1 /* 2 * Kernel Probes (KProbes) 3 * kernel/kprobes.c 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * Copyright (C) IBM Corporation, 2002, 2004 20 * 21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 22 * Probes initial implementation (includes suggestions from 23 * Rusty Russell). 24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 25 * hlists and exceptions notifier as suggested by Andi Kleen. 26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 27 * interface to access function arguments. 28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 29 * exceptions notifier to be first on the priority list. 30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 32 * <prasanna@in.ibm.com> added function-return probes. 33 */ 34 #include <linux/kprobes.h> 35 #include <linux/hash.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/stddef.h> 39 #include <linux/module.h> 40 #include <linux/moduleloader.h> 41 #include <linux/kallsyms.h> 42 #include <linux/freezer.h> 43 #include <linux/seq_file.h> 44 #include <linux/debugfs.h> 45 #include <linux/kdebug.h> 46 #include <linux/memory.h> 47 48 #include <asm-generic/sections.h> 49 #include <asm/cacheflush.h> 50 #include <asm/errno.h> 51 #include <asm/uaccess.h> 52 53 #define KPROBE_HASH_BITS 6 54 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 55 56 57 /* 58 * Some oddball architectures like 64bit powerpc have function descriptors 59 * so this must be overridable. 60 */ 61 #ifndef kprobe_lookup_name 62 #define kprobe_lookup_name(name, addr) \ 63 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name))) 64 #endif 65 66 static int kprobes_initialized; 67 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 68 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 69 70 /* NOTE: change this value only with kprobe_mutex held */ 71 static bool kprobes_all_disarmed; 72 73 static DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */ 74 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 75 static struct { 76 spinlock_t lock ____cacheline_aligned_in_smp; 77 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 78 79 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 80 { 81 return &(kretprobe_table_locks[hash].lock); 82 } 83 84 /* 85 * Normally, functions that we'd want to prohibit kprobes in, are marked 86 * __kprobes. But, there are cases where such functions already belong to 87 * a different section (__sched for preempt_schedule) 88 * 89 * For such cases, we now have a blacklist 90 */ 91 static struct kprobe_blackpoint kprobe_blacklist[] = { 92 {"preempt_schedule",}, 93 {NULL} /* Terminator */ 94 }; 95 96 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 97 /* 98 * kprobe->ainsn.insn points to the copy of the instruction to be 99 * single-stepped. x86_64, POWER4 and above have no-exec support and 100 * stepping on the instruction on a vmalloced/kmalloced/data page 101 * is a recipe for disaster 102 */ 103 #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) 104 105 struct kprobe_insn_page { 106 struct hlist_node hlist; 107 kprobe_opcode_t *insns; /* Page of instruction slots */ 108 char slot_used[INSNS_PER_PAGE]; 109 int nused; 110 int ngarbage; 111 }; 112 113 enum kprobe_slot_state { 114 SLOT_CLEAN = 0, 115 SLOT_DIRTY = 1, 116 SLOT_USED = 2, 117 }; 118 119 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_pages */ 120 static struct hlist_head kprobe_insn_pages; 121 static int kprobe_garbage_slots; 122 static int collect_garbage_slots(void); 123 124 static int __kprobes check_safety(void) 125 { 126 int ret = 0; 127 #if defined(CONFIG_PREEMPT) && defined(CONFIG_FREEZER) 128 ret = freeze_processes(); 129 if (ret == 0) { 130 struct task_struct *p, *q; 131 do_each_thread(p, q) { 132 if (p != current && p->state == TASK_RUNNING && 133 p->pid != 0) { 134 printk("Check failed: %s is running\n",p->comm); 135 ret = -1; 136 goto loop_end; 137 } 138 } while_each_thread(p, q); 139 } 140 loop_end: 141 thaw_processes(); 142 #else 143 synchronize_sched(); 144 #endif 145 return ret; 146 } 147 148 /** 149 * __get_insn_slot() - Find a slot on an executable page for an instruction. 150 * We allocate an executable page if there's no room on existing ones. 151 */ 152 static kprobe_opcode_t __kprobes *__get_insn_slot(void) 153 { 154 struct kprobe_insn_page *kip; 155 struct hlist_node *pos; 156 157 retry: 158 hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) { 159 if (kip->nused < INSNS_PER_PAGE) { 160 int i; 161 for (i = 0; i < INSNS_PER_PAGE; i++) { 162 if (kip->slot_used[i] == SLOT_CLEAN) { 163 kip->slot_used[i] = SLOT_USED; 164 kip->nused++; 165 return kip->insns + (i * MAX_INSN_SIZE); 166 } 167 } 168 /* Surprise! No unused slots. Fix kip->nused. */ 169 kip->nused = INSNS_PER_PAGE; 170 } 171 } 172 173 /* If there are any garbage slots, collect it and try again. */ 174 if (kprobe_garbage_slots && collect_garbage_slots() == 0) { 175 goto retry; 176 } 177 /* All out of space. Need to allocate a new page. Use slot 0. */ 178 kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL); 179 if (!kip) 180 return NULL; 181 182 /* 183 * Use module_alloc so this page is within +/- 2GB of where the 184 * kernel image and loaded module images reside. This is required 185 * so x86_64 can correctly handle the %rip-relative fixups. 