xref: /openbmc/linux/kernel/kprobes.c (revision a36954f5)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51 
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56 
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 
60 
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64 
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67 
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74 
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 					unsigned int __unused)
77 {
78 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80 
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83 	return &(kretprobe_table_locks[hash].lock);
84 }
85 
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88 
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91  * kprobe->ainsn.insn points to the copy of the instruction to be
92  * single-stepped. x86_64, POWER4 and above have no-exec support and
93  * stepping on the instruction on a vmalloced/kmalloced/data page
94  * is a recipe for disaster
95  */
96 struct kprobe_insn_page {
97 	struct list_head list;
98 	kprobe_opcode_t *insns;		/* Page of instruction slots */
99 	struct kprobe_insn_cache *cache;
100 	int nused;
101 	int ngarbage;
102 	char slot_used[];
103 };
104 
105 #define KPROBE_INSN_PAGE_SIZE(slots)			\
106 	(offsetof(struct kprobe_insn_page, slot_used) +	\
107 	 (sizeof(char) * (slots)))
108 
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113 
114 enum kprobe_slot_state {
115 	SLOT_CLEAN = 0,
116 	SLOT_DIRTY = 1,
117 	SLOT_USED = 2,
118 };
119 
120 static void *alloc_insn_page(void)
121 {
122 	return module_alloc(PAGE_SIZE);
123 }
124 
125 static void free_insn_page(void *page)
126 {
127 	module_memfree(page);
128 }
129 
130 struct kprobe_insn_cache kprobe_insn_slots = {
131 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 	.alloc = alloc_insn_page,
133 	.free = free_insn_page,
134 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 	.insn_size = MAX_INSN_SIZE,
136 	.nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139 
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146 	struct kprobe_insn_page *kip;
147 	kprobe_opcode_t *slot = NULL;
148 
149 	/* Since the slot array is not protected by rcu, we need a mutex */
150 	mutex_lock(&c->mutex);
151  retry:
152 	rcu_read_lock();
153 	list_for_each_entry_rcu(kip, &c->pages, list) {
154 		if (kip->nused < slots_per_page(c)) {
155 			int i;
156 			for (i = 0; i < slots_per_page(c); i++) {
157 				if (kip->slot_used[i] == SLOT_CLEAN) {
158 					kip->slot_used[i] = SLOT_USED;
159 					kip->nused++;
160 					slot = kip->insns + (i * c->insn_size);
161 					rcu_read_unlock();
162 					goto out;
163 				}
164 			}
165 			/* kip->nused is broken. Fix it. */
166 			kip->nused = slots_per_page(c);
167 			WARN_ON(1);
168 		}
169 	}
170 	rcu_read_unlock();
171 
172 	/* If there are any garbage slots, collect it and try again. */
173 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 		goto retry;
175 
176 	/* All out of space.  Need to allocate a new page. */
177 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 	if (!kip)
179 		goto out;
180 
181 	/*
182 	 * Use module_alloc so this page is within +/- 2GB of where the
183 	 * kernel image and loaded module images reside. This is required
184 	 * so x86_64 can correctly handle the %rip-relative fixups.
185 	 */
186 	kip->insns = c->alloc();
187 	if (!kip->insns) {
188 		kfree(kip);
189 		goto out;
190 	}
191 	INIT_LIST_HEAD(&kip->list);
192 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 	kip->slot_used[0] = SLOT_USED;
194 	kip->nused = 1;
195 	kip->ngarbage = 0;
196 	kip->cache = c;
197 	list_add_rcu(&kip->list, &c->pages);
198 	slot = kip->insns;
199 out:
200 	mutex_unlock(&c->mutex);
201 	return slot;
202 }
203 
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207 	kip->slot_used[idx] = SLOT_CLEAN;
208 	kip->nused--;
209 	if (kip->nused == 0) {
210 		/*
211 		 * Page is no longer in use.  Free it unless
212 		 * it's the last one.  We keep the last one
213 		 * so as not to have to set it up again the
214 		 * next time somebody inserts a probe.
215 		 */
216 		if (!list_is_singular(&kip->list)) {
217 			list_del_rcu(&kip->list);
218 			synchronize_rcu();
219 			kip->cache->free(kip->insns);
220 			kfree(kip);
221 		}
222 		return 1;
223 	}
224 	return 0;
225 }
226 
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229 	struct kprobe_insn_page *kip, *next;
230 
231 	/* Ensure no-one is interrupted on the garbages */
232 	synchronize_sched();
233 
234 	list_for_each_entry_safe(kip, next, &c->pages, list) {
235 		int i;
236 		if (kip->ngarbage == 0)
237 			continue;
238 		kip->ngarbage = 0;	/* we will collect all garbages */
239 		for (i = 0; i < slots_per_page(c); i++) {
240 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 				break;
242 		}
243 	}
244 	c->nr_garbage = 0;
245 	return 0;
246 }
247 
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249 		      kprobe_opcode_t *slot, int dirty)
250 {
251 	struct kprobe_insn_page *kip;
252 	long idx;
253 
254 	mutex_lock(&c->mutex);
255 	rcu_read_lock();
256 	list_for_each_entry_rcu(kip, &c->pages, list) {
257 		idx = ((long)slot - (long)kip->insns) /
258 			(c->insn_size * sizeof(kprobe_opcode_t));
259 		if (idx >= 0 && idx < slots_per_page(c))
260 			goto out;
261 	}
262 	/* Could not find this slot. */
263 	WARN_ON(1);
264 	kip = NULL;
265 out:
266 	rcu_read_unlock();
267 	/* Mark and sweep: this may sleep */
268 	if (kip) {
269 		/* Check double free */
270 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 		if (dirty) {
272 			kip->slot_used[idx] = SLOT_DIRTY;
273 			kip->ngarbage++;
274 			if (++c->nr_garbage > slots_per_page(c))
275 				collect_garbage_slots(c);
276 		} else {
277 			collect_one_slot(kip, idx);
278 		}
279 	}
280 	mutex_unlock(&c->mutex);
281 }
282 
283 /*
284  * Check given address is on the page of kprobe instruction slots.
285  * This will be used for checking whether the address on a stack
286  * is on a text area or not.
287  */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290 	struct kprobe_insn_page *kip;
291 	bool ret = false;
292 
293 	rcu_read_lock();
294 	list_for_each_entry_rcu(kip, &c->pages, list) {
295 		if (addr >= (unsigned long)kip->insns &&
296 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 			ret = true;
298 			break;
299 		}
300 	}
301 	rcu_read_unlock();
302 
303 	return ret;
304 }
305 
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 	.alloc = alloc_insn_page,
311 	.free = free_insn_page,
312 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 	/* .insn_size is initialized later */
314 	.nr_garbage = 0,
315 };
316 #endif
317 #endif
318 
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322 	__this_cpu_write(kprobe_instance, kp);
323 }
324 
325 static inline void reset_kprobe_instance(void)
326 {
327 	__this_cpu_write(kprobe_instance, NULL);
328 }
329 
330 /*
331  * This routine is called either:
332  * 	- under the kprobe_mutex - during kprobe_[un]register()
333  * 				OR
334  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
335  */
336 struct kprobe *get_kprobe(void *addr)
337 {
338 	struct hlist_head *head;
339 	struct kprobe *p;
340 
341 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 	hlist_for_each_entry_rcu(p, head, hlist) {
343 		if (p->addr == addr)
344 			return p;
345 	}
346 
347 	return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350 
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352 
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356 	return p->pre_handler == aggr_pre_handler;
357 }
358 
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 	       list_empty(&p->list);
364 }
365 
366 /*
367  * Keep all fields in the kprobe consistent
368  */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374 
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378 
379 /*
380  * Call all pre_handler on the list, but ignores its return value.
381  * This must be called from arch-dep optimized caller.
382  */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385 	struct kprobe *kp;
386 
387 	list_for_each_entry_rcu(kp, &p->list, list) {
388 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 			set_kprobe_instance(kp);
390 			kp->pre_handler(kp, regs);
391 		}
392 		reset_kprobe_instance();
393 	}
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396 
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400 	struct optimized_kprobe *op;
401 
402 	op = container_of(p, struct optimized_kprobe, kp);
403 	arch_remove_optimized_kprobe(op);
404 	arch_remove_kprobe(p);
405 	kfree(op);
406 }
407 
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411 	struct optimized_kprobe *op;
412 
413 	if (kprobe_aggrprobe(p)) {
414 		op = container_of(p, struct optimized_kprobe, kp);
415 		return arch_prepared_optinsn(&op->optinsn);
416 	}
417 
418 	return 0;
419 }
420 
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424 	struct optimized_kprobe *op;
425 
426 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 	if (!kprobe_aggrprobe(p))
428 		return kprobe_disabled(p);
429 
430 	op = container_of(p, struct optimized_kprobe, kp);
431 
432 	return kprobe_disabled(p) && list_empty(&op->list);
433 }
434 
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438 	struct optimized_kprobe *op;
439 
440 	if (kprobe_aggrprobe(p)) {
441 		op = container_of(p, struct optimized_kprobe, kp);
442 		if (!list_empty(&op->list))
443 			return 1;
444 	}
445 	return 0;
446 }
447 
448 /*
449  * Return an optimized kprobe whose optimizing code replaces
450  * instructions including addr (exclude breakpoint).
451  */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454 	int i;
455 	struct kprobe *p = NULL;
456 	struct optimized_kprobe *op;
457 
458 	/* Don't check i == 0, since that is a breakpoint case. */
459 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 		p = get_kprobe((void *)(addr - i));
461 
462 	if (p && kprobe_optready(p)) {
463 		op = container_of(p, struct optimized_kprobe, kp);
464 		if (arch_within_optimized_kprobe(op, addr))
465 			return p;
466 	}
467 
468 	return NULL;
469 }
470 
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475 
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479 
480 /*
481  * Optimize (replace a breakpoint with a jump) kprobes listed on
482  * optimizing_list.
