xref: /openbmc/linux/kernel/kprobes.c (revision c0ecca6604b80e438b032578634c6e133c7028f6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *		Probes initial implementation (includes suggestions from
10  *		Rusty Russell).
11  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *		hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *		interface to access function arguments.
15  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *		exceptions notifier to be first on the priority list.
17  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *		<prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38 #include <linux/perf_event.h>
39 
40 #include <asm/sections.h>
41 #include <asm/cacheflush.h>
42 #include <asm/errno.h>
43 #include <linux/uaccess.h>
44 
45 #define KPROBE_HASH_BITS 6
46 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
47 
48 
49 static int kprobes_initialized;
50 /* kprobe_table can be accessed by
51  * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
52  * Or
53  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
54  */
55 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
56 
57 /* NOTE: change this value only with kprobe_mutex held */
58 static bool kprobes_all_disarmed;
59 
60 /* This protects kprobe_table and optimizing_list */
61 static DEFINE_MUTEX(kprobe_mutex);
62 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
63 
64 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
65 					unsigned int __unused)
66 {
67 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
68 }
69 
70 /* Blacklist -- list of struct kprobe_blacklist_entry */
71 static LIST_HEAD(kprobe_blacklist);
72 
73 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
74 /*
75  * kprobe->ainsn.insn points to the copy of the instruction to be
76  * single-stepped. x86_64, POWER4 and above have no-exec support and
77  * stepping on the instruction on a vmalloced/kmalloced/data page
78  * is a recipe for disaster
79  */
80 struct kprobe_insn_page {
81 	struct list_head list;
82 	kprobe_opcode_t *insns;		/* Page of instruction slots */
83 	struct kprobe_insn_cache *cache;
84 	int nused;
85 	int ngarbage;
86 	char slot_used[];
87 };
88 
89 #define KPROBE_INSN_PAGE_SIZE(slots)			\
90 	(offsetof(struct kprobe_insn_page, slot_used) +	\
91 	 (sizeof(char) * (slots)))
92 
93 static int slots_per_page(struct kprobe_insn_cache *c)
94 {
95 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
96 }
97 
98 enum kprobe_slot_state {
99 	SLOT_CLEAN = 0,
100 	SLOT_DIRTY = 1,
101 	SLOT_USED = 2,
102 };
103 
104 void __weak *alloc_insn_page(void)
105 {
106 	return module_alloc(PAGE_SIZE);
107 }
108 
109 void __weak free_insn_page(void *page)
110 {
111 	module_memfree(page);
112 }
113 
114 struct kprobe_insn_cache kprobe_insn_slots = {
115 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
116 	.alloc = alloc_insn_page,
117 	.free = free_insn_page,
118 	.sym = KPROBE_INSN_PAGE_SYM,
119 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
120 	.insn_size = MAX_INSN_SIZE,
121 	.nr_garbage = 0,
122 };
123 static int collect_garbage_slots(struct kprobe_insn_cache *c);
124 
125 /**
126  * __get_insn_slot() - Find a slot on an executable page for an instruction.
127  * We allocate an executable page if there's no room on existing ones.
128  */
129 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
130 {
131 	struct kprobe_insn_page *kip;
132 	kprobe_opcode_t *slot = NULL;
133 
134 	/* Since the slot array is not protected by rcu, we need a mutex */
135 	mutex_lock(&c->mutex);
136  retry:
137 	rcu_read_lock();
138 	list_for_each_entry_rcu(kip, &c->pages, list) {
139 		if (kip->nused < slots_per_page(c)) {
140 			int i;
141 			for (i = 0; i < slots_per_page(c); i++) {
142 				if (kip->slot_used[i] == SLOT_CLEAN) {
143 					kip->slot_used[i] = SLOT_USED;
144 					kip->nused++;
145 					slot = kip->insns + (i * c->insn_size);
146 					rcu_read_unlock();
147 					goto out;
148 				}
149 			}
150 			/* kip->nused is broken. Fix it. */
151 			kip->nused = slots_per_page(c);
152 			WARN_ON(1);
153 		}
154 	}
155 	rcu_read_unlock();
156 
157 	/* If there are any garbage slots, collect it and try again. */
158 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
159 		goto retry;
160 
161 	/* All out of space.  Need to allocate a new page. */
162 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
163 	if (!kip)
164 		goto out;
165 
166 	/*
167 	 * Use module_alloc so this page is within +/- 2GB of where the
168 	 * kernel image and loaded module images reside. This is required
169 	 * so x86_64 can correctly handle the %rip-relative fixups.
170 	 */
171 	kip->insns = c->alloc();
172 	if (!kip->insns) {
173 		kfree(kip);
174 		goto out;
175 	}
176 	INIT_LIST_HEAD(&kip->list);
177 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
178 	kip->slot_used[0] = SLOT_USED;
179 	kip->nused = 1;
180 	kip->ngarbage = 0;
181 	kip->cache = c;
182 	list_add_rcu(&kip->list, &c->pages);
183 	slot = kip->insns;
184 
185 	/* Record the perf ksymbol register event after adding the page */
186 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
187 			   PAGE_SIZE, false, c->sym);
188 out:
189 	mutex_unlock(&c->mutex);
190 	return slot;
191 }
192 
193 /* Return 1 if all garbages are collected, otherwise 0. */
194 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
195 {
196 	kip->slot_used[idx] = SLOT_CLEAN;
197 	kip->nused--;
198 	if (kip->nused == 0) {
199 		/*
200 		 * Page is no longer in use.  Free it unless
201 		 * it's the last one.  We keep the last one
202 		 * so as not to have to set it up again the
203 		 * next time somebody inserts a probe.
204 		 */
205 		if (!list_is_singular(&kip->list)) {
206 			/*
207 			 * Record perf ksymbol unregister event before removing
208 			 * the page.
209 			 */
210 			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
211 					   (unsigned long)kip->insns, PAGE_SIZE, true,
212 					   kip->cache->sym);
213 			list_del_rcu(&kip->list);
214 			synchronize_rcu();
215 			kip->cache->free(kip->insns);
216 			kfree(kip);
217 		}
218 		return 1;
219 	}
220 	return 0;
221 }
222 
223 static int collect_garbage_slots(struct kprobe_insn_cache *c)
224 {
225 	struct kprobe_insn_page *kip, *next;
226 
227 	/* Ensure no-one is interrupted on the garbages */
228 	synchronize_rcu();
229 
230 	list_for_each_entry_safe(kip, next, &c->pages, list) {
231 		int i;
232 		if (kip->ngarbage == 0)
233 			continue;
234 		kip->ngarbage = 0;	/* we will collect all garbages */
235 		for (i = 0; i < slots_per_page(c); i++) {
236 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
237 				break;
238 		}
239 	}
240 	c->nr_garbage = 0;
241 	return 0;
242 }
243 
244 void __free_insn_slot(struct kprobe_insn_cache *c,
245 		      kprobe_opcode_t *slot, int dirty)
246 {
247 	struct kprobe_insn_page *kip;
248 	long idx;
249 
250 	mutex_lock(&c->mutex);
251 	rcu_read_lock();
252 	list_for_each_entry_rcu(kip, &c->pages, list) {
253 		idx = ((long)slot - (long)kip->insns) /
254 			(c->insn_size * sizeof(kprobe_opcode_t));
255 		if (idx >= 0 && idx < slots_per_page(c))
256 			goto out;
257 	}
258 	/* Could not find this slot. */
259 	WARN_ON(1);
260 	kip = NULL;
261 out:
262 	rcu_read_unlock();
263 	/* Mark and sweep: this may sleep */
264 	if (kip) {
265 		/* Check double free */
266 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
267 		if (dirty) {
268 			kip->slot_used[idx] = SLOT_DIRTY;
269 			kip->ngarbage++;
270 			if (++c->nr_garbage > slots_per_page(c))
271 				collect_garbage_slots(c);
272 		} else {
273 			collect_one_slot(kip, idx);
274 		}
275 	}
276 	mutex_unlock(&c->mutex);
277 }
278 
279 /*
280  * Check given address is on the page of kprobe instruction slots.
281  * This will be used for checking whether the address on a stack
282  * is on a text area or not.
283  */
284 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
285 {
286 	struct kprobe_insn_page *kip;
287 	bool ret = false;
288 
289 	rcu_read_lock();
290 	list_for_each_entry_rcu(kip, &c->pages, list) {
291 		if (addr >= (unsigned long)kip->insns &&
292 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
293 			ret = true;
294 			break;
295 		}
296 	}
297 	rcu_read_unlock();
298 
299 	return ret;
300 }
301 
302 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
303 			     unsigned long *value, char *type, char *sym)
304 {
305 	struct kprobe_insn_page *kip;
306 	int ret = -ERANGE;
307 
308 	rcu_read_lock();
309 	list_for_each_entry_rcu(kip, &c->pages, list) {
310 		if ((*symnum)--)
311 			continue;
312 		strlcpy(sym, c->sym, KSYM_NAME_LEN);
313 		*type = 't';
314 		*value = (unsigned long)kip->insns;
315 		ret = 0;
316 		break;
317 	}
318 	rcu_read_unlock();
319 
320 	return ret;
321 }
322 
323 #ifdef CONFIG_OPTPROBES
324 /* For optimized_kprobe buffer */
325 struct kprobe_insn_cache kprobe_optinsn_slots = {
326 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
327 	.alloc = alloc_insn_page,
328 	.free = free_insn_page,
329 	.sym = KPROBE_OPTINSN_PAGE_SYM,
330 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
331 	/* .insn_size is initialized later */
332 	.nr_garbage = 0,
333 };
334 #endif
335 #endif
336 
337 /* We have preemption disabled.. so it is safe to use __ versions */
338 static inline void set_kprobe_instance(struct kprobe *kp)
339 {
340 	__this_cpu_write(kprobe_instance, kp);
341 }
342 
343 static inline void reset_kprobe_instance(void)
344 {
345 	__this_cpu_write(kprobe_instance, NULL);
346 }
347 
348 /*
349  * This routine is called either:
350  * 	- under the kprobe_mutex - during kprobe_[un]register()
351  * 				OR
352  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
353  */
354 struct kprobe *get_kprobe(void *addr)
355 {
356 	struct hlist_head *head;
357 	struct kprobe *p;
358 
359 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
360 	hlist_for_each_entry_rcu(p, head, hlist,
361 				 lockdep_is_held(&kprobe_mutex)) {
362 		if (p->addr == addr)
363 			return p;
364 	}
365 
366 	return NULL;
367 }
368 NOKPROBE_SYMBOL(get_kprobe);
369 
370 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
371 
372 /* Return true if the kprobe is an aggregator */
373 static inline int kprobe_aggrprobe(struct kprobe *p)
374 {
375 	return p->pre_handler == aggr_pre_handler;
376 }
377 
378 /* Return true(!0) if the kprobe is unused */
379 static inline int kprobe_unused(struct kprobe *p)
380 {
381 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
382 	       list_empty(&p->list);
383 }
384 
385 /*
386  * Keep all fields in the kprobe consistent
387  */
388 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
389 {
390 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
391 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
392 }
393 
394 #ifdef CONFIG_OPTPROBES
395 /* NOTE: change this value only with kprobe_mutex held */
396 static bool kprobes_allow_optimization;
397 
398 /*
399  * Call all pre_handler on the list, but ignores its return value.
