xref: /openbmc/linux/kernel/kprobes.c (revision b664e06d)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51 
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56 
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 
60 
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64 
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67 
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74 
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 					unsigned int __unused)
77 {
78 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80 
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83 	return &(kretprobe_table_locks[hash].lock);
84 }
85 
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88 
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91  * kprobe->ainsn.insn points to the copy of the instruction to be
92  * single-stepped. x86_64, POWER4 and above have no-exec support and
93  * stepping on the instruction on a vmalloced/kmalloced/data page
94  * is a recipe for disaster
95  */
96 struct kprobe_insn_page {
97 	struct list_head list;
98 	kprobe_opcode_t *insns;		/* Page of instruction slots */
99 	struct kprobe_insn_cache *cache;
100 	int nused;
101 	int ngarbage;
102 	char slot_used[];
103 };
104 
105 #define KPROBE_INSN_PAGE_SIZE(slots)			\
106 	(offsetof(struct kprobe_insn_page, slot_used) +	\
107 	 (sizeof(char) * (slots)))
108 
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113 
114 enum kprobe_slot_state {
115 	SLOT_CLEAN = 0,
116 	SLOT_DIRTY = 1,
117 	SLOT_USED = 2,
118 };
119 
120 void __weak *alloc_insn_page(void)
121 {
122 	return module_alloc(PAGE_SIZE);
123 }
124 
125 void __weak free_insn_page(void *page)
126 {
127 	module_memfree(page);
128 }
129 
130 struct kprobe_insn_cache kprobe_insn_slots = {
131 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 	.alloc = alloc_insn_page,
133 	.free = free_insn_page,
134 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 	.insn_size = MAX_INSN_SIZE,
136 	.nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139 
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146 	struct kprobe_insn_page *kip;
147 	kprobe_opcode_t *slot = NULL;
148 
149 	/* Since the slot array is not protected by rcu, we need a mutex */
150 	mutex_lock(&c->mutex);
151  retry:
152 	rcu_read_lock();
153 	list_for_each_entry_rcu(kip, &c->pages, list) {
154 		if (kip->nused < slots_per_page(c)) {
155 			int i;
156 			for (i = 0; i < slots_per_page(c); i++) {
157 				if (kip->slot_used[i] == SLOT_CLEAN) {
158 					kip->slot_used[i] = SLOT_USED;
159 					kip->nused++;
160 					slot = kip->insns + (i * c->insn_size);
161 					rcu_read_unlock();
162 					goto out;
163 				}
164 			}
165 			/* kip->nused is broken. Fix it. */
166 			kip->nused = slots_per_page(c);
167 			WARN_ON(1);
168 		}
169 	}
170 	rcu_read_unlock();
171 
172 	/* If there are any garbage slots, collect it and try again. */
173 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 		goto retry;
175 
176 	/* All out of space.  Need to allocate a new page. */
177 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 	if (!kip)
179 		goto out;
180 
181 	/*
182 	 * Use module_alloc so this page is within +/- 2GB of where the
183 	 * kernel image and loaded module images reside. This is required
184 	 * so x86_64 can correctly handle the %rip-relative fixups.
185 	 */
186 	kip->insns = c->alloc();
187 	if (!kip->insns) {
188 		kfree(kip);
189 		goto out;
190 	}
191 	INIT_LIST_HEAD(&kip->list);
192 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 	kip->slot_used[0] = SLOT_USED;
194 	kip->nused = 1;
195 	kip->ngarbage = 0;
196 	kip->cache = c;
197 	list_add_rcu(&kip->list, &c->pages);
198 	slot = kip->insns;
199 out:
200 	mutex_unlock(&c->mutex);
201 	return slot;
202 }
203 
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207 	kip->slot_used[idx] = SLOT_CLEAN;
208 	kip->nused--;
209 	if (kip->nused == 0) {
210 		/*
211 		 * Page is no longer in use.  Free it unless
212 		 * it's the last one.  We keep the last one
213 		 * so as not to have to set it up again the
214 		 * next time somebody inserts a probe.
215 		 */
216 		if (!list_is_singular(&kip->list)) {
217 			list_del_rcu(&kip->list);
218 			synchronize_rcu();
219 			kip->cache->free(kip->insns);
220 			kfree(kip);
221 		}
222 		return 1;
223 	}
224 	return 0;
225 }
226 
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229 	struct kprobe_insn_page *kip, *next;
230 
231 	/* Ensure no-one is interrupted on the garbages */
232 	synchronize_rcu();
233 
234 	list_for_each_entry_safe(kip, next, &c->pages, list) {
235 		int i;
236 		if (kip->ngarbage == 0)
237 			continue;
238 		kip->ngarbage = 0;	/* we will collect all garbages */
239 		for (i = 0; i < slots_per_page(c); i++) {
240 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 				break;
242 		}
243 	}
244 	c->nr_garbage = 0;
245 	return 0;
246 }
247 
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249 		      kprobe_opcode_t *slot, int dirty)
250 {
251 	struct kprobe_insn_page *kip;
252 	long idx;
253 
254 	mutex_lock(&c->mutex);
255 	rcu_read_lock();
256 	list_for_each_entry_rcu(kip, &c->pages, list) {
257 		idx = ((long)slot - (long)kip->insns) /
258 			(c->insn_size * sizeof(kprobe_opcode_t));
259 		if (idx >= 0 && idx < slots_per_page(c))
260 			goto out;
261 	}
262 	/* Could not find this slot. */
263 	WARN_ON(1);
264 	kip = NULL;
265 out:
266 	rcu_read_unlock();
267 	/* Mark and sweep: this may sleep */
268 	if (kip) {
269 		/* Check double free */
270 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 		if (dirty) {
272 			kip->slot_used[idx] = SLOT_DIRTY;
273 			kip->ngarbage++;
274 			if (++c->nr_garbage > slots_per_page(c))
275 				collect_garbage_slots(c);
276 		} else {
277 			collect_one_slot(kip, idx);
278 		}
279 	}
280 	mutex_unlock(&c->mutex);
281 }
282 
283 /*
284  * Check given address is on the page of kprobe instruction slots.
285  * This will be used for checking whether the address on a stack
286  * is on a text area or not.
287  */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290 	struct kprobe_insn_page *kip;
291 	bool ret = false;
292 
293 	rcu_read_lock();
294 	list_for_each_entry_rcu(kip, &c->pages, list) {
295 		if (addr >= (unsigned long)kip->insns &&
296 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 			ret = true;
298 			break;
299 		}
300 	}
301 	rcu_read_unlock();
302 
303 	return ret;
304 }
305 
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 	.alloc = alloc_insn_page,
311 	.free = free_insn_page,
312 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 	/* .insn_size is initialized later */
314 	.nr_garbage = 0,
315 };
316 #endif
317 #endif
318 
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322 	__this_cpu_write(kprobe_instance, kp);
323 }
324 
325 static inline void reset_kprobe_instance(void)
326 {
327 	__this_cpu_write(kprobe_instance, NULL);
328 }
329 
330 /*
331  * This routine is called either:
332  * 	- under the kprobe_mutex - during kprobe_[un]register()
333  * 				OR
334  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
335  */
336 struct kprobe *get_kprobe(void *addr)
337 {
338 	struct hlist_head *head;
339 	struct kprobe *p;
340 
341 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 	hlist_for_each_entry_rcu(p, head, hlist) {
343 		if (p->addr == addr)
344 			return p;
345 	}
346 
347 	return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350 
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352 
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356 	return p->pre_handler == aggr_pre_handler;
357 }
358 
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 	       list_empty(&p->list);
364 }
365 
366 /*
367  * Keep all fields in the kprobe consistent
368  */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374 
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378 
379 /*
380  * Call all pre_handler on the list, but ignores its return value.
381  * This must be called from arch-dep optimized caller.
382  */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385 	struct kprobe *kp;
386 
387 	list_for_each_entry_rcu(kp, &p->list, list) {
388 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 			set_kprobe_instance(kp);
390 			kp->pre_handler(kp, regs);
391 		}
392 		reset_kprobe_instance();
393 	}
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396 
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400 	struct optimized_kprobe *op;
401 
402 	op = container_of(p, struct optimized_kprobe, kp);
403 	arch_remove_optimized_kprobe(op);
404 	arch_remove_kprobe(p);
405 	kfree(op);
406 }
407 
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411 	struct optimized_kprobe *op;
412 
413 	if (kprobe_aggrprobe(p)) {
414 		op = container_of(p, struct optimized_kprobe, kp);
415 		return arch_prepared_optinsn(&op->optinsn);
416 	}
417 
418 	return 0;
419 }
420 
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424 	struct optimized_kprobe *op;
425 
426 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 	if (!kprobe_aggrprobe(p))
428 		return kprobe_disabled(p);
429 
430 	op = container_of(p, struct optimized_kprobe, kp);
431 
432 	return kprobe_disabled(p) && list_empty(&op->list);
433 }
434 
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438 	struct optimized_kprobe *op;
439 
440 	if (kprobe_aggrprobe(p)) {
441 		op = container_of(p, struct optimized_kprobe, kp);
442 		if (!list_empty(&op->list))
443 			return 1;
444 	}
445 	return 0;
446 }
447 
448 /*
449  * Return an optimized kprobe whose optimizing code replaces
450  * instructions including addr (exclude breakpoint).
451  */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454 	int i;
455 	struct kprobe *p = NULL;
456 	struct optimized_kprobe *op;
457 
458 	/* Don't check i == 0, since that is a breakpoint case. */
459 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 		p = get_kprobe((void *)(addr - i));
461 
462 	if (p && kprobe_optready(p)) {
463 		op = container_of(p, struct optimized_kprobe, kp);
464 		if (arch_within_optimized_kprobe(op, addr))
465 			return p;
466 	}
467 
468 	return NULL;
469 }
470 
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475 
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479 
480 /*
481  * Optimize (replace a breakpoint with a jump) kprobes listed on
482  * optimizing_list.