483  */
484 static void do_optimize_kprobes(void)
485 {
486 	/* Optimization never be done when disarmed */
487 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
488 	    list_empty(&optimizing_list))
489 		return;
490 
491 	/*
492 	 * The optimization/unoptimization refers online_cpus via
493 	 * stop_machine() and cpu-hotplug modifies online_cpus.
494 	 * And same time, text_mutex will be held in cpu-hotplug and here.
495 	 * This combination can cause a deadlock (cpu-hotplug try to lock
496 	 * text_mutex but stop_machine can not be done because online_cpus
497 	 * has been changed)
498 	 * To avoid this deadlock, we need to call get_online_cpus()
499 	 * for preventing cpu-hotplug outside of text_mutex locking.
500 	 */
501 	get_online_cpus();
502 	mutex_lock(&text_mutex);
503 	arch_optimize_kprobes(&optimizing_list);
504 	mutex_unlock(&text_mutex);
505 	put_online_cpus();
506 }
507 
508 /*
509  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510  * if need) kprobes listed on unoptimizing_list.
511  */
512 static void do_unoptimize_kprobes(void)
513 {
514 	struct optimized_kprobe *op, *tmp;
515 
516 	/* Unoptimization must be done anytime */
517 	if (list_empty(&unoptimizing_list))
518 		return;
519 
520 	/* Ditto to do_optimize_kprobes */
521 	get_online_cpus();
522 	mutex_lock(&text_mutex);
523 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
524 	/* Loop free_list for disarming */
525 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
526 		/* Disarm probes if marked disabled */
527 		if (kprobe_disabled(&op->kp))
528 			arch_disarm_kprobe(&op->kp);
529 		if (kprobe_unused(&op->kp)) {
530 			/*
531 			 * Remove unused probes from hash list. After waiting
532 			 * for synchronization, these probes are reclaimed.
533 			 * (reclaiming is done by do_free_cleaned_kprobes.)
534 			 */
535 			hlist_del_rcu(&op->kp.hlist);
536 		} else
537 			list_del_init(&op->list);
538 	}
539 	mutex_unlock(&text_mutex);
540 	put_online_cpus();
541 }
542 
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546 	struct optimized_kprobe *op, *tmp;
547 
548 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 		BUG_ON(!kprobe_unused(&op->kp));
550 		list_del_init(&op->list);
551 		free_aggr_kprobe(&op->kp);
552 	}
553 }
554 
555 /* Start optimizer after OPTIMIZE_DELAY passed */
556 static void kick_kprobe_optimizer(void)
557 {
558 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
559 }
560 
561 /* Kprobe jump optimizer */
562 static void kprobe_optimizer(struct work_struct *work)
563 {
564 	mutex_lock(&kprobe_mutex);
565 	/* Lock modules while optimizing kprobes */
566 	mutex_lock(&module_mutex);
567 
568 	/*
569 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
570 	 * kprobes before waiting for quiesence period.
571 	 */
572 	do_unoptimize_kprobes();
573 
574 	/*
575 	 * Step 2: Wait for quiesence period to ensure all running interrupts
576 	 * are done. Because optprobe may modify multiple instructions
577 	 * there is a chance that Nth instruction is interrupted. In that
578 	 * case, running interrupt can return to 2nd-Nth byte of jump
579 	 * instruction. This wait is for avoiding it.
580 	 */
581 	synchronize_sched();
582 
583 	/* Step 3: Optimize kprobes after quiesence period */
584 	do_optimize_kprobes();
585 
586 	/* Step 4: Free cleaned kprobes after quiesence period */
587 	do_free_cleaned_kprobes();
588 
589 	mutex_unlock(&module_mutex);
590 	mutex_unlock(&kprobe_mutex);
591 
592 	/* Step 5: Kick optimizer again if needed */
593 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
594 		kick_kprobe_optimizer();
595 }
596 
597 /* Wait for completing optimization and unoptimization */
598 void wait_for_kprobe_optimizer(void)
599 {
600 	mutex_lock(&kprobe_mutex);
601 
602 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
603 		mutex_unlock(&kprobe_mutex);
604 
605 		/* this will also make optimizing_work execute immmediately */
606 		flush_delayed_work(&optimizing_work);
607 		/* @optimizing_work might not have been queued yet, relax */
608 		cpu_relax();
609 
610 		mutex_lock(&kprobe_mutex);
611 	}
612 
613 	mutex_unlock(&kprobe_mutex);
614 }
615 
616 /* Optimize kprobe if p is ready to be optimized */
617 static void optimize_kprobe(struct kprobe *p)
618 {
619 	struct optimized_kprobe *op;
620 
621 	/* Check if the kprobe is disabled or not ready for optimization. */
622 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
623 	    (kprobe_disabled(p) || kprobes_all_disarmed))
624 		return;
625 
626 	/* Both of break_handler and post_handler are not supported. */
627 	if (p->break_handler || p->post_handler)
628 		return;
629 
630 	op = container_of(p, struct optimized_kprobe, kp);
631 
632 	/* Check there is no other kprobes at the optimized instructions */
633 	if (arch_check_optimized_kprobe(op) < 0)
634 		return;
635 
636 	/* Check if it is already optimized. */
637 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
638 		return;
639 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
640 
641 	if (!list_empty(&op->list))
642 		/* This is under unoptimizing. Just dequeue the probe */
643 		list_del_init(&op->list);
644 	else {
645 		list_add(&op->list, &optimizing_list);
646 		kick_kprobe_optimizer();
647 	}
648 }
649 
650 /* Short cut to direct unoptimizing */
651 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
652 {
653 	get_online_cpus();
654 	arch_unoptimize_kprobe(op);
655 	put_online_cpus();
656 	if (kprobe_disabled(&op->kp))
657 		arch_disarm_kprobe(&op->kp);
658 }
659 
660 /* Unoptimize a kprobe if p is optimized */
661 static void unoptimize_kprobe(struct kprobe *p, bool force)
662 {
663 	struct optimized_kprobe *op;
664 
665 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
666 		return; /* This is not an optprobe nor optimized */
667 
668 	op = container_of(p, struct optimized_kprobe, kp);
669 	if (!kprobe_optimized(p)) {
670 		/* Unoptimized or unoptimizing case */
671 		if (force && !list_empty(&op->list)) {
672 			/*
673 			 * Only if this is unoptimizing kprobe and forced,
674 			 * forcibly unoptimize it. (No need to unoptimize
675 			 * unoptimized kprobe again :)
676 			 */
677 			list_del_init(&op->list);
678 			force_unoptimize_kprobe(op);
679 		}
680 		return;
681 	}
682 
683 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
684 	if (!list_empty(&op->list)) {
685 		/* Dequeue from the optimization queue */
686 		list_del_init(&op->list);
687 		return;
688 	}
689 	/* Optimized kprobe case */
690 	if (force)
691 		/* Forcibly update the code: this is a special case */
692 		force_unoptimize_kprobe(op);
693 	else {
694 		list_add(&op->list, &unoptimizing_list);
695 		kick_kprobe_optimizer();
696 	}
697 }
698 
699 /* Cancel unoptimizing for reusing */
700 static void reuse_unused_kprobe(struct kprobe *ap)
701 {
702 	struct optimized_kprobe *op;
703 
704 	BUG_ON(!kprobe_unused(ap));
705 	/*
706 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
707 	 * there is still a relative jump) and disabled.
708 	 */
709 	op = container_of(ap, struct optimized_kprobe, kp);
710 	if (unlikely(list_empty(&op->list)))
711 		printk(KERN_WARNING "Warning: found a stray unused "
712 			"aggrprobe@%p\n", ap->addr);
713 	/* Enable the probe again */
714 	ap->flags &= ~KPROBE_FLAG_DISABLED;
715 	/* Optimize it again (remove from op->list) */
716 	BUG_ON(!kprobe_optready(ap));
717 	optimize_kprobe(ap);
718 }
719 
720 /* Remove optimized instructions */
721 static void kill_optimized_kprobe(struct kprobe *p)
722 {
723 	struct optimized_kprobe *op;
724 
725 	op = container_of(p, struct optimized_kprobe, kp);
726 	if (!list_empty(&op->list))
727 		/* Dequeue from the (un)optimization queue */
728 		list_del_init(&op->list);
729 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
730 
731 	if (kprobe_unused(p)) {
732 		/* Enqueue if it is unused */
733 		list_add(&op->list, &freeing_list);
734 		/*
735 		 * Remove unused probes from the hash list. After waiting
736 		 * for synchronization, this probe is reclaimed.
737 		 * (reclaiming is done by do_free_cleaned_kprobes().)