400  * This must be called from arch-dep optimized caller.
401  */
402 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
403 {
404 	struct kprobe *kp;
405 
406 	list_for_each_entry_rcu(kp, &p->list, list) {
407 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
408 			set_kprobe_instance(kp);
409 			kp->pre_handler(kp, regs);
410 		}
411 		reset_kprobe_instance();
412 	}
413 }
414 NOKPROBE_SYMBOL(opt_pre_handler);
415 
416 /* Free optimized instructions and optimized_kprobe */
417 static void free_aggr_kprobe(struct kprobe *p)
418 {
419 	struct optimized_kprobe *op;
420 
421 	op = container_of(p, struct optimized_kprobe, kp);
422 	arch_remove_optimized_kprobe(op);
423 	arch_remove_kprobe(p);
424 	kfree(op);
425 }
426 
427 /* Return true(!0) if the kprobe is ready for optimization. */
428 static inline int kprobe_optready(struct kprobe *p)
429 {
430 	struct optimized_kprobe *op;
431 
432 	if (kprobe_aggrprobe(p)) {
433 		op = container_of(p, struct optimized_kprobe, kp);
434 		return arch_prepared_optinsn(&op->optinsn);
435 	}
436 
437 	return 0;
438 }
439 
440 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
441 static inline int kprobe_disarmed(struct kprobe *p)
442 {
443 	struct optimized_kprobe *op;
444 
445 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
446 	if (!kprobe_aggrprobe(p))
447 		return kprobe_disabled(p);
448 
449 	op = container_of(p, struct optimized_kprobe, kp);
450 
451 	return kprobe_disabled(p) && list_empty(&op->list);
452 }
453 
454 /* Return true(!0) if the probe is queued on (un)optimizing lists */
455 static int kprobe_queued(struct kprobe *p)
456 {
457 	struct optimized_kprobe *op;
458 
459 	if (kprobe_aggrprobe(p)) {
460 		op = container_of(p, struct optimized_kprobe, kp);
461 		if (!list_empty(&op->list))
462 			return 1;
463 	}
464 	return 0;
465 }
466 
467 /*
468  * Return an optimized kprobe whose optimizing code replaces
469  * instructions including addr (exclude breakpoint).
470  */
471 static struct kprobe *get_optimized_kprobe(unsigned long addr)
472 {
473 	int i;
474 	struct kprobe *p = NULL;
475 	struct optimized_kprobe *op;
476 
477 	/* Don't check i == 0, since that is a breakpoint case. */
478 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
479 		p = get_kprobe((void *)(addr - i));
480 
481 	if (p && kprobe_optready(p)) {
482 		op = container_of(p, struct optimized_kprobe, kp);
483 		if (arch_within_optimized_kprobe(op, addr))
484 			return p;
485 	}
486 
487 	return NULL;
488 }
489 
490 /* Optimization staging list, protected by kprobe_mutex */
491 static LIST_HEAD(optimizing_list);
492 static LIST_HEAD(unoptimizing_list);
493 static LIST_HEAD(freeing_list);
494 
495 static void kprobe_optimizer(struct work_struct *work);
496 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
497 #define OPTIMIZE_DELAY 5
498 
499 /*
500  * Optimize (replace a breakpoint with a jump) kprobes listed on
501  * optimizing_list.
502  */
503 static void do_optimize_kprobes(void)
504 {
505 	lockdep_assert_held(&text_mutex);
506 	/*
507 	 * The optimization/unoptimization refers online_cpus via
508 	 * stop_machine() and cpu-hotplug modifies online_cpus.
509 	 * And same time, text_mutex will be held in cpu-hotplug and here.
510 	 * This combination can cause a deadlock (cpu-hotplug try to lock
511 	 * text_mutex but stop_machine can not be done because online_cpus
512 	 * has been changed)
513 	 * To avoid this deadlock, caller must have locked cpu hotplug
514 	 * for preventing cpu-hotplug outside of text_mutex locking.
515 	 */
516 	lockdep_assert_cpus_held();
517 
518 	/* Optimization never be done when disarmed */
519 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
520 	    list_empty(&optimizing_list))
521 		return;
522 
523 	arch_optimize_kprobes(&optimizing_list);
524 }
525 
526 /*
527  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
528  * if need) kprobes listed on unoptimizing_list.
529  */
530 static void do_unoptimize_kprobes(void)
531 {
532 	struct optimized_kprobe *op, *tmp;
533 
534 	lockdep_assert_held(&text_mutex);
535 	/* See comment in do_optimize_kprobes() */
536 	lockdep_assert_cpus_held();
537 
538 	/* Unoptimization must be done anytime */
539 	if (list_empty(&unoptimizing_list))
540 		return;
541 
542 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
543 	/* Loop free_list for disarming */
544 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
545 		/* Switching from detour code to origin */
546 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
547 		/* Disarm probes if marked disabled */
548 		if (kprobe_disabled(&op->kp))
549 			arch_disarm_kprobe(&op->kp);
550 		if (kprobe_unused(&op->kp)) {
551 			/*
552 			 * Remove unused probes from hash list. After waiting
553 			 * for synchronization, these probes are reclaimed.
554 			 * (reclaiming is done by do_free_cleaned_kprobes.)
555 			 */
556 			hlist_del_rcu(&op->kp.hlist);
557 		} else
558 			list_del_init(&op->list);
559 	}
560 }
561 
562 /* Reclaim all kprobes on the free_list */
563 static void do_free_cleaned_kprobes(void)
564 {
565 	struct optimized_kprobe *op, *tmp;
566 
567 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
568 		list_del_init(&op->list);
569 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
570 			/*
571 			 * This must not happen, but if there is a kprobe
572 			 * still in use, keep it on kprobes hash list.
573 			 */
574 			continue;
575 		}
576 		free_aggr_kprobe(&op->kp);
577 	}
578 }
579 
580 /* Start optimizer after OPTIMIZE_DELAY passed */
581 static void kick_kprobe_optimizer(void)
582 {
583 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
584 }
585 
586 /* Kprobe jump optimizer */
587 static void kprobe_optimizer(struct work_struct *work)
588 {
589 	mutex_lock(&kprobe_mutex);
590 	cpus_read_lock();
591 	mutex_lock(&text_mutex);
592 
593 	/*
594 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
595 	 * kprobes before waiting for quiesence period.
596 	 */
597 	do_unoptimize_kprobes();
598 
599 	/*
600 	 * Step 2: Wait for quiesence period to ensure all potentially
601 	 * preempted tasks to have normally scheduled. Because optprobe
602 	 * may modify multiple instructions, there is a chance that Nth
603 	 * instruction is preempted. In that case, such tasks can return
604 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
605 	 * Note that on non-preemptive kernel, this is transparently converted
606 	 * to synchronoze_sched() to wait for all interrupts to have completed.
607 	 */
608 	synchronize_rcu_tasks();
609 
610 	/* Step 3: Optimize kprobes after quiesence period */
611 	do_optimize_kprobes();
612 
613 	/* Step 4: Free cleaned kprobes after quiesence period */
614 	do_free_cleaned_kprobes();
615 
616 	mutex_unlock(&text_mutex);
617 	cpus_read_unlock();
618 
619 	/* Step 5: Kick optimizer again if needed */
620 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
621 		kick_kprobe_optimizer();
622 
623 	mutex_unlock(&kprobe_mutex);
624 }
625 
626 /* Wait for completing optimization and unoptimization */
627 void wait_for_kprobe_optimizer(void)
628 {
629 	mutex_lock(&kprobe_mutex);
630 
631 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
632 		mutex_unlock(&kprobe_mutex);
633 
634 		/* this will also make optimizing_work execute immmediately */
635 		flush_delayed_work(&optimizing_work);
636 		/* @optimizing_work might not have been queued yet, relax */
637 		cpu_relax();
638 
639 		mutex_lock(&kprobe_mutex);
640 	}
641 
642 	mutex_unlock(&kprobe_mutex);
643 }
644 
645 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
646 {
647 	struct optimized_kprobe *_op;
648 
649 	list_for_each_entry(_op, &unoptimizing_list, list) {
650 		if (op == _op)
651 			return true;
652 	}
653 
654 	return false;
655 }
656 
657 /* Optimize kprobe if p is ready to be optimized */
658 static void optimize_kprobe(struct kprobe *p)
659 {
660 	struct optimized_kprobe *op;
661 
662 	/* Check if the kprobe is disabled or not ready for optimization. */
663 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
664 	    (kprobe_disabled(p) || kprobes_all_disarmed))
665 		return;
666 
667 	/* kprobes with post_handler can not be optimized */
668 	if (p->post_handler)
669 		return;
670 
671 	op = container_of(p, struct optimized_kprobe, kp);
672 
673 	/* Check there is no other kprobes at the optimized instructions */
674 	if (arch_check_optimized_kprobe(op) < 0)
675 		return;
676 
677 	/* Check if it is already optimized. */
678 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
679 		if (optprobe_queued_unopt(op)) {
680 			/* This is under unoptimizing. Just dequeue the probe */
681 			list_del_init(&op->list);
682 		}
683 		return;
684 	}
685 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
686 
687 	/* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
688 	if (WARN_ON_ONCE(!list_empty(&op->list)))
689 		return;
690 
691 	list_add(&op->list, &optimizing_list);
692 	kick_kprobe_optimizer();
693 }
694 
695 /* Short cut to direct unoptimizing */
696 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
697 {
698 	lockdep_assert_cpus_held();
699 	arch_unoptimize_kprobe(op);
700 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
701 }
702 
703 /* Unoptimize a kprobe if p is optimized */
704 static void unoptimize_kprobe(struct kprobe *p, bool force)
705 {
706 	struct optimized_kprobe *op;
707 
708 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
709 		return; /* This is not an optprobe nor optimized */
710 
711 	op = container_of(p, struct optimized_kprobe, kp);
712 	if (!kprobe_optimized(p))
713 		return;
714 
715 	if (!list_empty(&op->list)) {
716 		if (optprobe_queued_unopt(op)) {
717 			/* Queued in unoptimizing queue */
718 			if (force) {
719 				/*
720 				 * Forcibly unoptimize the kprobe here, and queue it
721 				 * in the freeing list for release afterwards.
722 				 */
723 				force_unoptimize_kprobe(op);
724 				list_move(&op->list, &freeing_list);
725 			}
726 		} else {
727 			/* Dequeue from the optimizing queue */
728 			list_del_init(&op->list);
729 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
730 		}
731 		return;
732 	}
733 
734 	/* Optimized kprobe case */
735 	if (force) {
736 		/* Forcibly update the code: this is a special case */
737 		force_unoptimize_kprobe(op);
738 	} else {
739 		list_add(&op->list, &unoptimizing_list);
740 		kick_kprobe_optimizer();
741 	}
742 }
743 
744 /* Cancel unoptimizing for reusing */
745 static int reuse_unused_kprobe(struct kprobe *ap)
746 {
747 	struct optimized_kprobe *op;
748 
749 	/*
750 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
751 	 * there is still a relative jump) and disabled.
