xref: /openbmc/linux/kernel/kprobes.c (revision bcda5fd3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *		Probes initial implementation (includes suggestions from
10  *		Rusty Russell).
11  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *		hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *		interface to access function arguments.
15  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *		exceptions notifier to be first on the priority list.
17  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *		<prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38 #include <linux/static_call.h>
39 #include <linux/perf_event.h>
40 
41 #include <asm/sections.h>
42 #include <asm/cacheflush.h>
43 #include <asm/errno.h>
44 #include <linux/uaccess.h>
45 
46 #define KPROBE_HASH_BITS 6
47 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
48 
49 
50 static int kprobes_initialized;
51 /* kprobe_table can be accessed by
52  * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
53  * Or
54  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
55  */
56 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
57 
58 /* NOTE: change this value only with kprobe_mutex held */
59 static bool kprobes_all_disarmed;
60 
61 /* This protects kprobe_table and optimizing_list */
62 static DEFINE_MUTEX(kprobe_mutex);
63 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
64 
65 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
66 					unsigned int __unused)
67 {
68 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
69 }
70 
71 /* Blacklist -- list of struct kprobe_blacklist_entry */
72 static LIST_HEAD(kprobe_blacklist);
73 
74 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
75 /*
76  * kprobe->ainsn.insn points to the copy of the instruction to be
77  * single-stepped. x86_64, POWER4 and above have no-exec support and
78  * stepping on the instruction on a vmalloced/kmalloced/data page
79  * is a recipe for disaster
80  */
81 struct kprobe_insn_page {
82 	struct list_head list;
83 	kprobe_opcode_t *insns;		/* Page of instruction slots */
84 	struct kprobe_insn_cache *cache;
85 	int nused;
86 	int ngarbage;
87 	char slot_used[];
88 };
89 
90 #define KPROBE_INSN_PAGE_SIZE(slots)			\
91 	(offsetof(struct kprobe_insn_page, slot_used) +	\
92 	 (sizeof(char) * (slots)))
93 
94 static int slots_per_page(struct kprobe_insn_cache *c)
95 {
96 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
97 }
98 
99 enum kprobe_slot_state {
100 	SLOT_CLEAN = 0,
101 	SLOT_DIRTY = 1,
102 	SLOT_USED = 2,
103 };
104 
105 void __weak *alloc_insn_page(void)
106 {
107 	return module_alloc(PAGE_SIZE);
108 }
109 
110 static void free_insn_page(void *page)
111 {
112 	module_memfree(page);
113 }
114 
115 struct kprobe_insn_cache kprobe_insn_slots = {
116 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
117 	.alloc = alloc_insn_page,
118 	.free = free_insn_page,
119 	.sym = KPROBE_INSN_PAGE_SYM,
120 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
121 	.insn_size = MAX_INSN_SIZE,
122 	.nr_garbage = 0,
123 };
124 static int collect_garbage_slots(struct kprobe_insn_cache *c);
125 
126 /**
127  * __get_insn_slot() - Find a slot on an executable page for an instruction.
128  * We allocate an executable page if there's no room on existing ones.
129  */
130 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
131 {
132 	struct kprobe_insn_page *kip;
133 	kprobe_opcode_t *slot = NULL;
134 
135 	/* Since the slot array is not protected by rcu, we need a mutex */
136 	mutex_lock(&c->mutex);
137  retry:
138 	rcu_read_lock();
139 	list_for_each_entry_rcu(kip, &c->pages, list) {
140 		if (kip->nused < slots_per_page(c)) {
141 			int i;
142 			for (i = 0; i < slots_per_page(c); i++) {
143 				if (kip->slot_used[i] == SLOT_CLEAN) {
144 					kip->slot_used[i] = SLOT_USED;
145 					kip->nused++;
146 					slot = kip->insns + (i * c->insn_size);
147 					rcu_read_unlock();
148 					goto out;
149 				}
150 			}
151 			/* kip->nused is broken. Fix it. */
152 			kip->nused = slots_per_page(c);
153 			WARN_ON(1);
154 		}
155 	}
156 	rcu_read_unlock();
157 
158 	/* If there are any garbage slots, collect it and try again. */
159 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
160 		goto retry;
161 
162 	/* All out of space.  Need to allocate a new page. */
163 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
164 	if (!kip)
165 		goto out;
166 
167 	/*
168 	 * Use module_alloc so this page is within +/- 2GB of where the
169 	 * kernel image and loaded module images reside. This is required
170 	 * so x86_64 can correctly handle the %rip-relative fixups.
171 	 */
172 	kip->insns = c->alloc();
173 	if (!kip->insns) {
174 		kfree(kip);
175 		goto out;
176 	}
177 	INIT_LIST_HEAD(&kip->list);
178 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
179 	kip->slot_used[0] = SLOT_USED;
180 	kip->nused = 1;
181 	kip->ngarbage = 0;
182 	kip->cache = c;
183 	list_add_rcu(&kip->list, &c->pages);
184 	slot = kip->insns;
185 
186 	/* Record the perf ksymbol register event after adding the page */
187 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
188 			   PAGE_SIZE, false, c->sym);
189 out:
190 	mutex_unlock(&c->mutex);
191 	return slot;
192 }
193 
194 /* Return 1 if all garbages are collected, otherwise 0. */
195 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
196 {
197 	kip->slot_used[idx] = SLOT_CLEAN;
198 	kip->nused--;
199 	if (kip->nused == 0) {
200 		/*
201 		 * Page is no longer in use.  Free it unless
202 		 * it's the last one.  We keep the last one
203 		 * so as not to have to set it up again the
204 		 * next time somebody inserts a probe.
205 		 */
206 		if (!list_is_singular(&kip->list)) {
207 			/*
208 			 * Record perf ksymbol unregister event before removing
209 			 * the page.
210 			 */
211 			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
212 					   (unsigned long)kip->insns, PAGE_SIZE, true,
213 					   kip->cache->sym);
214 			list_del_rcu(&kip->list);
215 			synchronize_rcu();
216 			kip->cache->free(kip->insns);
217 			kfree(kip);
218 		}
219 		return 1;
220 	}
221 	return 0;
222 }
223 
224 static int collect_garbage_slots(struct kprobe_insn_cache *c)
225 {
226 	struct kprobe_insn_page *kip, *next;
227 
228 	/* Ensure no-one is interrupted on the garbages */
229 	synchronize_rcu();
230 
231 	list_for_each_entry_safe(kip, next, &c->pages, list) {
232 		int i;
233 		if (kip->ngarbage == 0)
234 			continue;
235 		kip->ngarbage = 0;	/* we will collect all garbages */
236 		for (i = 0; i < slots_per_page(c); i++) {
237 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
238 				break;
239 		}
240 	}
241 	c->nr_garbage = 0;
242 	return 0;
243 }
244 
245 void __free_insn_slot(struct kprobe_insn_cache *c,
246 		      kprobe_opcode_t *slot, int dirty)
247 {
248 	struct kprobe_insn_page *kip;
249 	long idx;
250 
251 	mutex_lock(&c->mutex);
252 	rcu_read_lock();
253 	list_for_each_entry_rcu(kip, &c->pages, list) {
254 		idx = ((long)slot - (long)kip->insns) /
255 			(c->insn_size * sizeof(kprobe_opcode_t));
256 		if (idx >= 0 && idx < slots_per_page(c))
257 			goto out;
258 	}
259 	/* Could not find this slot. */
260 	WARN_ON(1);
261 	kip = NULL;
262 out:
263 	rcu_read_unlock();
264 	/* Mark and sweep: this may sleep */
265 	if (kip) {
266 		/* Check double free */
267 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
268 		if (dirty) {
269 			kip->slot_used[idx] = SLOT_DIRTY;
270 			kip->ngarbage++;
271 			if (++c->nr_garbage > slots_per_page(c))
272 				collect_garbage_slots(c);
273 		} else {
274 			collect_one_slot(kip, idx);
275 		}
276 	}
277 	mutex_unlock(&c->mutex);
278 }
279 
280 /*
281  * Check given address is on the page of kprobe instruction slots.
282  * This will be used for checking whether the address on a stack
283  * is on a text area or not.
284  */
285 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
286 {
287 	struct kprobe_insn_page *kip;
288 	bool ret = false;
289 
290 	rcu_read_lock();
291 	list_for_each_entry_rcu(kip, &c->pages, list) {
292 		if (addr >= (unsigned long)kip->insns &&
293 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
294 			ret = true;
295 			break;
296 		}
297 	}
298 	rcu_read_unlock();
299 
300 	return ret;
301 }
302 
303 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
304 			     unsigned long *value, char *type, char *sym)
305 {
306 	struct kprobe_insn_page *kip;
307 	int ret = -ERANGE;
308 
309 	rcu_read_lock();
310 	list_for_each_entry_rcu(kip, &c->pages, list) {
311 		if ((*symnum)--)
312 			continue;
313 		strlcpy(sym, c->sym, KSYM_NAME_LEN);
314 		*type = 't';
315 		*value = (unsigned long)kip->insns;
316 		ret = 0;
317 		break;
318 	}
319 	rcu_read_unlock();
320 
321 	return ret;
322 }
323 
324 #ifdef CONFIG_OPTPROBES
325 void __weak *alloc_optinsn_page(void)
326 {
327 	return alloc_insn_page();
328 }
329 
330 void __weak free_optinsn_page(void *page)
331 {
332 	free_insn_page(page);
333 }
334 
335 /* For optimized_kprobe buffer */
336 struct kprobe_insn_cache kprobe_optinsn_slots = {
337 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
338 	.alloc = alloc_optinsn_page,
339 	.free = free_optinsn_page,
340 	.sym = KPROBE_OPTINSN_PAGE_SYM,
341 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
342 	/* .insn_size is initialized later */
343 	.nr_garbage = 0,
344 };
345 #endif
346 #endif
347 
348 /* We have preemption disabled.. so it is safe to use __ versions */
349 static inline void set_kprobe_instance(struct kprobe *kp)
350 {
351 	__this_cpu_write(kprobe_instance, kp);
352 }
353 
354 static inline void reset_kprobe_instance(void)
355 {
356 	__this_cpu_write(kprobe_instance, NULL);
357 }
358 
359 /*
360  * This routine is called either:
361  * 	- under the kprobe_mutex - during kprobe_[un]register()
362  * 				OR
363  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
364  */
365 struct kprobe *get_kprobe(void *addr)
366 {
367 	struct hlist_head *head;
368 	struct kprobe *p;
369 
370 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
371 	hlist_for_each_entry_rcu(p, head, hlist,
372 				 lockdep_is_held(&kprobe_mutex)) {
373 		if (p->addr == addr)
374 			return p;
375 	}
376 
377 	return NULL;
378 }
379 NOKPROBE_SYMBOL(get_kprobe);
380 
381 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
382 
383 /* Return true if the kprobe is an aggregator */
384 static inline int kprobe_aggrprobe(struct kprobe *p)
385 {
386 	return p->pre_handler == aggr_pre_handler;
387 }
388 
389 /* Return true(!0) if the kprobe is unused */
390 static inline int kprobe_unused(struct kprobe *p)
391 {
392 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
393 	       list_empty(&p->list);
394 }
395 
396 /*
397  * Keep all fields in the kprobe consistent
398  */
399 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
400 {
401 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
402 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
403 }
404 
405 #ifdef CONFIG_OPTPROBES
406 /* NOTE: change this value only with kprobe_mutex held */
407 static bool kprobes_allow_optimization;
408 
409 /*
410  * Call all pre_handler on the list, but ignores its return value.