186 */ 187 kip->insns = module_alloc(PAGE_SIZE); 188 if (!kip->insns) { 189 kfree(kip); 190 return NULL; 191 } 192 INIT_HLIST_NODE(&kip->hlist); 193 hlist_add_head(&kip->hlist, &kprobe_insn_pages); 194 memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE); 195 kip->slot_used[0] = SLOT_USED; 196 kip->nused = 1; 197 kip->ngarbage = 0; 198 return kip->insns; 199 } 200 201 kprobe_opcode_t __kprobes *get_insn_slot(void) 202 { 203 kprobe_opcode_t *ret; 204 mutex_lock(&kprobe_insn_mutex); 205 ret = __get_insn_slot(); 206 mutex_unlock(&kprobe_insn_mutex); 207 return ret; 208 } 209 210 /* Return 1 if all garbages are collected, otherwise 0. */ 211 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx) 212 { 213 kip->slot_used[idx] = SLOT_CLEAN; 214 kip->nused--; 215 if (kip->nused == 0) { 216 /* 217 * Page is no longer in use. Free it unless 218 * it's the last one. We keep the last one 219 * so as not to have to set it up again the 220 * next time somebody inserts a probe. 221 */ 222 hlist_del(&kip->hlist); 223 if (hlist_empty(&kprobe_insn_pages)) { 224 INIT_HLIST_NODE(&kip->hlist); 225 hlist_add_head(&kip->hlist, 226 &kprobe_insn_pages); 227 } else { 228 module_free(NULL, kip->insns); 229 kfree(kip); 230 } 231 return 1; 232 } 233 return 0; 234 } 235 236 static int __kprobes collect_garbage_slots(void) 237 { 238 struct kprobe_insn_page *kip; 239 struct hlist_node *pos, *next; 240 int safety; 241 242 /* Ensure no-one is preepmted on the garbages */ 243 mutex_unlock(&kprobe_insn_mutex); 244 safety = check_safety(); 245 mutex_lock(&kprobe_insn_mutex); 246 if (safety != 0) 247 return -EAGAIN; 248 249 hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) { 250 int i; 251 if (kip->ngarbage == 0) 252 continue; 253 kip->ngarbage = 0; /* we will collect all garbages */ 254 for (i = 0; i < INSNS_PER_PAGE; i++) { 255 if (kip->slot_used[i] == SLOT_DIRTY && 256 collect_one_slot(kip, i)) 257 break; 258 } 259 } 260 kprobe_garbage_slots = 0; 261 return 0; 262 } 263 264 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty) 265 { 266 struct kprobe_insn_page *kip; 267 struct hlist_node *pos; 268 269 mutex_lock(&kprobe_insn_mutex); 270 hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) { 271 if (kip->insns <= slot && 272 slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) { 273 int i = (slot - kip->insns) / MAX_INSN_SIZE; 274 if (dirty) { 275 kip->slot_used[i] = SLOT_DIRTY; 276 kip->ngarbage++; 277 } else { 278 collect_one_slot(kip, i); 279 } 280 break; 281 } 282 } 283 284 if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE) 285 collect_garbage_slots(); 286 287 mutex_unlock(&kprobe_insn_mutex); 288 } 289 #endif 290 291 /* We have preemption disabled.. so it is safe to use __ versions */ 292 static inline void set_kprobe_instance(struct kprobe *kp) 293 { 294 __get_cpu_var(kprobe_instance) = kp; 295 } 296 297 static inline void reset_kprobe_instance(void) 298 { 299 __get_cpu_var(kprobe_instance) = NULL; 300 } 301 302 /* 303 * This routine is called either: 304 * - under the kprobe_mutex - during kprobe_[un]register() 305 * OR 306 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 307 */ 308 struct kprobe __kprobes *get_kprobe(void *addr) 309 { 310 struct hlist_head *head; 311 struct hlist_node *node; 312 struct kprobe *p; 313 314 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 315 hlist_for_each_entry_rcu(p, node, head, hlist) { 316 if (p->addr == addr) 317 return p; 318 } 319 return NULL; 320 } 321 322 /* 323 * Aggregate handlers for multiple kprobes support - these handlers 324 * take care of invoking the individual kprobe handlers on p->list 325 */ 326 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 327 { 328 struct kprobe *kp; 329 330 list_for_each_entry_rcu(kp, &p->list, list) { 331 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 332 set_kprobe_instance(kp); 333 if (kp->pre_handler(kp, regs)) 334 return 1; 335 } 336 reset_kprobe_instance(); 337 } 338 return 0; 339 } 340 341 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 342 unsigned long flags) 343 { 344 struct kprobe *kp; 345 346 list_for_each_entry_rcu(kp, &p->list, list) { 347 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 348 set_kprobe_instance(kp); 349 kp->post_handler(kp, regs, flags); 350 reset_kprobe_instance(); 351 } 352 } 353 } 354 355 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 356 int trapnr) 357 { 358 struct kprobe *cur = __get_cpu_var(kprobe_instance); 359 360 /* 361 * if we faulted "during" the execution of a user specified 362 * probe handler, invoke just that probe's fault handler 363 */ 364 if (cur && cur->fault_handler) { 365 if (cur->fault_handler(cur, regs, trapnr)) 366 return 1; 367 } 368 return 0; 369 } 370 371 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs) 372 { 373 struct kprobe *cur = __get_cpu_var(kprobe_instance); 374 int ret = 0; 375 376 if (cur && cur->break_handler) { 377 if (cur->break_handler(cur, regs)) 378 ret = 1; 379 } 380 reset_kprobe_instance(); 381 return ret; 382 } 383 384 /* Walks the list and increments nmissed count for multiprobe case */ 385 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p) 386 { 387 