr)) 1895 return PTR_ERR(addr); 1896 1897 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1898 if (kretprobe_blacklist[i].addr == addr) 1899 return -EINVAL; 1900 } 1901 } 1902 1903 rp->kp.pre_handler = pre_handler_kretprobe; 1904 rp->kp.post_handler = NULL; 1905 rp->kp.fault_handler = NULL; 1906 1907 /* Pre-allocate memory for max kretprobe instances */ 1908 if (rp->maxactive <= 0) { 1909 #ifdef CONFIG_PREEMPT 1910 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 1911 #else 1912 rp->maxactive = num_possible_cpus(); 1913 #endif 1914 } 1915 raw_spin_lock_init(&rp->lock); 1916 INIT_HLIST_HEAD(&rp->free_instances); 1917 for (i = 0; i < rp->maxactive; i++) { 1918 inst = kmalloc(sizeof(struct kretprobe_instance) + 1919 rp->data_size, GFP_KERNEL); 1920 if (inst == NULL) { 1921 free_rp_inst(rp); 1922 return -ENOMEM; 1923 } 1924 INIT_HLIST_NODE(&inst->hlist); 1925 hlist_add_head(&inst->hlist, &rp->free_instances); 1926 } 1927 1928 rp->nmissed = 0; 1929 /* Establish function entry probe point */ 1930 ret = register_kprobe(&rp->kp); 1931 if (ret != 0) 1932 free_rp_inst(rp); 1933 return ret; 1934 } 1935 EXPORT_SYMBOL_GPL(register_kretprobe); 1936 1937 int register_kretprobes(struct kretprobe **rps, int num) 1938 { 1939 int ret = 0, i; 1940 1941 if (num <= 0) 1942 return -EINVAL; 1943 for (i = 0; i < num; i++) { 1944 ret = register_kretprobe(rps[i]); 1945 if (ret < 0) { 1946 if (i > 0) 1947 unregister_kretprobes(rps, i); 1948 break; 1949 } 1950 } 1951 return ret; 1952 } 1953 EXPORT_SYMBOL_GPL(register_kretprobes); 1954 1955 void unregister_kretprobe(struct kretprobe *rp) 1956 { 1957 unregister_kretprobes(&rp, 1); 1958 } 1959 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1960 1961 void unregister_kretprobes(struct kretprobe **rps, int num) 1962 { 1963 int i; 1964 1965 if (num <= 0) 1966 return; 1967 mutex_lock(&kprobe_mutex); 1968 for (i = 0; i < num; i++) 1969 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 1970 rps[i]->kp.addr = NULL; 1971 mutex_unlock(&kprobe_mutex); 1972 1973 synchronize_rcu(); 1974 for (i = 0; i < num; i++) { 1975 if (rps[i]->kp.addr) { 1976 __unregister_kprobe_bottom(&rps[i]->kp); 1977 cleanup_rp_inst(rps[i]); 1978 } 1979 } 1980 } 1981 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1982 1983 #else /* CONFIG_KRETPROBES */ 1984 int register_kretprobe(struct kretprobe *rp) 1985 { 1986 return -ENOSYS; 1987 } 1988 EXPORT_SYMBOL_GPL(register_kretprobe); 1989 1990 int register_kretprobes(struct kretprobe **rps, int num) 1991 { 1992 return -ENOSYS; 1993 } 1994 EXPORT_SYMBOL_GPL(register_kretprobes); 1995 1996 void unregister_kretprobe(struct kretprobe *rp) 1997 { 1998 } 1999 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2000 2001 void unregister_kretprobes(struct kretprobe **rps, int num) 2002 { 2003 } 2004 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2005 2006 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2007 { 2008 return 0; 2009 } 2010 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2011 2012 #endif /* CONFIG_KRETPROBES */ 2013 2014 /* Set the kprobe gone and remove its instruction buffer. */ 2015 static void kill_kprobe(struct kprobe *p) 2016 { 2017 struct kprobe *kp; 2018 2019 p->flags |= KPROBE_FLAG_GONE; 2020 if (kprobe_aggrprobe(p)) { 2021 /* 2022 * If this is an aggr_kprobe, we have to list all the 2023 * chained probes and mark them GONE. 2024 */ 2025 list_for_each_entry_rcu(kp, &p->list, list) 2026 kp->flags |= KPROBE_FLAG_GONE; 2027 p->post_handler = NULL; 2028 kill_optimized_kprobe(p); 2029 } 2030 /* 2031 * Here, we can remove insn_slot safely, because no thread calls 2032 * the original probed function (which will be freed soon) any more. 2033 */ 2034 arch_remove_kprobe(p); 2035 } 2036 2037 /* Disable one kprobe */ 2038 int disable_kprobe(struct kprobe *kp) 2039 { 2040 int ret = 0; 2041 struct kprobe *p; 2042 2043 mutex_lock(&kprobe_mutex); 2044 2045 /* Disable this kprobe */ 2046 p = __disable_kprobe(kp); 2047 if (IS_ERR(p)) 2048 ret = PTR_ERR(p); 2049 2050 mutex_unlock(&kprobe_mutex); 2051 return ret; 2052 } 2053 EXPORT_SYMBOL_GPL(disable_kprobe); 2054 2055 /* Enable one kprobe */ 2056 int enable_kprobe(struct kprobe *kp) 2057 { 2058 int ret = 0; 2059 struct kprobe *p; 2060 2061 mutex_lock(&kprobe_mutex); 2062 2063 /* Check whether specified probe is valid. */ 2064 p = __get_valid_kprobe(kp); 2065 if (unlikely(p == NULL)) { 2066 ret = -EINVAL; 2067 goto out; 2068 } 2069 2070 if (kprobe_gone(kp)) { 2071 /* This kprobe has gone, we couldn't enable it. */ 2072 ret = -EINVAL; 2073 goto out; 2074 } 2075 2076 if (p != kp) 2077 kp->flags &= ~KPROBE_FLAG_DISABLED; 2078 2079 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2080 p->flags &= ~KPROBE_FLAG_DISABLED; 2081 ret = arm_kprobe(p); 2082 if (ret) 2083 p->flags |= KPROBE_FLAG_DISABLED; 2084 } 2085 out: 2086 mutex_unlock(&kprobe_mutex); 2087 return ret; 2088 } 2089 EXPORT_SYMBOL_GPL(enable_kprobe); 2090 2091 /* Caller must NOT call this in usual path. This is only for critical case */ 2092 void dump_kprobe(struct kprobe *kp) 2093 { 2094 pr_err("Dumping kprobe:\n"); 2095 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n", 2096 kp->symbol_name, kp->offset, kp->addr); 2097 } 2098 NOKPROBE_SYMBOL(dump_kprobe); 2099 2100 int kprobe_add_ksym_blacklist(unsigned long entry) 2101 { 2102 struct kprobe_blacklist_entry *ent; 2103 unsigned long offset = 0, size = 0; 2104 2105 if (!kernel_text_address(entry) || 2106 !kallsyms_lookup_size_offset(entry, &size, &offset)) 2107 return -EINVAL; 2108 2109 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2110 if (!ent) 2111 return -ENOMEM; 2112 ent->start_addr = entry; 2113 ent->end_addr = entry + size; 2114 INIT_LIST_HEAD(&ent->list); 2115 list_add_tail(&ent->list, &kprobe_blacklist); 2116 2117 return (int)size; 2118 } 2119 2120 /* Add all symbols in given area into kprobe blacklist */ 2121 int kprobe_add_area_blacklist(unsigned long start, unsigned long end) 2122 { 2123 unsigned long entry; 2124 int ret = 0; 2125 2126 for (entry = start; entry < end; entry += ret) { 2127 ret = kprobe_add_ksym_blacklist(entry); 2128 if (ret < 0) 2129 return ret; 2130 if (ret == 0) /* In case of alias symbol */ 2131 ret = 1; 2132 } 2133 return 0; 2134 } 2135 2136 int __init __weak arch_populate_kprobe_blacklist(void) 2137 { 2138 return 0; 2139 } 2140 2141 /* 2142 * Lookup and populate the kprobe_blacklist. 2143 * 2144 * Unlike the kretprobe blacklist, we'll need to determine 2145 * the range of addresses that belong to the said functions, 2146 * since a kprobe need not necessarily be at the beginning 2147 * of a function. 2148 */ 2149 static int __init populate_kprobe_blacklist(unsigned long *start, 2150 unsigned long *end) 2151 { 2152 unsigned long entry; 2153 unsigned long *iter; 2154 int ret; 2155 2156 for (iter = start; iter < end; iter++) { 2157 entry = arch_deref_entry_point((void *)*iter); 2158 ret = kprobe_add_ksym_blacklist(entry); 2159 if (ret == -EINVAL) 2160 continue; 2161 if (ret < 0) 2162 return ret; 2163 } 2164 2165 /* Symbols in __kprobes_text are blacklisted */ 2166 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start, 2167 (unsigned long)__kprobes_text_end); 2168 2169 return ret ? : arch_populate_kprobe_blacklist(); 2170 } 2171 2172 /* Module notifier call back, checking kprobes on the module */ 2173 static int kprobes_module_callback(struct notifier_block *nb, 2174 unsigned long val, void *data) 2175 { 2176 struct module *mod = data; 2177 struct hlist_head *head; 2178 struct kprobe *p; 2179 unsigned int i; 2180 int checkcore = (val == MODULE_STATE_GOING); 2181 2182 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2183 return NOTIFY_DONE; 2184 2185 /* 2186 * When MODULE_STATE_GOING was notified, both of module .text and 2187 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2188 * notified, only .init.text section would be freed. We need to 2189 * disable kprobes which have been inserted in the sections. 