738 		 */
739 		hlist_del_rcu(&op->kp.hlist);
740 	}
741 
742 	/* Don't touch the code, because it is already freed. */
743 	arch_remove_optimized_kprobe(op);
744 }
745 
746 static inline
747 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
748 {
749 	if (!kprobe_ftrace(p))
750 		arch_prepare_optimized_kprobe(op, p);
751 }
752 
753 /* Try to prepare optimized instructions */
754 static void prepare_optimized_kprobe(struct kprobe *p)
755 {
756 	struct optimized_kprobe *op;
757 
758 	op = container_of(p, struct optimized_kprobe, kp);
759 	__prepare_optimized_kprobe(op, p);
760 }
761 
762 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
763 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
764 {
765 	struct optimized_kprobe *op;
766 
767 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
768 	if (!op)
769 		return NULL;
770 
771 	INIT_LIST_HEAD(&op->list);
772 	op->kp.addr = p->addr;
773 	__prepare_optimized_kprobe(op, p);
774 
775 	return &op->kp;
776 }
777 
778 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
779 
780 /*
781  * Prepare an optimized_kprobe and optimize it
782  * NOTE: p must be a normal registered kprobe
783  */
784 static void try_to_optimize_kprobe(struct kprobe *p)
785 {
786 	struct kprobe *ap;
787 	struct optimized_kprobe *op;
788 
789 	/* Impossible to optimize ftrace-based kprobe */
790 	if (kprobe_ftrace(p))
791 		return;
792 
793 	/* For preparing optimization, jump_label_text_reserved() is called */
794 	jump_label_lock();
795 	mutex_lock(&text_mutex);
796 
797 	ap = alloc_aggr_kprobe(p);
798 	if (!ap)
799 		goto out;
800 
801 	op = container_of(ap, struct optimized_kprobe, kp);
802 	if (!arch_prepared_optinsn(&op->optinsn)) {
803 		/* If failed to setup optimizing, fallback to kprobe */
804 		arch_remove_optimized_kprobe(op);
805 		kfree(op);
806 		goto out;
807 	}
808 
809 	init_aggr_kprobe(ap, p);
810 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
811 
812 out:
813 	mutex_unlock(&text_mutex);
814 	jump_label_unlock();
815 }
816 
817 #ifdef CONFIG_SYSCTL
818 static void optimize_all_kprobes(void)
819 {
820 	struct hlist_head *head;
821 	struct kprobe *p;
822 	unsigned int i;
823 
824 	mutex_lock(&kprobe_mutex);
825 	/* If optimization is already allowed, just return */
826 	if (kprobes_allow_optimization)
827 		goto out;
828 
829 	kprobes_allow_optimization = true;
830 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
831 		head = &kprobe_table[i];
832 		hlist_for_each_entry_rcu(p, head, hlist)
833 			if (!kprobe_disabled(p))
834 				optimize_kprobe(p);
835 	}
836 	printk(KERN_INFO "Kprobes globally optimized\n");
837 out:
838 	mutex_unlock(&kprobe_mutex);
839 }
840 
841 static void unoptimize_all_kprobes(void)
842 {
843 	struct hlist_head *head;
844 	struct kprobe *p;
845 	unsigned int i;
846 
847 	mutex_lock(&kprobe_mutex);
848 	/* If optimization is already prohibited, just return */
849 	if (!kprobes_allow_optimization) {
850 		mutex_unlock(&kprobe_mutex);
851 		return;
852 	}
853 
854 	kprobes_allow_optimization = false;
855 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
856 		head = &kprobe_table[i];
857 		hlist_for_each_entry_rcu(p, head, hlist) {
858 			if (!kprobe_disabled(p))
859 				unoptimize_kprobe(p, false);
860 		}
861 	}
862 	mutex_unlock(&kprobe_mutex);
863 
864 	/* Wait for unoptimizing completion */
865 	wait_for_kprobe_optimizer();
866 	printk(KERN_INFO "Kprobes globally unoptimized\n");
867 }
868 
869 static DEFINE_MUTEX(kprobe_sysctl_mutex);
870 int sysctl_kprobes_optimization;
871 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
872 				      void __user *buffer, size_t *length,
873 				      loff_t *ppos)
874 {
875 	int ret;
876 
877 	mutex_lock(&kprobe_sysctl_mutex);
878 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
879 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
880 
881 	if (sysctl_kprobes_optimization)
882 		optimize_all_kprobes();
883 	else
884 		unoptimize_all_kprobes();
885 	mutex_unlock(&kprobe_sysctl_mutex);
886 
887 	return ret;
888 }
889 #endif /* CONFIG_SYSCTL */
890 
891 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
892 static void __arm_kprobe(struct kprobe *p)
893 {
894 	struct kprobe *_p;
895 
896 	/* Check collision with other optimized kprobes */
897 	_p = get_optimized_kprobe((unsigned long)p->addr);
898 	if (unlikely(_p))
899 		/* Fallback to unoptimized kprobe */
900 		unoptimize_kprobe(_p, true);
901 
902 	arch_arm_kprobe(p);
903 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
904 }
905 
906 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
907 static void __disarm_kprobe(struct kprobe *p, bool reopt)
908 {
909 	struct kprobe *_p;
910 
911 	/* Try to unoptimize */
912 	unoptimize_kprobe(p, kprobes_all_disarmed);
913 
914 	if (!kprobe_queued(p)) {
915 		arch_disarm_kprobe(p);
916 		/* If another kprobe was blocked, optimize it. */
917 		_p = get_optimized_kprobe((unsigned long)p->addr);
918 		if (unlikely(_p) && reopt)
919 			optimize_kprobe(_p);
920 	}
921 	/* TODO: reoptimize others after unoptimized this probe */
922 }
923 
924 #else /* !CONFIG_OPTPROBES */
925 
926 #define optimize_kprobe(p)			do {} while (0)
927 #define unoptimize_kprobe(p, f)			do {} while (0)
928 #define kill_optimized_kprobe(p)		do {} while (0)
929 #define prepare_optimized_kprobe(p)		do {} while (0)
930 #define try_to_optimize_kprobe(p)		do {} while (0)
931 #define __arm_kprobe(p)				arch_arm_kprobe(p)
932 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
933 #define kprobe_disarmed(p)			kprobe_disabled(p)
934 #define wait_for_kprobe_optimizer()		do {} while (0)
935 
936 /* There should be no unused kprobes can be reused without optimization */
937 static void reuse_unused_kprobe(struct kprobe *ap)
938 {
939 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
940 	BUG_ON(kprobe_unused(ap));
941 }
942 
943 static void free_aggr_kprobe(struct kprobe *p)
944 {
945 	arch_remove_kprobe(p);
946 	kfree(p);
947 }
948 
949 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
950 {
951 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
952 }
953 #endif /* CONFIG_OPTPROBES */
954 
955 #ifdef CONFIG_KPROBES_ON_FTRACE
956 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
957 	.func = kprobe_ftrace_handler,
958 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
959 };
960 static int kprobe_ftrace_enabled;
961 
962 /* Must ensure p->addr is really on ftrace */
963 static int prepare_kprobe(struct kprobe *p)
964 {
965 	if (!kprobe_ftrace(p))
966 		return arch_prepare_kprobe(p);
967 
968 	return arch_prepare_kprobe_ftrace(p);
969 }
970 
971 /* Caller must lock kprobe_mutex */
972 static void arm_kprobe_ftrace(struct kprobe *p)
973 {
974 	int ret;
975 
976 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
977 				   (unsigned long)p->addr, 0, 0);
978 	WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
979 	kprobe_ftrace_enabled++;
980 	if (kprobe_ftrace_enabled == 1) {
981 		ret = register_ftrace_function(&kprobe_ftrace_ops);
982 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
983 	}
984 }
985 
986 /* Caller must lock kprobe_mutex */
987 static void disarm_kprobe_ftrace(struct kprobe *p)
988 {
989 	int ret;
990 
991 	kprobe_ftrace_enabled--;
992 	if (kprobe_ftrace_enabled == 0) {
993 		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
994 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
995 	}
996 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
997 			   (unsigned long)p->addr, 1, 0);
998 	WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
999 }
1000 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1001 #define prepare_kprobe(p)	arch_prepare_kprobe(p)
1002 #define arm_kprobe_ftrace(p)	do {} while (0)
1003 #define disarm_kprobe_ftrace(p)	do {} while (0)
1004 #endif
1005 
1006 /* Arm a kprobe with text_mutex */
1007 static void arm_kprobe(struct kprobe *kp)
1008 {
1009 	if (unlikely(kprobe_ftrace(kp))) {
1010 		arm_kprobe_ftrace(kp);
1011 		return;
1012 	}
1013 	/*
1014 	 * Here, since __arm_kprobe() doesn't use stop_machine(),
1015 	 * this doesn't cause deadlock on text_mutex. So, we don't
1016 	 * need get_online_cpus().