struct kprobe *kp; 388 if (p->pre_handler != aggr_pre_handler) { 389 p->nmissed++; 390 } else { 391 list_for_each_entry_rcu(kp, &p->list, list) 392 kp->nmissed++; 393 } 394 return; 395 } 396 397 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri, 398 struct hlist_head *head) 399 { 400 struct kretprobe *rp = ri->rp; 401 402 /* remove rp inst off the rprobe_inst_table */ 403 hlist_del(&ri->hlist); 404 INIT_HLIST_NODE(&ri->hlist); 405 if (likely(rp)) { 406 spin_lock(&rp->lock); 407 hlist_add_head(&ri->hlist, &rp->free_instances); 408 spin_unlock(&rp->lock); 409 } else 410 /* Unregistering */ 411 hlist_add_head(&ri->hlist, head); 412 } 413 414 void __kprobes kretprobe_hash_lock(struct task_struct *tsk, 415 struct hlist_head **head, unsigned long *flags) 416 { 417 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 418 spinlock_t *hlist_lock; 419 420 *head = &kretprobe_inst_table[hash]; 421 hlist_lock = kretprobe_table_lock_ptr(hash); 422 spin_lock_irqsave(hlist_lock, *flags); 423 } 424 425 static void __kprobes kretprobe_table_lock(unsigned long hash, 426 unsigned long *flags) 427 { 428 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 429 spin_lock_irqsave(hlist_lock, *flags); 430 } 431 432 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk, 433 unsigned long *flags) 434 { 435 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 436 spinlock_t *hlist_lock; 437 438 hlist_lock = kretprobe_table_lock_ptr(hash); 439 spin_unlock_irqrestore(hlist_lock, *flags); 440 } 441 442 void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags) 443 { 444 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 445 spin_unlock_irqrestore(hlist_lock, *flags); 446 } 447 448 /* 449 * This function is called from finish_task_switch when task tk becomes dead, 450 * so that we can recycle any function-return probe instances associated 451 * with this task. These left over instances represent probed functions 452 * that have been called but will never return. 453 */ 454 void __kprobes kprobe_flush_task(struct task_struct *tk) 455 { 456 struct kretprobe_instance *ri; 457 struct hlist_head *head, empty_rp; 458 struct hlist_node *node, *tmp; 459 unsigned long hash, flags = 0; 460 461 if (unlikely(!kprobes_initialized)) 462 /* Early boot. kretprobe_table_locks not yet initialized. */ 463 return; 464 465 hash = hash_ptr(tk, KPROBE_HASH_BITS); 466 head = &kretprobe_inst_table[hash]; 467 kretprobe_table_lock(hash, &flags); 468 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 469 if (ri->task == tk) 470 recycle_rp_inst(ri, &empty_rp); 471 } 472 kretprobe_table_unlock(hash, &flags); 473 INIT_HLIST_HEAD(&empty_rp); 474 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { 475 hlist_del(&ri->hlist); 476 kfree(ri); 477 } 478 } 479 480 static inline void free_rp_inst(struct kretprobe *rp) 481 { 482 struct kretprobe_instance *ri; 483 struct hlist_node *pos, *next; 484 485 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) { 486 hlist_del(&ri->hlist); 487 kfree(ri); 488 } 489 } 490 491 static void __kprobes cleanup_rp_inst(struct kretprobe *rp) 492 { 493 unsigned long flags, hash; 494 struct kretprobe_instance *ri; 495 struct hlist_node *pos, *next; 496 struct hlist_head *head; 497 498 /* No race here */ 499 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 500 kretprobe_table_lock(hash, &flags); 501 head = &kretprobe_inst_table[hash]; 502 hlist_for_each_entry_safe(ri, pos, next, head, hlist) { 503 if (ri->rp == rp) 504 ri->rp = NULL; 505 } 506 kretprobe_table_unlock(hash, &flags); 507 } 508 free_rp_inst(rp); 509 } 510 511 /* 512 * Keep all fields in the kprobe consistent 513 */ 514 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p) 515 { 516 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t)); 517 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn)); 518 } 519 520 /* 521 * Add the new probe to ap->list. Fail if this is the 522 * second jprobe at the address - two jprobes can't coexist 523 */ 524 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p) 525 { 526 BUG_ON(kprobe_gone(ap) || kprobe_gone(p)); 527 if (p->break_handler) { 528 if (ap->break_handler) 529 return -EEXIST; 530 list_add_tail_rcu(&p->list, &ap->list); 531 ap->break_handler = aggr_break_handler; 532 } else 533 list_add_rcu(&p->list, &ap->list); 534 if (p->post_handler && !ap->post_handler) 535 ap->post_handler = aggr_post_handler; 536 537 if (kprobe_disabled(ap) && !kprobe_disabled(p)) { 538 ap->flags &= ~KPROBE_FLAG_DISABLED; 539 if (!kprobes_all_disarmed) 540 /* Arm the breakpoint again. */ 541 arch_arm_kprobe(ap); 542 } 543 return 0; 544 } 545 546 /* 547 * Fill in the required fields of the "manager kprobe". Replace the 548 * earlier kprobe in the hlist with the manager kprobe 549 */ 550 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 551 { 552 copy_kprobe(p, ap); 553 flush_insn_slot(ap); 554 ap->addr = p->addr; 555 ap->flags = p->flags; 556 ap->pre_handler = aggr_pre_handler; 557 ap->fault_handler = aggr_fault_handler; 558 /* We don't care the kprobe which has gone. */ 559 if (p->post_handler && !kprobe_gone(p)) 560 ap->post_handler = aggr_post_handler; 561 if (p->break_handler && !kprobe_gone(p)) 562 ap->break_handler = aggr_break_handler; 563 