411  * This must be called from arch-dep optimized caller.
412  */
413 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
414 {
415 	struct kprobe *kp;
416 
417 	list_for_each_entry_rcu(kp, &p->list, list) {
418 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
419 			set_kprobe_instance(kp);
420 			kp->pre_handler(kp, regs);
421 		}
422 		reset_kprobe_instance();
423 	}
424 }
425 NOKPROBE_SYMBOL(opt_pre_handler);
426 
427 /* Free optimized instructions and optimized_kprobe */
428 static void free_aggr_kprobe(struct kprobe *p)
429 {
430 	struct optimized_kprobe *op;
431 
432 	op = container_of(p, struct optimized_kprobe, kp);
433 	arch_remove_optimized_kprobe(op);
434 	arch_remove_kprobe(p);
435 	kfree(op);
436 }
437 
438 /* Return true(!0) if the kprobe is ready for optimization. */
439 static inline int kprobe_optready(struct kprobe *p)
440 {
441 	struct optimized_kprobe *op;
442 
443 	if (kprobe_aggrprobe(p)) {
444 		op = container_of(p, struct optimized_kprobe, kp);
445 		return arch_prepared_optinsn(&op->optinsn);
446 	}
447 
448 	return 0;
449 }
450 
451 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
452 static inline int kprobe_disarmed(struct kprobe *p)
453 {
454 	struct optimized_kprobe *op;
455 
456 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
457 	if (!kprobe_aggrprobe(p))
458 		return kprobe_disabled(p);
459 
460 	op = container_of(p, struct optimized_kprobe, kp);
461 
462 	return kprobe_disabled(p) && list_empty(&op->list);
463 }
464 
465 /* Return true(!0) if the probe is queued on (un)optimizing lists */
466 static int kprobe_queued(struct kprobe *p)
467 {
468 	struct optimized_kprobe *op;
469 
470 	if (kprobe_aggrprobe(p)) {
471 		op = container_of(p, struct optimized_kprobe, kp);
472 		if (!list_empty(&op->list))
473 			return 1;
474 	}
475 	return 0;
476 }
477 
478 /*
479  * Return an optimized kprobe whose optimizing code replaces
480  * instructions including addr (exclude breakpoint).
481  */
482 static struct kprobe *get_optimized_kprobe(unsigned long addr)
483 {
484 	int i;
485 	struct kprobe *p = NULL;
486 	struct optimized_kprobe *op;
487 
488 	/* Don't check i == 0, since that is a breakpoint case. */
489 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
490 		p = get_kprobe((void *)(addr - i));
491 
492 	if (p && kprobe_optready(p)) {
493 		op = container_of(p, struct optimized_kprobe, kp);
494 		if (arch_within_optimized_kprobe(op, addr))
495 			return p;
496 	}
497 
498 	return NULL;
499 }
500 
501 /* Optimization staging list, protected by kprobe_mutex */
502 static LIST_HEAD(optimizing_list);
503 static LIST_HEAD(unoptimizing_list);
504 static LIST_HEAD(freeing_list);
505 
506 static void kprobe_optimizer(struct work_struct *work);
507 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
508 #define OPTIMIZE_DELAY 5
509 
510 /*
511  * Optimize (replace a breakpoint with a jump) kprobes listed on
512  * optimizing_list.
513  */
514 static void do_optimize_kprobes(void)
515 {
516 	lockdep_assert_held(&text_mutex);
517 	/*
518 	 * The optimization/unoptimization refers online_cpus via
519 	 * stop_machine() and cpu-hotplug modifies online_cpus.
520 	 * And same time, text_mutex will be held in cpu-hotplug and here.
521 	 * This combination can cause a deadlock (cpu-hotplug try to lock
522 	 * text_mutex but stop_machine can not be done because online_cpus
523 	 * has been changed)
524 	 * To avoid this deadlock, caller must have locked cpu hotplug
525 	 * for preventing cpu-hotplug outside of text_mutex locking.
526 	 */
527 	lockdep_assert_cpus_held();
528 
529 	/* Optimization never be done when disarmed */
530 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
531 	    list_empty(&optimizing_list))
532 		return;
533 
534 	arch_optimize_kprobes(&optimizing_list);
535 }
536 
537 /*
538  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
539  * if need) kprobes listed on unoptimizing_list.
540  */
541 static void do_unoptimize_kprobes(void)
542 {
543 	struct optimized_kprobe *op, *tmp;
544 
545 	lockdep_assert_held(&text_mutex);
546 	/* See comment in do_optimize_kprobes() */
547 	lockdep_assert_cpus_held();
548 
549 	/* Unoptimization must be done anytime */
550 	if (list_empty(&unoptimizing_list))
551 		return;
552 
553 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
554 	/* Loop free_list for disarming */
555 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
556 		/* Switching from detour code to origin */
557 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
558 		/* Disarm probes if marked disabled */
559 		if (kprobe_disabled(&op->kp))
560 			arch_disarm_kprobe(&op->kp);
561 		if (kprobe_unused(&op->kp)) {
562 			/*
563 			 * Remove unused probes from hash list. After waiting
564 			 * for synchronization, these probes are reclaimed.
565 			 * (reclaiming is done by do_free_cleaned_kprobes.)
566 			 */
567 			hlist_del_rcu(&op->kp.hlist);
568 		} else
569 			list_del_init(&op->list);
570 	}
571 }
572 
573 /* Reclaim all kprobes on the free_list */
574 static void do_free_cleaned_kprobes(void)
575 {
576 	struct optimized_kprobe *op, *tmp;
577 
578 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
579 		list_del_init(&op->list);
580 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
581 			/*
582 			 * This must not happen, but if there is a kprobe
583 			 * still in use, keep it on kprobes hash list.
584 			 */
585 			continue;
586 		}
587 		free_aggr_kprobe(&op->kp);
588 	}
589 }
590 
591 /* Start optimizer after OPTIMIZE_DELAY passed */
592 static void kick_kprobe_optimizer(void)
593 {
594 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
595 }
596 
597 /* Kprobe jump optimizer */
598 static void kprobe_optimizer(struct work_struct *work)
599 {
600 	mutex_lock(&kprobe_mutex);
601 	cpus_read_lock();
602 	mutex_lock(&text_mutex);
603 
604 	/*
605 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
606 	 * kprobes before waiting for quiesence period.
607 	 */
608 	do_unoptimize_kprobes();
609 
610 	/*
611 	 * Step 2: Wait for quiesence period to ensure all potentially
612 	 * preempted tasks to have normally scheduled. Because optprobe
613 	 * may modify multiple instructions, there is a chance that Nth
614 	 * instruction is preempted. In that case, such tasks can return
615 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
616 	 * Note that on non-preemptive kernel, this is transparently converted
617 	 * to synchronoze_sched() to wait for all interrupts to have completed.
618 	 */
619 	synchronize_rcu_tasks();
620 
621 	/* Step 3: Optimize kprobes after quiesence period */
622 	do_optimize_kprobes();
623 
624 	/* Step 4: Free cleaned kprobes after quiesence period */
625 	do_free_cleaned_kprobes();
626 
627 	mutex_unlock(&text_mutex);
628 	cpus_read_unlock();
629 
630 	/* Step 5: Kick optimizer again if needed */
631 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
632 		kick_kprobe_optimizer();
633 
634 	mutex_unlock(&kprobe_mutex);
635 }
636 
637 /* Wait for completing optimization and unoptimization */
638 void wait_for_kprobe_optimizer(void)
639 {
640 	mutex_lock(&kprobe_mutex);
641 
642 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
643 		mutex_unlock(&kprobe_mutex);
644 
645 		/* this will also make optimizing_work execute immmediately */
646 		flush_delayed_work(&optimizing_work);
647 		/* @optimizing_work might not have been queued yet, relax */
648 		cpu_relax();
649 
650 		mutex_lock(&kprobe_mutex);
651 	}
652 
653 	mutex_unlock(&kprobe_mutex);
654 }
655 
656 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
657 {
658 	struct optimized_kprobe *_op;
659 
660 	list_for_each_entry(_op, &unoptimizing_list, list) {
661 		if (op == _op)
662 			return true;
663 	}
664 
665 	return false;
666 }
667 
668 /* Optimize kprobe if p is ready to be optimized */
669 static void optimize_kprobe(struct kprobe *p)
670 {
671 	struct optimized_kprobe *op;
672 
673 	/* Check if the kprobe is disabled or not ready for optimization. */
674 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
675 	    (kprobe_disabled(p) || kprobes_all_disarmed))
676 		return;
677 
678 	/* kprobes with post_handler can not be optimized */
679 	if (p->post_handler)
680 		return;
681 
682 	op = container_of(p, struct optimized_kprobe, kp);
683 
684 	/* Check there is no other kprobes at the optimized instructions */
685 	if (arch_check_optimized_kprobe(op) < 0)
686 		return;
687 
688 	/* Check if it is already optimized. */
689 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
690 		if (optprobe_queued_unopt(op)) {
691 			/* This is under unoptimizing. Just dequeue the probe */
692 			list_del_init(&op->list);
693 		}
694 		return;
695 	}
696 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
697 
698 	/* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
699 	if (WARN_ON_ONCE(!list_empty(&op->list)))
700 		return;
701 
702 	list_add(&op->list, &optimizing_list);
703 	kick_kprobe_optimizer();
704 }
705 
706 /* Short cut to direct unoptimizing */
707 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
708 {
709 	lockdep_assert_cpus_held();
710 	arch_unoptimize_kprobe(op);
711 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
712 }
713 
714 /* Unoptimize a kprobe if p is optimized */
715 static void unoptimize_kprobe(struct kprobe *p, bool force)
716 {
717 	struct optimized_kprobe *op;
718 
719 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
720 		return; /* This is not an optprobe nor optimized */
721 
722 	op = container_of(p, struct optimized_kprobe, kp);
723 	if (!kprobe_optimized(p))
724 		return;
725 
726 	if (!list_empty(&op->list)) {
727 		if (optprobe_queued_unopt(op)) {
728 			/* Queued in unoptimizing queue */
729 			if (force) {
730 				/*
731 				 * Forcibly unoptimize the kprobe here, and queue it
732 				 * in the freeing list for release afterwards.