1017 	 */
1018 	mutex_lock(&text_mutex);
1019 	__arm_kprobe(kp);
1020 	mutex_unlock(&text_mutex);
1021 }
1022 
1023 /* Disarm a kprobe with text_mutex */
1024 static void disarm_kprobe(struct kprobe *kp, bool reopt)
1025 {
1026 	if (unlikely(kprobe_ftrace(kp))) {
1027 		disarm_kprobe_ftrace(kp);
1028 		return;
1029 	}
1030 	/* Ditto */
1031 	mutex_lock(&text_mutex);
1032 	__disarm_kprobe(kp, reopt);
1033 	mutex_unlock(&text_mutex);
1034 }
1035 
1036 /*
1037  * Aggregate handlers for multiple kprobes support - these handlers
1038  * take care of invoking the individual kprobe handlers on p->list
1039  */
1040 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1041 {
1042 	struct kprobe *kp;
1043 
1044 	list_for_each_entry_rcu(kp, &p->list, list) {
1045 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1046 			set_kprobe_instance(kp);
1047 			if (kp->pre_handler(kp, regs))
1048 				return 1;
1049 		}
1050 		reset_kprobe_instance();
1051 	}
1052 	return 0;
1053 }
1054 NOKPROBE_SYMBOL(aggr_pre_handler);
1055 
1056 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1057 			      unsigned long flags)
1058 {
1059 	struct kprobe *kp;
1060 
1061 	list_for_each_entry_rcu(kp, &p->list, list) {
1062 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1063 			set_kprobe_instance(kp);
1064 			kp->post_handler(kp, regs, flags);
1065 			reset_kprobe_instance();
1066 		}
1067 	}
1068 }
1069 NOKPROBE_SYMBOL(aggr_post_handler);
1070 
1071 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1072 			      int trapnr)
1073 {
1074 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1075 
1076 	/*
1077 	 * if we faulted "during" the execution of a user specified
1078 	 * probe handler, invoke just that probe's fault handler
1079 	 */
1080 	if (cur && cur->fault_handler) {
1081 		if (cur->fault_handler(cur, regs, trapnr))
1082 			return 1;
1083 	}
1084 	return 0;
1085 }
1086 NOKPROBE_SYMBOL(aggr_fault_handler);
1087 
1088 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1089 {
1090 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1091 	int ret = 0;
1092 
1093 	if (cur && cur->break_handler) {
1094 		if (cur->break_handler(cur, regs))
1095 			ret = 1;
1096 	}
1097 	reset_kprobe_instance();
1098 	return ret;
1099 }
1100 NOKPROBE_SYMBOL(aggr_break_handler);
1101 
1102 /* Walks the list and increments nmissed count for multiprobe case */
1103 void kprobes_inc_nmissed_count(struct kprobe *p)
1104 {
1105 	struct kprobe *kp;
1106 	if (!kprobe_aggrprobe(p)) {
1107 		p->nmissed++;
1108 	} else {
1109 		list_for_each_entry_rcu(kp, &p->list, list)
1110 			kp->nmissed++;
1111 	}
1112 	return;
1113 }
1114 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1115 
1116 void recycle_rp_inst(struct kretprobe_instance *ri,
1117 		     struct hlist_head *head)
1118 {
1119 	struct kretprobe *rp = ri->rp;
1120 
1121 	/* remove rp inst off the rprobe_inst_table */
1122 	hlist_del(&ri->hlist);
1123 	INIT_HLIST_NODE(&ri->hlist);
1124 	if (likely(rp)) {
1125 		raw_spin_lock(&rp->lock);
1126 		hlist_add_head(&ri->hlist, &rp->free_instances);
1127 		raw_spin_unlock(&rp->lock);
1128 	} else
1129 		/* Unregistering */
1130 		hlist_add_head(&ri->hlist, head);
1131 }
1132 NOKPROBE_SYMBOL(recycle_rp_inst);
1133 
1134 void kretprobe_hash_lock(struct task_struct *tsk,
1135 			 struct hlist_head **head, unsigned long *flags)
1136 __acquires(hlist_lock)
1137 {
1138 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1139 	raw_spinlock_t *hlist_lock;
1140 
1141 	*head = &kretprobe_inst_table[hash];
1142 	hlist_lock = kretprobe_table_lock_ptr(hash);
1143 	raw_spin_lock_irqsave(hlist_lock, *flags);
1144 }
1145 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1146 
1147 static void kretprobe_table_lock(unsigned long hash,
1148 				 unsigned long *flags)
1149 __acquires(hlist_lock)
1150 {
1151 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1152 	raw_spin_lock_irqsave(hlist_lock, *flags);
1153 }
1154 NOKPROBE_SYMBOL(kretprobe_table_lock);
1155 
1156 void kretprobe_hash_unlock(struct task_struct *tsk,
1157 			   unsigned long *flags)
1158 __releases(hlist_lock)
1159 {
1160 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1161 	raw_spinlock_t *hlist_lock;
1162 
1163 	hlist_lock = kretprobe_table_lock_ptr(hash);
1164 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1165 }
1166 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1167 
1168 static void kretprobe_table_unlock(unsigned long hash,
1169 				   unsigned long *flags)
1170 __releases(hlist_lock)
1171 {
1172 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1173 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1174 }
1175 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1176 
1177 /*
1178  * This function is called from finish_task_switch when task tk becomes dead,
1179  * so that we can recycle any function-return probe instances associated
1180  * with this task. These left over instances represent probed functions
1181  * that have been called but will never return.
1182  */
1183 void kprobe_flush_task(struct task_struct *tk)
1184 {
1185 	struct kretprobe_instance *ri;
1186 	struct hlist_head *head, empty_rp;
1187 	struct hlist_node *tmp;
1188 	unsigned long hash, flags = 0;
1189 
1190 	if (unlikely(!kprobes_initialized))
1191 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1192 		return;
1193 
1194 	INIT_HLIST_HEAD(&empty_rp);
1195 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1196 	head = &kretprobe_inst_table[hash];
1197 	kretprobe_table_lock(hash, &flags);
1198 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1199 		if (ri->task == tk)
1200 			recycle_rp_inst(ri, &empty_rp);
1201 	}
1202 	kretprobe_table_unlock(hash, &flags);
1203 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1204 		hlist_del(&ri->hlist);
1205 		kfree(ri);
1206 	}
1207 }
1208 NOKPROBE_SYMBOL(kprobe_flush_task);
1209 
1210 static inline void free_rp_inst(struct kretprobe *rp)
1211 {
1212 	struct kretprobe_instance *ri;
1213 	struct hlist_node *next;
1214 
1215 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1216 		hlist_del(&ri->hlist);
1217 		kfree(ri);
1218 	}
1219 }
1220 
1221 static void cleanup_rp_inst(struct kretprobe *rp)
1222 {
1223 	unsigned long flags, hash;
1224 	struct kretprobe_instance *ri;
1225 	struct hlist_node *next;
1226 	struct hlist_head *head;
1227 
1228 	/* No race here */
1229 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1230 		kretprobe_table_lock(hash, &flags);
1231 		head = &kretprobe_inst_table[hash];
1232 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1233 			if (ri->rp == rp)
1234 				ri->rp = NULL;
1235 		}
1236 		kretprobe_table_unlock(hash, &flags);
1237 	}
1238 	free_rp_inst(rp);
1239 }
1240 NOKPROBE_SYMBOL(cleanup_rp_inst);
1241 
1242 /*
1243 * Add the new probe to ap->list. Fail if this is the
1244 * second jprobe at the address - two jprobes can't coexist
1245 */
1246 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1247 {
1248 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1249 
1250 	if (p->break_handler || p->post_handler)
1251 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1252 
1253 	if (p->break_handler) {
1254 		if (ap->break_handler)
1255 			return -EEXIST;
1256 		list_add_tail_rcu(&p->list, &ap->list);
1257 		ap->break_handler = aggr_break_handler;
1258 	} else
1259 		list_add_rcu(&p->list, &ap->list);
1260 	if (p->post_handler && !ap->post_handler)
1261 		ap->post_handler = aggr_post_handler;
1262 
1263 	return 0;
1264 }
1265 
1266 /*
1267  * Fill in the required fields of the "manager kprobe". Replace the
1268  * earlier kprobe in the hlist with the manager kprobe
1269  */
1270 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1271 {
1272 	/* Copy p's insn slot to ap */
1273 	copy_kprobe(p, ap);
1274 	flush_insn_slot(ap);
1275 	ap->addr = p->addr;
1276 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1277 	ap->pre_handler = aggr_pre_handler;
1278 	ap->fault_handler = aggr_fault_handler;
1279 	/* We don't care the kprobe which has gone. */
1280 	if (p->post_handler && !kprobe_gone(p))
1281 		ap->post_handler = aggr_post_handler;
1282 	if (p->break_handler && !kprobe_gone(p))
1283 		ap->break_handler = aggr_break_handler;
1284 
1285 	INIT_LIST_HEAD(&ap->list);
1286 	INIT_HLIST_NODE(&ap->hlist);
1287 
1288 	list_add_rcu(&p->list, &ap->list);
1289 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1290 }
1291 
1292 /*
1293  * This is the second or subsequent kprobe at the address - handle
1294  * the intricacies
1295  */
1296 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1297 {
1298 	int ret = 0;
1299 	struct kprobe *ap = orig_p;
1300 
1301 	/* For preparing optimization, jump_label_text_reserved() is called */
1302 	jump_label_lock();
1303 	/*
1304 	 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1305 	 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1306 	 */
1307 	get_online_cpus();
1308 	mutex_lock(&text_mutex);
1309 
1310 	if (!kprobe_aggrprobe(orig_p)) {
1311 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1312 		ap = alloc_aggr_kprobe(orig_p);
1313 		if (!ap) {
1314 			ret = -ENOMEM;
1315 			goto out;
1316 		}
1317 		init_aggr_kprobe(ap, orig_p);
1318 	} else if (kprobe_unused(ap))
1319 		/* This probe is going to die. Rescue it */
1320 		reuse_unused_kprobe(ap);
1321 
1322 	if (kprobe_gone(ap)) {
1323 		/*
1324 		 * Attempting to insert new probe at the same location that
1325 		 * had a probe in the module vaddr area which already
1326 		 * freed. So, the instruction slot has already been
1327 		 * released. We need a new slot for the new probe.
1328 		 */
1329 		ret = arch_prepare_kprobe(ap);
1330 		if (ret)
1331 			/*
1332 			 * Even if fail to allocate new slot, don't need to
1333 			 * free aggr_probe. It will be used next time, or
1334 			 * freed by unregister_kprobe.
1335 			 */
1336 			goto out;
1337 
1338 		/* Prepare optimized instructions if possible. */
1339 		prepare_optimized_kprobe(ap);
1340 
1341 		/*
1342 		 * Clear gone flag to prevent allocating new slot again, and
1343 		 * set disabled flag because it is not armed yet.