483  */
484 static void do_optimize_kprobes(void)
485 {
486 	/*
487 	 * The optimization/unoptimization refers online_cpus via
488 	 * stop_machine() and cpu-hotplug modifies online_cpus.
489 	 * And same time, text_mutex will be held in cpu-hotplug and here.
490 	 * This combination can cause a deadlock (cpu-hotplug try to lock
491 	 * text_mutex but stop_machine can not be done because online_cpus
492 	 * has been changed)
493 	 * To avoid this deadlock, caller must have locked cpu hotplug
494 	 * for preventing cpu-hotplug outside of text_mutex locking.
495 	 */
496 	lockdep_assert_cpus_held();
497 
498 	/* Optimization never be done when disarmed */
499 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
500 	    list_empty(&optimizing_list))
501 		return;
502 
503 	mutex_lock(&text_mutex);
504 	arch_optimize_kprobes(&optimizing_list);
505 	mutex_unlock(&text_mutex);
506 }
507 
508 /*
509  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510  * if need) kprobes listed on unoptimizing_list.
511  */
512 static void do_unoptimize_kprobes(void)
513 {
514 	struct optimized_kprobe *op, *tmp;
515 
516 	/* See comment in do_optimize_kprobes() */
517 	lockdep_assert_cpus_held();
518 
519 	/* Unoptimization must be done anytime */
520 	if (list_empty(&unoptimizing_list))
521 		return;
522 
523 	mutex_lock(&text_mutex);
524 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
525 	/* Loop free_list for disarming */
526 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
527 		/* Disarm probes if marked disabled */
528 		if (kprobe_disabled(&op->kp))
529 			arch_disarm_kprobe(&op->kp);
530 		if (kprobe_unused(&op->kp)) {
531 			/*
532 			 * Remove unused probes from hash list. After waiting
533 			 * for synchronization, these probes are reclaimed.
534 			 * (reclaiming is done by do_free_cleaned_kprobes.)
535 			 */
536 			hlist_del_rcu(&op->kp.hlist);
537 		} else
538 			list_del_init(&op->list);
539 	}
540 	mutex_unlock(&text_mutex);
541 }
542 
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546 	struct optimized_kprobe *op, *tmp;
547 
548 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 		list_del_init(&op->list);
550 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
551 			/*
552 			 * This must not happen, but if there is a kprobe
553 			 * still in use, keep it on kprobes hash list.
554 			 */
555 			continue;
556 		}
557 		free_aggr_kprobe(&op->kp);
558 	}
559 }
560 
561 /* Start optimizer after OPTIMIZE_DELAY passed */
562 static void kick_kprobe_optimizer(void)
563 {
564 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
565 }
566 
567 /* Kprobe jump optimizer */
568 static void kprobe_optimizer(struct work_struct *work)
569 {
570 	mutex_lock(&kprobe_mutex);
571 	cpus_read_lock();
572 	/* Lock modules while optimizing kprobes */
573 	mutex_lock(&module_mutex);
574 
575 	/*
576 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
577 	 * kprobes before waiting for quiesence period.
578 	 */
579 	do_unoptimize_kprobes();
580 
581 	/*
582 	 * Step 2: Wait for quiesence period to ensure all potentially
583 	 * preempted tasks to have normally scheduled. Because optprobe
584 	 * may modify multiple instructions, there is a chance that Nth
585 	 * instruction is preempted. In that case, such tasks can return
586 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
587 	 * Note that on non-preemptive kernel, this is transparently converted
588 	 * to synchronoze_sched() to wait for all interrupts to have completed.
589 	 */
590 	synchronize_rcu_tasks();
591 
592 	/* Step 3: Optimize kprobes after quiesence period */
593 	do_optimize_kprobes();
594 
595 	/* Step 4: Free cleaned kprobes after quiesence period */
596 	do_free_cleaned_kprobes();
597 
598 	mutex_unlock(&module_mutex);
599 	cpus_read_unlock();
600 	mutex_unlock(&kprobe_mutex);
601 
602 	/* Step 5: Kick optimizer again if needed */
603 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
604 		kick_kprobe_optimizer();
605 }
606 
607 /* Wait for completing optimization and unoptimization */
608 void wait_for_kprobe_optimizer(void)
609 {
610 	mutex_lock(&kprobe_mutex);
611 
612 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
613 		mutex_unlock(&kprobe_mutex);
614 
615 		/* this will also make optimizing_work execute immmediately */
616 		flush_delayed_work(&optimizing_work);
617 		/* @optimizing_work might not have been queued yet, relax */
618 		cpu_relax();
619 
620 		mutex_lock(&kprobe_mutex);
621 	}
622 
623 	mutex_unlock(&kprobe_mutex);
624 }
625 
626 /* Optimize kprobe if p is ready to be optimized */
627 static void optimize_kprobe(struct kprobe *p)
628 {
629 	struct optimized_kprobe *op;
630 
631 	/* Check if the kprobe is disabled or not ready for optimization. */
632 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
633 	    (kprobe_disabled(p) || kprobes_all_disarmed))
634 		return;
635 
636 	/* kprobes with post_handler can not be optimized */
637 	if (p->post_handler)
638 		return;
639 
640 	op = container_of(p, struct optimized_kprobe, kp);
641 
642 	/* Check there is no other kprobes at the optimized instructions */
643 	if (arch_check_optimized_kprobe(op) < 0)
644 		return;
645 
646 	/* Check if it is already optimized. */
647 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
648 		return;
649 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
650 
651 	if (!list_empty(&op->list))
652 		/* This is under unoptimizing. Just dequeue the probe */
653 		list_del_init(&op->list);
654 	else {
655 		list_add(&op->list, &optimizing_list);
656 		kick_kprobe_optimizer();
657 	}
658 }
659 
660 /* Short cut to direct unoptimizing */
661 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
662 {
663 	lockdep_assert_cpus_held();
664 	arch_unoptimize_kprobe(op);
665 	if (kprobe_disabled(&op->kp))
666 		arch_disarm_kprobe(&op->kp);
667 }
668 
669 /* Unoptimize a kprobe if p is optimized */
670 static void unoptimize_kprobe(struct kprobe *p, bool force)
671 {
672 	struct optimized_kprobe *op;
673 
674 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
675 		return; /* This is not an optprobe nor optimized */
676 
677 	op = container_of(p, struct optimized_kprobe, kp);
678 	if (!kprobe_optimized(p)) {
679 		/* Unoptimized or unoptimizing case */
680 		if (force && !list_empty(&op->list)) {
681 			/*
682 			 * Only if this is unoptimizing kprobe and forced,
683 			 * forcibly unoptimize it. (No need to unoptimize
684 			 * unoptimized kprobe again :)
685 			 */
686 			list_del_init(&op->list);
687 			force_unoptimize_kprobe(op);
688 		}
689 		return;
690 	}
691 
692 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
693 	if (!list_empty(&op->list)) {
694 		/* Dequeue from the optimization queue */
695 		list_del_init(&op->list);
696 		return;
697 	}
698 	/* Optimized kprobe case */
699 	if (force)
700 		/* Forcibly update the code: this is a special case */
701 		force_unoptimize_kprobe(op);
702 	else {
703 		list_add(&op->list, &unoptimizing_list);
704 		kick_kprobe_optimizer();
705 	}
706 }
707 
708 /* Cancel unoptimizing for reusing */
709 static int reuse_unused_kprobe(struct kprobe *ap)
710 {
711 	struct optimized_kprobe *op;
712 
713 	/*
714 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
715 	 * there is still a relative jump) and disabled.
716 	 */
717 	op = container_of(ap, struct optimized_kprobe, kp);
718 	WARN_ON_ONCE(list_empty(&op->list));
719 	/* Enable the probe again */
720 	ap->flags &= ~KPROBE_FLAG_DISABLED;
721 	/* Optimize it again (remove from op->list) */
722 	if (!kprobe_optready(ap))
723 		return -EINVAL;
724 
725 	optimize_kprobe(ap);
726 	return 0;
727 }
728 
729 /* Remove optimized instructions */
730 static void kill_optimized_kprobe(struct kprobe *p)
731 {
732 	struct optimized_kprobe *op;
733 
734 	op = container_of(p, struct optimized_kprobe, kp);
735 	if (!list_empty(&op->list))
736 		/* Dequeue from the (un)optimization queue */
737 		list_del_init(&op->list);
738 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
739 
740 	if (kprobe_unused(p)) {
741 		/* Enqueue if it is unused */
742 		list_add(&op->list, &freeing_list);
743 		/*
744 		 * Remove unused probes from the hash list. After waiting
745 		 * for synchronization, this probe is reclaimed.
746 		 * (reclaiming is done by do_free_cleaned_kprobes().)