2190 */ 2191 mutex_lock(&kprobe_mutex); 2192 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2193 head = &kprobe_table[i]; 2194 hlist_for_each_entry_rcu(p, head, hlist) 2195 if (within_module_init((unsigned long)p->addr, mod) || 2196 (checkcore && 2197 within_module_core((unsigned long)p->addr, mod))) { 2198 /* 2199 * The vaddr this probe is installed will soon 2200 * be vfreed buy not synced to disk. Hence, 2201 * disarming the breakpoint isn't needed. 2202 * 2203 * Note, this will also move any optimized probes 2204 * that are pending to be removed from their 2205 * corresponding lists to the freeing_list and 2206 * will not be touched by the delayed 2207 * kprobe_optimizer work handler. 2208 */ 2209 kill_kprobe(p); 2210 } 2211 } 2212 mutex_unlock(&kprobe_mutex); 2213 return NOTIFY_DONE; 2214 } 2215 2216 static struct notifier_block kprobe_module_nb = { 2217 .notifier_call = kprobes_module_callback, 2218 .priority = 0 2219 }; 2220 2221 /* Markers of _kprobe_blacklist section */ 2222 extern unsigned long __start_kprobe_blacklist[]; 2223 extern unsigned long __stop_kprobe_blacklist[]; 2224 2225 static int __init init_kprobes(void) 2226 { 2227 int i, err = 0; 2228 2229 /* FIXME allocate the probe table, currently defined statically */ 2230 /* initialize all list heads */ 2231 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2232 INIT_HLIST_HEAD(&kprobe_table[i]); 2233 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 2234 raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); 2235 } 2236 2237 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2238 __stop_kprobe_blacklist); 2239 if (err) { 2240 pr_err("kprobes: failed to populate blacklist: %d\n", err); 2241 pr_err("Please take care of using kprobes.\n"); 2242 } 2243 2244 if (kretprobe_blacklist_size) { 2245 /* lookup the function address from its name */ 2246 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2247 kretprobe_blacklist[i].addr = 2248 kprobe_lookup_name(kretprobe_blacklist[i].name, 0); 2249 if (!kretprobe_blacklist[i].addr) 2250 printk("kretprobe: lookup failed: %s\n", 2251 kretprobe_blacklist[i].name); 2252 } 2253 } 2254 2255 #if defined(CONFIG_OPTPROBES) 2256 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2257 /* Init kprobe_optinsn_slots */ 2258 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2259 #endif 2260 /* By default, kprobes can be optimized */ 2261 kprobes_allow_optimization = true; 2262 #endif 2263 2264 /* By default, kprobes are armed */ 2265 kprobes_all_disarmed = false; 2266 2267 err = arch_init_kprobes(); 2268 if (!err) 2269 err = register_die_notifier(&kprobe_exceptions_nb); 2270 if (!err) 2271 err = register_module_notifier(&kprobe_module_nb); 2272 2273 kprobes_initialized = (err == 0); 2274 2275 if (!err) 2276 init_test_probes(); 2277 return err; 2278 } 2279 subsys_initcall(init_kprobes); 2280 2281 #ifdef CONFIG_DEBUG_FS 2282 static void report_probe(struct seq_file *pi, struct kprobe *p, 2283 const char *sym, int offset, char *modname, struct kprobe *pp) 2284 { 2285 char *kprobe_type; 2286 void *addr = p->addr; 2287 2288 if (p->pre_handler == pre_handler_kretprobe) 2289 kprobe_type = "r"; 2290 else 2291 kprobe_type = "k"; 2292 2293 if (!kallsyms_show_value()) 2294 addr = NULL; 2295 2296 if (sym) 2297 seq_printf(pi, "%px %s %s+0x%x %s ", 2298 addr, kprobe_type, sym, offset, 2299 (modname ? modname : " ")); 2300 else /* try to use %pS */ 2301 seq_printf(pi, "%px %s %pS ", 2302 