733 				 */
734 				force_unoptimize_kprobe(op);
735 				list_move(&op->list, &freeing_list);
736 			}
737 		} else {
738 			/* Dequeue from the optimizing queue */
739 			list_del_init(&op->list);
740 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
741 		}
742 		return;
743 	}
744 
745 	/* Optimized kprobe case */
746 	if (force) {
747 		/* Forcibly update the code: this is a special case */
748 		force_unoptimize_kprobe(op);
749 	} else {
750 		list_add(&op->list, &unoptimizing_list);
751 		kick_kprobe_optimizer();
752 	}
753 }
754 
755 /* Cancel unoptimizing for reusing */
756 static int reuse_unused_kprobe(struct kprobe *ap)
757 {
758 	struct optimized_kprobe *op;
759 
760 	/*
761 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
762 	 * there is still a relative jump) and disabled.
763 	 */
764 	op = container_of(ap, struct optimized_kprobe, kp);
765 	WARN_ON_ONCE(list_empty(&op->list));
766 	/* Enable the probe again */
767 	ap->flags &= ~KPROBE_FLAG_DISABLED;
768 	/* Optimize it again (remove from op->list) */
769 	if (!kprobe_optready(ap))
770 		return -EINVAL;
771 
772 	optimize_kprobe(ap);
773 	return 0;
774 }
775 
776 /* Remove optimized instructions */
777 static void kill_optimized_kprobe(struct kprobe *p)
778 {
779 	struct optimized_kprobe *op;
780 
781 	op = container_of(p, struct optimized_kprobe, kp);
782 	if (!list_empty(&op->list))
783 		/* Dequeue from the (un)optimization queue */
784 		list_del_init(&op->list);
785 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
786 
787 	if (kprobe_unused(p)) {
788 		/* Enqueue if it is unused */
789 		list_add(&op->list, &freeing_list);
790 		/*
791 		 * Remove unused probes from the hash list. After waiting
792 		 * for synchronization, this probe is reclaimed.
793 		 * (reclaiming is done by do_free_cleaned_kprobes().)
794 		 */
795 		hlist_del_rcu(&op->kp.hlist);
796 	}
797 
798 	/* Don't touch the code, because it is already freed. */
799 	arch_remove_optimized_kprobe(op);
800 }
801 
802 static inline
803 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
804 {
805 	if (!kprobe_ftrace(p))
806 		arch_prepare_optimized_kprobe(op, p);
807 }
808 
809 /* Try to prepare optimized instructions */
810 static void prepare_optimized_kprobe(struct kprobe *p)
811 {
812 	struct optimized_kprobe *op;
813 
814 	op = container_of(p, struct optimized_kprobe, kp);
815 	__prepare_optimized_kprobe(op, p);
816 }
817 
818 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
819 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
820 {
821 	struct optimized_kprobe *op;
822 
823 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
824 	if (!op)
825 		return NULL;
826 
827 	INIT_LIST_HEAD(&op->list);
828 	op->kp.addr = p->addr;
829 	__prepare_optimized_kprobe(op, p);
830 
831 	return &op->kp;
832 }
833 
834 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
835 
836 /*
837  * Prepare an optimized_kprobe and optimize it
838  * NOTE: p must be a normal registered kprobe
839  */
840 static void try_to_optimize_kprobe(struct kprobe *p)
841 {
842 	struct kprobe *ap;
843 	struct optimized_kprobe *op;
844 
845 	/* Impossible to optimize ftrace-based kprobe */
846 	if (kprobe_ftrace(p))
847 		return;
848 
849 	/* For preparing optimization, jump_label_text_reserved() is called */
850 	cpus_read_lock();
851 	jump_label_lock();
852 	mutex_lock(&text_mutex);
853 
854 	ap = alloc_aggr_kprobe(p);
855 	if (!ap)
856 		goto out;
857 
858 	op = container_of(ap, struct optimized_kprobe, kp);
859 	if (!arch_prepared_optinsn(&op->optinsn)) {
860 		/* If failed to setup optimizing, fallback to kprobe */
861 		arch_remove_optimized_kprobe(op);
862 		kfree(op);
863 		goto out;
864 	}
865 
866 	init_aggr_kprobe(ap, p);
867 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
868 
869 out:
870 	mutex_unlock(&text_mutex);
871 	jump_label_unlock();
872 	cpus_read_unlock();
873 }
874 
875 static void optimize_all_kprobes(void)
876 {
877 	struct hlist_head *head;
878 	struct kprobe *p;
879 	unsigned int i;
880 
881 	mutex_lock(&kprobe_mutex);
882 	/* If optimization is already allowed, just return */
883 	if (kprobes_allow_optimization)
884 		goto out;
885 
886 	cpus_read_lock();
887 	kprobes_allow_optimization = true;
888 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
889 		head = &kprobe_table[i];
890 		hlist_for_each_entry(p, head, hlist)
891 			if (!kprobe_disabled(p))
892 				optimize_kprobe(p);
893 	}
894 	cpus_read_unlock();
895 	printk(KERN_INFO "Kprobes globally optimized\n");
896 out:
897 	mutex_unlock(&kprobe_mutex);
898 }
899 
900 #ifdef CONFIG_SYSCTL
901 static void unoptimize_all_kprobes(void)
902 {
903 	struct hlist_head *head;
904 	struct kprobe *p;
905 	unsigned int i;
906 
907 	mutex_lock(&kprobe_mutex);
908 	/* If optimization is already prohibited, just return */
909 	if (!kprobes_allow_optimization) {
910 		mutex_unlock(&kprobe_mutex);
911 		return;
912 	}
913 
914 	cpus_read_lock();
915 	kprobes_allow_optimization = false;
916 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
917 		head = &kprobe_table[i];
918 		hlist_for_each_entry(p, head, hlist) {
919 			if (!kprobe_disabled(p))
920 				unoptimize_kprobe(p, false);
921 		}
922 	}
923 	cpus_read_unlock();
924 	mutex_unlock(&kprobe_mutex);
925 
926 	/* Wait for unoptimizing completion */
927 	wait_for_kprobe_optimizer();
928 	printk(KERN_INFO "Kprobes globally unoptimized\n");
929 }
930 
931 static DEFINE_MUTEX(kprobe_sysctl_mutex);
932 int sysctl_kprobes_optimization;
933 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
934 				      void *buffer, size_t *length,
935 				      loff_t *ppos)
936 {
937 	int ret;
938 
939 	mutex_lock(&kprobe_sysctl_mutex);
940 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
941 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
942 
943 	if (sysctl_kprobes_optimization)
944 		optimize_all_kprobes();
945 	else
946 		unoptimize_all_kprobes();
947 	mutex_unlock(&kprobe_sysctl_mutex);
948 
949 	return ret;
950 }
951 #endif /* CONFIG_SYSCTL */
952 
953 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
954 static void __arm_kprobe(struct kprobe *p)
955 {
956 	struct kprobe *_p;
957 
958 	/* Check collision with other optimized kprobes */
959 	_p = get_optimized_kprobe((unsigned long)p->addr);
960 	if (unlikely(_p))
961 		/* Fallback to unoptimized kprobe */
962 		unoptimize_kprobe(_p, true);
963 
964 	arch_arm_kprobe(p);
965 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
966 }
967 
968 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
969 static void __disarm_kprobe(struct kprobe *p, bool reopt)
970 {
971 	struct kprobe *_p;
972 
973 	/* Try to unoptimize */
974 	unoptimize_kprobe(p, kprobes_all_disarmed);
975 
976 	if (!kprobe_queued(p)) {
977 		arch_disarm_kprobe(p);
978 		/* If another kprobe was blocked, optimize it. */
979 		_p = get_optimized_kprobe((unsigned long)p->addr);
980 		if (unlikely(_p) && reopt)
981 			optimize_kprobe(_p);
982 	}
983 	/* TODO: reoptimize others after unoptimized this probe */
984 }
985 
986 #else /* !CONFIG_OPTPROBES */
987 
988 #define optimize_kprobe(p)			do {} while (0)
989 #define unoptimize_kprobe(p, f)			do {} while (0)
990 #define kill_optimized_kprobe(p)		do {} while (0)
991 #define prepare_optimized_kprobe(p)		do {} while (0)
992 #define try_to_optimize_kprobe(p)		do {} while (0)
993 #define __arm_kprobe(p)				arch_arm_kprobe(p)
994 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
995 #define kprobe_disarmed(p)			kprobe_disabled(p)
996 #define wait_for_kprobe_optimizer()		do {} while (0)
997 
998 static int reuse_unused_kprobe(struct kprobe *ap)
999 {
1000 	/*
1001 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
1002 	 * released at the same time that the last aggregated kprobe is
1003 	 * unregistered.
1004 	 * Thus there should be no chance to reuse unused kprobe.
1005 	 */
1006 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1007 	return -EINVAL;
1008 }
1009 
1010 static void free_aggr_kprobe(struct kprobe *p)
1011 {
1012 	arch_remove_kprobe(p);
1013 	kfree(p);
1014 }
1015 
1016 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1017 {
1018 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1019 }
1020 #endif /* CONFIG_OPTPROBES */
1021 
1022 #ifdef CONFIG_KPROBES_ON_FTRACE
1023 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1024 	.func = kprobe_ftrace_handler,
1025 	.flags = FTRACE_OPS_FL_SAVE_REGS,
1026 };
1027 
1028 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1029 	.func = kprobe_ftrace_handler,
1030 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1031 };
1032 
1033 static int kprobe_ipmodify_enabled;
1034 static int kprobe_ftrace_enabled;
1035 
1036 /* Must ensure p->addr is really on ftrace */
1037 static int prepare_kprobe(struct kprobe *p)
1038 {
1039 	if (!kprobe_ftrace(p))
1040 		return arch_prepare_kprobe(p);
1041 
1042 	return arch_prepare_kprobe_ftrace(p);
1043 }
1044 
1045 /* Caller must lock kprobe_mutex */
1046 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1047 			       int *cnt)
1048 {
1049 	int ret = 0;
1050 
1051 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1052 	if (ret) {
1053 		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1054 			 p->addr, ret);
1055 		return ret;
1056 	}
1057 
1058 	if (*cnt == 0) {
1059 		ret = register_ftrace_function(ops);
1060 		if (ret) {
1061 			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1062 			goto err_ftrace;
1063 		}
1064 	}
1065 
1066 	(*cnt)++;
1067 	return ret;
1068 
1069 err_ftrace:
1070 	/*
1071 	 * At this point, sinec ops is not registered, we should be sefe from
1072 	 * registering empty filter.