752 	 */
753 	op = container_of(ap, struct optimized_kprobe, kp);
754 	WARN_ON_ONCE(list_empty(&op->list));
755 	/* Enable the probe again */
756 	ap->flags &= ~KPROBE_FLAG_DISABLED;
757 	/* Optimize it again (remove from op->list) */
758 	if (!kprobe_optready(ap))
759 		return -EINVAL;
760 
761 	optimize_kprobe(ap);
762 	return 0;
763 }
764 
765 /* Remove optimized instructions */
766 static void kill_optimized_kprobe(struct kprobe *p)
767 {
768 	struct optimized_kprobe *op;
769 
770 	op = container_of(p, struct optimized_kprobe, kp);
771 	if (!list_empty(&op->list))
772 		/* Dequeue from the (un)optimization queue */
773 		list_del_init(&op->list);
774 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
775 
776 	if (kprobe_unused(p)) {
777 		/* Enqueue if it is unused */
778 		list_add(&op->list, &freeing_list);
779 		/*
780 		 * Remove unused probes from the hash list. After waiting
781 		 * for synchronization, this probe is reclaimed.
782 		 * (reclaiming is done by do_free_cleaned_kprobes().)
783 		 */
784 		hlist_del_rcu(&op->kp.hlist);
785 	}
786 
787 	/* Don't touch the code, because it is already freed. */
788 	arch_remove_optimized_kprobe(op);
789 }
790 
791 static inline
792 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
793 {
794 	if (!kprobe_ftrace(p))
795 		arch_prepare_optimized_kprobe(op, p);
796 }
797 
798 /* Try to prepare optimized instructions */
799 static void prepare_optimized_kprobe(struct kprobe *p)
800 {
801 	struct optimized_kprobe *op;
802 
803 	op = container_of(p, struct optimized_kprobe, kp);
804 	__prepare_optimized_kprobe(op, p);
805 }
806 
807 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
808 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
809 {
810 	struct optimized_kprobe *op;
811 
812 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
813 	if (!op)
814 		return NULL;
815 
816 	INIT_LIST_HEAD(&op->list);
817 	op->kp.addr = p->addr;
818 	__prepare_optimized_kprobe(op, p);
819 
820 	return &op->kp;
821 }
822 
823 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
824 
825 /*
826  * Prepare an optimized_kprobe and optimize it
827  * NOTE: p must be a normal registered kprobe
828  */
829 static void try_to_optimize_kprobe(struct kprobe *p)
830 {
831 	struct kprobe *ap;
832 	struct optimized_kprobe *op;
833 
834 	/* Impossible to optimize ftrace-based kprobe */
835 	if (kprobe_ftrace(p))
836 		return;
837 
838 	/* For preparing optimization, jump_label_text_reserved() is called */
839 	cpus_read_lock();
840 	jump_label_lock();
841 	mutex_lock(&text_mutex);
842 
843 	ap = alloc_aggr_kprobe(p);
844 	if (!ap)
845 		goto out;
846 
847 	op = container_of(ap, struct optimized_kprobe, kp);
848 	if (!arch_prepared_optinsn(&op->optinsn)) {
849 		/* If failed to setup optimizing, fallback to kprobe */
850 		arch_remove_optimized_kprobe(op);
851 		kfree(op);
852 		goto out;
853 	}
854 
855 	init_aggr_kprobe(ap, p);
856 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
857 
858 out:
859 	mutex_unlock(&text_mutex);
860 	jump_label_unlock();
861 	cpus_read_unlock();
862 }
863 
864 static void optimize_all_kprobes(void)
865 {
866 	struct hlist_head *head;
867 	struct kprobe *p;
868 	unsigned int i;
869 
870 	mutex_lock(&kprobe_mutex);
871 	/* If optimization is already allowed, just return */
872 	if (kprobes_allow_optimization)
873 		goto out;
874 
875 	cpus_read_lock();
876 	kprobes_allow_optimization = true;
877 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
878 		head = &kprobe_table[i];
879 		hlist_for_each_entry(p, head, hlist)
880 			if (!kprobe_disabled(p))
881 				optimize_kprobe(p);
882 	}
883 	cpus_read_unlock();
884 	printk(KERN_INFO "Kprobes globally optimized\n");
885 out:
886 	mutex_unlock(&kprobe_mutex);
887 }
888 
889 #ifdef CONFIG_SYSCTL
890 static void unoptimize_all_kprobes(void)
891 {
892 	struct hlist_head *head;
893 	struct kprobe *p;
894 	unsigned int i;
895 
896 	mutex_lock(&kprobe_mutex);
897 	/* If optimization is already prohibited, just return */
898 	if (!kprobes_allow_optimization) {
899 		mutex_unlock(&kprobe_mutex);
900 		return;
901 	}
902 
903 	cpus_read_lock();
904 	kprobes_allow_optimization = false;
905 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
906 		head = &kprobe_table[i];
907 		hlist_for_each_entry(p, head, hlist) {
908 			if (!kprobe_disabled(p))
909 				unoptimize_kprobe(p, false);
910 		}
911 	}
912 	cpus_read_unlock();
913 	mutex_unlock(&kprobe_mutex);
914 
915 	/* Wait for unoptimizing completion */
916 	wait_for_kprobe_optimizer();
917 	printk(KERN_INFO "Kprobes globally unoptimized\n");
918 }
919 
920 static DEFINE_MUTEX(kprobe_sysctl_mutex);
921 int sysctl_kprobes_optimization;
922 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
923 				      void *buffer, size_t *length,
924 				      loff_t *ppos)
925 {
926 	int ret;
927 
928 	mutex_lock(&kprobe_sysctl_mutex);
929 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
930 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
931 
932 	if (sysctl_kprobes_optimization)
933 		optimize_all_kprobes();
934 	else
935 		unoptimize_all_kprobes();
936 	mutex_unlock(&kprobe_sysctl_mutex);
937 
938 	return ret;
939 }
940 #endif /* CONFIG_SYSCTL */
941 
942 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
943 static void __arm_kprobe(struct kprobe *p)
944 {
945 	struct kprobe *_p;
946 
947 	/* Check collision with other optimized kprobes */
948 	_p = get_optimized_kprobe((unsigned long)p->addr);
949 	if (unlikely(_p))
950 		/* Fallback to unoptimized kprobe */
951 		unoptimize_kprobe(_p, true);
952 
953 	arch_arm_kprobe(p);
954 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
955 }
956 
957 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
958 static void __disarm_kprobe(struct kprobe *p, bool reopt)
959 {
960 	struct kprobe *_p;
961 
962 	/* Try to unoptimize */
963 	unoptimize_kprobe(p, kprobes_all_disarmed);
964 
965 	if (!kprobe_queued(p)) {
966 		arch_disarm_kprobe(p);
967 		/* If another kprobe was blocked, optimize it. */
968 		_p = get_optimized_kprobe((unsigned long)p->addr);
969 		if (unlikely(_p) && reopt)
970 			optimize_kprobe(_p);
971 	}
972 	/* TODO: reoptimize others after unoptimized this probe */
973 }
974 
975 #else /* !CONFIG_OPTPROBES */
976 
977 #define optimize_kprobe(p)			do {} while (0)
978 #define unoptimize_kprobe(p, f)			do {} while (0)
979 #define kill_optimized_kprobe(p)		do {} while (0)
980 #define prepare_optimized_kprobe(p)		do {} while (0)
981 #define try_to_optimize_kprobe(p)		do {} while (0)
982 #define __arm_kprobe(p)				arch_arm_kprobe(p)
983 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
984 #define kprobe_disarmed(p)			kprobe_disabled(p)
985 #define wait_for_kprobe_optimizer()		do {} while (0)
986 
987 static int reuse_unused_kprobe(struct kprobe *ap)
988 {
989 	/*
990 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
991 	 * released at the same time that the last aggregated kprobe is
992 	 * unregistered.
993 	 * Thus there should be no chance to reuse unused kprobe.
994 	 */
995 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
996 	return -EINVAL;
997 }
998 
999 static void free_aggr_kprobe(struct kprobe *p)
1000 {
1001 	arch_remove_kprobe(p);
1002 	kfree(p);
1003 }
1004 
1005 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1006 {
1007 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1008 }
1009 #endif /* CONFIG_OPTPROBES */
1010 
1011 #ifdef CONFIG_KPROBES_ON_FTRACE
1012 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1013 	.func = kprobe_ftrace_handler,
1014 	.flags = FTRACE_OPS_FL_SAVE_REGS,
1015 };
1016 
1017 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1018 	.func = kprobe_ftrace_handler,
1019 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1020 };
1021 
1022 static int kprobe_ipmodify_enabled;
1023 static int kprobe_ftrace_enabled;
1024 
1025 /* Must ensure p->addr is really on ftrace */
1026 static int prepare_kprobe(struct kprobe *p)
1027 {
1028 	if (!kprobe_ftrace(p))
1029 		return arch_prepare_kprobe(p);
1030 
1031 	return arch_prepare_kprobe_ftrace(p);
1032 }
1033 
1034 /* Caller must lock kprobe_mutex */
1035 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1036 			       int *cnt)
1037 {
1038 	int ret = 0;
1039 
1040 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1041 	if (ret) {
1042 		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1043 			 p->addr, ret);
1044 		return ret;
1045 	}
1046 
1047 	if (*cnt == 0) {
1048 		ret = register_ftrace_function(ops);
1049 		if (ret) {
1050 			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1051 			goto err_ftrace;
1052 		}
1053 	}
1054 
1055 	(*cnt)++;
1056 	return ret;
1057 
1058 err_ftrace:
1059 	/*
1060 	 * At this point, sinec ops is not registered, we should be sefe from
1061 	 * registering empty filter.