564 INIT_LIST_HEAD(&ap->list); 565 list_add_rcu(&p->list, &ap->list); 566 567 hlist_replace_rcu(&p->hlist, &ap->hlist); 568 } 569 570 /* 571 * This is the second or subsequent kprobe at the address - handle 572 * the intricacies 573 */ 574 static int __kprobes register_aggr_kprobe(struct kprobe *old_p, 575 struct kprobe *p) 576 { 577 int ret = 0; 578 struct kprobe *ap = old_p; 579 580 if (old_p->pre_handler != aggr_pre_handler) { 581 /* If old_p is not an aggr_probe, create new aggr_kprobe. */ 582 ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL); 583 if (!ap) 584 return -ENOMEM; 585 add_aggr_kprobe(ap, old_p); 586 } 587 588 if (kprobe_gone(ap)) { 589 /* 590 * Attempting to insert new probe at the same location that 591 * had a probe in the module vaddr area which already 592 * freed. So, the instruction slot has already been 593 * released. We need a new slot for the new probe. 594 */ 595 ret = arch_prepare_kprobe(ap); 596 if (ret) 597 /* 598 * Even if fail to allocate new slot, don't need to 599 * free aggr_probe. It will be used next time, or 600 * freed by unregister_kprobe. 601 */ 602 return ret; 603 604 /* 605 * Clear gone flag to prevent allocating new slot again, and 606 * set disabled flag because it is not armed yet. 607 */ 608 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 609 | KPROBE_FLAG_DISABLED; 610 } 611 612 copy_kprobe(ap, p); 613 return add_new_kprobe(ap, p); 614 } 615 616 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/ 617 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p) 618 { 619 struct kprobe *kp; 620 621 list_for_each_entry_rcu(kp, &p->list, list) { 622 if (!kprobe_disabled(kp)) 623 /* 624 * There is an active probe on the list. 625 * We can't disable aggr_kprobe. 626 */ 627 return 0; 628 } 629 p->flags |= KPROBE_FLAG_DISABLED; 630 return 1; 631 } 632 633 static int __kprobes in_kprobes_functions(unsigned long addr) 634 { 635 struct kprobe_blackpoint *kb; 636 637 if (addr >= (unsigned long)__kprobes_text_start && 638 addr < (unsigned long)__kprobes_text_end) 639 return -EINVAL; 640 /* 641 * If there exists a kprobe_blacklist, verify and 642 * fail any probe registration in the prohibited area 643 */ 644 for (kb = kprobe_blacklist; kb->name != NULL; kb++) { 645 if (kb->start_addr) { 646 if (addr >= kb->start_addr && 647 addr < (kb->start_addr + kb->range)) 648 return -EINVAL; 649 } 650 } 651 return 0; 652 } 653 654 /* 655 * If we have a symbol_name argument, look it up and add the offset field 656 * to it. This way, we can specify a relative address to a symbol. 657 */ 658 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p) 659 { 660 kprobe_opcode_t *addr = p->addr; 661 if (p->symbol_name) { 662 if (addr) 663 return NULL; 664 kprobe_lookup_name(p->symbol_name, addr); 665 } 666 667 if (!addr) 668 return NULL; 669 return (kprobe_opcode_t *)(((char *)addr) + p->offset); 670 } 671 672 int __kprobes register_kprobe(struct kprobe *p) 673 { 674 int ret = 0; 675 struct kprobe *old_p; 676 struct module *probed_mod; 677 kprobe_opcode_t *addr; 678 679 addr = kprobe_addr(p); 680 if (!addr) 681 return -EINVAL; 682 p->addr = addr; 683 684 preempt_disable(); 685 if (!__kernel_text_address((unsigned long) p->addr) || 686 in_kprobes_functions((unsigned long) p->addr)) { 687 preempt_enable(); 688 return -EINVAL; 689 } 690 691 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 692 p->flags &= KPROBE_FLAG_DISABLED; 693 694 /* 695 * Check if are we probing a module. 696 */ 697 probed_mod = __module_text_address((unsigned long) p->addr); 698 if (probed_mod) { 699 /* 700 * We must hold a refcount of the probed module while updating 701 * its code to prohibit unexpected unloading. 702 */ 703 if (unlikely(!try_module_get(probed_mod))) { 704 preempt_enable(); 705 return -EINVAL; 706 } 707 /* 708 * If the module freed .init.text, we couldn't insert 709 * kprobes in there. 710 */ 711 if (within_module_init((unsigned long)p->addr, probed_mod) && 712 probed_mod->state != MODULE_STATE_COMING) { 713 module_put(probed_mod); 714 preempt_enable(); 715 return -EINVAL; 716 } 717 } 718 preempt_enable(); 719 720 p->nmissed = 0; 721 INIT_LIST_HEAD(&p->list); 722 mutex_lock(&kprobe_mutex); 723 old_p = get_kprobe(p->addr); 724 if (old_p) { 725 ret = register_aggr_kprobe(old_p, p); 726 goto out; 727 } 728 729 mutex_lock(&text_mutex); 730 ret = arch_prepare_kprobe(p); 731 if (ret) 732 goto out_unlock_text; 733 734 INIT_HLIST_NODE(&p->hlist); 735 hlist_add_head_rcu(&p->hlist, 736 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 737 738 if (!kprobes_all_disarmed && !kprobe_disabled(p)) 739 arch_arm_kprobe(p); 740 741 out_unlock_text: 742 mutex_unlock(&text_mutex); 743 out: 744 mutex_unlock(&kprobe_mutex); 745 746 if (probed_mod) 747 module_put(probed_mod); 748 749 return ret; 750 } 751 EXPORT_SYMBOL_GPL(register_kprobe); 752 753 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 754 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p) 755 { 756 struct kprobe *old_p, *list_p; 757 758 old_p = get_kprobe(p->addr); 759 if (unlikely(!old_p)) 760 return NULL; 761 762 if (p != old_p) { 763 list_for_each_entry_rcu(list_p, &old_p->list, list) 764 if (list_p == p) 765 /* kprobe p is a valid probe */ 766 goto valid; 767 return NULL; 768 } 769 valid: 770 return old_p; 771 } 772 773 /* 774 * Unregister a kprobe without a scheduler synchronization. 