747 		 */
748 		hlist_del_rcu(&op->kp.hlist);
749 	}
750 
751 	/* Don't touch the code, because it is already freed. */
752 	arch_remove_optimized_kprobe(op);
753 }
754 
755 static inline
756 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
757 {
758 	if (!kprobe_ftrace(p))
759 		arch_prepare_optimized_kprobe(op, p);
760 }
761 
762 /* Try to prepare optimized instructions */
763 static void prepare_optimized_kprobe(struct kprobe *p)
764 {
765 	struct optimized_kprobe *op;
766 
767 	op = container_of(p, struct optimized_kprobe, kp);
768 	__prepare_optimized_kprobe(op, p);
769 }
770 
771 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
772 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
773 {
774 	struct optimized_kprobe *op;
775 
776 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
777 	if (!op)
778 		return NULL;
779 
780 	INIT_LIST_HEAD(&op->list);
781 	op->kp.addr = p->addr;
782 	__prepare_optimized_kprobe(op, p);
783 
784 	return &op->kp;
785 }
786 
787 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
788 
789 /*
790  * Prepare an optimized_kprobe and optimize it
791  * NOTE: p must be a normal registered kprobe
792  */
793 static void try_to_optimize_kprobe(struct kprobe *p)
794 {
795 	struct kprobe *ap;
796 	struct optimized_kprobe *op;
797 
798 	/* Impossible to optimize ftrace-based kprobe */
799 	if (kprobe_ftrace(p))
800 		return;
801 
802 	/* For preparing optimization, jump_label_text_reserved() is called */
803 	cpus_read_lock();
804 	jump_label_lock();
805 	mutex_lock(&text_mutex);
806 
807 	ap = alloc_aggr_kprobe(p);
808 	if (!ap)
809 		goto out;
810 
811 	op = container_of(ap, struct optimized_kprobe, kp);
812 	if (!arch_prepared_optinsn(&op->optinsn)) {
813 		/* If failed to setup optimizing, fallback to kprobe */
814 		arch_remove_optimized_kprobe(op);
815 		kfree(op);
816 		goto out;
817 	}
818 
819 	init_aggr_kprobe(ap, p);
820 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
821 
822 out:
823 	mutex_unlock(&text_mutex);
824 	jump_label_unlock();
825 	cpus_read_unlock();
826 }
827 
828 #ifdef CONFIG_SYSCTL
829 static void optimize_all_kprobes(void)
830 {
831 	struct hlist_head *head;
832 	struct kprobe *p;
833 	unsigned int i;
834 
835 	mutex_lock(&kprobe_mutex);
836 	/* If optimization is already allowed, just return */
837 	if (kprobes_allow_optimization)
838 		goto out;
839 
840 	cpus_read_lock();
841 	kprobes_allow_optimization = true;
842 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
843 		head = &kprobe_table[i];
844 		hlist_for_each_entry_rcu(p, head, hlist)
845 			if (!kprobe_disabled(p))
846 				optimize_kprobe(p);
847 	}
848 	cpus_read_unlock();
849 	printk(KERN_INFO "Kprobes globally optimized\n");
850 out:
851 	mutex_unlock(&kprobe_mutex);
852 }
853 
854 static void unoptimize_all_kprobes(void)
855 {
856 	struct hlist_head *head;
857 	struct kprobe *p;
858 	unsigned int i;
859 
860 	mutex_lock(&kprobe_mutex);
861 	/* If optimization is already prohibited, just return */
862 	if (!kprobes_allow_optimization) {
863 		mutex_unlock(&kprobe_mutex);
864 		return;
865 	}
866 
867 	cpus_read_lock();
868 	kprobes_allow_optimization = false;
869 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
870 		head = &kprobe_table[i];
871 		hlist_for_each_entry_rcu(p, head, hlist) {
872 			if (!kprobe_disabled(p))
873 				unoptimize_kprobe(p, false);
874 		}
875 	}
876 	cpus_read_unlock();
877 	mutex_unlock(&kprobe_mutex);
878 
879 	/* Wait for unoptimizing completion */
880 	wait_for_kprobe_optimizer();
881 	printk(KERN_INFO "Kprobes globally unoptimized\n");
882 }
883 
884 static DEFINE_MUTEX(kprobe_sysctl_mutex);
885 int sysctl_kprobes_optimization;
886 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
887 				      void __user *buffer, size_t *length,
888 				      loff_t *ppos)
889 {
890 	int ret;
891 
892 	mutex_lock(&kprobe_sysctl_mutex);
893 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
894 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
895 
896 	if (sysctl_kprobes_optimization)
897 		optimize_all_kprobes();
898 	else
899 		unoptimize_all_kprobes();
900 	mutex_unlock(&kprobe_sysctl_mutex);
901 
902 	return ret;
903 }
904 #endif /* CONFIG_SYSCTL */
905 
906 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
907 static void __arm_kprobe(struct kprobe *p)
908 {
909 	struct kprobe *_p;
910 
911 	/* Check collision with other optimized kprobes */
912 	_p = get_optimized_kprobe((unsigned long)p->addr);
913 	if (unlikely(_p))
914 		/* Fallback to unoptimized kprobe */
915 		unoptimize_kprobe(_p, true);
916 
917 	arch_arm_kprobe(p);
918 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
919 }
920 
921 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
922 static void __disarm_kprobe(struct kprobe *p, bool reopt)
923 {
924 	struct kprobe *_p;
925 
926 	/* Try to unoptimize */
927 	unoptimize_kprobe(p, kprobes_all_disarmed);
928 
929 	if (!kprobe_queued(p)) {
930 		arch_disarm_kprobe(p);
931 		/* If another kprobe was blocked, optimize it. */
932 		_p = get_optimized_kprobe((unsigned long)p->addr);
933 		if (unlikely(_p) && reopt)
934 			optimize_kprobe(_p);
935 	}
936 	/* TODO: reoptimize others after unoptimized this probe */
937 }
938 
939 #else /* !CONFIG_OPTPROBES */
940 
941 #define optimize_kprobe(p)			do {} while (0)
942 #define unoptimize_kprobe(p, f)			do {} while (0)
943 #define kill_optimized_kprobe(p)		do {} while (0)
944 #define prepare_optimized_kprobe(p)		do {} while (0)
945 #define try_to_optimize_kprobe(p)		do {} while (0)
946 #define __arm_kprobe(p)				arch_arm_kprobe(p)
947 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
948 #define kprobe_disarmed(p)			kprobe_disabled(p)
949 #define wait_for_kprobe_optimizer()		do {} while (0)
950 
951 static int reuse_unused_kprobe(struct kprobe *ap)
952 {
953 	/*
954 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
955 	 * released at the same time that the last aggregated kprobe is
956 	 * unregistered.
957 	 * Thus there should be no chance to reuse unused kprobe.
958 	 */
959 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
960 	return -EINVAL;
961 }
962 
963 static void free_aggr_kprobe(struct kprobe *p)
964 {
965 	arch_remove_kprobe(p);
966 	kfree(p);
967 }
968 
969 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
970 {
971 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
972 }
973 #endif /* CONFIG_OPTPROBES */
974 
975 #ifdef CONFIG_KPROBES_ON_FTRACE
976 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
977 	.func = kprobe_ftrace_handler,
978 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
979 };
980 static int kprobe_ftrace_enabled;
981 
982 /* Must ensure p->addr is really on ftrace */
983 static int prepare_kprobe(struct kprobe *p)
984 {
985 	if (!kprobe_ftrace(p))
986 		return arch_prepare_kprobe(p);
987 
988 	return arch_prepare_kprobe_ftrace(p);
989 }
990 
991 /* Caller must lock kprobe_mutex */
992 static int arm_kprobe_ftrace(struct kprobe *p)
993 {
994 	int ret = 0;
995 
996 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
997 				   (unsigned long)p->addr, 0, 0);
998 	if (ret) {
999 		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1000 			 p->addr, ret);
1001 		return ret;
1002 	}
1003 
1004 	if (kprobe_ftrace_enabled == 0) {
1005 		ret = register_ftrace_function(&kprobe_ftrace_ops);
1006 		if (ret) {
1007 			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1008 			goto err_ftrace;
1009 		}
1010 	}
1011 
1012 	kprobe_ftrace_enabled++;
1013 	return ret;
1014 
1015 err_ftrace:
1016 	/*
1017 	 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1018 	 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1019 	 * empty filter_hash which would undesirably trace all functions.