1062 	 */
1063 	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1064 	return ret;
1065 }
1066 
1067 static int arm_kprobe_ftrace(struct kprobe *p)
1068 {
1069 	bool ipmodify = (p->post_handler != NULL);
1070 
1071 	return __arm_kprobe_ftrace(p,
1072 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1073 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1074 }
1075 
1076 /* Caller must lock kprobe_mutex */
1077 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1078 				  int *cnt)
1079 {
1080 	int ret = 0;
1081 
1082 	if (*cnt == 1) {
1083 		ret = unregister_ftrace_function(ops);
1084 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1085 			return ret;
1086 	}
1087 
1088 	(*cnt)--;
1089 
1090 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1091 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1092 		  p->addr, ret);
1093 	return ret;
1094 }
1095 
1096 static int disarm_kprobe_ftrace(struct kprobe *p)
1097 {
1098 	bool ipmodify = (p->post_handler != NULL);
1099 
1100 	return __disarm_kprobe_ftrace(p,
1101 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1102 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1103 }
1104 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1105 static inline int prepare_kprobe(struct kprobe *p)
1106 {
1107 	return arch_prepare_kprobe(p);
1108 }
1109 
1110 static inline int arm_kprobe_ftrace(struct kprobe *p)
1111 {
1112 	return -ENODEV;
1113 }
1114 
1115 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1116 {
1117 	return -ENODEV;
1118 }
1119 #endif
1120 
1121 /* Arm a kprobe with text_mutex */
1122 static int arm_kprobe(struct kprobe *kp)
1123 {
1124 	if (unlikely(kprobe_ftrace(kp)))
1125 		return arm_kprobe_ftrace(kp);
1126 
1127 	cpus_read_lock();
1128 	mutex_lock(&text_mutex);
1129 	__arm_kprobe(kp);
1130 	mutex_unlock(&text_mutex);
1131 	cpus_read_unlock();
1132 
1133 	return 0;
1134 }
1135 
1136 /* Disarm a kprobe with text_mutex */
1137 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1138 {
1139 	if (unlikely(kprobe_ftrace(kp)))
1140 		return disarm_kprobe_ftrace(kp);
1141 
1142 	cpus_read_lock();
1143 	mutex_lock(&text_mutex);
1144 	__disarm_kprobe(kp, reopt);
1145 	mutex_unlock(&text_mutex);
1146 	cpus_read_unlock();
1147 
1148 	return 0;
1149 }
1150 
1151 /*
1152  * Aggregate handlers for multiple kprobes support - these handlers
1153  * take care of invoking the individual kprobe handlers on p->list
1154  */
1155 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1156 {
1157 	struct kprobe *kp;
1158 
1159 	list_for_each_entry_rcu(kp, &p->list, list) {
1160 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1161 			set_kprobe_instance(kp);
1162 			if (kp->pre_handler(kp, regs))
1163 				return 1;
1164 		}
1165 		reset_kprobe_instance();
1166 	}
1167 	return 0;
1168 }
1169 NOKPROBE_SYMBOL(aggr_pre_handler);
1170 
1171 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1172 			      unsigned long flags)
1173 {
1174 	struct kprobe *kp;
1175 
1176 	list_for_each_entry_rcu(kp, &p->list, list) {
1177 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1178 			set_kprobe_instance(kp);
1179 			kp->post_handler(kp, regs, flags);
1180 			reset_kprobe_instance();
1181 		}
1182 	}
1183 }
1184 NOKPROBE_SYMBOL(aggr_post_handler);
1185 
1186 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1187 			      int trapnr)
1188 {
1189 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1190 
1191 	/*
1192 	 * if we faulted "during" the execution of a user specified
1193 	 * probe handler, invoke just that probe's fault handler
1194 	 */
1195 	if (cur && cur->fault_handler) {
1196 		if (cur->fault_handler(cur, regs, trapnr))
1197 			return 1;
1198 	}
1199 	return 0;
1200 }
1201 NOKPROBE_SYMBOL(aggr_fault_handler);
1202 
1203 /* Walks the list and increments nmissed count for multiprobe case */
1204 void kprobes_inc_nmissed_count(struct kprobe *p)
1205 {
1206 	struct kprobe *kp;
1207 	if (!kprobe_aggrprobe(p)) {
1208 		p->nmissed++;
1209 	} else {
1210 		list_for_each_entry_rcu(kp, &p->list, list)
1211 			kp->nmissed++;
1212 	}
1213 	return;
1214 }
1215 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1216 
1217 static void free_rp_inst_rcu(struct rcu_head *head)
1218 {
1219 	struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1220 
1221 	if (refcount_dec_and_test(&ri->rph->ref))
1222 		kfree(ri->rph);
1223 	kfree(ri);
1224 }
1225 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1226 
1227 static void recycle_rp_inst(struct kretprobe_instance *ri)
1228 {
1229 	struct kretprobe *rp = get_kretprobe(ri);
1230 
1231 	if (likely(rp)) {
1232 		freelist_add(&ri->freelist, &rp->freelist);
1233 	} else
1234 		call_rcu(&ri->rcu, free_rp_inst_rcu);
1235 }
1236 NOKPROBE_SYMBOL(recycle_rp_inst);
1237 
1238 static struct kprobe kprobe_busy = {
1239 	.addr = (void *) get_kprobe,
1240 };
1241 
1242 void kprobe_busy_begin(void)
1243 {
1244 	struct kprobe_ctlblk *kcb;
1245 
1246 	preempt_disable();
1247 	__this_cpu_write(current_kprobe, &kprobe_busy);
1248 	kcb = get_kprobe_ctlblk();
1249 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1250 }
1251 
1252 void kprobe_busy_end(void)
1253 {
1254 	__this_cpu_write(current_kprobe, NULL);
1255 	preempt_enable();
1256 }
1257 
1258 /*
1259  * This function is called from finish_task_switch when task tk becomes dead,
1260  * so that we can recycle any function-return probe instances associated
1261  * with this task. These left over instances represent probed functions
1262  * that have been called but will never return.
1263  */
1264 void kprobe_flush_task(struct task_struct *tk)
1265 {
1266 	struct kretprobe_instance *ri;
1267 	struct llist_node *node;
1268 
1269 	/* Early boot, not yet initialized. */
1270 	if (unlikely(!kprobes_initialized))
1271 		return;
1272 
1273 	kprobe_busy_begin();
1274 
1275 	node = __llist_del_all(&tk->kretprobe_instances);
1276 	while (node) {
1277 		ri = container_of(node, struct kretprobe_instance, llist);
1278 		node = node->next;
1279 
1280 		recycle_rp_inst(ri);
1281 	}
1282 
1283 	kprobe_busy_end();
1284 }
1285 NOKPROBE_SYMBOL(kprobe_flush_task);
1286 
1287 static inline void free_rp_inst(struct kretprobe *rp)
1288 {
1289 	struct kretprobe_instance *ri;
1290 	struct freelist_node *node;
1291 	int count = 0;
1292 
1293 	node = rp->freelist.head;
1294 	while (node) {
1295 		ri = container_of(node, struct kretprobe_instance, freelist);
1296 		node = node->next;
1297 
1298 		kfree(ri);
1299 		count++;
1300 	}
1301 
1302 	if (refcount_sub_and_test(count, &rp->rph->ref)) {
1303 		kfree(rp->rph);
1304 		rp->rph = NULL;
1305 	}
1306 }
1307 
1308 /* Add the new probe to ap->list */
1309 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1310 {
1311 	if (p->post_handler)
1312 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1313 
1314 	list_add_rcu(&p->list, &ap->list);
1315 	if (p->post_handler && !ap->post_handler)
1316 		ap->post_handler = aggr_post_handler;
1317 
1318 	return 0;
1319 }
1320 
1321 /*
1322  * Fill in the required fields of the "manager kprobe". Replace the
1323  * earlier kprobe in the hlist with the manager kprobe
1324  */
1325 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1326 {
1327 	/* Copy p's insn slot to ap */
1328 	copy_kprobe(p, ap);
1329 	flush_insn_slot(ap);
1330 	ap->addr = p->addr;
1331 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1332 	ap->pre_handler = aggr_pre_handler;
1333 	ap->fault_handler = aggr_fault_handler;
1334 	/* We don't care the kprobe which has gone. */
1335 	if (p->post_handler && !kprobe_gone(p))
1336 		ap->post_handler = aggr_post_handler;
1337 
1338 	INIT_LIST_HEAD(&ap->list);
1339 	INIT_HLIST_NODE(&ap->hlist);
1340 
1341 	list_add_rcu(&p->list, &ap->list);
1342 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1343 }
1344 
1345 /*
1346  * This is the second or subsequent kprobe at the address - handle
1347  * the intricacies
1348  */
1349 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1350 {
1351 	int ret = 0;
1352 	struct kprobe *ap = orig_p;
1353 
1354 	cpus_read_lock();
1355 
1356 	/* For preparing optimization, jump_label_text_reserved() is called */
1357 	jump_label_lock();
1358 	mutex_lock(&text_mutex);
1359 
1360 	if (!kprobe_aggrprobe(orig_p)) {
1361 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1362 		ap = alloc_aggr_kprobe(orig_p);
1363 		if (!ap) {
1364 			ret = -ENOMEM;
1365 			goto out;
1366 		}
1367 		init_aggr_kprobe(ap, orig_p);
1368 	} else if (kprobe_unused(ap)) {
1369 		/* This probe is going to die. Rescue it */
1370 		ret = reuse_unused_kprobe(ap);
1371 		if (ret)
1372 			goto out;
1373 	}
1374 
1375 	if (kprobe_gone(ap)) {
1376 		/*
1377 		 * Attempting to insert new probe at the same location that
1378 		 * had a probe in the module vaddr area which already
1379 		 * freed. So, the instruction slot has already been
1380 		 * released. We need a new slot for the new probe.
1381 		 */
1382 		ret = arch_prepare_kprobe(ap);
1383 		if (ret)
1384 			/*
1385 			 * Even if fail to allocate new slot, don't need to
1386 			 * free aggr_probe. It will be used next time, or
1387 			 * freed by unregister_kprobe.
1388 			 */
1389 			goto out;
1390 
1391 		/* Prepare optimized instructions if possible. */
1392 		prepare_optimized_kprobe(ap);
1393 
1394 		/*
1395 		 * Clear gone flag to prevent allocating new slot again, and
1396 		 * set disabled flag because it is not armed yet.
1397 		 */
1398 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1399 			    | KPROBE_FLAG_DISABLED;
1400 	}
1401 
1402 	/* Copy ap's insn slot to p */
1403 	copy_kprobe(ap, p);
1404 	ret = add_new_kprobe(ap, p);
1405 
1406 out:
1407 	mutex_unlock(&text_mutex);
1408 	jump_label_unlock();
1409 	cpus_read_unlock();
1410 
1411 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1412 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1413 		if (!kprobes_all_disarmed) {
1414 			/* Arm the breakpoint again. */
1415 			ret = arm_kprobe(ap);
1416 			if (ret) {
1417 				ap->flags |= KPROBE_FLAG_DISABLED;
1418 				list_del_rcu(&p->list);
1419 				synchronize_rcu();
1420 			}
1421 		}
1422 	}
1423 	return ret;
1424 }
1425 
1426 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1427 {
1428 	/* The __kprobes marked functions and entry code must not be probed */
1429 	return addr >= (unsigned long)__kprobes_text_start &&
1430 	       addr < (unsigned long)__kprobes_text_end;
1431 }
1432 
1433 static bool __within_kprobe_blacklist(unsigned long addr)
1434 {
1435 	struct kprobe_blacklist_entry *ent;
1436 
1437 	if (arch_within_kprobe_blacklist(addr))
1438 		return true;
1439 	/*
1440 	 * If there exists a kprobe_blacklist, verify and
1441 	 * fail any probe registration in the prohibited area
1442 	 */
1443 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1444 		if (addr >= ent->start_addr && addr < ent->end_addr)
1445 			return true;
1446 	}
1447 	return false;
1448 }
1449 
1450 bool within_kprobe_blacklist(unsigned long addr)
1451 {
1452 	char symname[KSYM_NAME_LEN], *p;
1453 
1454 	if (__within_kprobe_blacklist(addr))
1455 		return true;
1456 
1457 	/* Check if the address is on a suffixed-symbol */
1458 	if (!lookup_symbol_name(addr, symname)) {
1459 		p = strchr(symname, '.');
1460 		if (!p)
1461 			return false;
1462 		*p = '\0';
1463 		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1464 		if (addr)
1465 			return __within_kprobe_blacklist(addr);
1466 	}
1467 	return false;
1468 }
1469 
1470 /*
1471  * If we have a symbol_name argument, look it up and add the offset field
1472  * to it. This way, we can specify a relative address to a symbol.