1344 		 */
1345 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1346 			    | KPROBE_FLAG_DISABLED;
1347 	}
1348 
1349 	/* Copy ap's insn slot to p */
1350 	copy_kprobe(ap, p);
1351 	ret = add_new_kprobe(ap, p);
1352 
1353 out:
1354 	mutex_unlock(&text_mutex);
1355 	put_online_cpus();
1356 	jump_label_unlock();
1357 
1358 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1359 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1360 		if (!kprobes_all_disarmed)
1361 			/* Arm the breakpoint again. */
1362 			arm_kprobe(ap);
1363 	}
1364 	return ret;
1365 }
1366 
1367 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1368 {
1369 	/* The __kprobes marked functions and entry code must not be probed */
1370 	return addr >= (unsigned long)__kprobes_text_start &&
1371 	       addr < (unsigned long)__kprobes_text_end;
1372 }
1373 
1374 bool within_kprobe_blacklist(unsigned long addr)
1375 {
1376 	struct kprobe_blacklist_entry *ent;
1377 
1378 	if (arch_within_kprobe_blacklist(addr))
1379 		return true;
1380 	/*
1381 	 * If there exists a kprobe_blacklist, verify and
1382 	 * fail any probe registration in the prohibited area
1383 	 */
1384 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1385 		if (addr >= ent->start_addr && addr < ent->end_addr)
1386 			return true;
1387 	}
1388 
1389 	return false;
1390 }
1391 
1392 /*
1393  * If we have a symbol_name argument, look it up and add the offset field
1394  * to it. This way, we can specify a relative address to a symbol.
1395  * This returns encoded errors if it fails to look up symbol or invalid
1396  * combination of parameters.
1397  */
1398 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1399 			const char *symbol_name, unsigned int offset)
1400 {
1401 	if ((symbol_name && addr) || (!symbol_name && !addr))
1402 		goto invalid;
1403 
1404 	if (symbol_name) {
1405 		addr = kprobe_lookup_name(symbol_name, offset);
1406 		if (!addr)
1407 			return ERR_PTR(-ENOENT);
1408 	}
1409 
1410 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1411 	if (addr)
1412 		return addr;
1413 
1414 invalid:
1415 	return ERR_PTR(-EINVAL);
1416 }
1417 
1418 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1419 {
1420 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1421 }
1422 
1423 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1424 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1425 {
1426 	struct kprobe *ap, *list_p;
1427 
1428 	ap = get_kprobe(p->addr);
1429 	if (unlikely(!ap))
1430 		return NULL;
1431 
1432 	if (p != ap) {
1433 		list_for_each_entry_rcu(list_p, &ap->list, list)
1434 			if (list_p == p)
1435 			/* kprobe p is a valid probe */
1436 				goto valid;
1437 		return NULL;
1438 	}
1439 valid:
1440 	return ap;
1441 }
1442 
1443 /* Return error if the kprobe is being re-registered */
1444 static inline int check_kprobe_rereg(struct kprobe *p)
1445 {
1446 	int ret = 0;
1447 
1448 	mutex_lock(&kprobe_mutex);
1449 	if (__get_valid_kprobe(p))
1450 		ret = -EINVAL;
1451 	mutex_unlock(&kprobe_mutex);
1452 
1453 	return ret;
1454 }
1455 
1456 int __weak arch_check_ftrace_location(struct kprobe *p)
1457 {
1458 	unsigned long ftrace_addr;
1459 
1460 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1461 	if (ftrace_addr) {
1462 #ifdef CONFIG_KPROBES_ON_FTRACE
1463 		/* Given address is not on the instruction boundary */
1464 		if ((unsigned long)p->addr != ftrace_addr)
1465 			return -EILSEQ;
1466 		p->flags |= KPROBE_FLAG_FTRACE;
1467 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1468 		return -EINVAL;
1469 #endif
1470 	}
1471 	return 0;
1472 }
1473 
1474 static int check_kprobe_address_safe(struct kprobe *p,
1475 				     struct module **probed_mod)
1476 {
1477 	int ret;
1478 
1479 	ret = arch_check_ftrace_location(p);
1480 	if (ret)
1481 		return ret;
1482 	jump_label_lock();
1483 	preempt_disable();
1484 
1485 	/* Ensure it is not in reserved area nor out of text */
1486 	if (!kernel_text_address((unsigned long) p->addr) ||
1487 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1488 	    jump_label_text_reserved(p->addr, p->addr)) {
1489 		ret = -EINVAL;
1490 		goto out;
1491 	}
1492 
1493 	/* Check if are we probing a module */
1494 	*probed_mod = __module_text_address((unsigned long) p->addr);
1495 	if (*probed_mod) {
1496 		/*
1497 		 * We must hold a refcount of the probed module while updating
1498 		 * its code to prohibit unexpected unloading.
1499 		 */
1500 		if (unlikely(!try_module_get(*probed_mod))) {
1501 			ret = -ENOENT;
1502 			goto out;
1503 		}
1504 
1505 		/*
1506 		 * If the module freed .init.text, we couldn't insert
1507 		 * kprobes in there.
1508 		 */
1509 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1510 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1511 			module_put(*probed_mod);
1512 			*probed_mod = NULL;
1513 			ret = -ENOENT;
1514 		}
1515 	}
1516 out:
1517 	preempt_enable();
1518 	jump_label_unlock();
1519 
1520 	return ret;
1521 }
1522 
1523 int register_kprobe(struct kprobe *p)
1524 {
1525 	int ret;
1526 	struct kprobe *old_p;
1527 	struct module *probed_mod;
1528 	kprobe_opcode_t *addr;
1529 
1530 	/* Adjust probe address from symbol */
1531 	addr = kprobe_addr(p);
1532 	if (IS_ERR(addr))
1533 		return PTR_ERR(addr);
1534 	p->addr = addr;
1535 
1536 	ret = check_kprobe_rereg(p);
1537 	if (ret)
1538 		return ret;
1539 
1540 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1541 	p->flags &= KPROBE_FLAG_DISABLED;
1542 	p->nmissed = 0;
1543 	INIT_LIST_HEAD(&p->list);
1544 
1545 	ret = check_kprobe_address_safe(p, &probed_mod);
1546 	if (ret)
1547 		return ret;
1548 
1549 	mutex_lock(&kprobe_mutex);
1550 
1551 	old_p = get_kprobe(p->addr);
1552 	if (old_p) {
1553 		/* Since this may unoptimize old_p, locking text_mutex. */
1554 		ret = register_aggr_kprobe(old_p, p);
1555 		goto out;
1556 	}
1557 
1558 	mutex_lock(&text_mutex);	/* Avoiding text modification */
1559 	ret = prepare_kprobe(p);
1560 	mutex_unlock(&text_mutex);
1561 	if (ret)
1562 		goto out;
1563 
1564 	INIT_HLIST_NODE(&p->hlist);
1565 	hlist_add_head_rcu(&p->hlist,
1566 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1567 
1568 	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1569 		arm_kprobe(p);
1570 
1571 	/* Try to optimize kprobe */
1572 	try_to_optimize_kprobe(p);
1573 
1574 out:
1575 	mutex_unlock(&kprobe_mutex);
1576 
1577 	if (probed_mod)
1578 		module_put(probed_mod);
1579 
1580 	return ret;
1581 }
1582 EXPORT_SYMBOL_GPL(register_kprobe);
1583 
1584 /* Check if all probes on the aggrprobe are disabled */
1585 static int aggr_kprobe_disabled(struct kprobe *ap)
1586 {
1587 	struct kprobe *kp;
1588 
1589 	list_for_each_entry_rcu(kp, &ap->list, list)
1590 		if (!kprobe_disabled(kp))
1591 			/*
1592 			 * There is an active probe on the list.
1593 			 * We can't disable this ap.
1594 			 */
1595 			return 0;
1596 
1597 	return 1;
1598 }
1599 
1600 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1601 static struct kprobe *__disable_kprobe(struct kprobe *p)
1602 {
1603 	struct kprobe *orig_p;
1604 
1605 	/* Get an original kprobe for return */
1606 	orig_p = __get_valid_kprobe(p);
1607 	if (unlikely(orig_p == NULL))
1608 		return NULL;
1609 
1610 	if (!kprobe_disabled(p)) {
1611 		/* Disable probe if it is a child probe */
1612 		if (p != orig_p)
1613 			p->flags |= KPROBE_FLAG_DISABLED;
1614 
1615 		/* Try to disarm and disable this/parent probe */
1616 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1617 			/*
1618 			 * If kprobes_all_disarmed is set, orig_p
1619 			 * should have already been disarmed, so
1620 			 * skip unneed disarming process.
1621 			 */
1622 			if (!kprobes_all_disarmed)
1623 				disarm_kprobe(orig_p, true);
1624 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1625 		}
1626 	}
1627 
1628 	return orig_p;
1629 }
1630 
1631 /*
1632  * Unregister a kprobe without a scheduler synchronization.
1633  */
1634 static int __unregister_kprobe_top(struct kprobe *p)
1635 {
1636 	struct kprobe *ap, *list_p;
1637 
1638 	/* Disable kprobe. This will disarm it if needed. */
1639 	ap = __disable_kprobe(p);
1640 	if (ap == NULL)
1641 		return -EINVAL;
1642 
1643 	if (ap == p)
1644 		/*
1645 		 * This probe is an independent(and non-optimized) kprobe
1646 		 * (not an aggrprobe). Remove from the hash list.
1647 		 */
1648 		goto disarmed;
1649 
1650 	/* Following process expects this probe is an aggrprobe */
1651 	WARN_ON(!kprobe_aggrprobe(ap));
1652 
1653 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1654 		/*
1655 		 * !disarmed could be happen if the probe is under delayed
1656 		 * unoptimizing.
1657 		 */
1658 		goto disarmed;
1659 	else {
1660 		/* If disabling probe has special handlers, update aggrprobe */
1661 		if (p->break_handler && !kprobe_gone(p))
1662 			ap->break_handler = NULL;
1663 		if (p->post_handler && !kprobe_gone(p)) {
1664 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1665 				if ((list_p != p) && (list_p->post_handler))
1666 					goto noclean;
1667 			}
1668 			ap->post_handler = NULL;
1669 		}
1670 noclean:
1671 		/*
1672 		 * Remove from the aggrprobe: this path will do nothing in
1673 		 * __unregister_kprobe_bottom().