775 */ 776 static int __kprobes __unregister_kprobe_top(struct kprobe *p) 777 { 778 struct kprobe *old_p, *list_p; 779 780 old_p = __get_valid_kprobe(p); 781 if (old_p == NULL) 782 return -EINVAL; 783 784 if (old_p == p || 785 (old_p->pre_handler == aggr_pre_handler && 786 list_is_singular(&old_p->list))) { 787 /* 788 * Only probe on the hash list. Disarm only if kprobes are 789 * enabled and not gone - otherwise, the breakpoint would 790 * already have been removed. We save on flushing icache. 791 */ 792 if (!kprobes_all_disarmed && !kprobe_disabled(old_p)) { 793 mutex_lock(&text_mutex); 794 arch_disarm_kprobe(p); 795 mutex_unlock(&text_mutex); 796 } 797 hlist_del_rcu(&old_p->hlist); 798 } else { 799 if (p->break_handler && !kprobe_gone(p)) 800 old_p->break_handler = NULL; 801 if (p->post_handler && !kprobe_gone(p)) { 802 list_for_each_entry_rcu(list_p, &old_p->list, list) { 803 if ((list_p != p) && (list_p->post_handler)) 804 goto noclean; 805 } 806 old_p->post_handler = NULL; 807 } 808 noclean: 809 list_del_rcu(&p->list); 810 if (!kprobe_disabled(old_p)) { 811 try_to_disable_aggr_kprobe(old_p); 812 if (!kprobes_all_disarmed && kprobe_disabled(old_p)) 813 arch_disarm_kprobe(old_p); 814 } 815 } 816 return 0; 817 } 818 819 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p) 820 { 821 struct kprobe *old_p; 822 823 if (list_empty(&p->list)) 824 arch_remove_kprobe(p); 825 else if (list_is_singular(&p->list)) { 826 /* "p" is the last child of an aggr_kprobe */ 827 old_p = list_entry(p->list.next, struct kprobe, list); 828 list_del(&p->list); 829 arch_remove_kprobe(old_p); 830 kfree(old_p); 831 } 832 } 833 834 int __kprobes register_kprobes(struct kprobe **kps, int num) 835 { 836 int i, ret = 0; 837 838 if (num <= 0) 839 return -EINVAL; 840 for (i = 0; i < num; i++) { 841 ret = register_kprobe(kps[i]); 842 if (ret < 0) { 843 if (i > 0) 844 unregister_kprobes(kps, i); 845 break; 846 } 847 } 848 return ret; 849 } 850 EXPORT_SYMBOL_GPL(register_kprobes); 851 852 void __kprobes unregister_kprobe(struct kprobe *p) 853 { 854 unregister_kprobes(&p, 1); 855 } 856 EXPORT_SYMBOL_GPL(unregister_kprobe); 857 858 void __kprobes unregister_kprobes(struct kprobe **kps, int num) 859 { 860 int i; 861 862 if (num <= 0) 863 return; 864 mutex_lock(&kprobe_mutex); 865 for (i = 0; i < num; i++) 866 if (__unregister_kprobe_top(kps[i]) < 0) 867 kps[i]->addr = NULL; 868 mutex_unlock(&kprobe_mutex); 869 870 synchronize_sched(); 871 for (i = 0; i < num; i++) 872 if (kps[i]->addr) 873 __unregister_kprobe_bottom(kps[i]); 874 } 875 EXPORT_SYMBOL_GPL(unregister_kprobes); 876 877 static struct notifier_block kprobe_exceptions_nb = { 878 .notifier_call = kprobe_exceptions_notify, 879 .priority = 0x7fffffff /* we need to be notified first */ 880 }; 881 882 unsigned long __weak arch_deref_entry_point(void *entry) 883 { 884 return (unsigned long)entry; 885 } 886 887 int __kprobes register_jprobes(struct jprobe **jps, int num) 888 { 889 struct jprobe *jp; 890 int ret = 0, i; 891 892 if (num <= 0) 893 return -EINVAL; 894 for (i = 0; i < num; i++) { 895 unsigned long addr; 896 jp = jps[i]; 897 addr = arch_deref_entry_point(jp->entry); 898 899 if (!kernel_text_address(addr)) 900 ret = -EINVAL; 901 else { 902 /* Todo: Verify probepoint is a function entry point */ 903 jp->kp.pre_handler = setjmp_pre_handler; 904 jp->kp.break_handler = longjmp_break_handler; 905 ret = register_kprobe(&jp->kp); 906 } 907 if (ret < 0) { 908 if (i > 0) 909 unregister_jprobes(jps, i); 910 break; 911 } 912 } 913 return ret; 914 } 915 EXPORT_SYMBOL_GPL(register_jprobes); 916 917 int __kprobes register_jprobe(struct jprobe *jp) 918 { 919 return register_jprobes(&jp, 1); 920 } 921 EXPORT_SYMBOL_GPL(register_jprobe); 922 923 void __kprobes unregister_jprobe(struct jprobe *jp) 924 { 925 unregister_jprobes(&jp, 1); 926 } 927 EXPORT_SYMBOL_GPL(unregister_jprobe); 928 929 void __kprobes unregister_jprobes(struct jprobe **jps, int num) 930 { 931 int i; 932 933 if (num <= 0) 934 return; 935 mutex_lock(&kprobe_mutex); 936 for (i = 0; i < num; i++) 937 if (__unregister_kprobe_top(&jps[i]->kp) < 0) 938 jps[i]->kp.addr = NULL; 939 mutex_unlock(&kprobe_mutex); 940 941 synchronize_sched(); 942 for (i = 0; i < num; i++) { 943 if (jps[i]->kp.addr) 944 __unregister_kprobe_bottom(&jps[i]->kp); 945 } 946 } 947 EXPORT_SYMBOL_GPL(unregister_jprobes); 948 949 #ifdef CONFIG_KRETPROBES 950 /* 951 * This kprobe pre_handler is registered with every kretprobe. When probe 952 * hits it will set up the return probe. 