1020 	 */
1021 	ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1022 	return ret;
1023 }
1024 
1025 /* Caller must lock kprobe_mutex */
1026 static int disarm_kprobe_ftrace(struct kprobe *p)
1027 {
1028 	int ret = 0;
1029 
1030 	if (kprobe_ftrace_enabled == 1) {
1031 		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1032 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1033 			return ret;
1034 	}
1035 
1036 	kprobe_ftrace_enabled--;
1037 
1038 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1039 			   (unsigned long)p->addr, 1, 0);
1040 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1041 		  p->addr, ret);
1042 	return ret;
1043 }
1044 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1045 #define prepare_kprobe(p)	arch_prepare_kprobe(p)
1046 #define arm_kprobe_ftrace(p)	(-ENODEV)
1047 #define disarm_kprobe_ftrace(p)	(-ENODEV)
1048 #endif
1049 
1050 /* Arm a kprobe with text_mutex */
1051 static int arm_kprobe(struct kprobe *kp)
1052 {
1053 	if (unlikely(kprobe_ftrace(kp)))
1054 		return arm_kprobe_ftrace(kp);
1055 
1056 	cpus_read_lock();
1057 	mutex_lock(&text_mutex);
1058 	__arm_kprobe(kp);
1059 	mutex_unlock(&text_mutex);
1060 	cpus_read_unlock();
1061 
1062 	return 0;
1063 }
1064 
1065 /* Disarm a kprobe with text_mutex */
1066 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1067 {
1068 	if (unlikely(kprobe_ftrace(kp)))
1069 		return disarm_kprobe_ftrace(kp);
1070 
1071 	cpus_read_lock();
1072 	mutex_lock(&text_mutex);
1073 	__disarm_kprobe(kp, reopt);
1074 	mutex_unlock(&text_mutex);
1075 	cpus_read_unlock();
1076 
1077 	return 0;
1078 }
1079 
1080 /*
1081  * Aggregate handlers for multiple kprobes support - these handlers
1082  * take care of invoking the individual kprobe handlers on p->list
1083  */
1084 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1085 {
1086 	struct kprobe *kp;
1087 
1088 	list_for_each_entry_rcu(kp, &p->list, list) {
1089 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1090 			set_kprobe_instance(kp);
1091 			if (kp->pre_handler(kp, regs))
1092 				return 1;
1093 		}
1094 		reset_kprobe_instance();
1095 	}
1096 	return 0;
1097 }
1098 NOKPROBE_SYMBOL(aggr_pre_handler);
1099 
1100 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1101 			      unsigned long flags)
1102 {
1103 	struct kprobe *kp;
1104 
1105 	list_for_each_entry_rcu(kp, &p->list, list) {
1106 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1107 			set_kprobe_instance(kp);
1108 			kp->post_handler(kp, regs, flags);
1109 			reset_kprobe_instance();
1110 		}
1111 	}
1112 }
1113 NOKPROBE_SYMBOL(aggr_post_handler);
1114 
1115 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1116 			      int trapnr)
1117 {
1118 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1119 
1120 	/*
1121 	 * if we faulted "during" the execution of a user specified
1122 	 * probe handler, invoke just that probe's fault handler
1123 	 */
1124 	if (cur && cur->fault_handler) {
1125 		if (cur->fault_handler(cur, regs, trapnr))
1126 			return 1;
1127 	}
1128 	return 0;
1129 }
1130 NOKPROBE_SYMBOL(aggr_fault_handler);
1131 
1132 /* Walks the list and increments nmissed count for multiprobe case */
1133 void kprobes_inc_nmissed_count(struct kprobe *p)
1134 {
1135 	struct kprobe *kp;
1136 	if (!kprobe_aggrprobe(p)) {
1137 		p->nmissed++;
1138 	} else {
1139 		list_for_each_entry_rcu(kp, &p->list, list)
1140 			kp->nmissed++;
1141 	}
1142 	return;
1143 }
1144 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1145 
1146 void recycle_rp_inst(struct kretprobe_instance *ri,
1147 		     struct hlist_head *head)
1148 {
1149 	struct kretprobe *rp = ri->rp;
1150 
1151 	/* remove rp inst off the rprobe_inst_table */
1152 	hlist_del(&ri->hlist);
1153 	INIT_HLIST_NODE(&ri->hlist);
1154 	if (likely(rp)) {
1155 		raw_spin_lock(&rp->lock);
1156 		hlist_add_head(&ri->hlist, &rp->free_instances);
1157 		raw_spin_unlock(&rp->lock);
1158 	} else
1159 		/* Unregistering */
1160 		hlist_add_head(&ri->hlist, head);
1161 }
1162 NOKPROBE_SYMBOL(recycle_rp_inst);
1163 
1164 void kretprobe_hash_lock(struct task_struct *tsk,
1165 			 struct hlist_head **head, unsigned long *flags)
1166 __acquires(hlist_lock)
1167 {
1168 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1169 	raw_spinlock_t *hlist_lock;
1170 
1171 	*head = &kretprobe_inst_table[hash];
1172 	hlist_lock = kretprobe_table_lock_ptr(hash);
1173 	raw_spin_lock_irqsave(hlist_lock, *flags);
1174 }
1175 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1176 
1177 static void kretprobe_table_lock(unsigned long hash,
1178 				 unsigned long *flags)
1179 __acquires(hlist_lock)
1180 {
1181 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1182 	raw_spin_lock_irqsave(hlist_lock, *flags);
1183 }
1184 NOKPROBE_SYMBOL(kretprobe_table_lock);
1185 
1186 void kretprobe_hash_unlock(struct task_struct *tsk,
1187 			   unsigned long *flags)
1188 __releases(hlist_lock)
1189 {
1190 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1191 	raw_spinlock_t *hlist_lock;
1192 
1193 	hlist_lock = kretprobe_table_lock_ptr(hash);
1194 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1195 }
1196 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1197 
1198 static void kretprobe_table_unlock(unsigned long hash,
1199 				   unsigned long *flags)
1200 __releases(hlist_lock)
1201 {
1202 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1203 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1204 }
1205 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1206 
1207 /*
1208  * This function is called from finish_task_switch when task tk becomes dead,
1209  * so that we can recycle any function-return probe instances associated
1210  * with this task. These left over instances represent probed functions
1211  * that have been called but will never return.
1212  */
1213 void kprobe_flush_task(struct task_struct *tk)
1214 {
1215 	struct kretprobe_instance *ri;
1216 	struct hlist_head *head, empty_rp;
1217 	struct hlist_node *tmp;
1218 	unsigned long hash, flags = 0;
1219 
1220 	if (unlikely(!kprobes_initialized))
1221 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1222 		return;
1223 
1224 	INIT_HLIST_HEAD(&empty_rp);
1225 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1226 	head = &kretprobe_inst_table[hash];
1227 	kretprobe_table_lock(hash, &flags);
1228 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1229 		if (ri->task == tk)
1230 			recycle_rp_inst(ri, &empty_rp);
1231 	}
1232 	kretprobe_table_unlock(hash, &flags);
1233 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1234 		hlist_del(&ri->hlist);
1235 		kfree(ri);
1236 	}
1237 }
1238 NOKPROBE_SYMBOL(kprobe_flush_task);
1239 
1240 static inline void free_rp_inst(struct kretprobe *rp)
1241 {
1242 	struct kretprobe_instance *ri;
1243 	struct hlist_node *next;
1244 
1245 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1246 		hlist_del(&ri->hlist);
1247 		kfree(ri);
1248 	}
1249 }
1250 
1251 static void cleanup_rp_inst(struct kretprobe *rp)
1252 {
1253 	unsigned long flags, hash;
1254 	struct kretprobe_instance *ri;
1255 	struct hlist_node *next;
1256 	struct hlist_head *head;
1257 
1258 	/* No race here */
1259 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1260 		kretprobe_table_lock(hash, &flags);
1261 		head = &kretprobe_inst_table[hash];
1262 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1263 			if (ri->rp == rp)
1264 				ri->rp = NULL;
1265 		}
1266 		kretprobe_table_unlock(hash, &flags);
1267 	}
1268 	free_rp_inst(rp);
1269 }
1270 NOKPROBE_SYMBOL(cleanup_rp_inst);
1271 
1272 /* Add the new probe to ap->list */
1273 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1274 {
1275 	if (p->post_handler)
1276 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1277 
1278 	list_add_rcu(&p->list, &ap->list);
1279 	if (p->post_handler && !ap->post_handler)
1280 		ap->post_handler = aggr_post_handler;
1281 
1282 	return 0;
1283 }
1284 
1285 /*
1286  * Fill in the required fields of the "manager kprobe". Replace the
1287  * earlier kprobe in the hlist with the manager kprobe
1288  */
1289 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1290 {
1291 	/* Copy p's insn slot to ap */
1292 	copy_kprobe(p, ap);
1293 	flush_insn_slot(ap);
1294 	ap->addr = p->addr;
1295 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1296 	ap->pre_handler = aggr_pre_handler;
1297 	ap->fault_handler = aggr_fault_handler;
1298 	/* We don't care the kprobe which has gone. */
1299 	if (p->post_handler && !kprobe_gone(p))
1300 		ap->post_handler = aggr_post_handler;
1301 
1302 	INIT_LIST_HEAD(&ap->list);
1303 	INIT_HLIST_NODE(&ap->hlist);
1304 
1305 	list_add_rcu(&p->list, &ap->list);
1306 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1307 }
1308 
1309 /*
1310  * This is the second or subsequent kprobe at the address - handle
1311  * the intricacies
1312  */
1313 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1314 {
1315 	int ret = 0;
1316 	struct kprobe *ap = orig_p;
1317 
1318 	cpus_read_lock();
1319 
1320 	/* For preparing optimization, jump_label_text_reserved() is called */
1321 	jump_label_lock();
1322 	mutex_lock(&text_mutex);
1323 
1324 	if (!kprobe_aggrprobe(orig_p)) {
1325 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1326 		ap = alloc_aggr_kprobe(orig_p);
1327 		if (!ap) {
1328 			ret = -ENOMEM;
1329 			goto out;
1330 		}
1331 		init_aggr_kprobe(ap, orig_p);
1332 	} else if (kprobe_unused(ap)) {
1333 		/* This probe is going to die. Rescue it */
1334 		ret = reuse_unused_kprobe(ap);
1335 		if (ret)
1336 			goto out;
1337 	}
1338 
1339 	if (kprobe_gone(ap)) {
1340 		/*
1341 		 * Attempting to insert new probe at the same location that
1342 		 * had a probe in the module vaddr area which already
1343 		 * freed. So, the instruction slot has already been
1344 		 * released. We need a new slot for the new probe.
1345 		 */
1346 		ret = arch_prepare_kprobe(ap);
1347 		if (ret)
1348 			/*
1349 			 * Even if fail to allocate new slot, don't need to
1350 			 * free aggr_probe. It will be used next time, or
1351 			 * freed by unregister_kprobe.
1352 			 */
1353 			goto out;
1354 
1355 		/* Prepare optimized instructions if possible. */
1356 		prepare_optimized_kprobe(ap);
1357 
1358 		/*
1359 		 * Clear gone flag to prevent allocating new slot again, and
1360 		 * set disabled flag because it is not armed yet.