1073 	 */
1074 	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1075 	return ret;
1076 }
1077 
1078 static int arm_kprobe_ftrace(struct kprobe *p)
1079 {
1080 	bool ipmodify = (p->post_handler != NULL);
1081 
1082 	return __arm_kprobe_ftrace(p,
1083 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1084 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1085 }
1086 
1087 /* Caller must lock kprobe_mutex */
1088 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1089 				  int *cnt)
1090 {
1091 	int ret = 0;
1092 
1093 	if (*cnt == 1) {
1094 		ret = unregister_ftrace_function(ops);
1095 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1096 			return ret;
1097 	}
1098 
1099 	(*cnt)--;
1100 
1101 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1102 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1103 		  p->addr, ret);
1104 	return ret;
1105 }
1106 
1107 static int disarm_kprobe_ftrace(struct kprobe *p)
1108 {
1109 	bool ipmodify = (p->post_handler != NULL);
1110 
1111 	return __disarm_kprobe_ftrace(p,
1112 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1113 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1114 }
1115 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1116 static inline int prepare_kprobe(struct kprobe *p)
1117 {
1118 	return arch_prepare_kprobe(p);
1119 }
1120 
1121 static inline int arm_kprobe_ftrace(struct kprobe *p)
1122 {
1123 	return -ENODEV;
1124 }
1125 
1126 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1127 {
1128 	return -ENODEV;
1129 }
1130 #endif
1131 
1132 /* Arm a kprobe with text_mutex */
1133 static int arm_kprobe(struct kprobe *kp)
1134 {
1135 	if (unlikely(kprobe_ftrace(kp)))
1136 		return arm_kprobe_ftrace(kp);
1137 
1138 	cpus_read_lock();
1139 	mutex_lock(&text_mutex);
1140 	__arm_kprobe(kp);
1141 	mutex_unlock(&text_mutex);
1142 	cpus_read_unlock();
1143 
1144 	return 0;
1145 }
1146 
1147 /* Disarm a kprobe with text_mutex */
1148 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1149 {
1150 	if (unlikely(kprobe_ftrace(kp)))
1151 		return disarm_kprobe_ftrace(kp);
1152 
1153 	cpus_read_lock();
1154 	mutex_lock(&text_mutex);
1155 	__disarm_kprobe(kp, reopt);
1156 	mutex_unlock(&text_mutex);
1157 	cpus_read_unlock();
1158 
1159 	return 0;
1160 }
1161 
1162 /*
1163  * Aggregate handlers for multiple kprobes support - these handlers
1164  * take care of invoking the individual kprobe handlers on p->list
1165  */
1166 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1167 {
1168 	struct kprobe *kp;
1169 
1170 	list_for_each_entry_rcu(kp, &p->list, list) {
1171 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1172 			set_kprobe_instance(kp);
1173 			if (kp->pre_handler(kp, regs))
1174 				return 1;
1175 		}
1176 		reset_kprobe_instance();
1177 	}
1178 	return 0;
1179 }
1180 NOKPROBE_SYMBOL(aggr_pre_handler);
1181 
1182 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1183 			      unsigned long flags)
1184 {
1185 	struct kprobe *kp;
1186 
1187 	list_for_each_entry_rcu(kp, &p->list, list) {
1188 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1189 			set_kprobe_instance(kp);
1190 			kp->post_handler(kp, regs, flags);
1191 			reset_kprobe_instance();
1192 		}
1193 	}
1194 }
1195 NOKPROBE_SYMBOL(aggr_post_handler);
1196 
1197 /* Walks the list and increments nmissed count for multiprobe case */
1198 void kprobes_inc_nmissed_count(struct kprobe *p)
1199 {
1200 	struct kprobe *kp;
1201 	if (!kprobe_aggrprobe(p)) {
1202 		p->nmissed++;
1203 	} else {
1204 		list_for_each_entry_rcu(kp, &p->list, list)
1205 			kp->nmissed++;
1206 	}
1207 	return;
1208 }
1209 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1210 
1211 static void free_rp_inst_rcu(struct rcu_head *head)
1212 {
1213 	struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1214 
1215 	if (refcount_dec_and_test(&ri->rph->ref))
1216 		kfree(ri->rph);
1217 	kfree(ri);
1218 }
1219 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1220 
1221 static void recycle_rp_inst(struct kretprobe_instance *ri)
1222 {
1223 	struct kretprobe *rp = get_kretprobe(ri);
1224 
1225 	if (likely(rp)) {
1226 		freelist_add(&ri->freelist, &rp->freelist);
1227 	} else
1228 		call_rcu(&ri->rcu, free_rp_inst_rcu);
1229 }
1230 NOKPROBE_SYMBOL(recycle_rp_inst);
1231 
1232 static struct kprobe kprobe_busy = {
1233 	.addr = (void *) get_kprobe,
1234 };
1235 
1236 void kprobe_busy_begin(void)
1237 {
1238 	struct kprobe_ctlblk *kcb;
1239 
1240 	preempt_disable();
1241 	__this_cpu_write(current_kprobe, &kprobe_busy);
1242 	kcb = get_kprobe_ctlblk();
1243 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1244 }
1245 
1246 void kprobe_busy_end(void)
1247 {
1248 	__this_cpu_write(current_kprobe, NULL);
1249 	preempt_enable();
1250 }
1251 
1252 /*
1253  * This function is called from finish_task_switch when task tk becomes dead,
1254  * so that we can recycle any function-return probe instances associated
1255  * with this task. These left over instances represent probed functions
1256  * that have been called but will never return.
1257  */
1258 void kprobe_flush_task(struct task_struct *tk)
1259 {
1260 	struct kretprobe_instance *ri;
1261 	struct llist_node *node;
1262 
1263 	/* Early boot, not yet initialized. */
1264 	if (unlikely(!kprobes_initialized))
1265 		return;
1266 
1267 	kprobe_busy_begin();
1268 
1269 	node = __llist_del_all(&tk->kretprobe_instances);
1270 	while (node) {
1271 		ri = container_of(node, struct kretprobe_instance, llist);
1272 		node = node->next;
1273 
1274 		recycle_rp_inst(ri);
1275 	}
1276 
1277 	kprobe_busy_end();
1278 }
1279 NOKPROBE_SYMBOL(kprobe_flush_task);
1280 
1281 static inline void free_rp_inst(struct kretprobe *rp)
1282 {
1283 	struct kretprobe_instance *ri;
1284 	struct freelist_node *node;
1285 	int count = 0;
1286 
1287 	node = rp->freelist.head;
1288 	while (node) {
1289 		ri = container_of(node, struct kretprobe_instance, freelist);
1290 		node = node->next;
1291 
1292 		kfree(ri);
1293 		count++;
1294 	}
1295 
1296 	if (refcount_sub_and_test(count, &rp->rph->ref)) {
1297 		kfree(rp->rph);
1298 		rp->rph = NULL;
1299 	}
1300 }
1301 
1302 /* Add the new probe to ap->list */
1303 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1304 {
1305 	if (p->post_handler)
1306 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1307 
1308 	list_add_rcu(&p->list, &ap->list);
1309 	if (p->post_handler && !ap->post_handler)
1310 		ap->post_handler = aggr_post_handler;
1311 
1312 	return 0;
1313 }
1314 
1315 /*
1316  * Fill in the required fields of the "manager kprobe". Replace the
1317  * earlier kprobe in the hlist with the manager kprobe
1318  */
1319 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1320 {
1321 	/* Copy p's insn slot to ap */
1322 	copy_kprobe(p, ap);
1323 	flush_insn_slot(ap);
1324 	ap->addr = p->addr;
1325 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1326 	ap->pre_handler = aggr_pre_handler;
1327 	/* We don't care the kprobe which has gone. */
1328 	if (p->post_handler && !kprobe_gone(p))
1329 		ap->post_handler = aggr_post_handler;
1330 
1331 	INIT_LIST_HEAD(&ap->list);
1332 	INIT_HLIST_NODE(&ap->hlist);
1333 
1334 	list_add_rcu(&p->list, &ap->list);
1335 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1336 }
1337 
1338 /*
1339  * This is the second or subsequent kprobe at the address - handle
1340  * the intricacies
1341  */
1342 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1343 {
1344 	int ret = 0;
1345 	struct kprobe *ap = orig_p;
1346 
1347 	cpus_read_lock();
1348 
1349 	/* For preparing optimization, jump_label_text_reserved() is called */
1350 	jump_label_lock();
1351 	mutex_lock(&text_mutex);
1352 
1353 	if (!kprobe_aggrprobe(orig_p)) {
1354 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1355 		ap = alloc_aggr_kprobe(orig_p);
1356 		if (!ap) {
1357 			ret = -ENOMEM;
1358 			goto out;
1359 		}
1360 		init_aggr_kprobe(ap, orig_p);
1361 	} else if (kprobe_unused(ap)) {
1362 		/* This probe is going to die. Rescue it */
1363 		ret = reuse_unused_kprobe(ap);
1364 		if (ret)
1365 			goto out;
1366 	}
1367 
1368 	if (kprobe_gone(ap)) {
1369 		/*
1370 		 * Attempting to insert new probe at the same location that
1371 		 * had a probe in the module vaddr area which already
1372 		 * freed. So, the instruction slot has already been
1373 		 * released. We need a new slot for the new probe.
1374 		 */
1375 		ret = arch_prepare_kprobe(ap);
1376 		if (ret)
1377 			/*
1378 			 * Even if fail to allocate new slot, don't need to
1379 			 * free aggr_probe. It will be used next time, or
1380 			 * freed by unregister_kprobe.
1381 			 */
1382 			goto out;
1383 
1384 		/* Prepare optimized instructions if possible. */
1385 		prepare_optimized_kprobe(ap);
1386 
1387 		/*
1388 		 * Clear gone flag to prevent allocating new slot again, and
1389 		 * set disabled flag because it is not armed yet.
1390 		 */
1391 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1392 			    | KPROBE_FLAG_DISABLED;
1393 	}
1394 
1395 	/* Copy ap's insn slot to p */
1396 	copy_kprobe(ap, p);
1397 	ret = add_new_kprobe(ap, p);
1398 
1399 out:
1400 	mutex_unlock(&text_mutex);
1401 	jump_label_unlock();
1402 	cpus_read_unlock();
1403 
1404 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1405 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1406 		if (!kprobes_all_disarmed) {
1407 			/* Arm the breakpoint again. */
1408 			ret = arm_kprobe(ap);
1409 			if (ret) {
1410 				ap->flags |= KPROBE_FLAG_DISABLED;
1411 				list_del_rcu(&p->list);
1412 				synchronize_rcu();
1413 			}
1414 		}
1415 	}
1416 	return ret;
1417 }
1418 
1419 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1420 {
1421 	/* The __kprobes marked functions and entry code must not be probed */
1422 	return addr >= (unsigned long)__kprobes_text_start &&
1423 	       addr < (unsigned long)__kprobes_text_end;
1424 }
1425 
1426 static bool __within_kprobe_blacklist(unsigned long addr)
1427 {
1428 	struct kprobe_blacklist_entry *ent;
1429 
1430 	if (arch_within_kprobe_blacklist(addr))
1431 		return true;
1432 	/*
1433 	 * If there exists a kprobe_blacklist, verify and
1434 	 * fail any probe registration in the prohibited area
1435 	 */
1436 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1437 		if (addr >= ent->start_addr && addr < ent->end_addr)
1438 			return true;
1439 	}
1440 	return false;
1441 }
1442 
1443 bool within_kprobe_blacklist(unsigned long addr)
1444 {
1445 	char symname[KSYM_NAME_LEN], *p;
1446 
1447 	if (__within_kprobe_blacklist(addr))
1448 		return true;
1449 
1450 	/* Check if the address is on a suffixed-symbol */
1451 	if (!lookup_symbol_name(addr, symname)) {
1452 		p = strchr(symname, '.');
1453 		if (!p)
1454 			return false;
1455 		*p = '\0';
1456 		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1457 		if (addr)
1458 			return __within_kprobe_blacklist(addr);
1459 	}
1460 	return false;
1461 }
1462 
1463 /*
1464  * If we have a symbol_name argument, look it up and add the offset field
1465  * to it. This way, we can specify a relative address to a symbol.