1674 		 */
1675 		list_del_rcu(&p->list);
1676 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1677 			/*
1678 			 * Try to optimize this probe again, because post
1679 			 * handler may have been changed.
1680 			 */
1681 			optimize_kprobe(ap);
1682 	}
1683 	return 0;
1684 
1685 disarmed:
1686 	BUG_ON(!kprobe_disarmed(ap));
1687 	hlist_del_rcu(&ap->hlist);
1688 	return 0;
1689 }
1690 
1691 static void __unregister_kprobe_bottom(struct kprobe *p)
1692 {
1693 	struct kprobe *ap;
1694 
1695 	if (list_empty(&p->list))
1696 		/* This is an independent kprobe */
1697 		arch_remove_kprobe(p);
1698 	else if (list_is_singular(&p->list)) {
1699 		/* This is the last child of an aggrprobe */
1700 		ap = list_entry(p->list.next, struct kprobe, list);
1701 		list_del(&p->list);
1702 		free_aggr_kprobe(ap);
1703 	}
1704 	/* Otherwise, do nothing. */
1705 }
1706 
1707 int register_kprobes(struct kprobe **kps, int num)
1708 {
1709 	int i, ret = 0;
1710 
1711 	if (num <= 0)
1712 		return -EINVAL;
1713 	for (i = 0; i < num; i++) {
1714 		ret = register_kprobe(kps[i]);
1715 		if (ret < 0) {
1716 			if (i > 0)
1717 				unregister_kprobes(kps, i);
1718 			break;
1719 		}
1720 	}
1721 	return ret;
1722 }
1723 EXPORT_SYMBOL_GPL(register_kprobes);
1724 
1725 void unregister_kprobe(struct kprobe *p)
1726 {
1727 	unregister_kprobes(&p, 1);
1728 }
1729 EXPORT_SYMBOL_GPL(unregister_kprobe);
1730 
1731 void unregister_kprobes(struct kprobe **kps, int num)
1732 {
1733 	int i;
1734 
1735 	if (num <= 0)
1736 		return;
1737 	mutex_lock(&kprobe_mutex);
1738 	for (i = 0; i < num; i++)
1739 		if (__unregister_kprobe_top(kps[i]) < 0)
1740 			kps[i]->addr = NULL;
1741 	mutex_unlock(&kprobe_mutex);
1742 
1743 	synchronize_sched();
1744 	for (i = 0; i < num; i++)
1745 		if (kps[i]->addr)
1746 			__unregister_kprobe_bottom(kps[i]);
1747 }
1748 EXPORT_SYMBOL_GPL(unregister_kprobes);
1749 
1750 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1751 					unsigned long val, void *data)
1752 {
1753 	return NOTIFY_DONE;
1754 }
1755 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1756 
1757 static struct notifier_block kprobe_exceptions_nb = {
1758 	.notifier_call = kprobe_exceptions_notify,
1759 	.priority = 0x7fffffff /* we need to be notified first */
1760 };
1761 
1762 unsigned long __weak arch_deref_entry_point(void *entry)
1763 {
1764 	return (unsigned long)entry;
1765 }
1766 
1767 int register_jprobes(struct jprobe **jps, int num)
1768 {
1769 	struct jprobe *jp;
1770 	int ret = 0, i;
1771 
1772 	if (num <= 0)
1773 		return -EINVAL;
1774 	for (i = 0; i < num; i++) {
1775 		unsigned long addr, offset;
1776 		jp = jps[i];
1777 		addr = arch_deref_entry_point(jp->entry);
1778 
1779 		/* Verify probepoint is a function entry point */
1780 		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1781 		    offset == 0) {
1782 			jp->kp.pre_handler = setjmp_pre_handler;
1783 			jp->kp.break_handler = longjmp_break_handler;
1784 			ret = register_kprobe(&jp->kp);
1785 		} else
1786 			ret = -EINVAL;
1787 
1788 		if (ret < 0) {
1789 			if (i > 0)
1790 				unregister_jprobes(jps, i);
1791 			break;
1792 		}
1793 	}
1794 	return ret;
1795 }
1796 EXPORT_SYMBOL_GPL(register_jprobes);
1797 
1798 int register_jprobe(struct jprobe *jp)
1799 {
1800 	return register_jprobes(&jp, 1);
1801 }
1802 EXPORT_SYMBOL_GPL(register_jprobe);
1803 
1804 void unregister_jprobe(struct jprobe *jp)
1805 {
1806 	unregister_jprobes(&jp, 1);
1807 }
1808 EXPORT_SYMBOL_GPL(unregister_jprobe);
1809 
1810 void unregister_jprobes(struct jprobe **jps, int num)
1811 {
1812 	int i;
1813 
1814 	if (num <= 0)
1815 		return;
1816 	mutex_lock(&kprobe_mutex);
1817 	for (i = 0; i < num; i++)
1818 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1819 			jps[i]->kp.addr = NULL;
1820 	mutex_unlock(&kprobe_mutex);
1821 
1822 	synchronize_sched();
1823 	for (i = 0; i < num; i++) {
1824 		if (jps[i]->kp.addr)
1825 			__unregister_kprobe_bottom(&jps[i]->kp);
1826 	}
1827 }
1828 EXPORT_SYMBOL_GPL(unregister_jprobes);
1829 
1830 #ifdef CONFIG_KRETPROBES
1831 /*
1832  * This kprobe pre_handler is registered with every kretprobe. When probe
1833  * hits it will set up the return probe.
1834  */
1835 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1836 {
1837 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1838 	unsigned long hash, flags = 0;
1839 	struct kretprobe_instance *ri;
1840 
1841 	/*
1842 	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1843 	 * just skip the probe and increase the (inexact) 'nmissed'
1844 	 * statistical counter, so that the user is informed that
1845 	 * something happened:
1846 	 */
1847 	if (unlikely(in_nmi())) {
1848 		rp->nmissed++;
1849 		return 0;
1850 	}
1851 
1852 	/* TODO: consider to only swap the RA after the last pre_handler fired */
1853 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1854 	raw_spin_lock_irqsave(&rp->lock, flags);
1855 	if (!hlist_empty(&rp->free_instances)) {
1856 		ri = hlist_entry(rp->free_instances.first,
1857 				struct kretprobe_instance, hlist);
1858 		hlist_del(&ri->hlist);
1859 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1860 
1861 		ri->rp = rp;
1862 		ri->task = current;
1863 
1864 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1865 			raw_spin_lock_irqsave(&rp->lock, flags);
1866 			hlist_add_head(&ri->hlist, &rp->free_instances);
1867 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1868 			return 0;
1869 		}
1870 
1871 		arch_prepare_kretprobe(ri, regs);
1872 
1873 		/* XXX(hch): why is there no hlist_move_head? */
1874 		INIT_HLIST_NODE(&ri->hlist);
1875 		kretprobe_table_lock(hash, &flags);
1876 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1877 		kretprobe_table_unlock(hash, &flags);
1878 	} else {
1879 		rp->nmissed++;
1880 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1881 	}
1882 	return 0;
1883 }
1884 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1885 
1886 bool __weak arch_function_offset_within_entry(unsigned long offset)
1887 {
1888 	return !offset;
1889 }
1890 
1891 bool function_offset_within_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1892 {
1893 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1894 
1895 	if (IS_ERR(kp_addr))
1896 		return false;
1897 
1898 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1899 						!arch_function_offset_within_entry(offset))
1900 		return false;
1901 
1902 	return true;
1903 }
1904 
1905 int register_kretprobe(struct kretprobe *rp)
1906 {
1907 	int ret = 0;
1908 	struct kretprobe_instance *inst;
1909 	int i;
1910 	void *addr;
1911 
1912 	if (!function_offset_within_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1913 		return -EINVAL;
1914 
1915 	if (kretprobe_blacklist_size) {
1916 		addr = kprobe_addr(&rp->kp);
1917 		if (IS_ERR(addr))
1918 			return PTR_ERR(addr);
1919 
1920 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1921 			if (kretprobe_blacklist[i].addr == addr)
1922 				return -EINVAL;
1923 		}
1924 	}
1925 
1926 	rp->kp.pre_handler = pre_handler_kretprobe;
1927 	rp->kp.post_handler = NULL;
1928 	rp->kp.fault_handler = NULL;
1929 	rp->kp.break_handler = NULL;
1930 
1931 	/* Pre-allocate memory for max kretprobe instances */
1932 	if (rp->maxactive <= 0) {
1933 #ifdef CONFIG_PREEMPT
1934 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1935 #else
1936 		rp->maxactive = num_possible_cpus();
1937 #endif
1938 	}
1939 	raw_spin_lock_init(&rp->lock);
1940 	INIT_HLIST_HEAD(&rp->free_instances);
1941 	for (i = 0; i < rp->maxactive; i++) {
1942 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1943 			       rp->data_size, GFP_KERNEL);
1944 		if (inst == NULL) {
1945 			free_rp_inst(rp);
1946 			return -ENOMEM;
1947 		}
1948 		INIT_HLIST_NODE(&inst->hlist);
1949 		hlist_add_head(&inst->hlist, &rp->free_instances);
1950 	}
1951 
1952 	rp->nmissed = 0;
1953 	/* Establish function entry probe point */
1954 	ret = register_kprobe(&rp->kp);
1955 	if (ret != 0)
1956 		free_rp_inst(rp);
1957 	return ret;
1958 }
1959 EXPORT_SYMBOL_GPL(register_kretprobe);
1960 
1961 int register_kretprobes(struct kretprobe **rps, int num)
1962 {
1963 	int ret = 0, i;
1964 
1965 	if (num <= 0)
1966 		return -EINVAL;
1967 	for (i = 0; i < num; i++) {
1968 		ret = register_kretprobe(rps[i]);
1969 		if (ret < 0) {
1970 			if (i > 0)
1971 				unregister_kretprobes(rps, i);
1972 			break;
1973 		}
1974 	}
1975 	return ret;
1976 }
1977 EXPORT_SYMBOL_GPL(register_kretprobes);
1978 
1979 void unregister_kretprobe(struct kretprobe *rp)
1980 {
1981 	unregister_kretprobes(&rp, 1);
1982 }
1983 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1984 
1985 void unregister_kretprobes(struct kretprobe **rps, int num)
1986 {
1987 	int i;
1988 
1989 	if (num <= 0)
1990 		return;
1991 	mutex_lock(&kprobe_mutex);
1992 	for (i = 0; i < num; i++)
1993 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1994 			rps[i]->kp.addr = NULL;
1995 	mutex_unlock(&kprobe_mutex);
1996 
1997 	synchronize_sched();
1998 	for (i = 0; i < num; i++) {
1999 		if (rps[i]->kp.addr) {
2000 			__unregister_kprobe_bottom(&rps[i]->kp);
2001 			cleanup_rp_inst(rps[i]);
2002 		}
2003 	}
2004 }
2005 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2006 
2007 #else /* CONFIG_KRETPROBES */
2008 int register_kretprobe(struct kretprobe *rp)
2009 {
2010 	return -ENOSYS;
2011 }
2012 EXPORT_SYMBOL_GPL(register_kretprobe);
2013 
2014 int register_kretprobes(struct kretprobe **rps, int num)
2015 {
2016 	return -ENOSYS;
2017 }
2018 EXPORT_SYMBOL_GPL(register_kretprobes);
2019 
2020 void unregister_kretprobe(struct kretprobe *rp)
2021 {
2022 }
2023 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2024 
2025 void unregister_kretprobes(struct kretprobe **rps, int num)
2026 {
2027 }
2028 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2029 
2030 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2031 {
2032 	return 0;
2033 }
2034 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2035 
2036 #endif /* CONFIG_KRETPROBES */
2037 
2038 /* Set the kprobe gone and remove its instruction buffer. */
2039 static void kill_kprobe(struct kprobe *p)
2040 {
2041 	struct kprobe *kp;
2042 
2043 	p->flags |= KPROBE_FLAG_GONE;
2044 	if (kprobe_aggrprobe(p)) {
2045 		/*
2046 		 * If this is an aggr_kprobe, we have to list all the
2047 		 * chained probes and mark them GONE.