1361 		 */
1362 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1363 			    | KPROBE_FLAG_DISABLED;
1364 	}
1365 
1366 	/* Copy ap's insn slot to p */
1367 	copy_kprobe(ap, p);
1368 	ret = add_new_kprobe(ap, p);
1369 
1370 out:
1371 	mutex_unlock(&text_mutex);
1372 	jump_label_unlock();
1373 	cpus_read_unlock();
1374 
1375 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1376 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1377 		if (!kprobes_all_disarmed) {
1378 			/* Arm the breakpoint again. */
1379 			ret = arm_kprobe(ap);
1380 			if (ret) {
1381 				ap->flags |= KPROBE_FLAG_DISABLED;
1382 				list_del_rcu(&p->list);
1383 				synchronize_rcu();
1384 			}
1385 		}
1386 	}
1387 	return ret;
1388 }
1389 
1390 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1391 {
1392 	/* The __kprobes marked functions and entry code must not be probed */
1393 	return addr >= (unsigned long)__kprobes_text_start &&
1394 	       addr < (unsigned long)__kprobes_text_end;
1395 }
1396 
1397 static bool __within_kprobe_blacklist(unsigned long addr)
1398 {
1399 	struct kprobe_blacklist_entry *ent;
1400 
1401 	if (arch_within_kprobe_blacklist(addr))
1402 		return true;
1403 	/*
1404 	 * If there exists a kprobe_blacklist, verify and
1405 	 * fail any probe registration in the prohibited area
1406 	 */
1407 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1408 		if (addr >= ent->start_addr && addr < ent->end_addr)
1409 			return true;
1410 	}
1411 	return false;
1412 }
1413 
1414 bool within_kprobe_blacklist(unsigned long addr)
1415 {
1416 	char symname[KSYM_NAME_LEN], *p;
1417 
1418 	if (__within_kprobe_blacklist(addr))
1419 		return true;
1420 
1421 	/* Check if the address is on a suffixed-symbol */
1422 	if (!lookup_symbol_name(addr, symname)) {
1423 		p = strchr(symname, '.');
1424 		if (!p)
1425 			return false;
1426 		*p = '\0';
1427 		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1428 		if (addr)
1429 			return __within_kprobe_blacklist(addr);
1430 	}
1431 	return false;
1432 }
1433 
1434 /*
1435  * If we have a symbol_name argument, look it up and add the offset field
1436  * to it. This way, we can specify a relative address to a symbol.
1437  * This returns encoded errors if it fails to look up symbol or invalid
1438  * combination of parameters.
1439  */
1440 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1441 			const char *symbol_name, unsigned int offset)
1442 {
1443 	if ((symbol_name && addr) || (!symbol_name && !addr))
1444 		goto invalid;
1445 
1446 	if (symbol_name) {
1447 		addr = kprobe_lookup_name(symbol_name, offset);
1448 		if (!addr)
1449 			return ERR_PTR(-ENOENT);
1450 	}
1451 
1452 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1453 	if (addr)
1454 		return addr;
1455 
1456 invalid:
1457 	return ERR_PTR(-EINVAL);
1458 }
1459 
1460 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1461 {
1462 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1463 }
1464 
1465 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1466 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1467 {
1468 	struct kprobe *ap, *list_p;
1469 
1470 	ap = get_kprobe(p->addr);
1471 	if (unlikely(!ap))
1472 		return NULL;
1473 
1474 	if (p != ap) {
1475 		list_for_each_entry_rcu(list_p, &ap->list, list)
1476 			if (list_p == p)
1477 			/* kprobe p is a valid probe */
1478 				goto valid;
1479 		return NULL;
1480 	}
1481 valid:
1482 	return ap;
1483 }
1484 
1485 /* Return error if the kprobe is being re-registered */
1486 static inline int check_kprobe_rereg(struct kprobe *p)
1487 {
1488 	int ret = 0;
1489 
1490 	mutex_lock(&kprobe_mutex);
1491 	if (__get_valid_kprobe(p))
1492 		ret = -EINVAL;
1493 	mutex_unlock(&kprobe_mutex);
1494 
1495 	return ret;
1496 }
1497 
1498 int __weak arch_check_ftrace_location(struct kprobe *p)
1499 {
1500 	unsigned long ftrace_addr;
1501 
1502 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1503 	if (ftrace_addr) {
1504 #ifdef CONFIG_KPROBES_ON_FTRACE
1505 		/* Given address is not on the instruction boundary */
1506 		if ((unsigned long)p->addr != ftrace_addr)
1507 			return -EILSEQ;
1508 		p->flags |= KPROBE_FLAG_FTRACE;
1509 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1510 		return -EINVAL;
1511 #endif
1512 	}
1513 	return 0;
1514 }
1515 
1516 static int check_kprobe_address_safe(struct kprobe *p,
1517 				     struct module **probed_mod)
1518 {
1519 	int ret;
1520 
1521 	ret = arch_check_ftrace_location(p);
1522 	if (ret)
1523 		return ret;
1524 	jump_label_lock();
1525 	preempt_disable();
1526 
1527 	/* Ensure it is not in reserved area nor out of text */
1528 	if (!kernel_text_address((unsigned long) p->addr) ||
1529 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1530 	    jump_label_text_reserved(p->addr, p->addr)) {
1531 		ret = -EINVAL;
1532 		goto out;
1533 	}
1534 
1535 	/* Check if are we probing a module */
1536 	*probed_mod = __module_text_address((unsigned long) p->addr);
1537 	if (*probed_mod) {
1538 		/*
1539 		 * We must hold a refcount of the probed module while updating
1540 		 * its code to prohibit unexpected unloading.
1541 		 */
1542 		if (unlikely(!try_module_get(*probed_mod))) {
1543 			ret = -ENOENT;
1544 			goto out;
1545 		}
1546 
1547 		/*
1548 		 * If the module freed .init.text, we couldn't insert
1549 		 * kprobes in there.
1550 		 */
1551 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1552 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1553 			module_put(*probed_mod);
1554 			*probed_mod = NULL;
1555 			ret = -ENOENT;
1556 		}
1557 	}
1558 out:
1559 	preempt_enable();
1560 	jump_label_unlock();
1561 
1562 	return ret;
1563 }
1564 
1565 int register_kprobe(struct kprobe *p)
1566 {
1567 	int ret;
1568 	struct kprobe *old_p;
1569 	struct module *probed_mod;
1570 	kprobe_opcode_t *addr;
1571 
1572 	/* Adjust probe address from symbol */
1573 	addr = kprobe_addr(p);
1574 	if (IS_ERR(addr))
1575 		return PTR_ERR(addr);
1576 	p->addr = addr;
1577 
1578 	ret = check_kprobe_rereg(p);
1579 	if (ret)
1580 		return ret;
1581 
1582 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1583 	p->flags &= KPROBE_FLAG_DISABLED;
1584 	p->nmissed = 0;
1585 	INIT_LIST_HEAD(&p->list);
1586 
1587 	ret = check_kprobe_address_safe(p, &probed_mod);
1588 	if (ret)
1589 		return ret;
1590 
1591 	mutex_lock(&kprobe_mutex);
1592 
1593 	old_p = get_kprobe(p->addr);
1594 	if (old_p) {
1595 		/* Since this may unoptimize old_p, locking text_mutex. */
1596 		ret = register_aggr_kprobe(old_p, p);
1597 		goto out;
1598 	}
1599 
1600 	cpus_read_lock();
1601 	/* Prevent text modification */
1602 	mutex_lock(&text_mutex);
1603 	ret = prepare_kprobe(p);
1604 	mutex_unlock(&text_mutex);
1605 	cpus_read_unlock();
1606 	if (ret)
1607 		goto out;
1608 
1609 	INIT_HLIST_NODE(&p->hlist);
1610 	hlist_add_head_rcu(&p->hlist,
1611 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1612 
1613 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1614 		ret = arm_kprobe(p);
1615 		if (ret) {
1616 			hlist_del_rcu(&p->hlist);
1617 			synchronize_rcu();
1618 			goto out;
1619 		}
1620 	}
1621 
1622 	/* Try to optimize kprobe */
1623 	try_to_optimize_kprobe(p);
1624 out:
1625 	mutex_unlock(&kprobe_mutex);
1626 
1627 	if (probed_mod)
1628 		module_put(probed_mod);
1629 
1630 	return ret;
1631 }
1632 EXPORT_SYMBOL_GPL(register_kprobe);
1633 
1634 /* Check if all probes on the aggrprobe are disabled */
1635 static int aggr_kprobe_disabled(struct kprobe *ap)
1636 {
1637 	struct kprobe *kp;
1638 
1639 	list_for_each_entry_rcu(kp, &ap->list, list)
1640 		if (!kprobe_disabled(kp))
1641 			/*
1642 			 * There is an active probe on the list.
1643 			 * We can't disable this ap.
1644 			 */
1645 			return 0;
1646 
1647 	return 1;
1648 }
1649 
1650 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1651 static struct kprobe *__disable_kprobe(struct kprobe *p)
1652 {
1653 	struct kprobe *orig_p;
1654 	int ret;
1655 
1656 	/* Get an original kprobe for return */
1657 	orig_p = __get_valid_kprobe(p);
1658 	if (unlikely(orig_p == NULL))
1659 		return ERR_PTR(-EINVAL);
1660 
1661 	if (!kprobe_disabled(p)) {
1662 		/* Disable probe if it is a child probe */
1663 		if (p != orig_p)
1664 			p->flags |= KPROBE_FLAG_DISABLED;
1665 
1666 		/* Try to disarm and disable this/parent probe */
1667 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1668 			/*
1669 			 * If kprobes_all_disarmed is set, orig_p
1670 			 * should have already been disarmed, so
1671 			 * skip unneed disarming process.
1672 			 */
1673 			if (!kprobes_all_disarmed) {
1674 				ret = disarm_kprobe(orig_p, true);
1675 				if (ret) {
1676 					p->flags &= ~KPROBE_FLAG_DISABLED;
1677 					return ERR_PTR(ret);
1678 				}
1679 			}
1680 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1681 		}
1682 	}
1683 
1684 	return orig_p;
1685 }
1686 
1687 /*
1688  * Unregister a kprobe without a scheduler synchronization.
1689  */
1690 static int __unregister_kprobe_top(struct kprobe *p)
1691 {
1692 	struct kprobe *ap, *list_p;
1693 
1694 	/* Disable kprobe. This will disarm it if needed. */
1695 	ap = __disable_kprobe(p);
1696 	if (IS_ERR(ap))
1697 		return PTR_ERR(ap);
1698 
1699 	if (ap == p)
1700 		/*
1701 		 * This probe is an independent(and non-optimized) kprobe
1702 		 * (not an aggrprobe). Remove from the hash list.