1473  * This returns encoded errors if it fails to look up symbol or invalid
1474  * combination of parameters.
1475  */
1476 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1477 			const char *symbol_name, unsigned int offset)
1478 {
1479 	if ((symbol_name && addr) || (!symbol_name && !addr))
1480 		goto invalid;
1481 
1482 	if (symbol_name) {
1483 		addr = kprobe_lookup_name(symbol_name, offset);
1484 		if (!addr)
1485 			return ERR_PTR(-ENOENT);
1486 	}
1487 
1488 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1489 	if (addr)
1490 		return addr;
1491 
1492 invalid:
1493 	return ERR_PTR(-EINVAL);
1494 }
1495 
1496 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1497 {
1498 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1499 }
1500 
1501 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1502 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1503 {
1504 	struct kprobe *ap, *list_p;
1505 
1506 	lockdep_assert_held(&kprobe_mutex);
1507 
1508 	ap = get_kprobe(p->addr);
1509 	if (unlikely(!ap))
1510 		return NULL;
1511 
1512 	if (p != ap) {
1513 		list_for_each_entry(list_p, &ap->list, list)
1514 			if (list_p == p)
1515 			/* kprobe p is a valid probe */
1516 				goto valid;
1517 		return NULL;
1518 	}
1519 valid:
1520 	return ap;
1521 }
1522 
1523 /*
1524  * Warn and return error if the kprobe is being re-registered since
1525  * there must be a software bug.
1526  */
1527 static inline int warn_kprobe_rereg(struct kprobe *p)
1528 {
1529 	int ret = 0;
1530 
1531 	mutex_lock(&kprobe_mutex);
1532 	if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1533 		ret = -EINVAL;
1534 	mutex_unlock(&kprobe_mutex);
1535 
1536 	return ret;
1537 }
1538 
1539 int __weak arch_check_ftrace_location(struct kprobe *p)
1540 {
1541 	unsigned long ftrace_addr;
1542 
1543 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1544 	if (ftrace_addr) {
1545 #ifdef CONFIG_KPROBES_ON_FTRACE
1546 		/* Given address is not on the instruction boundary */
1547 		if ((unsigned long)p->addr != ftrace_addr)
1548 			return -EILSEQ;
1549 		p->flags |= KPROBE_FLAG_FTRACE;
1550 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1551 		return -EINVAL;
1552 #endif
1553 	}
1554 	return 0;
1555 }
1556 
1557 static int check_kprobe_address_safe(struct kprobe *p,
1558 				     struct module **probed_mod)
1559 {
1560 	int ret;
1561 
1562 	ret = arch_check_ftrace_location(p);
1563 	if (ret)
1564 		return ret;
1565 	jump_label_lock();
1566 	preempt_disable();
1567 
1568 	/* Ensure it is not in reserved area nor out of text */
1569 	if (!kernel_text_address((unsigned long) p->addr) ||
1570 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1571 	    jump_label_text_reserved(p->addr, p->addr) ||
1572 	    find_bug((unsigned long)p->addr)) {
1573 		ret = -EINVAL;
1574 		goto out;
1575 	}
1576 
1577 	/* Check if are we probing a module */
1578 	*probed_mod = __module_text_address((unsigned long) p->addr);
1579 	if (*probed_mod) {
1580 		/*
1581 		 * We must hold a refcount of the probed module while updating
1582 		 * its code to prohibit unexpected unloading.
1583 		 */
1584 		if (unlikely(!try_module_get(*probed_mod))) {
1585 			ret = -ENOENT;
1586 			goto out;
1587 		}
1588 
1589 		/*
1590 		 * If the module freed .init.text, we couldn't insert
1591 		 * kprobes in there.
1592 		 */
1593 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1594 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1595 			module_put(*probed_mod);
1596 			*probed_mod = NULL;
1597 			ret = -ENOENT;
1598 		}
1599 	}
1600 out:
1601 	preempt_enable();
1602 	jump_label_unlock();
1603 
1604 	return ret;
1605 }
1606 
1607 int register_kprobe(struct kprobe *p)
1608 {
1609 	int ret;
1610 	struct kprobe *old_p;
1611 	struct module *probed_mod;
1612 	kprobe_opcode_t *addr;
1613 
1614 	/* Adjust probe address from symbol */
1615 	addr = kprobe_addr(p);
1616 	if (IS_ERR(addr))
1617 		return PTR_ERR(addr);
1618 	p->addr = addr;
1619 
1620 	ret = warn_kprobe_rereg(p);
1621 	if (ret)
1622 		return ret;
1623 
1624 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1625 	p->flags &= KPROBE_FLAG_DISABLED;
1626 	p->nmissed = 0;
1627 	INIT_LIST_HEAD(&p->list);
1628 
1629 	ret = check_kprobe_address_safe(p, &probed_mod);
1630 	if (ret)
1631 		return ret;
1632 
1633 	mutex_lock(&kprobe_mutex);
1634 
1635 	old_p = get_kprobe(p->addr);
1636 	if (old_p) {
1637 		/* Since this may unoptimize old_p, locking text_mutex. */
1638 		ret = register_aggr_kprobe(old_p, p);
1639 		goto out;
1640 	}
1641 
1642 	cpus_read_lock();
1643 	/* Prevent text modification */
1644 	mutex_lock(&text_mutex);
1645 	ret = prepare_kprobe(p);
1646 	mutex_unlock(&text_mutex);
1647 	cpus_read_unlock();
1648 	if (ret)
1649 		goto out;
1650 
1651 	INIT_HLIST_NODE(&p->hlist);
1652 	hlist_add_head_rcu(&p->hlist,
1653 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1654 
1655 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1656 		ret = arm_kprobe(p);
1657 		if (ret) {
1658 			hlist_del_rcu(&p->hlist);
1659 			synchronize_rcu();
1660 			goto out;
1661 		}
1662 	}
1663 
1664 	/* Try to optimize kprobe */
1665 	try_to_optimize_kprobe(p);
1666 out:
1667 	mutex_unlock(&kprobe_mutex);
1668 
1669 	if (probed_mod)
1670 		module_put(probed_mod);
1671 
1672 	return ret;
1673 }
1674 EXPORT_SYMBOL_GPL(register_kprobe);
1675 
1676 /* Check if all probes on the aggrprobe are disabled */
1677 static int aggr_kprobe_disabled(struct kprobe *ap)
1678 {
1679 	struct kprobe *kp;
1680 
1681 	lockdep_assert_held(&kprobe_mutex);
1682 
1683 	list_for_each_entry(kp, &ap->list, list)
1684 		if (!kprobe_disabled(kp))
1685 			/*
1686 			 * There is an active probe on the list.
1687 			 * We can't disable this ap.
1688 			 */
1689 			return 0;
1690 
1691 	return 1;
1692 }
1693 
1694 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1695 static struct kprobe *__disable_kprobe(struct kprobe *p)
1696 {
1697 	struct kprobe *orig_p;
1698 	int ret;
1699 
1700 	/* Get an original kprobe for return */
1701 	orig_p = __get_valid_kprobe(p);
1702 	if (unlikely(orig_p == NULL))
1703 		return ERR_PTR(-EINVAL);
1704 
1705 	if (!kprobe_disabled(p)) {
1706 		/* Disable probe if it is a child probe */
1707 		if (p != orig_p)
1708 			p->flags |= KPROBE_FLAG_DISABLED;
1709 
1710 		/* Try to disarm and disable this/parent probe */
1711 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1712 			/*
1713 			 * If kprobes_all_disarmed is set, orig_p
1714 			 * should have already been disarmed, so
1715 			 * skip unneed disarming process.
1716 			 */
1717 			if (!kprobes_all_disarmed) {
1718 				ret = disarm_kprobe(orig_p, true);
1719 				if (ret) {
1720 					p->flags &= ~KPROBE_FLAG_DISABLED;
1721 					return ERR_PTR(ret);
1722 				}
1723 			}
1724 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1725 		}
1726 	}
1727 
1728 	return orig_p;
1729 }
1730 
1731 /*
1732  * Unregister a kprobe without a scheduler synchronization.
1733  */
1734 static int __unregister_kprobe_top(struct kprobe *p)
1735 {
1736 	struct kprobe *ap, *list_p;
1737 
1738 	/* Disable kprobe. This will disarm it if needed. */
1739 	ap = __disable_kprobe(p);
1740 	if (IS_ERR(ap))
1741 		return PTR_ERR(ap);
1742 
1743 	if (ap == p)
1744 		/*
1745 		 * This probe is an independent(and non-optimized) kprobe
1746 		 * (not an aggrprobe). Remove from the hash list.
1747 		 */
1748 		goto disarmed;
1749 
1750 	/* Following process expects this probe is an aggrprobe */
1751 	WARN_ON(!kprobe_aggrprobe(ap));
1752 
1753 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1754 		/*
1755 		 * !disarmed could be happen if the probe is under delayed
1756 		 * unoptimizing.
1757 		 */
1758 		goto disarmed;
1759 	else {
1760 		/* If disabling probe has special handlers, update aggrprobe */
1761 		if (p->post_handler && !kprobe_gone(p)) {
1762 			list_for_each_entry(list_p, &ap->list, list) {
1763 				if ((list_p != p) && (list_p->post_handler))
1764 					goto noclean;
1765 			}
1766 			ap->post_handler = NULL;
1767 		}
1768 noclean:
1769 		/*
1770 		 * Remove from the aggrprobe: this path will do nothing in
1771 		 * __unregister_kprobe_bottom().
1772 		 */
1773 		list_del_rcu(&p->list);
1774 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1775 			/*
1776 			 * Try to optimize this probe again, because post
1777 			 * handler may have been changed.