953 */ 954 static int __kprobes pre_handler_kretprobe(struct kprobe *p, 955 struct pt_regs *regs) 956 { 957 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 958 unsigned long hash, flags = 0; 959 struct kretprobe_instance *ri; 960 961 /*TODO: consider to only swap the RA after the last pre_handler fired */ 962 hash = hash_ptr(current, KPROBE_HASH_BITS); 963 spin_lock_irqsave(&rp->lock, flags); 964 if (!hlist_empty(&rp->free_instances)) { 965 ri = hlist_entry(rp->free_instances.first, 966 struct kretprobe_instance, hlist); 967 hlist_del(&ri->hlist); 968 spin_unlock_irqrestore(&rp->lock, flags); 969 970 ri->rp = rp; 971 ri->task = current; 972 973 if (rp->entry_handler && rp->entry_handler(ri, regs)) 974 return 0; 975 976 arch_prepare_kretprobe(ri, regs); 977 978 /* XXX(hch): why is there no hlist_move_head? */ 979 INIT_HLIST_NODE(&ri->hlist); 980 kretprobe_table_lock(hash, &flags); 981 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 982 kretprobe_table_unlock(hash, &flags); 983 } else { 984 rp->nmissed++; 985 spin_unlock_irqrestore(&rp->lock, flags); 986 } 987 return 0; 988 } 989 990 int __kprobes register_kretprobe(struct kretprobe *rp) 991 { 992 int ret = 0; 993 struct kretprobe_instance *inst; 994 int i; 995 void *addr; 996 997 if (kretprobe_blacklist_size) { 998 addr = kprobe_addr(&rp->kp); 999 if (!addr) 1000 return -EINVAL; 1001 1002 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1003 if (kretprobe_blacklist[i].addr == addr) 1004 return -EINVAL; 1005 } 1006 } 1007 1008 rp->kp.pre_handler = pre_handler_kretprobe; 1009 rp->kp.post_handler = NULL; 1010 rp->kp.fault_handler = NULL; 1011 rp->kp.break_handler = NULL; 1012 1013 /* Pre-allocate memory for max kretprobe instances */ 1014 if (rp->maxactive <= 0) { 1015 #ifdef CONFIG_PREEMPT 1016 rp->maxactive = max(10, 2 * NR_CPUS); 1017 #else 1018 rp->maxactive = NR_CPUS; 1019 #endif 1020 } 1021 spin_lock_init(&rp->lock); 1022 INIT_HLIST_HEAD(&rp->free_instances); 1023 for (i = 0; i < rp->maxactive; i++) { 1024 inst = kmalloc(sizeof(struct kretprobe_instance) + 1025 rp->data_size, GFP_KERNEL); 1026 if (inst == NULL) { 1027 free_rp_inst(rp); 1028 return -ENOMEM; 1029 } 1030 INIT_HLIST_NODE(&inst->hlist); 1031 hlist_add_head(&inst->hlist, &rp->free_instances); 1032 } 1033 1034 rp->nmissed = 0; 1035 /* Establish function entry probe point */ 1036 ret = register_kprobe(&rp->kp); 1037 if (ret != 0) 1038 free_rp_inst(rp); 1039 return ret; 1040 } 1041 EXPORT_SYMBOL_GPL(register_kretprobe); 1042 1043 int __kprobes register_kretprobes(struct kretprobe **rps, int num) 1044 { 1045 int ret = 0, i; 1046 1047 if (num <= 0) 1048 return -EINVAL; 1049 for (i = 0; i < num; i++) { 1050 ret = register_kretprobe(rps[i]); 1051 if (ret < 0) { 1052 if (i > 0) 1053 unregister_kretprobes(rps, i); 1054 break; 1055 } 1056 } 1057 return ret; 1058 } 1059 EXPORT_SYMBOL_GPL(register_kretprobes); 1060 1061 void __kprobes unregister_kretprobe(struct kretprobe *rp) 1062 { 1063 unregister_kretprobes(&rp, 1); 1064 } 1065 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1066 1067 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) 1068 { 1069 int i; 1070 1071 if (num <= 0) 1072 return; 1073 mutex_lock(&kprobe_mutex); 1074 for (i = 0; i < num; i++) 1075 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 1076 rps[i]->kp.addr = NULL; 1077 mutex_unlock(&kprobe_mutex); 1078 1079 synchronize_sched(); 1080 for (i = 0; i < num; i++) { 1081 if (rps[i]->kp.addr) { 1082 __unregister_kprobe_bottom(&rps[i]->kp); 1083 cleanup_rp_inst(rps[i]); 1084 } 1085 } 1086 } 1087 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1088 1089 #else /* CONFIG_KRETPROBES */ 1090 int __kprobes register_kretprobe(struct kretprobe *rp) 1091 { 1092 return -ENOSYS; 1093 } 1094 EXPORT_SYMBOL_GPL(register_kretprobe); 1095 1096 int __kprobes register_kretprobes(struct kretprobe **rps, int num) 1097 { 1098 return -ENOSYS; 1099 } 1100 EXPORT_SYMBOL_GPL(register_kretprobes); 1101 1102 void __kprobes unregister_kretprobe(struct kretprobe *rp) 1103 { 1104 } 1105 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1106 1107 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) 1108 { 1109 } 1110 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1111 1112 static int __kprobes pre_handler_kretprobe(struct kprobe *p, 1113 struct pt_regs *regs) 1114 { 1115 return 0; 1116 } 1117 1118 #endif /* CONFIG_KRETPROBES */ 1119 1120 /* Set the kprobe gone and remove its instruction buffer. */ 1121 static void __kprobes kill_kprobe(struct kprobe *p) 1122 { 1123 struct kprobe *kp; 1124 1125 p->flags |= KPROBE_FLAG_GONE; 1126 if (p->pre_handler == aggr_pre_handler) { 1127 /* 1128 * If this is an aggr_kprobe, we have to list all the 1129 * chained probes and mark them GONE. 1130 */ 1131 list_for_each_entry_rcu(kp, &p->list, list) 1132 kp->flags |= KPROBE_FLAG_GONE; 1133 p->post_handler = NULL; 1134 p->break_handler = NULL; 1135 } 1136 /* 1137 * Here, we can remove insn_slot safely, because no thread calls 1138 * the original probed function (which will be freed soon) any more. 1139 */ 1140 arch_remove_kprobe(p); 1141 } 1142 1143 /* Module notifier call back, checking kprobes on the module */ 1144 static int __kprobes kprobes_module_callback(struct notifier_block *nb, 1145 unsigned long val, void *data) 1146 { 1147 struct module *mod = data; 1148 struct hlist_head *head; 1149 struct hlist_node *node; 1150 struct kprobe *p; 1151 unsigned int i; 1152 int checkcore = (val == MODULE_STATE_GOING); 1153 1154 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 1155 return NOTIFY_DONE; 1156 1157 /* 1158 * When MODULE_STATE_GOING was notified, both of module .text and 1159 * .init.text sections would be freed. When MODULE_STATE_LIVE was 1160 * notified, only .init.text section would be freed. We need to 1161 * disable kprobes which have been inserted in the sections. 