1703 		 */
1704 		goto disarmed;
1705 
1706 	/* Following process expects this probe is an aggrprobe */
1707 	WARN_ON(!kprobe_aggrprobe(ap));
1708 
1709 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1710 		/*
1711 		 * !disarmed could be happen if the probe is under delayed
1712 		 * unoptimizing.
1713 		 */
1714 		goto disarmed;
1715 	else {
1716 		/* If disabling probe has special handlers, update aggrprobe */
1717 		if (p->post_handler && !kprobe_gone(p)) {
1718 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1719 				if ((list_p != p) && (list_p->post_handler))
1720 					goto noclean;
1721 			}
1722 			ap->post_handler = NULL;
1723 		}
1724 noclean:
1725 		/*
1726 		 * Remove from the aggrprobe: this path will do nothing in
1727 		 * __unregister_kprobe_bottom().
1728 		 */
1729 		list_del_rcu(&p->list);
1730 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1731 			/*
1732 			 * Try to optimize this probe again, because post
1733 			 * handler may have been changed.
1734 			 */
1735 			optimize_kprobe(ap);
1736 	}
1737 	return 0;
1738 
1739 disarmed:
1740 	hlist_del_rcu(&ap->hlist);
1741 	return 0;
1742 }
1743 
1744 static void __unregister_kprobe_bottom(struct kprobe *p)
1745 {
1746 	struct kprobe *ap;
1747 
1748 	if (list_empty(&p->list))
1749 		/* This is an independent kprobe */
1750 		arch_remove_kprobe(p);
1751 	else if (list_is_singular(&p->list)) {
1752 		/* This is the last child of an aggrprobe */
1753 		ap = list_entry(p->list.next, struct kprobe, list);
1754 		list_del(&p->list);
1755 		free_aggr_kprobe(ap);
1756 	}
1757 	/* Otherwise, do nothing. */
1758 }
1759 
1760 int register_kprobes(struct kprobe **kps, int num)
1761 {
1762 	int i, ret = 0;
1763 
1764 	if (num <= 0)
1765 		return -EINVAL;
1766 	for (i = 0; i < num; i++) {
1767 		ret = register_kprobe(kps[i]);
1768 		if (ret < 0) {
1769 			if (i > 0)
1770 				unregister_kprobes(kps, i);
1771 			break;
1772 		}
1773 	}
1774 	return ret;
1775 }
1776 EXPORT_SYMBOL_GPL(register_kprobes);
1777 
1778 void unregister_kprobe(struct kprobe *p)
1779 {
1780 	unregister_kprobes(&p, 1);
1781 }
1782 EXPORT_SYMBOL_GPL(unregister_kprobe);
1783 
1784 void unregister_kprobes(struct kprobe **kps, int num)
1785 {
1786 	int i;
1787 
1788 	if (num <= 0)
1789 		return;
1790 	mutex_lock(&kprobe_mutex);
1791 	for (i = 0; i < num; i++)
1792 		if (__unregister_kprobe_top(kps[i]) < 0)
1793 			kps[i]->addr = NULL;
1794 	mutex_unlock(&kprobe_mutex);
1795 
1796 	synchronize_rcu();
1797 	for (i = 0; i < num; i++)
1798 		if (kps[i]->addr)
1799 			__unregister_kprobe_bottom(kps[i]);
1800 }
1801 EXPORT_SYMBOL_GPL(unregister_kprobes);
1802 
1803 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1804 					unsigned long val, void *data)
1805 {
1806 	return NOTIFY_DONE;
1807 }
1808 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1809 
1810 static struct notifier_block kprobe_exceptions_nb = {
1811 	.notifier_call = kprobe_exceptions_notify,
1812 	.priority = 0x7fffffff /* we need to be notified first */
1813 };
1814 
1815 unsigned long __weak arch_deref_entry_point(void *entry)
1816 {
1817 	return (unsigned long)entry;
1818 }
1819 
1820 #ifdef CONFIG_KRETPROBES
1821 /*
1822  * This kprobe pre_handler is registered with every kretprobe. When probe
1823  * hits it will set up the return probe.
1824  */
1825 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1826 {
1827 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1828 	unsigned long hash, flags = 0;
1829 	struct kretprobe_instance *ri;
1830 
1831 	/*
1832 	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1833 	 * just skip the probe and increase the (inexact) 'nmissed'
1834 	 * statistical counter, so that the user is informed that
1835 	 * something happened:
1836 	 */
1837 	if (unlikely(in_nmi())) {
1838 		rp->nmissed++;
1839 		return 0;
1840 	}
1841 
1842 	/* TODO: consider to only swap the RA after the last pre_handler fired */
1843 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1844 	raw_spin_lock_irqsave(&rp->lock, flags);
1845 	if (!hlist_empty(&rp->free_instances)) {
1846 		ri = hlist_entry(rp->free_instances.first,
1847 				struct kretprobe_instance, hlist);
1848 		hlist_del(&ri->hlist);
1849 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1850 
1851 		ri->rp = rp;
1852 		ri->task = current;
1853 
1854 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1855 			raw_spin_lock_irqsave(&rp->lock, flags);
1856 			hlist_add_head(&ri->hlist, &rp->free_instances);
1857 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1858 			return 0;
1859 		}
1860 
1861 		arch_prepare_kretprobe(ri, regs);
1862 
1863 		/* XXX(hch): why is there no hlist_move_head? */
1864 		INIT_HLIST_NODE(&ri->hlist);
1865 		kretprobe_table_lock(hash, &flags);
1866 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1867 		kretprobe_table_unlock(hash, &flags);
1868 	} else {
1869 		rp->nmissed++;
1870 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1871 	}
1872 	return 0;
1873 }
1874 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1875 
1876 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1877 {
1878 	return !offset;
1879 }
1880 
1881 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1882 {
1883 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1884 
1885 	if (IS_ERR(kp_addr))
1886 		return false;
1887 
1888 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1889 						!arch_kprobe_on_func_entry(offset))
1890 		return false;
1891 
1892 	return true;
1893 }
1894 
1895 int register_kretprobe(struct kretprobe *rp)
1896 {
1897 	int ret = 0;
1898 	struct kretprobe_instance *inst;
1899 	int i;
1900 	void *addr;
1901 
1902 	if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1903 		return -EINVAL;
1904 
1905 	if (kretprobe_blacklist_size) {
1906 		addr = kprobe_addr(&rp->kp);
1907 		if (IS_ERR(addr))
1908 			return PTR_ERR(addr);
1909 
1910 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1911 			if (kretprobe_blacklist[i].addr == addr)
1912 				return -EINVAL;
1913 		}
1914 	}
1915 
1916 	rp->kp.pre_handler = pre_handler_kretprobe;
1917 	rp->kp.post_handler = NULL;
1918 	rp->kp.fault_handler = NULL;
1919 
1920 	/* Pre-allocate memory for max kretprobe instances */
1921 	if (rp->maxactive <= 0) {
1922 #ifdef CONFIG_PREEMPT
1923 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1924 #else
1925 		rp->maxactive = num_possible_cpus();
1926 #endif
1927 	}
1928 	raw_spin_lock_init(&rp->lock);
1929 	INIT_HLIST_HEAD(&rp->free_instances);
1930 	for (i = 0; i < rp->maxactive; i++) {
1931 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1932 			       rp->data_size, GFP_KERNEL);
1933 		if (inst == NULL) {
1934 			free_rp_inst(rp);
1935 			return -ENOMEM;
1936 		}
1937 		INIT_HLIST_NODE(&inst->hlist);
1938 		hlist_add_head(&inst->hlist, &rp->free_instances);
1939 	}
1940 
1941 	rp->nmissed = 0;
1942 	/* Establish function entry probe point */
1943 	ret = register_kprobe(&rp->kp);
1944 	if (ret != 0)
1945 		free_rp_inst(rp);
1946 	return ret;
1947 }
1948 EXPORT_SYMBOL_GPL(register_kretprobe);
1949 
1950 int register_kretprobes(struct kretprobe **rps, int num)
1951 {
1952 	int ret = 0, i;
1953 
1954 	if (num <= 0)
1955 		return -EINVAL;
1956 	for (i = 0; i < num; i++) {
1957 		ret = register_kretprobe(rps[i]);
1958 		if (ret < 0) {
1959 			if (i > 0)
1960 				unregister_kretprobes(rps, i);
1961 			break;
1962 		}
1963 	}
1964 	return ret;
1965 }
1966 EXPORT_SYMBOL_GPL(register_kretprobes);
1967 
1968 void unregister_kretprobe(struct kretprobe *rp)
1969 {
1970 	unregister_kretprobes(&rp, 1);
1971 }
1972 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1973 
1974 void unregister_kretprobes(struct kretprobe **rps, int num)
1975 {
1976 	int i;
1977 
1978 	if (num <= 0)
1979 		return;
1980 	mutex_lock(&kprobe_mutex);
1981 	for (i = 0; i < num; i++)
1982 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1983 			rps[i]->kp.addr = NULL;
1984 	mutex_unlock(&kprobe_mutex);
1985 
1986 	synchronize_rcu();
1987 	for (i = 0; i < num; i++) {
1988 		if (rps[i]->kp.addr) {
1989 			__unregister_kprobe_bottom(&rps[i]->kp);
1990 			cleanup_rp_inst(rps[i]);
1991 		}
1992 	}
1993 }
1994 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1995 
1996 #else /* CONFIG_KRETPROBES */
1997 int register_kretprobe(struct kretprobe *rp)
1998 {
1999 	return -ENOSYS;
2000 }
2001 EXPORT_SYMBOL_GPL(register_kretprobe);
2002 
2003 int register_kretprobes(struct kretprobe **rps, int num)
2004 {
2005 	return -ENOSYS;
2006 }
2007 EXPORT_SYMBOL_GPL(register_kretprobes);
2008 
2009 void unregister_kretprobe(struct kretprobe *rp)
2010 {
2011 }
2012 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2013 
2014 void unregister_kretprobes(struct kretprobe **rps, int num)
2015 {
2016 }
2017 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2018 
2019 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2020 {
2021 	return 0;
2022 }
2023 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2024 
2025 #endif /* CONFIG_KRETPROBES */
2026 
2027 /* Set the kprobe gone and remove its instruction buffer. */
2028 static void kill_kprobe(struct kprobe *p)
2029 {
2030 	struct kprobe *kp;
2031 
2032 	p->flags |= KPROBE_FLAG_GONE;
2033 	if (kprobe_aggrprobe(p)) {
2034 		/*
2035 		 * If this is an aggr_kprobe, we have to list all the
2036 		 * chained probes and mark them GONE.