1778 			 */
1779 			optimize_kprobe(ap);
1780 	}
1781 	return 0;
1782 
1783 disarmed:
1784 	hlist_del_rcu(&ap->hlist);
1785 	return 0;
1786 }
1787 
1788 static void __unregister_kprobe_bottom(struct kprobe *p)
1789 {
1790 	struct kprobe *ap;
1791 
1792 	if (list_empty(&p->list))
1793 		/* This is an independent kprobe */
1794 		arch_remove_kprobe(p);
1795 	else if (list_is_singular(&p->list)) {
1796 		/* This is the last child of an aggrprobe */
1797 		ap = list_entry(p->list.next, struct kprobe, list);
1798 		list_del(&p->list);
1799 		free_aggr_kprobe(ap);
1800 	}
1801 	/* Otherwise, do nothing. */
1802 }
1803 
1804 int register_kprobes(struct kprobe **kps, int num)
1805 {
1806 	int i, ret = 0;
1807 
1808 	if (num <= 0)
1809 		return -EINVAL;
1810 	for (i = 0; i < num; i++) {
1811 		ret = register_kprobe(kps[i]);
1812 		if (ret < 0) {
1813 			if (i > 0)
1814 				unregister_kprobes(kps, i);
1815 			break;
1816 		}
1817 	}
1818 	return ret;
1819 }
1820 EXPORT_SYMBOL_GPL(register_kprobes);
1821 
1822 void unregister_kprobe(struct kprobe *p)
1823 {
1824 	unregister_kprobes(&p, 1);
1825 }
1826 EXPORT_SYMBOL_GPL(unregister_kprobe);
1827 
1828 void unregister_kprobes(struct kprobe **kps, int num)
1829 {
1830 	int i;
1831 
1832 	if (num <= 0)
1833 		return;
1834 	mutex_lock(&kprobe_mutex);
1835 	for (i = 0; i < num; i++)
1836 		if (__unregister_kprobe_top(kps[i]) < 0)
1837 			kps[i]->addr = NULL;
1838 	mutex_unlock(&kprobe_mutex);
1839 
1840 	synchronize_rcu();
1841 	for (i = 0; i < num; i++)
1842 		if (kps[i]->addr)
1843 			__unregister_kprobe_bottom(kps[i]);
1844 }
1845 EXPORT_SYMBOL_GPL(unregister_kprobes);
1846 
1847 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1848 					unsigned long val, void *data)
1849 {
1850 	return NOTIFY_DONE;
1851 }
1852 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1853 
1854 static struct notifier_block kprobe_exceptions_nb = {
1855 	.notifier_call = kprobe_exceptions_notify,
1856 	.priority = 0x7fffffff /* we need to be notified first */
1857 };
1858 
1859 unsigned long __weak arch_deref_entry_point(void *entry)
1860 {
1861 	return (unsigned long)entry;
1862 }
1863 
1864 #ifdef CONFIG_KRETPROBES
1865 
1866 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1867 					     void *trampoline_address,
1868 					     void *frame_pointer)
1869 {
1870 	kprobe_opcode_t *correct_ret_addr = NULL;
1871 	struct kretprobe_instance *ri = NULL;
1872 	struct llist_node *first, *node;
1873 	struct kretprobe *rp;
1874 
1875 	/* Find all nodes for this frame. */
1876 	first = node = current->kretprobe_instances.first;
1877 	while (node) {
1878 		ri = container_of(node, struct kretprobe_instance, llist);
1879 
1880 		BUG_ON(ri->fp != frame_pointer);
1881 
1882 		if (ri->ret_addr != trampoline_address) {
1883 			correct_ret_addr = ri->ret_addr;
1884 			/*
1885 			 * This is the real return address. Any other
1886 			 * instances associated with this task are for
1887 			 * other calls deeper on the call stack
1888 			 */
1889 			goto found;
1890 		}
1891 
1892 		node = node->next;
1893 	}
1894 	pr_err("Oops! Kretprobe fails to find correct return address.\n");
1895 	BUG_ON(1);
1896 
1897 found:
1898 	/* Unlink all nodes for this frame. */
1899 	current->kretprobe_instances.first = node->next;
1900 	node->next = NULL;
1901 
1902 	/* Run them..  */
1903 	while (first) {
1904 		ri = container_of(first, struct kretprobe_instance, llist);
1905 		first = first->next;
1906 
1907 		rp = get_kretprobe(ri);
1908 		if (rp && rp->handler) {
1909 			struct kprobe *prev = kprobe_running();
1910 
1911 			__this_cpu_write(current_kprobe, &rp->kp);
1912 			ri->ret_addr = correct_ret_addr;
1913 			rp->handler(ri, regs);
1914 			__this_cpu_write(current_kprobe, prev);
1915 		}
1916 
1917 		recycle_rp_inst(ri);
1918 	}
1919 
1920 	return (unsigned long)correct_ret_addr;
1921 }
1922 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
1923 
1924 /*
1925  * This kprobe pre_handler is registered with every kretprobe. When probe
1926  * hits it will set up the return probe.
1927  */
1928 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1929 {
1930 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1931 	struct kretprobe_instance *ri;
1932 	struct freelist_node *fn;
1933 
1934 	fn = freelist_try_get(&rp->freelist);
1935 	if (!fn) {
1936 		rp->nmissed++;
1937 		return 0;
1938 	}
1939 
1940 	ri = container_of(fn, struct kretprobe_instance, freelist);
1941 
1942 	if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1943 		freelist_add(&ri->freelist, &rp->freelist);
1944 		return 0;
1945 	}
1946 
1947 	arch_prepare_kretprobe(ri, regs);
1948 
1949 	__llist_add(&ri->llist, &current->kretprobe_instances);
1950 
1951 	return 0;
1952 }
1953 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1954 
1955 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1956 {
1957 	return !offset;
1958 }
1959 
1960 /**
1961  * kprobe_on_func_entry() -- check whether given address is function entry
1962  * @addr: Target address
1963  * @sym:  Target symbol name
1964  * @offset: The offset from the symbol or the address
1965  *
1966  * This checks whether the given @addr+@offset or @sym+@offset is on the
1967  * function entry address or not.
1968  * This returns 0 if it is the function entry, or -EINVAL if it is not.
1969  * And also it returns -ENOENT if it fails the symbol or address lookup.
1970  * Caller must pass @addr or @sym (either one must be NULL), or this
1971  * returns -EINVAL.
1972  */
1973 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1974 {
1975 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1976 
1977 	if (IS_ERR(kp_addr))
1978 		return PTR_ERR(kp_addr);
1979 
1980 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1981 		return -ENOENT;
1982 
1983 	if (!arch_kprobe_on_func_entry(offset))
1984 		return -EINVAL;
1985 
1986 	return 0;
1987 }
1988 
1989 int register_kretprobe(struct kretprobe *rp)
1990 {
1991 	int ret;
1992 	struct kretprobe_instance *inst;
1993 	int i;
1994 	void *addr;
1995 
1996 	ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
1997 	if (ret)
1998 		return ret;
1999 
2000 	/* If only rp->kp.addr is specified, check reregistering kprobes */
2001 	if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2002 		return -EINVAL;
2003 
2004 	if (kretprobe_blacklist_size) {
2005 		addr = kprobe_addr(&rp->kp);
2006 		if (IS_ERR(addr))
2007 			return PTR_ERR(addr);
2008 
2009 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2010 			if (kretprobe_blacklist[i].addr == addr)
2011 				return -EINVAL;
2012 		}
2013 	}
2014 
2015 	rp->kp.pre_handler = pre_handler_kretprobe;
2016 	rp->kp.post_handler = NULL;
2017 	rp->kp.fault_handler = NULL;
2018 
2019 	/* Pre-allocate memory for max kretprobe instances */
2020 	if (rp->maxactive <= 0) {
2021 #ifdef CONFIG_PREEMPTION
2022 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2023 #else
2024 		rp->maxactive = num_possible_cpus();
2025 #endif
2026 	}
2027 	rp->freelist.head = NULL;
2028 	rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2029 	if (!rp->rph)
2030 		return -ENOMEM;
2031 
2032 	rp->rph->rp = rp;
2033 	for (i = 0; i < rp->maxactive; i++) {
2034 		inst = kzalloc(sizeof(struct kretprobe_instance) +
2035 			       rp->data_size, GFP_KERNEL);
2036 		if (inst == NULL) {
2037 			refcount_set(&rp->rph->ref, i);
2038 			free_rp_inst(rp);
2039 			return -ENOMEM;
2040 		}
2041 		inst->rph = rp->rph;
2042 		freelist_add(&inst->freelist, &rp->freelist);
2043 	}
2044 	refcount_set(&rp->rph->ref, i);
2045 
2046 	rp->nmissed = 0;
2047 	/* Establish function entry probe point */
2048 	ret = register_kprobe(&rp->kp);
2049 	if (ret != 0)
2050 		free_rp_inst(rp);
2051 	return ret;
2052 }
2053 EXPORT_SYMBOL_GPL(register_kretprobe);
2054 
2055 int register_kretprobes(struct kretprobe **rps, int num)
2056 {
2057 	int ret = 0, i;
2058 
2059 	if (num <= 0)
2060 		return -EINVAL;
2061 	for (i = 0; i < num; i++) {
2062 		ret = register_kretprobe(rps[i]);
2063 		if (ret < 0) {
2064 			if (i > 0)
2065 				unregister_kretprobes(rps, i);
2066 			break;
2067 		}
2068 	}
2069 	return ret;
2070 }
2071 EXPORT_SYMBOL_GPL(register_kretprobes);
2072 
2073 void unregister_kretprobe(struct kretprobe *rp)
2074 {
2075 	unregister_kretprobes(&rp, 1);
2076 }
2077 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2078 
2079 void unregister_kretprobes(struct kretprobe **rps, int num)
2080 {
2081 	int i;
2082 
2083 	if (num <= 0)
2084 		return;
2085 	mutex_lock(&kprobe_mutex);
2086 	for (i = 0; i < num; i++) {
2087 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2088 			rps[i]->kp.addr = NULL;
2089 		rps[i]->rph->rp = NULL;
2090 	}
2091 	mutex_unlock(&kprobe_mutex);
2092 
2093 	synchronize_rcu();
2094 	for (i = 0; i < num; i++) {
2095 		if (rps[i]->kp.addr) {
2096 			__unregister_kprobe_bottom(&rps[i]->kp);
2097 			free_rp_inst(rps[i]);
2098 		}
2099 	}
2100 }
2101 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2102 
2103 #else /* CONFIG_KRETPROBES */
2104 int register_kretprobe(struct kretprobe *rp)
2105 {
2106 	return -ENOSYS;
2107 }
2108 EXPORT_SYMBOL_GPL(register_kretprobe);
2109 
2110 int register_kretprobes(struct kretprobe **rps, int num)
2111 {
2112 	return -ENOSYS;
2113 }
2114 EXPORT_SYMBOL_GPL(register_kretprobes);
2115 
2116 void unregister_kretprobe(struct kretprobe *rp)
2117 {
2118 }
2119 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2120 
2121 void unregister_kretprobes(struct kretprobe **rps, int num)
2122 {
2123 }
2124 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2125 
2126 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2127 {
2128 	return 0;
2129 }
2130 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2131 
2132 #endif /* CONFIG_KRETPROBES */
2133 
2134 /* Set the kprobe gone and remove its instruction buffer. */
2135 static void kill_kprobe(struct kprobe *p)
2136 {
2137 	struct kprobe *kp;
2138 
2139 	lockdep_assert_held(&kprobe_mutex);
2140 
2141 	p->flags |= KPROBE_FLAG_GONE;
2142 	if (kprobe_aggrprobe(p)) {
2143 		/*
2144 		 * If this is an aggr_kprobe, we have to list all the
2145 		 * chained probes and mark them GONE.