1466  * This returns encoded errors if it fails to look up symbol or invalid
1467  * combination of parameters.
1468  */
1469 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1470 			const char *symbol_name, unsigned int offset)
1471 {
1472 	if ((symbol_name && addr) || (!symbol_name && !addr))
1473 		goto invalid;
1474 
1475 	if (symbol_name) {
1476 		addr = kprobe_lookup_name(symbol_name, offset);
1477 		if (!addr)
1478 			return ERR_PTR(-ENOENT);
1479 	}
1480 
1481 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1482 	if (addr)
1483 		return addr;
1484 
1485 invalid:
1486 	return ERR_PTR(-EINVAL);
1487 }
1488 
1489 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1490 {
1491 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1492 }
1493 
1494 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1495 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1496 {
1497 	struct kprobe *ap, *list_p;
1498 
1499 	lockdep_assert_held(&kprobe_mutex);
1500 
1501 	ap = get_kprobe(p->addr);
1502 	if (unlikely(!ap))
1503 		return NULL;
1504 
1505 	if (p != ap) {
1506 		list_for_each_entry(list_p, &ap->list, list)
1507 			if (list_p == p)
1508 			/* kprobe p is a valid probe */
1509 				goto valid;
1510 		return NULL;
1511 	}
1512 valid:
1513 	return ap;
1514 }
1515 
1516 /*
1517  * Warn and return error if the kprobe is being re-registered since
1518  * there must be a software bug.
1519  */
1520 static inline int warn_kprobe_rereg(struct kprobe *p)
1521 {
1522 	int ret = 0;
1523 
1524 	mutex_lock(&kprobe_mutex);
1525 	if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1526 		ret = -EINVAL;
1527 	mutex_unlock(&kprobe_mutex);
1528 
1529 	return ret;
1530 }
1531 
1532 int __weak arch_check_ftrace_location(struct kprobe *p)
1533 {
1534 	unsigned long ftrace_addr;
1535 
1536 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1537 	if (ftrace_addr) {
1538 #ifdef CONFIG_KPROBES_ON_FTRACE
1539 		/* Given address is not on the instruction boundary */
1540 		if ((unsigned long)p->addr != ftrace_addr)
1541 			return -EILSEQ;
1542 		p->flags |= KPROBE_FLAG_FTRACE;
1543 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1544 		return -EINVAL;
1545 #endif
1546 	}
1547 	return 0;
1548 }
1549 
1550 static int check_kprobe_address_safe(struct kprobe *p,
1551 				     struct module **probed_mod)
1552 {
1553 	int ret;
1554 
1555 	ret = arch_check_ftrace_location(p);
1556 	if (ret)
1557 		return ret;
1558 	jump_label_lock();
1559 	preempt_disable();
1560 
1561 	/* Ensure it is not in reserved area nor out of text */
1562 	if (!kernel_text_address((unsigned long) p->addr) ||
1563 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1564 	    jump_label_text_reserved(p->addr, p->addr) ||
1565 	    static_call_text_reserved(p->addr, p->addr) ||
1566 	    find_bug((unsigned long)p->addr)) {
1567 		ret = -EINVAL;
1568 		goto out;
1569 	}
1570 
1571 	/* Check if are we probing a module */
1572 	*probed_mod = __module_text_address((unsigned long) p->addr);
1573 	if (*probed_mod) {
1574 		/*
1575 		 * We must hold a refcount of the probed module while updating
1576 		 * its code to prohibit unexpected unloading.
1577 		 */
1578 		if (unlikely(!try_module_get(*probed_mod))) {
1579 			ret = -ENOENT;
1580 			goto out;
1581 		}
1582 
1583 		/*
1584 		 * If the module freed .init.text, we couldn't insert
1585 		 * kprobes in there.
1586 		 */
1587 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1588 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1589 			module_put(*probed_mod);
1590 			*probed_mod = NULL;
1591 			ret = -ENOENT;
1592 		}
1593 	}
1594 out:
1595 	preempt_enable();
1596 	jump_label_unlock();
1597 
1598 	return ret;
1599 }
1600 
1601 int register_kprobe(struct kprobe *p)
1602 {
1603 	int ret;
1604 	struct kprobe *old_p;
1605 	struct module *probed_mod;
1606 	kprobe_opcode_t *addr;
1607 
1608 	/* Adjust probe address from symbol */
1609 	addr = kprobe_addr(p);
1610 	if (IS_ERR(addr))
1611 		return PTR_ERR(addr);
1612 	p->addr = addr;
1613 
1614 	ret = warn_kprobe_rereg(p);
1615 	if (ret)
1616 		return ret;
1617 
1618 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1619 	p->flags &= KPROBE_FLAG_DISABLED;
1620 	p->nmissed = 0;
1621 	INIT_LIST_HEAD(&p->list);
1622 
1623 	ret = check_kprobe_address_safe(p, &probed_mod);
1624 	if (ret)
1625 		return ret;
1626 
1627 	mutex_lock(&kprobe_mutex);
1628 
1629 	old_p = get_kprobe(p->addr);
1630 	if (old_p) {
1631 		/* Since this may unoptimize old_p, locking text_mutex. */
1632 		ret = register_aggr_kprobe(old_p, p);
1633 		goto out;
1634 	}
1635 
1636 	cpus_read_lock();
1637 	/* Prevent text modification */
1638 	mutex_lock(&text_mutex);
1639 	ret = prepare_kprobe(p);
1640 	mutex_unlock(&text_mutex);
1641 	cpus_read_unlock();
1642 	if (ret)
1643 		goto out;
1644 
1645 	INIT_HLIST_NODE(&p->hlist);
1646 	hlist_add_head_rcu(&p->hlist,
1647 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1648 
1649 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1650 		ret = arm_kprobe(p);
1651 		if (ret) {
1652 			hlist_del_rcu(&p->hlist);
1653 			synchronize_rcu();
1654 			goto out;
1655 		}
1656 	}
1657 
1658 	/* Try to optimize kprobe */
1659 	try_to_optimize_kprobe(p);
1660 out:
1661 	mutex_unlock(&kprobe_mutex);
1662 
1663 	if (probed_mod)
1664 		module_put(probed_mod);
1665 
1666 	return ret;
1667 }
1668 EXPORT_SYMBOL_GPL(register_kprobe);
1669 
1670 /* Check if all probes on the aggrprobe are disabled */
1671 static int aggr_kprobe_disabled(struct kprobe *ap)
1672 {
1673 	struct kprobe *kp;
1674 
1675 	lockdep_assert_held(&kprobe_mutex);
1676 
1677 	list_for_each_entry(kp, &ap->list, list)
1678 		if (!kprobe_disabled(kp))
1679 			/*
1680 			 * There is an active probe on the list.
1681 			 * We can't disable this ap.
1682 			 */
1683 			return 0;
1684 
1685 	return 1;
1686 }
1687 
1688 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1689 static struct kprobe *__disable_kprobe(struct kprobe *p)
1690 {
1691 	struct kprobe *orig_p;
1692 	int ret;
1693 
1694 	/* Get an original kprobe for return */
1695 	orig_p = __get_valid_kprobe(p);
1696 	if (unlikely(orig_p == NULL))
1697 		return ERR_PTR(-EINVAL);
1698 
1699 	if (!kprobe_disabled(p)) {
1700 		/* Disable probe if it is a child probe */
1701 		if (p != orig_p)
1702 			p->flags |= KPROBE_FLAG_DISABLED;
1703 
1704 		/* Try to disarm and disable this/parent probe */
1705 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1706 			/*
1707 			 * If kprobes_all_disarmed is set, orig_p
1708 			 * should have already been disarmed, so
1709 			 * skip unneed disarming process.
1710 			 */
1711 			if (!kprobes_all_disarmed) {
1712 				ret = disarm_kprobe(orig_p, true);
1713 				if (ret) {
1714 					p->flags &= ~KPROBE_FLAG_DISABLED;
1715 					return ERR_PTR(ret);
1716 				}
1717 			}
1718 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1719 		}
1720 	}
1721 
1722 	return orig_p;
1723 }
1724 
1725 /*
1726  * Unregister a kprobe without a scheduler synchronization.
1727  */
1728 static int __unregister_kprobe_top(struct kprobe *p)
1729 {
1730 	struct kprobe *ap, *list_p;
1731 
1732 	/* Disable kprobe. This will disarm it if needed. */
1733 	ap = __disable_kprobe(p);
1734 	if (IS_ERR(ap))
1735 		return PTR_ERR(ap);
1736 
1737 	if (ap == p)
1738 		/*
1739 		 * This probe is an independent(and non-optimized) kprobe
1740 		 * (not an aggrprobe). Remove from the hash list.
1741 		 */
1742 		goto disarmed;
1743 
1744 	/* Following process expects this probe is an aggrprobe */
1745 	WARN_ON(!kprobe_aggrprobe(ap));
1746 
1747 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1748 		/*
1749 		 * !disarmed could be happen if the probe is under delayed
1750 		 * unoptimizing.
1751 		 */
1752 		goto disarmed;
1753 	else {
1754 		/* If disabling probe has special handlers, update aggrprobe */
1755 		if (p->post_handler && !kprobe_gone(p)) {
1756 			list_for_each_entry(list_p, &ap->list, list) {
1757 				if ((list_p != p) && (list_p->post_handler))
1758 					goto noclean;
1759 			}
1760 			ap->post_handler = NULL;
1761 		}
1762 noclean:
1763 		/*
1764 		 * Remove from the aggrprobe: this path will do nothing in
1765 		 * __unregister_kprobe_bottom().
1766 		 */
1767 		list_del_rcu(&p->list);
1768 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1769 			/*
1770 			 * Try to optimize this probe again, because post
1771 			 * handler may have been changed.