2037 		 */
2038 		list_for_each_entry_rcu(kp, &p->list, list)
2039 			kp->flags |= KPROBE_FLAG_GONE;
2040 		p->post_handler = NULL;
2041 		kill_optimized_kprobe(p);
2042 	}
2043 	/*
2044 	 * Here, we can remove insn_slot safely, because no thread calls
2045 	 * the original probed function (which will be freed soon) any more.
2046 	 */
2047 	arch_remove_kprobe(p);
2048 }
2049 
2050 /* Disable one kprobe */
2051 int disable_kprobe(struct kprobe *kp)
2052 {
2053 	int ret = 0;
2054 	struct kprobe *p;
2055 
2056 	mutex_lock(&kprobe_mutex);
2057 
2058 	/* Disable this kprobe */
2059 	p = __disable_kprobe(kp);
2060 	if (IS_ERR(p))
2061 		ret = PTR_ERR(p);
2062 
2063 	mutex_unlock(&kprobe_mutex);
2064 	return ret;
2065 }
2066 EXPORT_SYMBOL_GPL(disable_kprobe);
2067 
2068 /* Enable one kprobe */
2069 int enable_kprobe(struct kprobe *kp)
2070 {
2071 	int ret = 0;
2072 	struct kprobe *p;
2073 
2074 	mutex_lock(&kprobe_mutex);
2075 
2076 	/* Check whether specified probe is valid. */
2077 	p = __get_valid_kprobe(kp);
2078 	if (unlikely(p == NULL)) {
2079 		ret = -EINVAL;
2080 		goto out;
2081 	}
2082 
2083 	if (kprobe_gone(kp)) {
2084 		/* This kprobe has gone, we couldn't enable it. */
2085 		ret = -EINVAL;
2086 		goto out;
2087 	}
2088 
2089 	if (p != kp)
2090 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2091 
2092 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2093 		p->flags &= ~KPROBE_FLAG_DISABLED;
2094 		ret = arm_kprobe(p);
2095 		if (ret)
2096 			p->flags |= KPROBE_FLAG_DISABLED;
2097 	}
2098 out:
2099 	mutex_unlock(&kprobe_mutex);
2100 	return ret;
2101 }
2102 EXPORT_SYMBOL_GPL(enable_kprobe);
2103 
2104 /* Caller must NOT call this in usual path. This is only for critical case */
2105 void dump_kprobe(struct kprobe *kp)
2106 {
2107 	pr_err("Dumping kprobe:\n");
2108 	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2109 	       kp->symbol_name, kp->offset, kp->addr);
2110 }
2111 NOKPROBE_SYMBOL(dump_kprobe);
2112 
2113 int kprobe_add_ksym_blacklist(unsigned long entry)
2114 {
2115 	struct kprobe_blacklist_entry *ent;
2116 	unsigned long offset = 0, size = 0;
2117 
2118 	if (!kernel_text_address(entry) ||
2119 	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2120 		return -EINVAL;
2121 
2122 	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2123 	if (!ent)
2124 		return -ENOMEM;
2125 	ent->start_addr = entry;
2126 	ent->end_addr = entry + size;
2127 	INIT_LIST_HEAD(&ent->list);
2128 	list_add_tail(&ent->list, &kprobe_blacklist);
2129 
2130 	return (int)size;
2131 }
2132 
2133 /* Add all symbols in given area into kprobe blacklist */
2134 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2135 {
2136 	unsigned long entry;
2137 	int ret = 0;
2138 
2139 	for (entry = start; entry < end; entry += ret) {
2140 		ret = kprobe_add_ksym_blacklist(entry);
2141 		if (ret < 0)
2142 			return ret;
2143 		if (ret == 0)	/* In case of alias symbol */
2144 			ret = 1;
2145 	}
2146 	return 0;
2147 }
2148 
2149 int __init __weak arch_populate_kprobe_blacklist(void)
2150 {
2151 	return 0;
2152 }
2153 
2154 /*
2155  * Lookup and populate the kprobe_blacklist.
2156  *
2157  * Unlike the kretprobe blacklist, we'll need to determine
2158  * the range of addresses that belong to the said functions,
2159  * since a kprobe need not necessarily be at the beginning
2160  * of a function.
2161  */
2162 static int __init populate_kprobe_blacklist(unsigned long *start,
2163 					     unsigned long *end)
2164 {
2165 	unsigned long entry;
2166 	unsigned long *iter;
2167 	int ret;
2168 
2169 	for (iter = start; iter < end; iter++) {
2170 		entry = arch_deref_entry_point((void *)*iter);
2171 		ret = kprobe_add_ksym_blacklist(entry);
2172 		if (ret == -EINVAL)
2173 			continue;
2174 		if (ret < 0)
2175 			return ret;
2176 	}
2177 
2178 	/* Symbols in __kprobes_text are blacklisted */
2179 	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2180 					(unsigned long)__kprobes_text_end);
2181 
2182 	return ret ? : arch_populate_kprobe_blacklist();
2183 }
2184 
2185 /* Module notifier call back, checking kprobes on the module */
2186 static int kprobes_module_callback(struct notifier_block *nb,
2187 				   unsigned long val, void *data)
2188 {
2189 	struct module *mod = data;
2190 	struct hlist_head *head;
2191 	struct kprobe *p;
2192 	unsigned int i;
2193 	int checkcore = (val == MODULE_STATE_GOING);
2194 
2195 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2196 		return NOTIFY_DONE;
2197 
2198 	/*
2199 	 * When MODULE_STATE_GOING was notified, both of module .text and
2200 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2201 	 * notified, only .init.text section would be freed. We need to
2202 	 * disable kprobes which have been inserted in the sections.
2203 	 */
2204 	mutex_lock(&kprobe_mutex);
2205 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2206 		head = &kprobe_table[i];
2207 		hlist_for_each_entry_rcu(p, head, hlist)
2208 			if (within_module_init((unsigned long)p->addr, mod) ||
2209 			    (checkcore &&
2210 			     within_module_core((unsigned long)p->addr, mod))) {
2211 				/*
2212 				 * The vaddr this probe is installed will soon
2213 				 * be vfreed buy not synced to disk. Hence,
2214 				 * disarming the breakpoint isn't needed.
2215 				 *
2216 				 * Note, this will also move any optimized probes
2217 				 * that are pending to be removed from their
2218 				 * corresponding lists to the freeing_list and
2219 				 * will not be touched by the delayed
2220 				 * kprobe_optimizer work handler.