1162 */ 1163 mutex_lock(&kprobe_mutex); 1164 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1165 head = &kprobe_table[i]; 1166 hlist_for_each_entry_rcu(p, node, head, hlist) 1167 if (within_module_init((unsigned long)p->addr, mod) || 1168 (checkcore && 1169 within_module_core((unsigned long)p->addr, mod))) { 1170 /* 1171 * The vaddr this probe is installed will soon 1172 * be vfreed buy not synced to disk. Hence, 1173 * disarming the breakpoint isn't needed. 1174 */ 1175 kill_kprobe(p); 1176 } 1177 } 1178 mutex_unlock(&kprobe_mutex); 1179 return NOTIFY_DONE; 1180 } 1181 1182 static struct notifier_block kprobe_module_nb = { 1183 .notifier_call = kprobes_module_callback, 1184 .priority = 0 1185 }; 1186 1187 static int __init init_kprobes(void) 1188 { 1189 int i, err = 0; 1190 unsigned long offset = 0, size = 0; 1191 char *modname, namebuf[128]; 1192 const char *symbol_name; 1193 void *addr; 1194 struct kprobe_blackpoint *kb; 1195 1196 /* FIXME allocate the probe table, currently defined statically */ 1197 /* initialize all list heads */ 1198 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1199 INIT_HLIST_HEAD(&kprobe_table[i]); 1200 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 1201 spin_lock_init(&(kretprobe_table_locks[i].lock)); 1202 } 1203 1204 /* 1205 * Lookup and populate the kprobe_blacklist. 1206 * 1207 * Unlike the kretprobe blacklist, we'll need to determine 1208 * the range of addresses that belong to the said functions, 1209 * since a kprobe need not necessarily be at the beginning 1210 * of a function. 1211 */ 1212 for (kb = kprobe_blacklist; kb->name != NULL; kb++) { 1213 kprobe_lookup_name(kb->name, addr); 1214 if (!addr) 1215 continue; 1216 1217 kb->start_addr = (unsigned long)addr; 1218 symbol_name = kallsyms_lookup(kb->start_addr, 1219 &size, &offset, &modname, namebuf); 1220 if (!symbol_name) 1221 kb->range = 0; 1222 else 1223 kb->range = size; 1224 } 1225 1226 if (kretprobe_blacklist_size) { 1227 /* lookup the function address from its name */ 1228 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1229 kprobe_lookup_name(kretprobe_blacklist[i].name, 1230 kretprobe_blacklist[i].addr); 1231 if (!kretprobe_blacklist[i].addr) 1232 printk("kretprobe: lookup failed: %s\n", 1233 kretprobe_blacklist[i].name); 1234 } 1235 } 1236 1237 /* By default, kprobes are armed */ 1238 kprobes_all_disarmed = false; 1239 1240 err = arch_init_kprobes(); 1241 if (!err) 1242 err = register_die_notifier(&kprobe_exceptions_nb); 1243 if (!err) 1244 err = register_module_notifier(&kprobe_module_nb); 1245 1246 kprobes_initialized = (err == 0); 1247 1248 if (!err) 1249 init_test_probes(); 1250 return err; 1251 } 1252 1253 #ifdef CONFIG_DEBUG_FS 1254 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p, 1255 const char *sym, int offset,char *modname) 1256 { 1257 char *kprobe_type; 1258 1259 if (p->pre_handler == pre_handler_kretprobe) 1260 kprobe_type = "r"; 1261 else if (p->pre_handler == setjmp_pre_handler) 1262 kprobe_type = "j"; 1263 else 1264 kprobe_type = "k"; 1265 if (sym) 1266 seq_printf(pi, "%p %s %s+0x%x %s %s%s\n", 1267 p->addr, kprobe_type, sym, offset, 1268 (modname ? modname : " "), 1269 (kprobe_gone(p) ? "[GONE]" : ""), 1270 ((kprobe_disabled(p) && !kprobe_gone(p)) ? 1271 "[DISABLED]" : "")); 1272 else 1273 seq_printf(pi, "%p %s %p %s%s\n", 1274 p->addr, kprobe_type, p->addr, 1275 (kprobe_gone(p) ? "[GONE]" : ""), 1276 ((kprobe_disabled(p) && !kprobe_gone(p)) ? 1277 "[DISABLED]" : "")); 1278 } 1279 1280 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos) 1281 { 1282 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 1283 } 1284 1285 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 1286 { 1287 (*pos)++; 1288 if (*pos >= KPROBE_TABLE_SIZE) 1289 return NULL; 1290 return pos; 1291 } 1292 1293 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v) 1294 { 1295 /* Nothing to do */ 1296 } 1297 1298 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v) 1299 { 1300 struct hlist_head *head; 1301 struct hlist_node *node; 1302 struct kprobe *p, *kp; 1303 const char *sym = NULL; 1304 unsigned int i = *(loff_t *) v; 1305 unsigned long offset = 0; 1306 char *modname, namebuf[128]; 1307 1308 head = &kprobe_table[i]; 1309 preempt_disable(); 1310 hlist_for_each_entry_rcu(p, node, head, hlist) { 1311 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 1312 &offset, &modname, namebuf); 1313 if (p->pre_handler == aggr_pre_handler) { 1314 list_for_each_entry_rcu(kp, &p->list, list) 1315 report_probe(pi, kp, sym, offset, modname); 1316 } else 1317 report_probe(pi, p, sym, offset, modname); 1318 } 1319 preempt_enable(); 1320 return 0; 1321 } 1322 1323 static struct seq_operations kprobes_seq_ops = { 1324 .start = kprobe_seq_start, 1325 .next = kprobe_seq_next, 1326 .stop = kprobe_seq_stop, 1327 .show = show_kprobe_addr 1328 }; 1329 1330 static int __kprobes kprobes_open(struct inode *inode, struct file *filp) 1331 { 1332 return seq_open(filp, &kprobes_seq_ops); 1333 } 1334 1335 static struct file_operations debugfs_kprobes_operations = { 1336 .open = kprobes_open, 1337 .read = seq_read, 1338 .llseek = seq_lseek, 1339 .release = seq_release, 