2146 		 */
2147 		list_for_each_entry(kp, &p->list, list)
2148 			kp->flags |= KPROBE_FLAG_GONE;
2149 		p->post_handler = NULL;
2150 		kill_optimized_kprobe(p);
2151 	}
2152 	/*
2153 	 * Here, we can remove insn_slot safely, because no thread calls
2154 	 * the original probed function (which will be freed soon) any more.
2155 	 */
2156 	arch_remove_kprobe(p);
2157 
2158 	/*
2159 	 * The module is going away. We should disarm the kprobe which
2160 	 * is using ftrace, because ftrace framework is still available at
2161 	 * MODULE_STATE_GOING notification.
2162 	 */
2163 	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2164 		disarm_kprobe_ftrace(p);
2165 }
2166 
2167 /* Disable one kprobe */
2168 int disable_kprobe(struct kprobe *kp)
2169 {
2170 	int ret = 0;
2171 	struct kprobe *p;
2172 
2173 	mutex_lock(&kprobe_mutex);
2174 
2175 	/* Disable this kprobe */
2176 	p = __disable_kprobe(kp);
2177 	if (IS_ERR(p))
2178 		ret = PTR_ERR(p);
2179 
2180 	mutex_unlock(&kprobe_mutex);
2181 	return ret;
2182 }
2183 EXPORT_SYMBOL_GPL(disable_kprobe);
2184 
2185 /* Enable one kprobe */
2186 int enable_kprobe(struct kprobe *kp)
2187 {
2188 	int ret = 0;
2189 	struct kprobe *p;
2190 
2191 	mutex_lock(&kprobe_mutex);
2192 
2193 	/* Check whether specified probe is valid. */
2194 	p = __get_valid_kprobe(kp);
2195 	if (unlikely(p == NULL)) {
2196 		ret = -EINVAL;
2197 		goto out;
2198 	}
2199 
2200 	if (kprobe_gone(kp)) {
2201 		/* This kprobe has gone, we couldn't enable it. */
2202 		ret = -EINVAL;
2203 		goto out;
2204 	}
2205 
2206 	if (p != kp)
2207 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2208 
2209 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2210 		p->flags &= ~KPROBE_FLAG_DISABLED;
2211 		ret = arm_kprobe(p);
2212 		if (ret)
2213 			p->flags |= KPROBE_FLAG_DISABLED;
2214 	}
2215 out:
2216 	mutex_unlock(&kprobe_mutex);
2217 	return ret;
2218 }
2219 EXPORT_SYMBOL_GPL(enable_kprobe);
2220 
2221 /* Caller must NOT call this in usual path. This is only for critical case */
2222 void dump_kprobe(struct kprobe *kp)
2223 {
2224 	pr_err("Dumping kprobe:\n");
2225 	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2226 	       kp->symbol_name, kp->offset, kp->addr);
2227 }
2228 NOKPROBE_SYMBOL(dump_kprobe);
2229 
2230 int kprobe_add_ksym_blacklist(unsigned long entry)
2231 {
2232 	struct kprobe_blacklist_entry *ent;
2233 	unsigned long offset = 0, size = 0;
2234 
2235 	if (!kernel_text_address(entry) ||
2236 	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2237 		return -EINVAL;
2238 
2239 	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2240 	if (!ent)
2241 		return -ENOMEM;
2242 	ent->start_addr = entry;
2243 	ent->end_addr = entry + size;
2244 	INIT_LIST_HEAD(&ent->list);
2245 	list_add_tail(&ent->list, &kprobe_blacklist);
2246 
2247 	return (int)size;
2248 }
2249 
2250 /* Add all symbols in given area into kprobe blacklist */
2251 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2252 {
2253 	unsigned long entry;
2254 	int ret = 0;
2255 
2256 	for (entry = start; entry < end; entry += ret) {
2257 		ret = kprobe_add_ksym_blacklist(entry);
2258 		if (ret < 0)
2259 			return ret;
2260 		if (ret == 0)	/* In case of alias symbol */
2261 			ret = 1;
2262 	}
2263 	return 0;
2264 }
2265 
2266 /* Remove all symbols in given area from kprobe blacklist */
2267 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2268 {
2269 	struct kprobe_blacklist_entry *ent, *n;
2270 
2271 	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2272 		if (ent->start_addr < start || ent->start_addr >= end)
2273 			continue;
2274 		list_del(&ent->list);
2275 		kfree(ent);
2276 	}
2277 }
2278 
2279 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2280 {
2281 	kprobe_remove_area_blacklist(entry, entry + 1);
2282 }
2283 
2284 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2285 				   char *type, char *sym)
2286 {
2287 	return -ERANGE;
2288 }
2289 
2290 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2291 		       char *sym)
2292 {
2293 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2294 	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2295 		return 0;
2296 #ifdef CONFIG_OPTPROBES
2297 	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2298 		return 0;
2299 #endif
2300 #endif
2301 	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2302 		return 0;
2303 	return -ERANGE;
2304 }
2305 
2306 int __init __weak arch_populate_kprobe_blacklist(void)
2307 {
2308 	return 0;
2309 }
2310 
2311 /*
2312  * Lookup and populate the kprobe_blacklist.
2313  *
2314  * Unlike the kretprobe blacklist, we'll need to determine
2315  * the range of addresses that belong to the said functions,
2316  * since a kprobe need not necessarily be at the beginning
2317  * of a function.
2318  */
2319 static int __init populate_kprobe_blacklist(unsigned long *start,
2320 					     unsigned long *end)
2321 {
2322 	unsigned long entry;
2323 	unsigned long *iter;
2324 	int ret;
2325 
2326 	for (iter = start; iter < end; iter++) {
2327 		entry = arch_deref_entry_point((void *)*iter);
2328 		ret = kprobe_add_ksym_blacklist(entry);
2329 		if (ret == -EINVAL)
2330 			continue;
2331 		if (ret < 0)
2332 			return ret;
2333 	}
2334 
2335 	/* Symbols in __kprobes_text are blacklisted */
2336 	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2337 					(unsigned long)__kprobes_text_end);
2338 	if (ret)
2339 		return ret;
2340 
2341 	/* Symbols in noinstr section are blacklisted */
2342 	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2343 					(unsigned long)__noinstr_text_end);
2344 
2345 	return ret ? : arch_populate_kprobe_blacklist();
2346 }
2347 
2348 static void add_module_kprobe_blacklist(struct module *mod)
2349 {
2350 	unsigned long start, end;
2351 	int i;
2352 
2353 	if (mod->kprobe_blacklist) {
2354 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2355 			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2356 	}
2357 
2358 	start = (unsigned long)mod->kprobes_text_start;
2359 	if (start) {
2360 		end = start + mod->kprobes_text_size;
2361 		kprobe_add_area_blacklist(start, end);
2362 	}
2363 
2364 	start = (unsigned long)mod->noinstr_text_start;
2365 	if (start) {
2366 		end = start + mod->noinstr_text_size;
2367 		kprobe_add_area_blacklist(start, end);
2368 	}
2369 }
2370 
2371 static void remove_module_kprobe_blacklist(struct module *mod)
2372 {
2373 	unsigned long start, end;
2374 	int i;
2375 
2376 	if (mod->kprobe_blacklist) {
2377 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2378 			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2379 	}
2380 
2381 	start = (unsigned long)mod->kprobes_text_start;
2382 	if (start) {
2383 		end = start + mod->kprobes_text_size;
2384 		kprobe_remove_area_blacklist(start, end);
2385 	}
2386 
2387 	start = (unsigned long)mod->noinstr_text_start;
2388 	if (start) {
2389 		end = start + mod->noinstr_text_size;
2390 		kprobe_remove_area_blacklist(start, end);
2391 	}
2392 }
2393 
2394 /* Module notifier call back, checking kprobes on the module */
2395 static int kprobes_module_callback(struct notifier_block *nb,
2396 				   unsigned long val, void *data)
2397 {
2398 	struct module *mod = data;
2399 	struct hlist_head *head;
2400 	struct kprobe *p;
2401 	unsigned int i;
2402 	int checkcore = (val == MODULE_STATE_GOING);
2403 
2404 	if (val == MODULE_STATE_COMING) {
2405 		mutex_lock(&kprobe_mutex);
2406 		add_module_kprobe_blacklist(mod);
2407 		mutex_unlock(&kprobe_mutex);
2408 	}
2409 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2410 		return NOTIFY_DONE;
2411 
2412 	/*
2413 	 * When MODULE_STATE_GOING was notified, both of module .text and
2414 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2415 	 * notified, only .init.text section would be freed. We need to
2416 	 * disable kprobes which have been inserted in the sections.
2417 	 */
2418 	mutex_lock(&kprobe_mutex);
2419 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2420 		head = &kprobe_table[i];
2421 		hlist_for_each_entry(p, head, hlist)
2422 			if (within_module_init((unsigned long)p->addr, mod) ||
2423 			    (checkcore &&
2424 			     within_module_core((unsigned long)p->addr, mod))) {
2425 				/*
2426 				 * The vaddr this probe is installed will soon
2427 				 * be vfreed buy not synced to disk. Hence,
2428 				 * disarming the breakpoint isn't needed.
2429 				 *
2430 				 * Note, this will also move any optimized probes
2431 				 * that are pending to be removed from their
2432 				 * corresponding lists to the freeing_list and
2433 				 * will not be touched by the delayed
2434 				 * kprobe_optimizer work handler.