2221 				 */
2222 				kill_kprobe(p);
2223 			}
2224 	}
2225 	mutex_unlock(&kprobe_mutex);
2226 	return NOTIFY_DONE;
2227 }
2228 
2229 static struct notifier_block kprobe_module_nb = {
2230 	.notifier_call = kprobes_module_callback,
2231 	.priority = 0
2232 };
2233 
2234 /* Markers of _kprobe_blacklist section */
2235 extern unsigned long __start_kprobe_blacklist[];
2236 extern unsigned long __stop_kprobe_blacklist[];
2237 
2238 static int __init init_kprobes(void)
2239 {
2240 	int i, err = 0;
2241 
2242 	/* FIXME allocate the probe table, currently defined statically */
2243 	/* initialize all list heads */
2244 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2245 		INIT_HLIST_HEAD(&kprobe_table[i]);
2246 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2247 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2248 	}
2249 
2250 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2251 					__stop_kprobe_blacklist);
2252 	if (err) {
2253 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2254 		pr_err("Please take care of using kprobes.\n");
2255 	}
2256 
2257 	if (kretprobe_blacklist_size) {
2258 		/* lookup the function address from its name */
2259 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2260 			kretprobe_blacklist[i].addr =
2261 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2262 			if (!kretprobe_blacklist[i].addr)
2263 				printk("kretprobe: lookup failed: %s\n",
2264 				       kretprobe_blacklist[i].name);
2265 		}
2266 	}
2267 
2268 #if defined(CONFIG_OPTPROBES)
2269 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2270 	/* Init kprobe_optinsn_slots */
2271 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2272 #endif
2273 	/* By default, kprobes can be optimized */
2274 	kprobes_allow_optimization = true;
2275 #endif
2276 
2277 	/* By default, kprobes are armed */
2278 	kprobes_all_disarmed = false;
2279 
2280 	err = arch_init_kprobes();
2281 	if (!err)
2282 		err = register_die_notifier(&kprobe_exceptions_nb);
2283 	if (!err)
2284 		err = register_module_notifier(&kprobe_module_nb);
2285 
2286 	kprobes_initialized = (err == 0);
2287 
2288 	if (!err)
2289 		init_test_probes();
2290 	return err;
2291 }
2292 
2293 #ifdef CONFIG_DEBUG_FS
2294 static void report_probe(struct seq_file *pi, struct kprobe *p,
2295 		const char *sym, int offset, char *modname, struct kprobe *pp)
2296 {
2297 	char *kprobe_type;
2298 	void *addr = p->addr;
2299 
2300 	if (p->pre_handler == pre_handler_kretprobe)
2301 		kprobe_type = "r";
2302 	else
2303 		kprobe_type = "k";
2304 
2305 	if (!kallsyms_show_value())
2306 		addr = NULL;
2307 
2308 	if (sym)
2309 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2310 			addr, kprobe_type, sym, offset,
2311 			(modname ? modname : " "));
2312 	else	/* try to use %pS */
2313 		seq_printf(pi, "%px  %s  %pS ",
2314 			addr, kprobe_type, p->addr);
2315 
2316 	if (!pp)
2317 		pp = p;
2318 	seq_printf(pi, "%s%s%s%s\n",
2319 		(kprobe_gone(p) ? "[GONE]" : ""),
2320 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2321 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2322 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2323 }
2324 
2325 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2326 {
2327 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2328 }
2329 
2330 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2331 {
2332 	(*pos)++;
2333 	if (*pos >= KPROBE_TABLE_SIZE)
2334 		return NULL;
2335 	return pos;
2336 }
2337 
2338 static void kprobe_seq_stop(struct seq_file *f, void *v)
2339 {
2340 	/* Nothing to do */
2341 }
2342 
2343 static int show_kprobe_addr(struct seq_file *pi, void *v)
2344 {
2345 	struct hlist_head *head;
2346 	struct kprobe *p, *kp;
2347 	const char *sym = NULL;
2348 	unsigned int i = *(loff_t *) v;
2349 	unsigned long offset = 0;
2350 	char *modname, namebuf[KSYM_NAME_LEN];
2351 
2352 	head = &kprobe_table[i];
2353 	preempt_disable();
2354 	hlist_for_each_entry_rcu(p, head, hlist) {
2355 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2356 					&offset, &modname, namebuf);
2357 		if (kprobe_aggrprobe(p)) {
2358 			list_for_each_entry_rcu(kp, &p->list, list)
2359 				report_probe(pi, kp, sym, offset, modname, p);
2360 		} else
2361 			report_probe(pi, p, sym, offset, modname, NULL);
2362 	}
2363 	preempt_enable();
2364 	return 0;
2365 }
2366 
2367 static const struct seq_operations kprobes_seq_ops = {
2368 	.start = kprobe_seq_start,
2369 	.next  = kprobe_seq_next,
2370 	.stop  = kprobe_seq_stop,
2371 	.show  = show_kprobe_addr
2372 };
2373 
2374 static int kprobes_open(struct inode *inode, struct file *filp)
2375 {
2376 	return seq_open(filp, &kprobes_seq_ops);
2377 }
2378 
2379 static const struct file_operations debugfs_kprobes_operations = {
2380 	.open           = kprobes_open,
2381 	.read           = seq_read,
2382 	.llseek         = seq_lseek,
2383 	.release        = seq_release,
2384 };
2385 
2386 /* kprobes/blacklist -- shows which functions can not be probed */
2387 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2388 {
2389 	return seq_list_start(&kprobe_blacklist, *pos);
2390 }
2391 
2392 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2393 {
2394 	return seq_list_next(v, &kprobe_blacklist, pos);
2395 }
2396 
2397 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2398 {
2399 	struct kprobe_blacklist_entry *ent =
2400 		list_entry(v, struct kprobe_blacklist_entry, list);
2401 
2402 	/*
2403 	 * If /proc/kallsyms is not showing kernel address, we won't
2404 	 * show them here either.
2405 	 */
2406 	if (!kallsyms_show_value())
2407 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2408 			   (void *)ent->start_addr);
2409 	else
2410 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2411 			   (void *)ent->end_addr, (void *)ent->start_addr);
2412 	return 0;
2413 }
2414 
2415 static const struct seq_operations kprobe_blacklist_seq_ops = {
2416 	.start = kprobe_blacklist_seq_start,
2417 	.next  = kprobe_blacklist_seq_next,
2418 	.stop  = kprobe_seq_stop,	/* Reuse void function */
2419 	.show  = kprobe_blacklist_seq_show,
2420 };
2421 
2422 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2423 {
2424 	return seq_open(filp, &kprobe_blacklist_seq_ops);
2425 }
2426 
2427 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2428 	.open           = kprobe_blacklist_open,
2429 	.read           = seq_read,
2430 	.llseek         = seq_lseek,
2431 	.release        = seq_release,
2432 };
2433 
2434 static int arm_all_kprobes(void)
2435 {
2436 	struct hlist_head *head;
2437 	struct kprobe *p;
2438 	unsigned int i, total = 0, errors = 0;
2439 	int err, ret = 0;
2440 
2441 	mutex_lock(&kprobe_mutex);
2442 
2443 	/* If kprobes are armed, just return */
2444 	if (!kprobes_all_disarmed)
2445 		goto already_enabled;
2446 
2447 	/*
2448 	 * optimize_kprobe() called by arm_kprobe() checks
2449 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2450 	 * arm_kprobe.
2451 	 */
2452 	kprobes_all_disarmed = false;
2453 	/* Arming kprobes doesn't optimize kprobe itself */
2454 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2455 		head = &kprobe_table[i];
2456 		/* Arm all kprobes on a best-effort basis */
2457 		hlist_for_each_entry_rcu(p, head, hlist) {
2458 			if (!kprobe_disabled(p)) {
2459 				err = arm_kprobe(p);
2460 				if (err)  {
2461 					errors++;
2462 					ret = err;
2463 				}
2464 				total++;
2465 			}
2466 		}
2467 	}
2468 
2469 	if (errors)
2470 		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2471 			errors, total);
2472 	else
2473 		pr_info("Kprobes globally enabled\n");
2474 
2475 already_enabled:
2476 	mutex_unlock(&kprobe_mutex);
2477 	return ret;
2478 }
2479 
2480 static int disarm_all_kprobes(void)
2481 {
2482 	struct hlist_head *head;
2483 	struct kprobe *p;
2484 	unsigned int i, total = 0, errors = 0;
2485 	int err, ret = 0;
2486 
2487 	mutex_lock(&kprobe_mutex);
2488 
2489 	/* If kprobes are already disarmed, just return */
2490 	if (kprobes_all_disarmed) {
2491 		mutex_unlock(&kprobe_mutex);
2492 		return 0;
2493 	}
2494 
2495 	kprobes_all_disarmed = true;
2496 
2497 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2498 		head = &kprobe_table[i];
2499 		/* Disarm all kprobes on a best-effort basis */
2500 		hlist_for_each_entry_rcu(p, head, hlist) {
2501 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2502 				err = disarm_kprobe(p, false);
2503 				if (err) {
2504 					errors++;
2505 					ret = err;
2506 				}
2507 				total++;
2508 			}
2509 		}
2510 	}
2511 
2512 	if (errors)
2513 		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2514 			errors, total);
2515 	else
2516 		pr_info("Kprobes globally disabled\n");
2517 
2518 	mutex_unlock(&kprobe_mutex);
2519 
2520 	/* Wait for disarming all kprobes by optimizer */
2521 	wait_for_kprobe_optimizer();
2522 
2523 	return ret;
2524 }
2525 
2526 /*
2527  * XXX: The debugfs bool file interface doesn't allow for callbacks
2528  * when the bool state is switched. We can reuse that facility when
2529  * available
2530  */
2531 static ssize_t read_enabled_file_bool(struct file *file,
2532 	       char __user *user_buf, size_t count, loff_t *ppos)
2533 {
2534 	char buf[3];
2535 
2536 	if (!kprobes_all_disarmed)
2537 		buf[0] = '1';
2538 	else
2539 		buf[0] = '0';
2540 	buf[1] = '\n';
2541 	buf[2] = 0x00;
2542 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2543 }
2544 
2545 static ssize_t write_enabled_file_bool(struct file *file,
2546 	       const char __user *user_buf, size_t count, loff_t *ppos)
2547 {
2548 	char buf[32];
2549 	size_t buf_size;
2550 	int ret = 0;
2551 
2552 	buf_size = min(count, (sizeof(buf)-1));
2553 	if (copy_from_user(buf, user_buf, buf_size))
2554 		return -EFAULT;
2555 
2556 	buf[buf_size] = '\0';
2557 	switch (buf[0]) {
2558 	case 'y':
2559 	case 'Y':
2560 	case '1':
2561 		ret = arm_all_kprobes();
2562 		break;
2563 	case 'n':
2564 	case 'N':
2565 	case '0':
2566 		ret = disarm_all_kprobes();
2567 		break;
2568 	default:
2569 		return -EINVAL;
2570 	}
2571 
2572 	if (ret)
2573 		return ret;
2574 
2575 	return count;
2576 }
2577 
2578 static const struct file_operations fops_kp = {
2579 	.read =         read_enabled_file_bool,
2580 	.write =        write_enabled_file_bool,
2581 	.llseek =	default_llseek,
2582 };
2583 
2584 static int __init debugfs_kprobe_init(void)
2585 {
2586 	struct dentry *dir, *file;
2587 	unsigned int value = 1;
2588 
2589 	dir = debugfs_create_dir("kprobes", NULL);
2590 	if (!dir)
2591 		return -ENOMEM;
2592 
2593 	file = debugfs_create_file("list", 0400, dir, NULL,
2594 				&debugfs_kprobes_operations);
2595 	if (!file)
2596 		goto error;
2597 
2598 	file = debugfs_create_file("enabled", 0600, dir,
2599 					&value, &fops_kp);
2600 	if (!file)
2601 		goto error;
2602 
2603 	file = debugfs_create_file("blacklist", 0400, dir, NULL,
2604 				&debugfs_kprobe_blacklist_ops);
2605 	if (!file)
2606 		goto error;
2607 
2608 	return 0;
2609 
2610 error:
2611 	debugfs_remove(dir);
2612 	return -ENOMEM;
2613 }
2614 
2615 late_initcall(debugfs_kprobe_init);
2616 #endif /* CONFIG_DEBUG_FS */
2617 
2618 module_init(init_kprobes);
2619