1772 			 */
1773 			optimize_kprobe(ap);
1774 	}
1775 	return 0;
1776 
1777 disarmed:
1778 	hlist_del_rcu(&ap->hlist);
1779 	return 0;
1780 }
1781 
1782 static void __unregister_kprobe_bottom(struct kprobe *p)
1783 {
1784 	struct kprobe *ap;
1785 
1786 	if (list_empty(&p->list))
1787 		/* This is an independent kprobe */
1788 		arch_remove_kprobe(p);
1789 	else if (list_is_singular(&p->list)) {
1790 		/* This is the last child of an aggrprobe */
1791 		ap = list_entry(p->list.next, struct kprobe, list);
1792 		list_del(&p->list);
1793 		free_aggr_kprobe(ap);
1794 	}
1795 	/* Otherwise, do nothing. */
1796 }
1797 
1798 int register_kprobes(struct kprobe **kps, int num)
1799 {
1800 	int i, ret = 0;
1801 
1802 	if (num <= 0)
1803 		return -EINVAL;
1804 	for (i = 0; i < num; i++) {
1805 		ret = register_kprobe(kps[i]);
1806 		if (ret < 0) {
1807 			if (i > 0)
1808 				unregister_kprobes(kps, i);
1809 			break;
1810 		}
1811 	}
1812 	return ret;
1813 }
1814 EXPORT_SYMBOL_GPL(register_kprobes);
1815 
1816 void unregister_kprobe(struct kprobe *p)
1817 {
1818 	unregister_kprobes(&p, 1);
1819 }
1820 EXPORT_SYMBOL_GPL(unregister_kprobe);
1821 
1822 void unregister_kprobes(struct kprobe **kps, int num)
1823 {
1824 	int i;
1825 
1826 	if (num <= 0)
1827 		return;
1828 	mutex_lock(&kprobe_mutex);
1829 	for (i = 0; i < num; i++)
1830 		if (__unregister_kprobe_top(kps[i]) < 0)
1831 			kps[i]->addr = NULL;
1832 	mutex_unlock(&kprobe_mutex);
1833 
1834 	synchronize_rcu();
1835 	for (i = 0; i < num; i++)
1836 		if (kps[i]->addr)
1837 			__unregister_kprobe_bottom(kps[i]);
1838 }
1839 EXPORT_SYMBOL_GPL(unregister_kprobes);
1840 
1841 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1842 					unsigned long val, void *data)
1843 {
1844 	return NOTIFY_DONE;
1845 }
1846 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1847 
1848 static struct notifier_block kprobe_exceptions_nb = {
1849 	.notifier_call = kprobe_exceptions_notify,
1850 	.priority = 0x7fffffff /* we need to be notified first */
1851 };
1852 
1853 unsigned long __weak arch_deref_entry_point(void *entry)
1854 {
1855 	return (unsigned long)entry;
1856 }
1857 
1858 #ifdef CONFIG_KRETPROBES
1859 
1860 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1861 					     void *trampoline_address,
1862 					     void *frame_pointer)
1863 {
1864 	kprobe_opcode_t *correct_ret_addr = NULL;
1865 	struct kretprobe_instance *ri = NULL;
1866 	struct llist_node *first, *node;
1867 	struct kretprobe *rp;
1868 
1869 	/* Find all nodes for this frame. */
1870 	first = node = current->kretprobe_instances.first;
1871 	while (node) {
1872 		ri = container_of(node, struct kretprobe_instance, llist);
1873 
1874 		BUG_ON(ri->fp != frame_pointer);
1875 
1876 		if (ri->ret_addr != trampoline_address) {
1877 			correct_ret_addr = ri->ret_addr;
1878 			/*
1879 			 * This is the real return address. Any other
1880 			 * instances associated with this task are for
1881 			 * other calls deeper on the call stack
1882 			 */
1883 			goto found;
1884 		}
1885 
1886 		node = node->next;
1887 	}
1888 	pr_err("Oops! Kretprobe fails to find correct return address.\n");
1889 	BUG_ON(1);
1890 
1891 found:
1892 	/* Unlink all nodes for this frame. */
1893 	current->kretprobe_instances.first = node->next;
1894 	node->next = NULL;
1895 
1896 	/* Run them..  */
1897 	while (first) {
1898 		ri = container_of(first, struct kretprobe_instance, llist);
1899 		first = first->next;
1900 
1901 		rp = get_kretprobe(ri);
1902 		if (rp && rp->handler) {
1903 			struct kprobe *prev = kprobe_running();
1904 
1905 			__this_cpu_write(current_kprobe, &rp->kp);
1906 			ri->ret_addr = correct_ret_addr;
1907 			rp->handler(ri, regs);
1908 			__this_cpu_write(current_kprobe, prev);
1909 		}
1910 
1911 		recycle_rp_inst(ri);
1912 	}
1913 
1914 	return (unsigned long)correct_ret_addr;
1915 }
1916 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
1917 
1918 /*
1919  * This kprobe pre_handler is registered with every kretprobe. When probe
1920  * hits it will set up the return probe.
1921  */
1922 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1923 {
1924 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1925 	struct kretprobe_instance *ri;
1926 	struct freelist_node *fn;
1927 
1928 	fn = freelist_try_get(&rp->freelist);
1929 	if (!fn) {
1930 		rp->nmissed++;
1931 		return 0;
1932 	}
1933 
1934 	ri = container_of(fn, struct kretprobe_instance, freelist);
1935 
1936 	if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1937 		freelist_add(&ri->freelist, &rp->freelist);
1938 		return 0;
1939 	}
1940 
1941 	arch_prepare_kretprobe(ri, regs);
1942 
1943 	__llist_add(&ri->llist, &current->kretprobe_instances);
1944 
1945 	return 0;
1946 }
1947 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1948 
1949 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1950 {
1951 	return !offset;
1952 }
1953 
1954 /**
1955  * kprobe_on_func_entry() -- check whether given address is function entry
1956  * @addr: Target address
1957  * @sym:  Target symbol name
1958  * @offset: The offset from the symbol or the address
1959  *
1960  * This checks whether the given @addr+@offset or @sym+@offset is on the
1961  * function entry address or not.
1962  * This returns 0 if it is the function entry, or -EINVAL if it is not.
1963  * And also it returns -ENOENT if it fails the symbol or address lookup.
1964  * Caller must pass @addr or @sym (either one must be NULL), or this
1965  * returns -EINVAL.
1966  */
1967 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1968 {
1969 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1970 
1971 	if (IS_ERR(kp_addr))
1972 		return PTR_ERR(kp_addr);
1973 
1974 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1975 		return -ENOENT;
1976 
1977 	if (!arch_kprobe_on_func_entry(offset))
1978 		return -EINVAL;
1979 
1980 	return 0;
1981 }
1982 
1983 int register_kretprobe(struct kretprobe *rp)
1984 {
1985 	int ret;
1986 	struct kretprobe_instance *inst;
1987 	int i;
1988 	void *addr;
1989 
1990 	ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
1991 	if (ret)
1992 		return ret;
1993 
1994 	/* If only rp->kp.addr is specified, check reregistering kprobes */
1995 	if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
1996 		return -EINVAL;
1997 
1998 	if (kretprobe_blacklist_size) {
1999 		addr = kprobe_addr(&rp->kp);
2000 		if (IS_ERR(addr))
2001 			return PTR_ERR(addr);
2002 
2003 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2004 			if (kretprobe_blacklist[i].addr == addr)
2005 				return -EINVAL;
2006 		}
2007 	}
2008 
2009 	rp->kp.pre_handler = pre_handler_kretprobe;
2010 	rp->kp.post_handler = NULL;
2011 
2012 	/* Pre-allocate memory for max kretprobe instances */
2013 	if (rp->maxactive <= 0) {
2014 #ifdef CONFIG_PREEMPTION
2015 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2016 #else
2017 		rp->maxactive = num_possible_cpus();
2018 #endif
2019 	}
2020 	rp->freelist.head = NULL;
2021 	rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2022 	if (!rp->rph)
2023 		return -ENOMEM;
2024 
2025 	rp->rph->rp = rp;
2026 	for (i = 0; i < rp->maxactive; i++) {
2027 		inst = kzalloc(sizeof(struct kretprobe_instance) +
2028 			       rp->data_size, GFP_KERNEL);
2029 		if (inst == NULL) {
2030 			refcount_set(&rp->rph->ref, i);
2031 			free_rp_inst(rp);
2032 			return -ENOMEM;
2033 		}
2034 		inst->rph = rp->rph;
2035 		freelist_add(&inst->freelist, &rp->freelist);
2036 	}
2037 	refcount_set(&rp->rph->ref, i);
2038 
2039 	rp->nmissed = 0;
2040 	/* Establish function entry probe point */
2041 	ret = register_kprobe(&rp->kp);
2042 	if (ret != 0)
2043 		free_rp_inst(rp);
2044 	return ret;
2045 }
2046 EXPORT_SYMBOL_GPL(register_kretprobe);
2047 
2048 int register_kretprobes(struct kretprobe **rps, int num)
2049 {
2050 	int ret = 0, i;
2051 
2052 	if (num <= 0)
2053 		return -EINVAL;
2054 	for (i = 0; i < num; i++) {
2055 		ret = register_kretprobe(rps[i]);
2056 		if (ret < 0) {
2057 			if (i > 0)
2058 				unregister_kretprobes(rps, i);
2059 			break;
2060 		}
2061 	}
2062 	return ret;
2063 }
2064 EXPORT_SYMBOL_GPL(register_kretprobes);
2065 
2066 void unregister_kretprobe(struct kretprobe *rp)
2067 {
2068 	unregister_kretprobes(&rp, 1);
2069 }
2070 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2071 
2072 void unregister_kretprobes(struct kretprobe **rps, int num)
2073 {
2074 	int i;
2075 
2076 	if (num <= 0)
2077 		return;
2078 	mutex_lock(&kprobe_mutex);
2079 	for (i = 0; i < num; i++) {
2080 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2081 			rps[i]->kp.addr = NULL;
2082 		rps[i]->rph->rp = NULL;
2083 	}
2084 	mutex_unlock(&kprobe_mutex);
2085 
2086 	synchronize_rcu();
2087 	for (i = 0; i < num; i++) {
2088 		if (rps[i]->kp.addr) {
2089 			__unregister_kprobe_bottom(&rps[i]->kp);
2090 			free_rp_inst(rps[i]);
2091 		}
2092 	}
2093 }
2094 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2095 
2096 #else /* CONFIG_KRETPROBES */
2097 int register_kretprobe(struct kretprobe *rp)
2098 {
2099 	return -ENOSYS;
2100 }
2101 EXPORT_SYMBOL_GPL(register_kretprobe);
2102 
2103 int register_kretprobes(struct kretprobe **rps, int num)
2104 {
2105 	return -ENOSYS;
2106 }
2107 EXPORT_SYMBOL_GPL(register_kretprobes);
2108 
2109 void unregister_kretprobe(struct kretprobe *rp)
2110 {
2111 }
2112 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2113 
2114 void unregister_kretprobes(struct kretprobe **rps, int num)
2115 {
2116 }
2117 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2118 
2119 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2120 {
2121 	return 0;
2122 }
2123 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2124 
2125 #endif /* CONFIG_KRETPROBES */
2126 
2127 /* Set the kprobe gone and remove its instruction buffer. */
2128 static void kill_kprobe(struct kprobe *p)
2129 {
2130 	struct kprobe *kp;
2131 
2132 	lockdep_assert_held(&kprobe_mutex);
2133 
2134 	p->flags |= KPROBE_FLAG_GONE;
2135 	if (kprobe_aggrprobe(p)) {
2136 		/*
2137 		 * If this is an aggr_kprobe, we have to list all the
2138 		 * chained probes and mark them GONE.