addr, kprobe_type, p->addr); 2303 2304 if (!pp) 2305 pp = p; 2306 seq_printf(pi, "%s%s%s%s\n", 2307 (kprobe_gone(p) ? "[GONE]" : ""), 2308 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2309 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2310 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2311 } 2312 2313 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2314 { 2315 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2316 } 2317 2318 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2319 { 2320 (*pos)++; 2321 if (*pos >= KPROBE_TABLE_SIZE) 2322 return NULL; 2323 return pos; 2324 } 2325 2326 static void kprobe_seq_stop(struct seq_file *f, void *v) 2327 { 2328 /* Nothing to do */ 2329 } 2330 2331 static int show_kprobe_addr(struct seq_file *pi, void *v) 2332 { 2333 struct hlist_head *head; 2334 struct kprobe *p, *kp; 2335 const char *sym = NULL; 2336 unsigned int i = *(loff_t *) v; 2337 unsigned long offset = 0; 2338 char *modname, namebuf[KSYM_NAME_LEN]; 2339 2340 head = &kprobe_table[i]; 2341 preempt_disable(); 2342 hlist_for_each_entry_rcu(p, head, hlist) { 2343 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2344 &offset, &modname, namebuf); 2345 if (kprobe_aggrprobe(p)) { 2346 list_for_each_entry_rcu(kp, &p->list, list) 2347 report_probe(pi, kp, sym, offset, modname, p); 2348 } else 2349 report_probe(pi, p, sym, offset, modname, NULL); 2350 } 2351 preempt_enable(); 2352 return 0; 2353 } 2354 2355 static const struct seq_operations kprobes_seq_ops = { 2356 .start = kprobe_seq_start, 2357 .next = kprobe_seq_next, 2358 .stop = kprobe_seq_stop, 2359 .show = show_kprobe_addr 2360 }; 2361 2362 static int kprobes_open(struct inode *inode, struct file *filp) 2363 { 2364 return seq_open(filp, &kprobes_seq_ops); 2365 } 2366 2367 static const struct file_operations debugfs_kprobes_operations = { 2368 .open = kprobes_open, 2369 .read = seq_read, 2370 .llseek = seq_lseek, 2371 .release = seq_release, 2372 }; 2373 2374 /* kprobes/blacklist -- shows which functions can not be probed */ 2375 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2376 { 2377 return seq_list_start(&kprobe_blacklist, *pos); 2378 } 2379 2380 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2381 { 2382 return seq_list_next(v, &kprobe_blacklist, pos); 2383 } 2384 2385 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2386 { 2387 struct kprobe_blacklist_entry *ent = 2388 list_entry(v, struct kprobe_blacklist_entry, list); 2389 2390 /* 2391 * If /proc/kallsyms is not showing kernel address, we won't 2392 * show them here either. 2393 */ 2394 if (!kallsyms_show_value()) 2395 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL, 2396 (void *)ent->start_addr); 2397 else 2398 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr, 2399 (void *)ent->end_addr, (void *)ent->start_addr); 2400 return 0; 2401 } 2402 2403 static const struct seq_operations kprobe_blacklist_seq_ops = { 2404 .start = kprobe_blacklist_seq_start, 2405 .next = kprobe_blacklist_seq_next, 2406 .stop = kprobe_seq_stop, /* Reuse void function */ 2407 .show = kprobe_blacklist_seq_show, 2408 }; 2409 2410 static int kprobe_blacklist_open(struct inode *inode, struct file *filp) 2411 { 2412 return seq_open(filp, &kprobe_blacklist_seq_ops); 2413 } 2414 2415 static const struct file_operations debugfs_kprobe_blacklist_ops = { 2416 .open = kprobe_blacklist_open, 2417 .read = seq_read, 2418 .llseek = seq_lseek, 2419 .release = seq_release, 2420 }; 2421 2422 static int arm_all_kprobes(void) 2423 { 2424 struct hlist_head *head; 2425 struct kprobe *p; 2426 unsigned int i, total = 0, errors = 0; 2427 int err, ret = 0; 2428 2429 mutex_lock(&kprobe_mutex); 2430 2431 /* If kprobes are armed, just return */ 2432 if (!kprobes_all_disarmed) 2433 goto already_enabled; 2434 2435 /* 2436 * optimize_kprobe() called by arm_kprobe() checks 2437 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2438 * arm_kprobe. 