1340 }; 1341 1342 /* Disable one kprobe */ 1343 int __kprobes disable_kprobe(struct kprobe *kp) 1344 { 1345 int ret = 0; 1346 struct kprobe *p; 1347 1348 mutex_lock(&kprobe_mutex); 1349 1350 /* Check whether specified probe is valid. */ 1351 p = __get_valid_kprobe(kp); 1352 if (unlikely(p == NULL)) { 1353 ret = -EINVAL; 1354 goto out; 1355 } 1356 1357 /* If the probe is already disabled (or gone), just return */ 1358 if (kprobe_disabled(kp)) 1359 goto out; 1360 1361 kp->flags |= KPROBE_FLAG_DISABLED; 1362 if (p != kp) 1363 /* When kp != p, p is always enabled. */ 1364 try_to_disable_aggr_kprobe(p); 1365 1366 if (!kprobes_all_disarmed && kprobe_disabled(p)) 1367 arch_disarm_kprobe(p); 1368 out: 1369 mutex_unlock(&kprobe_mutex); 1370 return ret; 1371 } 1372 EXPORT_SYMBOL_GPL(disable_kprobe); 1373 1374 /* Enable one kprobe */ 1375 int __kprobes enable_kprobe(struct kprobe *kp) 1376 { 1377 int ret = 0; 1378 struct kprobe *p; 1379 1380 mutex_lock(&kprobe_mutex); 1381 1382 /* Check whether specified probe is valid. */ 1383 p = __get_valid_kprobe(kp); 1384 if (unlikely(p == NULL)) { 1385 ret = -EINVAL; 1386 goto out; 1387 } 1388 1389 if (kprobe_gone(kp)) { 1390 /* This kprobe has gone, we couldn't enable it. */ 1391 ret = -EINVAL; 1392 goto out; 1393 } 1394 1395 if (!kprobes_all_disarmed && kprobe_disabled(p)) 1396 arch_arm_kprobe(p); 1397 1398 p->flags &= ~KPROBE_FLAG_DISABLED; 1399 if (p != kp) 1400 kp->flags &= ~KPROBE_FLAG_DISABLED; 1401 out: 1402 mutex_unlock(&kprobe_mutex); 1403 return ret; 1404 } 1405 EXPORT_SYMBOL_GPL(enable_kprobe); 1406 1407 static void __kprobes arm_all_kprobes(void) 1408 { 1409 struct hlist_head *head; 1410 struct hlist_node *node; 1411 struct kprobe *p; 1412 unsigned int i; 1413 1414 mutex_lock(&kprobe_mutex); 1415 1416 /* If kprobes are armed, just return */ 1417 if (!kprobes_all_disarmed) 1418 goto already_enabled; 1419 1420 mutex_lock(&text_mutex); 1421 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1422 head = &kprobe_table[i]; 1423 hlist_for_each_entry_rcu(p, node, head, hlist) 1424 if (!kprobe_disabled(p)) 1425 arch_arm_kprobe(p); 1426 } 1427 mutex_unlock(&text_mutex); 1428 1429 kprobes_all_disarmed = false; 1430 printk(KERN_INFO "Kprobes globally enabled\n"); 1431 1432 already_enabled: 1433 mutex_unlock(&kprobe_mutex); 1434 return; 1435 } 1436 1437 static void __kprobes disarm_all_kprobes(void) 1438 { 1439 struct hlist_head *head; 1440 struct hlist_node *node; 1441 struct kprobe *p; 1442 unsigned int i; 1443 1444 mutex_lock(&kprobe_mutex); 1445 1446 /* If kprobes are already disarmed, just return */ 1447 if (kprobes_all_disarmed) 1448 goto already_disabled; 1449 1450 kprobes_all_disarmed = true; 1451 printk(KERN_INFO "Kprobes globally disabled\n"); 1452 mutex_lock(&text_mutex); 1453 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1454 head = &kprobe_table[i]; 1455 hlist_for_each_entry_rcu(p, node, head, hlist) { 1456 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) 1457 arch_disarm_kprobe(p); 1458 } 1459 } 1460 1461 mutex_unlock(&text_mutex); 1462 mutex_unlock(&kprobe_mutex); 1463 /* Allow all currently running kprobes to complete */ 1464 synchronize_sched(); 1465 return; 1466 1467 already_disabled: 1468 mutex_unlock(&kprobe_mutex); 1469 return; 1470 } 1471 1472 /* 1473 * XXX: The debugfs bool file interface doesn't allow for callbacks 1474 * when the bool state is switched. We can reuse that facility when 1475 * available 1476 */ 1477 static ssize_t read_enabled_file_bool(struct file *file, 1478 char __user *user_buf, size_t count, loff_t *ppos) 1479 { 1480 char buf[3]; 1481 1482 if (!kprobes_all_disarmed) 1483 buf[0] = '1'; 1484 else 1485 buf[0] = '0'; 1486 buf[1] = '\n'; 1487 buf[2] = 0x00; 1488 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 1489 } 1490 1491 static ssize_t write_enabled_file_bool(struct file *file, 1492 const char __user *user_buf, size_t count, loff_t *ppos) 1493 { 1494 char buf[32]; 1495 int buf_size; 1496 1497 buf_size = min(count, (sizeof(buf)-1)); 1498 if (copy_from_user(buf, user_buf, buf_size)) 1499 return -EFAULT; 1500 1501 switch (buf[0]) { 1502 case 'y': 1503 case 'Y': 1504 case '1': 1505 arm_all_kprobes(); 1506 break; 1507 case 'n': 1508 case 'N': 1509 case '0': 1510 disarm_all_kprobes(); 1511 break; 1512 } 1513 1514 return count; 1515 } 1516 1517 static struct file_operations fops_kp = { 1518 .read = read_enabled_file_bool, 1519 .write = write_enabled_file_bool, 1520 }; 1521 1522 static int __kprobes debugfs_kprobe_init(void) 1523 { 1524 struct dentry *dir, *file; 1525 unsigned int value = 1; 1526 1527 dir = debugfs_create_dir("kprobes", NULL); 1528 if (!dir) 1529 return -ENOMEM; 1530 1531 file = debugfs_create_file("list", 0444, dir, NULL, 1532 &debugfs_kprobes_operations); 1533 if (!file) { 1534 debugfs_remove(dir); 1535 return -ENOMEM; 1536 } 1537 1538 file = debugfs_create_file("enabled", 0600, dir, 1539 &value, &fops_kp); 1540 if (!file) { 1541 debugfs_remove(dir); 1542 return -ENOMEM; 1543 } 1544 1545 return 0; 1546 } 1547 1548 late_initcall(debugfs_kprobe_init); 1549 #endif /* CONFIG_DEBUG_FS */ 1550 1551 module_init(init_kprobes); 1552 1553 /* defined in arch/.../kernel/kprobes.c */ 1554 EXPORT_SYMBOL_GPL(jprobe_return); 1555