2139 		 */
2140 		list_for_each_entry(kp, &p->list, list)
2141 			kp->flags |= KPROBE_FLAG_GONE;
2142 		p->post_handler = NULL;
2143 		kill_optimized_kprobe(p);
2144 	}
2145 	/*
2146 	 * Here, we can remove insn_slot safely, because no thread calls
2147 	 * the original probed function (which will be freed soon) any more.
2148 	 */
2149 	arch_remove_kprobe(p);
2150 
2151 	/*
2152 	 * The module is going away. We should disarm the kprobe which
2153 	 * is using ftrace, because ftrace framework is still available at
2154 	 * MODULE_STATE_GOING notification.
2155 	 */
2156 	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2157 		disarm_kprobe_ftrace(p);
2158 }
2159 
2160 /* Disable one kprobe */
2161 int disable_kprobe(struct kprobe *kp)
2162 {
2163 	int ret = 0;
2164 	struct kprobe *p;
2165 
2166 	mutex_lock(&kprobe_mutex);
2167 
2168 	/* Disable this kprobe */
2169 	p = __disable_kprobe(kp);
2170 	if (IS_ERR(p))
2171 		ret = PTR_ERR(p);
2172 
2173 	mutex_unlock(&kprobe_mutex);
2174 	return ret;
2175 }
2176 EXPORT_SYMBOL_GPL(disable_kprobe);
2177 
2178 /* Enable one kprobe */
2179 int enable_kprobe(struct kprobe *kp)
2180 {
2181 	int ret = 0;
2182 	struct kprobe *p;
2183 
2184 	mutex_lock(&kprobe_mutex);
2185 
2186 	/* Check whether specified probe is valid. */
2187 	p = __get_valid_kprobe(kp);
2188 	if (unlikely(p == NULL)) {
2189 		ret = -EINVAL;
2190 		goto out;
2191 	}
2192 
2193 	if (kprobe_gone(kp)) {
2194 		/* This kprobe has gone, we couldn't enable it. */
2195 		ret = -EINVAL;
2196 		goto out;
2197 	}
2198 
2199 	if (p != kp)
2200 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2201 
2202 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2203 		p->flags &= ~KPROBE_FLAG_DISABLED;
2204 		ret = arm_kprobe(p);
2205 		if (ret)
2206 			p->flags |= KPROBE_FLAG_DISABLED;
2207 	}
2208 out:
2209 	mutex_unlock(&kprobe_mutex);
2210 	return ret;
2211 }
2212 EXPORT_SYMBOL_GPL(enable_kprobe);
2213 
2214 /* Caller must NOT call this in usual path. This is only for critical case */
2215 void dump_kprobe(struct kprobe *kp)
2216 {
2217 	pr_err("Dumping kprobe:\n");
2218 	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2219 	       kp->symbol_name, kp->offset, kp->addr);
2220 }
2221 NOKPROBE_SYMBOL(dump_kprobe);
2222 
2223 int kprobe_add_ksym_blacklist(unsigned long entry)
2224 {
2225 	struct kprobe_blacklist_entry *ent;
2226 	unsigned long offset = 0, size = 0;
2227 
2228 	if (!kernel_text_address(entry) ||
2229 	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2230 		return -EINVAL;
2231 
2232 	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2233 	if (!ent)
2234 		return -ENOMEM;
2235 	ent->start_addr = entry;
2236 	ent->end_addr = entry + size;
2237 	INIT_LIST_HEAD(&ent->list);
2238 	list_add_tail(&ent->list, &kprobe_blacklist);
2239 
2240 	return (int)size;
2241 }
2242 
2243 /* Add all symbols in given area into kprobe blacklist */
2244 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2245 {
2246 	unsigned long entry;
2247 	int ret = 0;
2248 
2249 	for (entry = start; entry < end; entry += ret) {
2250 		ret = kprobe_add_ksym_blacklist(entry);
2251 		if (ret < 0)
2252 			return ret;
2253 		if (ret == 0)	/* In case of alias symbol */
2254 			ret = 1;
2255 	}
2256 	return 0;
2257 }
2258 
2259 /* Remove all symbols in given area from kprobe blacklist */
2260 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2261 {
2262 	struct kprobe_blacklist_entry *ent, *n;
2263 
2264 	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2265 		if (ent->start_addr < start || ent->start_addr >= end)
2266 			continue;
2267 		list_del(&ent->list);
2268 		kfree(ent);
2269 	}
2270 }
2271 
2272 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2273 {
2274 	kprobe_remove_area_blacklist(entry, entry + 1);
2275 }
2276 
2277 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2278 				   char *type, char *sym)
2279 {
2280 	return -ERANGE;
2281 }
2282 
2283 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2284 		       char *sym)
2285 {
2286 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2287 	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2288 		return 0;
2289 #ifdef CONFIG_OPTPROBES
2290 	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2291 		return 0;
2292 #endif
2293 #endif
2294 	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2295 		return 0;
2296 	return -ERANGE;
2297 }
2298 
2299 int __init __weak arch_populate_kprobe_blacklist(void)
2300 {
2301 	return 0;
2302 }
2303 
2304 /*
2305  * Lookup and populate the kprobe_blacklist.
2306  *
2307  * Unlike the kretprobe blacklist, we'll need to determine
2308  * the range of addresses that belong to the said functions,
2309  * since a kprobe need not necessarily be at the beginning
2310  * of a function.
2311  */
2312 static int __init populate_kprobe_blacklist(unsigned long *start,
2313 					     unsigned long *end)
2314 {
2315 	unsigned long entry;
2316 	unsigned long *iter;
2317 	int ret;
2318 
2319 	for (iter = start; iter < end; iter++) {
2320 		entry = arch_deref_entry_point((void *)*iter);
2321 		ret = kprobe_add_ksym_blacklist(entry);
2322 		if (ret == -EINVAL)
2323 			continue;
2324 		if (ret < 0)
2325 			return ret;
2326 	}
2327 
2328 	/* Symbols in __kprobes_text are blacklisted */
2329 	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2330 					(unsigned long)__kprobes_text_end);
2331 	if (ret)
2332 		return ret;
2333 
2334 	/* Symbols in noinstr section are blacklisted */
2335 	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2336 					(unsigned long)__noinstr_text_end);
2337 
2338 	return ret ? : arch_populate_kprobe_blacklist();
2339 }
2340 
2341 static void add_module_kprobe_blacklist(struct module *mod)
2342 {
2343 	unsigned long start, end;
2344 	int i;
2345 
2346 	if (mod->kprobe_blacklist) {
2347 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2348 			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2349 	}
2350 
2351 	start = (unsigned long)mod->kprobes_text_start;
2352 	if (start) {
2353 		end = start + mod->kprobes_text_size;
2354 		kprobe_add_area_blacklist(start, end);
2355 	}
2356 
2357 	start = (unsigned long)mod->noinstr_text_start;
2358 	if (start) {
2359 		end = start + mod->noinstr_text_size;
2360 		kprobe_add_area_blacklist(start, end);
2361 	}
2362 }
2363 
2364 static void remove_module_kprobe_blacklist(struct module *mod)
2365 {
2366 	unsigned long start, end;
2367 	int i;
2368 
2369 	if (mod->kprobe_blacklist) {
2370 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2371 			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2372 	}
2373 
2374 	start = (unsigned long)mod->kprobes_text_start;
2375 	if (start) {
2376 		end = start + mod->kprobes_text_size;
2377 		kprobe_remove_area_blacklist(start, end);
2378 	}
2379 
2380 	start = (unsigned long)mod->noinstr_text_start;
2381 	if (start) {
2382 		end = start + mod->noinstr_text_size;
2383 		kprobe_remove_area_blacklist(start, end);
2384 	}
2385 }
2386 
2387 /* Module notifier call back, checking kprobes on the module */
2388 static int kprobes_module_callback(struct notifier_block *nb,
2389 				   unsigned long val, void *data)
2390 {
2391 	struct module *mod = data;
2392 	struct hlist_head *head;
2393 	struct kprobe *p;
2394 	unsigned int i;
2395 	int checkcore = (val == MODULE_STATE_GOING);
2396 
2397 	if (val == MODULE_STATE_COMING) {
2398 		mutex_lock(&kprobe_mutex);
2399 		add_module_kprobe_blacklist(mod);
2400 		mutex_unlock(&kprobe_mutex);
2401 	}
2402 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2403 		return NOTIFY_DONE;
2404 
2405 	/*
2406 	 * When MODULE_STATE_GOING was notified, both of module .text and
2407 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2408 	 * notified, only .init.text section would be freed. We need to
2409 	 * disable kprobes which have been inserted in the sections.
2410 	 */
2411 	mutex_lock(&kprobe_mutex);
2412 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2413 		head = &kprobe_table[i];
2414 		hlist_for_each_entry(p, head, hlist)
2415 			if (within_module_init((unsigned long)p->addr, mod) ||
2416 			    (checkcore &&
2417 			     within_module_core((unsigned long)p->addr, mod))) {
2418 				/*
2419 				 * The vaddr this probe is installed will soon
2420 				 * be vfreed buy not synced to disk. Hence,
2421 				 * disarming the breakpoint isn't needed.
2422 				 *
2423 				 * Note, this will also move any optimized probes
2424 				 * that are pending to be removed from their
2425 				 * corresponding lists to the freeing_list and
2426 				 * will not be touched by the delayed
2427 				 * kprobe_optimizer work handler.