2435 				 */
2436 				kill_kprobe(p);
2437 			}
2438 	}
2439 	if (val == MODULE_STATE_GOING)
2440 		remove_module_kprobe_blacklist(mod);
2441 	mutex_unlock(&kprobe_mutex);
2442 	return NOTIFY_DONE;
2443 }
2444 
2445 static struct notifier_block kprobe_module_nb = {
2446 	.notifier_call = kprobes_module_callback,
2447 	.priority = 0
2448 };
2449 
2450 /* Markers of _kprobe_blacklist section */
2451 extern unsigned long __start_kprobe_blacklist[];
2452 extern unsigned long __stop_kprobe_blacklist[];
2453 
2454 void kprobe_free_init_mem(void)
2455 {
2456 	void *start = (void *)(&__init_begin);
2457 	void *end = (void *)(&__init_end);
2458 	struct hlist_head *head;
2459 	struct kprobe *p;
2460 	int i;
2461 
2462 	mutex_lock(&kprobe_mutex);
2463 
2464 	/* Kill all kprobes on initmem */
2465 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2466 		head = &kprobe_table[i];
2467 		hlist_for_each_entry(p, head, hlist) {
2468 			if (start <= (void *)p->addr && (void *)p->addr < end)
2469 				kill_kprobe(p);
2470 		}
2471 	}
2472 
2473 	mutex_unlock(&kprobe_mutex);
2474 }
2475 
2476 static int __init init_kprobes(void)
2477 {
2478 	int i, err = 0;
2479 
2480 	/* FIXME allocate the probe table, currently defined statically */
2481 	/* initialize all list heads */
2482 	for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2483 		INIT_HLIST_HEAD(&kprobe_table[i]);
2484 
2485 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2486 					__stop_kprobe_blacklist);
2487 	if (err) {
2488 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2489 		pr_err("Please take care of using kprobes.\n");
2490 	}
2491 
2492 	if (kretprobe_blacklist_size) {
2493 		/* lookup the function address from its name */
2494 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2495 			kretprobe_blacklist[i].addr =
2496 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2497 			if (!kretprobe_blacklist[i].addr)
2498 				printk("kretprobe: lookup failed: %s\n",
2499 				       kretprobe_blacklist[i].name);
2500 		}
2501 	}
2502 
2503 	/* By default, kprobes are armed */
2504 	kprobes_all_disarmed = false;
2505 
2506 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2507 	/* Init kprobe_optinsn_slots for allocation */
2508 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2509 #endif
2510 
2511 	err = arch_init_kprobes();
2512 	if (!err)
2513 		err = register_die_notifier(&kprobe_exceptions_nb);
2514 	if (!err)
2515 		err = register_module_notifier(&kprobe_module_nb);
2516 
2517 	kprobes_initialized = (err == 0);
2518 
2519 	if (!err)
2520 		init_test_probes();
2521 	return err;
2522 }
2523 early_initcall(init_kprobes);
2524 
2525 #if defined(CONFIG_OPTPROBES)
2526 static int __init init_optprobes(void)
2527 {
2528 	/*
2529 	 * Enable kprobe optimization - this kicks the optimizer which
2530 	 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2531 	 * not spawned in early initcall. So delay the optimization.
2532 	 */
2533 	optimize_all_kprobes();
2534 
2535 	return 0;
2536 }
2537 subsys_initcall(init_optprobes);
2538 #endif
2539 
2540 #ifdef CONFIG_DEBUG_FS
2541 static void report_probe(struct seq_file *pi, struct kprobe *p,
2542 		const char *sym, int offset, char *modname, struct kprobe *pp)
2543 {
2544 	char *kprobe_type;
2545 	void *addr = p->addr;
2546 
2547 	if (p->pre_handler == pre_handler_kretprobe)
2548 		kprobe_type = "r";
2549 	else
2550 		kprobe_type = "k";
2551 
2552 	if (!kallsyms_show_value(pi->file->f_cred))
2553 		addr = NULL;
2554 
2555 	if (sym)
2556 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2557 			addr, kprobe_type, sym, offset,
2558 			(modname ? modname : " "));
2559 	else	/* try to use %pS */
2560 		seq_printf(pi, "%px  %s  %pS ",
2561 			addr, kprobe_type, p->addr);
2562 
2563 	if (!pp)
2564 		pp = p;
2565 	seq_printf(pi, "%s%s%s%s\n",
2566 		(kprobe_gone(p) ? "[GONE]" : ""),
2567 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2568 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2569 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2570 }
2571 
2572 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2573 {
2574 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2575 }
2576 
2577 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2578 {
2579 	(*pos)++;
2580 	if (*pos >= KPROBE_TABLE_SIZE)
2581 		return NULL;
2582 	return pos;
2583 }
2584 
2585 static void kprobe_seq_stop(struct seq_file *f, void *v)
2586 {
2587 	/* Nothing to do */
2588 }
2589 
2590 static int show_kprobe_addr(struct seq_file *pi, void *v)
2591 {
2592 	struct hlist_head *head;
2593 	struct kprobe *p, *kp;
2594 	const char *sym = NULL;
2595 	unsigned int i = *(loff_t *) v;
2596 	unsigned long offset = 0;
2597 	char *modname, namebuf[KSYM_NAME_LEN];
2598 
2599 	head = &kprobe_table[i];
2600 	preempt_disable();
2601 	hlist_for_each_entry_rcu(p, head, hlist) {
2602 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2603 					&offset, &modname, namebuf);
2604 		if (kprobe_aggrprobe(p)) {
2605 			list_for_each_entry_rcu(kp, &p->list, list)
2606 				report_probe(pi, kp, sym, offset, modname, p);
2607 		} else
2608 			report_probe(pi, p, sym, offset, modname, NULL);
2609 	}
2610 	preempt_enable();
2611 	return 0;
2612 }
2613 
2614 static const struct seq_operations kprobes_sops = {
2615 	.start = kprobe_seq_start,
2616 	.next  = kprobe_seq_next,
2617 	.stop  = kprobe_seq_stop,
2618 	.show  = show_kprobe_addr
2619 };
2620 
2621 DEFINE_SEQ_ATTRIBUTE(kprobes);
2622 
2623 /* kprobes/blacklist -- shows which functions can not be probed */
2624 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2625 {
2626 	mutex_lock(&kprobe_mutex);
2627 	return seq_list_start(&kprobe_blacklist, *pos);
2628 }
2629 
2630 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2631 {
2632 	return seq_list_next(v, &kprobe_blacklist, pos);
2633 }
2634 
2635 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2636 {
2637 	struct kprobe_blacklist_entry *ent =
2638 		list_entry(v, struct kprobe_blacklist_entry, list);
2639 
2640 	/*
2641 	 * If /proc/kallsyms is not showing kernel address, we won't
2642 	 * show them here either.
2643 	 */
2644 	if (!kallsyms_show_value(m->file->f_cred))
2645 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2646 			   (void *)ent->start_addr);
2647 	else
2648 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2649 			   (void *)ent->end_addr, (void *)ent->start_addr);
2650 	return 0;
2651 }
2652 
2653 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2654 {
2655 	mutex_unlock(&kprobe_mutex);
2656 }
2657 
2658 static const struct seq_operations kprobe_blacklist_sops = {
2659 	.start = kprobe_blacklist_seq_start,
2660 	.next  = kprobe_blacklist_seq_next,
2661 	.stop  = kprobe_blacklist_seq_stop,
2662 	.show  = kprobe_blacklist_seq_show,
2663 };
2664 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2665 
2666 static int arm_all_kprobes(void)
2667 {
2668 	struct hlist_head *head;
2669 	struct kprobe *p;
2670 	unsigned int i, total = 0, errors = 0;
2671 	int err, ret = 0;
2672 
2673 	mutex_lock(&kprobe_mutex);
2674 
2675 	/* If kprobes are armed, just return */
2676 	if (!kprobes_all_disarmed)
2677 		goto already_enabled;
2678 
2679 	/*
2680 	 * optimize_kprobe() called by arm_kprobe() checks
2681 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2682 	 * arm_kprobe.
2683 	 */
2684 	kprobes_all_disarmed = false;
2685 	/* Arming kprobes doesn't optimize kprobe itself */
2686 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2687 		head = &kprobe_table[i];
2688 		/* Arm all kprobes on a best-effort basis */
2689 		hlist_for_each_entry(p, head, hlist) {
2690 			if (!kprobe_disabled(p)) {
2691 				err = arm_kprobe(p);
2692 				if (err)  {
2693 					errors++;
2694 					ret = err;
2695 				}
2696 				total++;
2697 			}
2698 		}
2699 	}
2700 
2701 	if (errors)
2702 		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2703 			errors, total);
2704 	else
2705 		pr_info("Kprobes globally enabled\n");
2706 
2707 already_enabled:
2708 	mutex_unlock(&kprobe_mutex);
2709 	return ret;
2710 }
2711 
2712 static int disarm_all_kprobes(void)
2713 {
2714 	struct hlist_head *head;
2715 	struct kprobe *p;
2716 	unsigned int i, total = 0, errors = 0;
2717 	int err, ret = 0;
2718 
2719 	mutex_lock(&kprobe_mutex);
2720 
2721 	/* If kprobes are already disarmed, just return */
2722 	if (kprobes_all_disarmed) {
2723 		mutex_unlock(&kprobe_mutex);
2724 		return 0;
2725 	}
2726 
2727 	kprobes_all_disarmed = true;
2728 
2729 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2730 		head = &kprobe_table[i];
2731 		/* Disarm all kprobes on a best-effort basis */
2732 		hlist_for_each_entry(p, head, hlist) {
2733 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2734 				err = disarm_kprobe(p, false);
2735 				if (err) {
2736 					errors++;
2737 					ret = err;
2738 				}
2739 				total++;
2740 			}
2741 		}
2742 	}
2743 
2744 	if (errors)
2745 		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2746 			errors, total);
2747 	else
2748 		pr_info("Kprobes globally disabled\n");
2749 
2750 	mutex_unlock(&kprobe_mutex);
2751 
2752 	/* Wait for disarming all kprobes by optimizer */
2753 	wait_for_kprobe_optimizer();
2754 
2755 	return ret;
2756 }
2757 
2758 /*
2759  * XXX: The debugfs bool file interface doesn't allow for callbacks
2760  * when the bool state is switched. We can reuse that facility when
2761  * available
2762  */
2763 static ssize_t read_enabled_file_bool(struct file *file,
2764 	       char __user *user_buf, size_t count, loff_t *ppos)
2765 {
2766 	char buf[3];
2767 
2768 	if (!kprobes_all_disarmed)
2769 		buf[0] = '1';
2770 	else
2771 		buf[0] = '0';
2772 	buf[1] = '\n';
2773 	buf[2] = 0x00;
2774 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2775 }
2776 
2777 static ssize_t write_enabled_file_bool(struct file *file,
2778 	       const char __user *user_buf, size_t count, loff_t *ppos)
2779 {
2780 	char buf[32];
2781 	size_t buf_size;
2782 	int ret = 0;
2783 
2784 	buf_size = min(count, (sizeof(buf)-1));
2785 	if (copy_from_user(buf, user_buf, buf_size))
2786 		return -EFAULT;
2787 
2788 	buf[buf_size] = '\0';
2789 	switch (buf[0]) {
2790 	case 'y':
2791 	case 'Y':
2792 	case '1':
2793 		ret = arm_all_kprobes();
2794 		break;
2795 	case 'n':
2796 	case 'N':
2797 	case '0':
2798 		ret = disarm_all_kprobes();
2799 		break;
2800 	default:
2801 		return -EINVAL;
2802 	}
2803 
2804 	if (ret)
2805 		return ret;
2806 
2807 	return count;
2808 }
2809 
2810 static const struct file_operations fops_kp = {
2811 	.read =         read_enabled_file_bool,
2812 	.write =        write_enabled_file_bool,
2813 	.llseek =	default_llseek,
2814 };
2815 
2816 static int __init debugfs_kprobe_init(void)
2817 {
2818 	struct dentry *dir;
2819 	unsigned int value = 1;
2820 
2821 	dir = debugfs_create_dir("kprobes", NULL);
2822 
2823 	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2824 
2825 	debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2826 
2827 	debugfs_create_file("blacklist", 0400, dir, NULL,
2828 			    &kprobe_blacklist_fops);
2829 
2830 	return 0;
2831 }
2832 
2833 late_initcall(debugfs_kprobe_init);
2834 #endif /* CONFIG_DEBUG_FS */
2835