2439 */ 2440 kprobes_all_disarmed = false; 2441 /* Arming kprobes doesn't optimize kprobe itself */ 2442 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2443 head = &kprobe_table[i]; 2444 /* Arm all kprobes on a best-effort basis */ 2445 hlist_for_each_entry_rcu(p, head, hlist) { 2446 if (!kprobe_disabled(p)) { 2447 err = arm_kprobe(p); 2448 if (err) { 2449 errors++; 2450 ret = err; 2451 } 2452 total++; 2453 } 2454 } 2455 } 2456 2457 if (errors) 2458 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n", 2459 errors, total); 2460 else 2461 pr_info("Kprobes globally enabled\n"); 2462 2463 already_enabled: 2464 mutex_unlock(&kprobe_mutex); 2465 return ret; 2466 } 2467 2468 static int disarm_all_kprobes(void) 2469 { 2470 struct hlist_head *head; 2471 struct kprobe *p; 2472 unsigned int i, total = 0, errors = 0; 2473 int err, ret = 0; 2474 2475 mutex_lock(&kprobe_mutex); 2476 2477 /* If kprobes are already disarmed, just return */ 2478 if (kprobes_all_disarmed) { 2479 mutex_unlock(&kprobe_mutex); 2480 return 0; 2481 } 2482 2483 kprobes_all_disarmed = true; 2484 2485 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2486 head = &kprobe_table[i]; 2487 /* Disarm all kprobes on a best-effort basis */ 2488 hlist_for_each_entry_rcu(p, head, hlist) { 2489 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { 2490 err = disarm_kprobe(p, false); 2491 if (err) { 2492 errors++; 2493 ret = err; 2494 } 2495 total++; 2496 } 2497 } 2498 } 2499 2500 if (errors) 2501 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n", 2502 errors, total); 2503 else 2504 pr_info("Kprobes globally disabled\n"); 2505 2506 mutex_unlock(&kprobe_mutex); 2507 2508 /* Wait for disarming all kprobes by optimizer */ 2509 wait_for_kprobe_optimizer(); 2510 2511 return ret; 2512 } 2513 2514 /* 2515 * XXX: The debugfs bool file interface doesn't allow for callbacks 2516 * when the bool state is switched. We can reuse that facility when 2517 * available 2518 */ 2519 static ssize_t read_enabled_file_bool(struct file *file, 2520 char __user *user_buf, size_t count, loff_t *ppos) 2521 { 2522 char buf[3]; 2523 2524 if (!kprobes_all_disarmed) 2525 buf[0] = '1'; 2526 else 2527 buf[0] = '0'; 2528 buf[1] = '\n'; 2529 buf[2] = 0x00; 2530 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2531 } 2532 2533 static ssize_t write_enabled_file_bool(struct file *file, 2534 const char __user *user_buf, size_t count, loff_t *ppos) 2535 { 2536 char buf[32]; 2537 size_t buf_size; 2538 int ret = 0; 2539 2540 buf_size = min(count, (sizeof(buf)-1)); 2541 if (copy_from_user(buf, user_buf, buf_size)) 2542 return -EFAULT; 2543 2544 buf[buf_size] = '\0'; 2545 switch (buf[0]) { 2546 case 'y': 2547 case 'Y': 2548 case '1': 2549 ret = arm_all_kprobes(); 2550 break; 2551 case 'n': 2552 case 'N': 2553 case '0': 2554 ret = disarm_all_kprobes(); 2555 break; 2556 default: 2557 return -EINVAL; 2558 } 2559 2560 if (ret) 2561 return ret; 2562 2563 return count; 2564 } 2565 2566 static const struct file_operations fops_kp = { 2567 .read = read_enabled_file_bool, 2568 .write = write_enabled_file_bool, 2569 .llseek = default_llseek, 2570 }; 2571 2572 static int __init debugfs_kprobe_init(void) 2573 { 2574 struct dentry *dir; 2575 unsigned int value = 1; 2576 2577 dir = debugfs_create_dir("kprobes", NULL); 2578 2579 debugfs_create_file("list", 0400, dir, NULL, 2580 &debugfs_kprobes_operations); 2581 2582 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp); 2583 2584 debugfs_create_file("blacklist", 0400, dir, NULL, 2585 &debugfs_kprobe_blacklist_ops); 2586 2587 return 0; 2588 } 2589 2590 late_initcall(debugfs_kprobe_init); 2591 #endif /* CONFIG_DEBUG_FS */ 2592