2428 				 */
2429 				kill_kprobe(p);
2430 			}
2431 	}
2432 	if (val == MODULE_STATE_GOING)
2433 		remove_module_kprobe_blacklist(mod);
2434 	mutex_unlock(&kprobe_mutex);
2435 	return NOTIFY_DONE;
2436 }
2437 
2438 static struct notifier_block kprobe_module_nb = {
2439 	.notifier_call = kprobes_module_callback,
2440 	.priority = 0
2441 };
2442 
2443 /* Markers of _kprobe_blacklist section */
2444 extern unsigned long __start_kprobe_blacklist[];
2445 extern unsigned long __stop_kprobe_blacklist[];
2446 
2447 void kprobe_free_init_mem(void)
2448 {
2449 	void *start = (void *)(&__init_begin);
2450 	void *end = (void *)(&__init_end);
2451 	struct hlist_head *head;
2452 	struct kprobe *p;
2453 	int i;
2454 
2455 	mutex_lock(&kprobe_mutex);
2456 
2457 	/* Kill all kprobes on initmem */
2458 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2459 		head = &kprobe_table[i];
2460 		hlist_for_each_entry(p, head, hlist) {
2461 			if (start <= (void *)p->addr && (void *)p->addr < end)
2462 				kill_kprobe(p);
2463 		}
2464 	}
2465 
2466 	mutex_unlock(&kprobe_mutex);
2467 }
2468 
2469 static int __init init_kprobes(void)
2470 {
2471 	int i, err = 0;
2472 
2473 	/* FIXME allocate the probe table, currently defined statically */
2474 	/* initialize all list heads */
2475 	for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2476 		INIT_HLIST_HEAD(&kprobe_table[i]);
2477 
2478 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2479 					__stop_kprobe_blacklist);
2480 	if (err) {
2481 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2482 		pr_err("Please take care of using kprobes.\n");
2483 	}
2484 
2485 	if (kretprobe_blacklist_size) {
2486 		/* lookup the function address from its name */
2487 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2488 			kretprobe_blacklist[i].addr =
2489 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2490 			if (!kretprobe_blacklist[i].addr)
2491 				printk("kretprobe: lookup failed: %s\n",
2492 				       kretprobe_blacklist[i].name);
2493 		}
2494 	}
2495 
2496 	/* By default, kprobes are armed */
2497 	kprobes_all_disarmed = false;
2498 
2499 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2500 	/* Init kprobe_optinsn_slots for allocation */
2501 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2502 #endif
2503 
2504 	err = arch_init_kprobes();
2505 	if (!err)
2506 		err = register_die_notifier(&kprobe_exceptions_nb);
2507 	if (!err)
2508 		err = register_module_notifier(&kprobe_module_nb);
2509 
2510 	kprobes_initialized = (err == 0);
2511 
2512 	if (!err)
2513 		init_test_probes();
2514 	return err;
2515 }
2516 early_initcall(init_kprobes);
2517 
2518 #if defined(CONFIG_OPTPROBES)
2519 static int __init init_optprobes(void)
2520 {
2521 	/*
2522 	 * Enable kprobe optimization - this kicks the optimizer which
2523 	 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2524 	 * not spawned in early initcall. So delay the optimization.
2525 	 */
2526 	optimize_all_kprobes();
2527 
2528 	return 0;
2529 }
2530 subsys_initcall(init_optprobes);
2531 #endif
2532 
2533 #ifdef CONFIG_DEBUG_FS
2534 static void report_probe(struct seq_file *pi, struct kprobe *p,
2535 		const char *sym, int offset, char *modname, struct kprobe *pp)
2536 {
2537 	char *kprobe_type;
2538 	void *addr = p->addr;
2539 
2540 	if (p->pre_handler == pre_handler_kretprobe)
2541 		kprobe_type = "r";
2542 	else
2543 		kprobe_type = "k";
2544 
2545 	if (!kallsyms_show_value(pi->file->f_cred))
2546 		addr = NULL;
2547 
2548 	if (sym)
2549 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2550 			addr, kprobe_type, sym, offset,
2551 			(modname ? modname : " "));
2552 	else	/* try to use %pS */
2553 		seq_printf(pi, "%px  %s  %pS ",
2554 			addr, kprobe_type, p->addr);
2555 
2556 	if (!pp)
2557 		pp = p;
2558 	seq_printf(pi, "%s%s%s%s\n",
2559 		(kprobe_gone(p) ? "[GONE]" : ""),
2560 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2561 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2562 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2563 }
2564 
2565 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2566 {
2567 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2568 }
2569 
2570 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2571 {
2572 	(*pos)++;
2573 	if (*pos >= KPROBE_TABLE_SIZE)
2574 		return NULL;
2575 	return pos;
2576 }
2577 
2578 static void kprobe_seq_stop(struct seq_file *f, void *v)
2579 {
2580 	/* Nothing to do */
2581 }
2582 
2583 static int show_kprobe_addr(struct seq_file *pi, void *v)
2584 {
2585 	struct hlist_head *head;
2586 	struct kprobe *p, *kp;
2587 	const char *sym = NULL;
2588 	unsigned int i = *(loff_t *) v;
2589 	unsigned long offset = 0;
2590 	char *modname, namebuf[KSYM_NAME_LEN];
2591 
2592 	head = &kprobe_table[i];
2593 	preempt_disable();
2594 	hlist_for_each_entry_rcu(p, head, hlist) {
2595 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2596 					&offset, &modname, namebuf);
2597 		if (kprobe_aggrprobe(p)) {
2598 			list_for_each_entry_rcu(kp, &p->list, list)
2599 				report_probe(pi, kp, sym, offset, modname, p);
2600 		} else
2601 			report_probe(pi, p, sym, offset, modname, NULL);
2602 	}
2603 	preempt_enable();
2604 	return 0;
2605 }
2606 
2607 static const struct seq_operations kprobes_sops = {
2608 	.start = kprobe_seq_start,
2609 	.next  = kprobe_seq_next,
2610 	.stop  = kprobe_seq_stop,
2611 	.show  = show_kprobe_addr
2612 };
2613 
2614 DEFINE_SEQ_ATTRIBUTE(kprobes);
2615 
2616 /* kprobes/blacklist -- shows which functions can not be probed */
2617 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2618 {
2619 	mutex_lock(&kprobe_mutex);
2620 	return seq_list_start(&kprobe_blacklist, *pos);
2621 }
2622 
2623 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2624 {
2625 	return seq_list_next(v, &kprobe_blacklist, pos);
2626 }
2627 
2628 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2629 {
2630 	struct kprobe_blacklist_entry *ent =
2631 		list_entry(v, struct kprobe_blacklist_entry, list);
2632 
2633 	/*
2634 	 * If /proc/kallsyms is not showing kernel address, we won't
2635 	 * show them here either.
2636 	 */
2637 	if (!kallsyms_show_value(m->file->f_cred))
2638 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2639 			   (void *)ent->start_addr);
2640 	else
2641 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2642 			   (void *)ent->end_addr, (void *)ent->start_addr);
2643 	return 0;
2644 }
2645 
2646 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2647 {
2648 	mutex_unlock(&kprobe_mutex);
2649 }
2650 
2651 static const struct seq_operations kprobe_blacklist_sops = {
2652 	.start = kprobe_blacklist_seq_start,
2653 	.next  = kprobe_blacklist_seq_next,
2654 	.stop  = kprobe_blacklist_seq_stop,
2655 	.show  = kprobe_blacklist_seq_show,
2656 };
2657 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2658 
2659 static int arm_all_kprobes(void)
2660 {
2661 	struct hlist_head *head;
2662 	struct kprobe *p;
2663 	unsigned int i, total = 0, errors = 0;
2664 	int err, ret = 0;
2665 
2666 	mutex_lock(&kprobe_mutex);
2667 
2668 	/* If kprobes are armed, just return */
2669 	if (!kprobes_all_disarmed)
2670 		goto already_enabled;
2671 
2672 	/*
2673 	 * optimize_kprobe() called by arm_kprobe() checks
2674 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2675 	 * arm_kprobe.
2676 	 */
2677 	kprobes_all_disarmed = false;
2678 	/* Arming kprobes doesn't optimize kprobe itself */
2679 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2680 		head = &kprobe_table[i];
2681 		/* Arm all kprobes on a best-effort basis */
2682 		hlist_for_each_entry(p, head, hlist) {
2683 			if (!kprobe_disabled(p)) {
2684 				err = arm_kprobe(p);
2685 				if (err)  {
2686 					errors++;
2687 					ret = err;
2688 				}
2689 				total++;
2690 			}
2691 		}
2692 	}
2693 
2694 	if (errors)
2695 		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2696 			errors, total);
2697 	else
2698 		pr_info("Kprobes globally enabled\n");
2699 
2700 already_enabled:
2701 	mutex_unlock(&kprobe_mutex);
2702 	return ret;
2703 }
2704 
2705 static int disarm_all_kprobes(void)
2706 {
2707 	struct hlist_head *head;
2708 	struct kprobe *p;
2709 	unsigned int i, total = 0, errors = 0;
2710 	int err, ret = 0;
2711 
2712 	mutex_lock(&kprobe_mutex);
2713 
2714 	/* If kprobes are already disarmed, just return */
2715 	if (kprobes_all_disarmed) {
2716 		mutex_unlock(&kprobe_mutex);
2717 		return 0;
2718 	}
2719 
2720 	kprobes_all_disarmed = true;
2721 
2722 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2723 		head = &kprobe_table[i];
2724 		/* Disarm all kprobes on a best-effort basis */
2725 		hlist_for_each_entry(p, head, hlist) {
2726 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2727 				err = disarm_kprobe(p, false);
2728 				if (err) {
2729 					errors++;
2730 					ret = err;
2731 				}
2732 				total++;
2733 			}
2734 		}
2735 	}
2736 
2737 	if (errors)
2738 		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2739 			errors, total);
2740 	else
2741 		pr_info("Kprobes globally disabled\n");
2742 
2743 	mutex_unlock(&kprobe_mutex);
2744 
2745 	/* Wait for disarming all kprobes by optimizer */
2746 	wait_for_kprobe_optimizer();
2747 
2748 	return ret;
2749 }
2750 
2751 /*
2752  * XXX: The debugfs bool file interface doesn't allow for callbacks
2753  * when the bool state is switched. We can reuse that facility when
2754  * available
2755  */
2756 static ssize_t read_enabled_file_bool(struct file *file,
2757 	       char __user *user_buf, size_t count, loff_t *ppos)
2758 {
2759 	char buf[3];
2760 
2761 	if (!kprobes_all_disarmed)
2762 		buf[0] = '1';
2763 	else
2764 		buf[0] = '0';
2765 	buf[1] = '\n';
2766 	buf[2] = 0x00;
2767 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2768 }
2769 
2770 static ssize_t write_enabled_file_bool(struct file *file,
2771 	       const char __user *user_buf, size_t count, loff_t *ppos)
2772 {
2773 	char buf[32];
2774 	size_t buf_size;
2775 	int ret = 0;
2776 
2777 	buf_size = min(count, (sizeof(buf)-1));
2778 	if (copy_from_user(buf, user_buf, buf_size))
2779 		return -EFAULT;
2780 
2781 	buf[buf_size] = '\0';
2782 	switch (buf[0]) {
2783 	case 'y':
2784 	case 'Y':
2785 	case '1':
2786 		ret = arm_all_kprobes();
2787 		break;
2788 	case 'n':
2789 	case 'N':
2790 	case '0':
2791 		ret = disarm_all_kprobes();
2792 		break;
2793 	default:
2794 		return -EINVAL;
2795 	}
2796 
2797 	if (ret)
2798 		return ret;
2799 
2800 	return count;
2801 }
2802 
2803 static const struct file_operations fops_kp = {
2804 	.read =         read_enabled_file_bool,
2805 	.write =        write_enabled_file_bool,
2806 	.llseek =	default_llseek,
2807 };
2808 
2809 static int __init debugfs_kprobe_init(void)
2810 {
2811 	struct dentry *dir;
2812 	unsigned int value = 1;
2813 
2814 	dir = debugfs_create_dir("kprobes", NULL);
2815 
2816 	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2817 
2818 	debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2819 
2820 	debugfs_create_file("blacklist", 0400, dir, NULL,
2821 			    &kprobe_blacklist_fops);
2822 
2823 	return 0;
2824 }
2825 
2826 late_initcall(debugfs_kprobe_init);
2827 #endif /* CONFIG_DEBUG_FS */
2828