2048 		 */
2049 		list_for_each_entry_rcu(kp, &p->list, list)
2050 			kp->flags |= KPROBE_FLAG_GONE;
2051 		p->post_handler = NULL;
2052 		p->break_handler = NULL;
2053 		kill_optimized_kprobe(p);
2054 	}
2055 	/*
2056 	 * Here, we can remove insn_slot safely, because no thread calls
2057 	 * the original probed function (which will be freed soon) any more.
2058 	 */
2059 	arch_remove_kprobe(p);
2060 }
2061 
2062 /* Disable one kprobe */
2063 int disable_kprobe(struct kprobe *kp)
2064 {
2065 	int ret = 0;
2066 
2067 	mutex_lock(&kprobe_mutex);
2068 
2069 	/* Disable this kprobe */
2070 	if (__disable_kprobe(kp) == NULL)
2071 		ret = -EINVAL;
2072 
2073 	mutex_unlock(&kprobe_mutex);
2074 	return ret;
2075 }
2076 EXPORT_SYMBOL_GPL(disable_kprobe);
2077 
2078 /* Enable one kprobe */
2079 int enable_kprobe(struct kprobe *kp)
2080 {
2081 	int ret = 0;
2082 	struct kprobe *p;
2083 
2084 	mutex_lock(&kprobe_mutex);
2085 
2086 	/* Check whether specified probe is valid. */
2087 	p = __get_valid_kprobe(kp);
2088 	if (unlikely(p == NULL)) {
2089 		ret = -EINVAL;
2090 		goto out;
2091 	}
2092 
2093 	if (kprobe_gone(kp)) {
2094 		/* This kprobe has gone, we couldn't enable it. */
2095 		ret = -EINVAL;
2096 		goto out;
2097 	}
2098 
2099 	if (p != kp)
2100 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2101 
2102 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2103 		p->flags &= ~KPROBE_FLAG_DISABLED;
2104 		arm_kprobe(p);
2105 	}
2106 out:
2107 	mutex_unlock(&kprobe_mutex);
2108 	return ret;
2109 }
2110 EXPORT_SYMBOL_GPL(enable_kprobe);
2111 
2112 void dump_kprobe(struct kprobe *kp)
2113 {
2114 	printk(KERN_WARNING "Dumping kprobe:\n");
2115 	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2116 	       kp->symbol_name, kp->addr, kp->offset);
2117 }
2118 NOKPROBE_SYMBOL(dump_kprobe);
2119 
2120 /*
2121  * Lookup and populate the kprobe_blacklist.
2122  *
2123  * Unlike the kretprobe blacklist, we'll need to determine
2124  * the range of addresses that belong to the said functions,
2125  * since a kprobe need not necessarily be at the beginning
2126  * of a function.
2127  */
2128 static int __init populate_kprobe_blacklist(unsigned long *start,
2129 					     unsigned long *end)
2130 {
2131 	unsigned long *iter;
2132 	struct kprobe_blacklist_entry *ent;
2133 	unsigned long entry, offset = 0, size = 0;
2134 
2135 	for (iter = start; iter < end; iter++) {
2136 		entry = arch_deref_entry_point((void *)*iter);
2137 
2138 		if (!kernel_text_address(entry) ||
2139 		    !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2140 			pr_err("Failed to find blacklist at %p\n",
2141 				(void *)entry);
2142 			continue;
2143 		}
2144 
2145 		ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2146 		if (!ent)
2147 			return -ENOMEM;
2148 		ent->start_addr = entry;
2149 		ent->end_addr = entry + size;
2150 		INIT_LIST_HEAD(&ent->list);
2151 		list_add_tail(&ent->list, &kprobe_blacklist);
2152 	}
2153 	return 0;
2154 }
2155 
2156 /* Module notifier call back, checking kprobes on the module */
2157 static int kprobes_module_callback(struct notifier_block *nb,
2158 				   unsigned long val, void *data)
2159 {
2160 	struct module *mod = data;
2161 	struct hlist_head *head;
2162 	struct kprobe *p;
2163 	unsigned int i;
2164 	int checkcore = (val == MODULE_STATE_GOING);
2165 
2166 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2167 		return NOTIFY_DONE;
2168 
2169 	/*
2170 	 * When MODULE_STATE_GOING was notified, both of module .text and
2171 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2172 	 * notified, only .init.text section would be freed. We need to
2173 	 * disable kprobes which have been inserted in the sections.
2174 	 */
2175 	mutex_lock(&kprobe_mutex);
2176 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2177 		head = &kprobe_table[i];
2178 		hlist_for_each_entry_rcu(p, head, hlist)
2179 			if (within_module_init((unsigned long)p->addr, mod) ||
2180 			    (checkcore &&
2181 			     within_module_core((unsigned long)p->addr, mod))) {
2182 				/*
2183 				 * The vaddr this probe is installed will soon
2184 				 * be vfreed buy not synced to disk. Hence,
2185 				 * disarming the breakpoint isn't needed.
2186 				 *
2187 				 * Note, this will also move any optimized probes
2188 				 * that are pending to be removed from their
2189 				 * corresponding lists to the freeing_list and
2190 				 * will not be touched by the delayed
2191 				 * kprobe_optimizer work handler.
2192 				 */
2193 				kill_kprobe(p);
2194 			}
2195 	}
2196 	mutex_unlock(&kprobe_mutex);
2197 	return NOTIFY_DONE;
2198 }
2199 
2200 static struct notifier_block kprobe_module_nb = {
2201 	.notifier_call = kprobes_module_callback,
2202 	.priority = 0
2203 };
2204 
2205 /* Markers of _kprobe_blacklist section */
2206 extern unsigned long __start_kprobe_blacklist[];
2207 extern unsigned long __stop_kprobe_blacklist[];
2208 
2209 static int __init init_kprobes(void)
2210 {
2211 	int i, err = 0;
2212 
2213 	/* FIXME allocate the probe table, currently defined statically */
2214 	/* initialize all list heads */
2215 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2216 		INIT_HLIST_HEAD(&kprobe_table[i]);
2217 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2218 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2219 	}
2220 
2221 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2222 					__stop_kprobe_blacklist);
2223 	if (err) {
2224 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2225 		pr_err("Please take care of using kprobes.\n");
2226 	}
2227 
2228 	if (kretprobe_blacklist_size) {
2229 		/* lookup the function address from its name */
2230 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2231 			kretprobe_blacklist[i].addr =
2232 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2233 			if (!kretprobe_blacklist[i].addr)
2234 				printk("kretprobe: lookup failed: %s\n",
2235 				       kretprobe_blacklist[i].name);
2236 		}
2237 	}
2238 
2239 #if defined(CONFIG_OPTPROBES)
2240 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2241 	/* Init kprobe_optinsn_slots */
2242 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2243 #endif
2244 	/* By default, kprobes can be optimized */
2245 	kprobes_allow_optimization = true;
2246 #endif
2247 
2248 	/* By default, kprobes are armed */
2249 	kprobes_all_disarmed = false;
2250 
2251 	err = arch_init_kprobes();
2252 	if (!err)
2253 		err = register_die_notifier(&kprobe_exceptions_nb);
2254 	if (!err)
2255 		err = register_module_notifier(&kprobe_module_nb);
2256 
2257 	kprobes_initialized = (err == 0);
2258 
2259 	if (!err)
2260 		init_test_probes();
2261 	return err;
2262 }
2263 
2264 #ifdef CONFIG_DEBUG_FS
2265 static void report_probe(struct seq_file *pi, struct kprobe *p,
2266 		const char *sym, int offset, char *modname, struct kprobe *pp)
2267 {
2268 	char *kprobe_type;
2269 
2270 	if (p->pre_handler == pre_handler_kretprobe)
2271 		kprobe_type = "r";
2272 	else if (p->pre_handler == setjmp_pre_handler)
2273 		kprobe_type = "j";
2274 	else
2275 		kprobe_type = "k";
2276 
2277 	if (sym)
2278 		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2279 			p->addr, kprobe_type, sym, offset,
2280 			(modname ? modname : " "));
2281 	else
2282 		seq_printf(pi, "%p  %s  %p ",
2283 			p->addr, kprobe_type, p->addr);
2284 
2285 	if (!pp)
2286 		pp = p;
2287 	seq_printf(pi, "%s%s%s%s\n",
2288 		(kprobe_gone(p) ? "[GONE]" : ""),
2289 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2290 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2291 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2292 }
2293 
2294 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2295 {
2296 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2297 }
2298 
2299 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2300 {
2301 	(*pos)++;
2302 	if (*pos >= KPROBE_TABLE_SIZE)
2303 		return NULL;
2304 	return pos;
2305 }
2306 
2307 static void kprobe_seq_stop(struct seq_file *f, void *v)
2308 {
2309 	/* Nothing to do */
2310 }
2311 
2312 static int show_kprobe_addr(struct seq_file *pi, void *v)
2313 {
2314 	struct hlist_head *head;
2315 	struct kprobe *p, *kp;
2316 	const char *sym = NULL;
2317 	unsigned int i = *(loff_t *) v;
2318 	unsigned long offset = 0;
2319 	char *modname, namebuf[KSYM_NAME_LEN];
2320 
2321 	head = &kprobe_table[i];
2322 	preempt_disable();
2323 	hlist_for_each_entry_rcu(p, head, hlist) {
2324 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2325 					&offset, &modname, namebuf);
2326 		if (kprobe_aggrprobe(p)) {
2327 			list_for_each_entry_rcu(kp, &p->list, list)
2328 				report_probe(pi, kp, sym, offset, modname, p);
2329 		} else
2330 			report_probe(pi, p, sym, offset, modname, NULL);
2331 	}
2332 	preempt_enable();
2333 	return 0;
2334 }
2335 
2336 static const struct seq_operations kprobes_seq_ops = {
2337 	.start = kprobe_seq_start,
2338 	.next  = kprobe_seq_next,
2339 	.stop  = kprobe_seq_stop,
2340 	.show  = show_kprobe_addr
2341 };
2342 
2343 static int kprobes_open(struct inode *inode, struct file *filp)
2344 {
2345 	return seq_open(filp, &kprobes_seq_ops);
2346 }
2347 
2348 static const struct file_operations debugfs_kprobes_operations = {
2349 	.open           = kprobes_open,
2350 	.read           = seq_read,
2351 	.llseek         = seq_lseek,
2352 	.release        = seq_release,
2353 };
2354 
2355 /* kprobes/blacklist -- shows which functions can not be probed */
2356 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2357 {
2358 	return seq_list_start(&kprobe_blacklist, *pos);
2359 }
2360 
2361 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2362 {
2363 	return seq_list_next(v, &kprobe_blacklist, pos);
2364 }
2365 
2366 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2367 {
2368 	struct kprobe_blacklist_entry *ent =
2369 		list_entry(v, struct kprobe_blacklist_entry, list);
2370 
2371 	seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2372 		   (void *)ent->end_addr, (void *)ent->start_addr);
2373 	return 0;
2374 }
2375 
2376 static const struct seq_operations kprobe_blacklist_seq_ops = {
2377 	.start = kprobe_blacklist_seq_start,
2378 	.next  = kprobe_blacklist_seq_next,
2379 	.stop  = kprobe_seq_stop,	/* Reuse void function */
2380 	.show  = kprobe_blacklist_seq_show,
2381 };
2382 
2383 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2384 {
2385 	return seq_open(filp, &kprobe_blacklist_seq_ops);
2386 }
2387 
2388 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2389 	.open           = kprobe_blacklist_open,
2390 	.read           = seq_read,
2391 	.llseek         = seq_lseek,
2392 	.release        = seq_release,
2393 };
2394 
2395 static void arm_all_kprobes(void)
2396 {
2397 	struct hlist_head *head;
2398 	struct kprobe *p;
2399 	unsigned int i;
2400 
2401 	mutex_lock(&kprobe_mutex);
2402 
2403 	/* If kprobes are armed, just return */
2404 	if (!kprobes_all_disarmed)
2405 		goto already_enabled;
2406 
2407 	/*
2408 	 * optimize_kprobe() called by arm_kprobe() checks
2409 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2410 	 * arm_kprobe.
2411 	 */
2412 	kprobes_all_disarmed = false;
2413 	/* Arming kprobes doesn't optimize kprobe itself */
2414 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2415 		head = &kprobe_table[i];
2416 		hlist_for_each_entry_rcu(p, head, hlist)
2417 			if (!kprobe_disabled(p))
2418 				arm_kprobe(p);
2419 	}
2420 
2421 	printk(KERN_INFO "Kprobes globally enabled\n");
2422 
2423 already_enabled:
2424 	mutex_unlock(&kprobe_mutex);
2425 	return;
2426 }
2427 
2428 static void disarm_all_kprobes(void)
2429 {
2430 	struct hlist_head *head;
2431 	struct kprobe *p;
2432 	unsigned int i;
2433 
2434 	mutex_lock(&kprobe_mutex);
2435 
2436 	/* If kprobes are already disarmed, just return */
2437 	if (kprobes_all_disarmed) {
2438 		mutex_unlock(&kprobe_mutex);
2439 		return;
2440 	}
2441 
2442 	kprobes_all_disarmed = true;
2443 	printk(KERN_INFO "Kprobes globally disabled\n");
2444 
2445 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2446 		head = &kprobe_table[i];
2447 		hlist_for_each_entry_rcu(p, head, hlist) {
2448 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2449 				disarm_kprobe(p, false);
2450 		}
2451 	}
2452 	mutex_unlock(&kprobe_mutex);
2453 
2454 	/* Wait for disarming all kprobes by optimizer */
2455 	wait_for_kprobe_optimizer();
2456 }
2457 
2458 /*
2459  * XXX: The debugfs bool file interface doesn't allow for callbacks
2460  * when the bool state is switched. We can reuse that facility when
2461  * available
2462  */
2463 static ssize_t read_enabled_file_bool(struct file *file,
2464 	       char __user *user_buf, size_t count, loff_t *ppos)
2465 {
2466 	char buf[3];
2467 
2468 	if (!kprobes_all_disarmed)
2469 		buf[0] = '1';
2470 	else
2471 		buf[0] = '0';
2472 	buf[1] = '\n';
2473 	buf[2] = 0x00;
2474 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2475 }
2476 
2477 static ssize_t write_enabled_file_bool(struct file *file,
2478 	       const char __user *user_buf, size_t count, loff_t *ppos)
2479 {
2480 	char buf[32];
2481 	size_t buf_size;
2482 
2483 	buf_size = min(count, (sizeof(buf)-1));
2484 	if (copy_from_user(buf, user_buf, buf_size))
2485 		return -EFAULT;
2486 
2487 	buf[buf_size] = '\0';
2488 	switch (buf[0]) {
2489 	case 'y':
2490 	case 'Y':
2491 	case '1':
2492 		arm_all_kprobes();
2493 		break;
2494 	case 'n':
2495 	case 'N':
2496 	case '0':
2497 		disarm_all_kprobes();
2498 		break;
2499 	default:
2500 		return -EINVAL;
2501 	}
2502 
2503 	return count;
2504 }
2505 
2506 static const struct file_operations fops_kp = {
2507 	.read =         read_enabled_file_bool,
2508 	.write =        write_enabled_file_bool,
2509 	.llseek =	default_llseek,
2510 };
2511 
2512 static int __init debugfs_kprobe_init(void)
2513 {
2514 	struct dentry *dir, *file;
2515 	unsigned int value = 1;
2516 
2517 	dir = debugfs_create_dir("kprobes", NULL);
2518 	if (!dir)
2519 		return -ENOMEM;
2520 
2521 	file = debugfs_create_file("list", 0444, dir, NULL,
2522 				&debugfs_kprobes_operations);
2523 	if (!file)
2524 		goto error;
2525 
2526 	file = debugfs_create_file("enabled", 0600, dir,
2527 					&value, &fops_kp);
2528 	if (!file)
2529 		goto error;
2530 
2531 	file = debugfs_create_file("blacklist", 0444, dir, NULL,
2532 				&debugfs_kprobe_blacklist_ops);
2533 	if (!file)
2534 		goto error;
2535 
2536 	return 0;
2537 
2538 error:
2539 	debugfs_remove(dir);
2540 	return -ENOMEM;
2541 }
2542 
2543 late_initcall(debugfs_kprobe_init);
2544 #endif /* CONFIG_DEBUG_FS */
2545 
2546 module_init(init_kprobes);
2547 
2548 /* defined in arch/.../kernel/kprobes.c */
2549 EXPORT_SYMBOL_GPL(jprobe_return);
2550