1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * kernel/kprobes.c 5 * 6 * Copyright (C) IBM Corporation, 2002, 2004 7 * 8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 9 * Probes initial implementation (includes suggestions from 10 * Rusty Russell). 11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 12 * hlists and exceptions notifier as suggested by Andi Kleen. 13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 14 * interface to access function arguments. 15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 16 * exceptions notifier to be first on the priority list. 17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 19 * <prasanna@in.ibm.com> added function-return probes. 20 */ 21 #include <linux/kprobes.h> 22 #include <linux/hash.h> 23 #include <linux/init.h> 24 #include <linux/slab.h> 25 #include <linux/stddef.h> 26 #include <linux/export.h> 27 #include <linux/moduleloader.h> 28 #include <linux/kallsyms.h> 29 #include <linux/freezer.h> 30 #include <linux/seq_file.h> 31 #include <linux/debugfs.h> 32 #include <linux/sysctl.h> 33 #include <linux/kdebug.h> 34 #include <linux/memory.h> 35 #include <linux/ftrace.h> 36 #include <linux/cpu.h> 37 #include <linux/jump_label.h> 38 #include <linux/perf_event.h> 39 40 #include <asm/sections.h> 41 #include <asm/cacheflush.h> 42 #include <asm/errno.h> 43 #include <linux/uaccess.h> 44 45 #define KPROBE_HASH_BITS 6 46 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 47 48 49 static int kprobes_initialized; 50 /* kprobe_table can be accessed by 51 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held. 52 * Or 53 * - RCU hlist traversal under disabling preempt (breakpoint handlers) 54 */ 55 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 56 57 /* NOTE: change this value only with kprobe_mutex held */ 58 static bool kprobes_all_disarmed; 59 60 /* This protects kprobe_table and optimizing_list */ 61 static DEFINE_MUTEX(kprobe_mutex); 62 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 63 64 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, 65 unsigned int __unused) 66 { 67 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); 68 } 69 70 /* Blacklist -- list of struct kprobe_blacklist_entry */ 71 static LIST_HEAD(kprobe_blacklist); 72 73 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 74 /* 75 * kprobe->ainsn.insn points to the copy of the instruction to be 76 * single-stepped. x86_64, POWER4 and above have no-exec support and 77 * stepping on the instruction on a vmalloced/kmalloced/data page 78 * is a recipe for disaster 79 */ 80 struct kprobe_insn_page { 81 struct list_head list; 82 kprobe_opcode_t *insns; /* Page of instruction slots */ 83 struct kprobe_insn_cache *cache; 84 int nused; 85 int ngarbage; 86 char slot_used[]; 87 }; 88 89 #define KPROBE_INSN_PAGE_SIZE(slots) \ 90 (offsetof(struct kprobe_insn_page, slot_used) + \ 91 (sizeof(char) * (slots))) 92 93 static int slots_per_page(struct kprobe_insn_cache *c) 94 { 95 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 96 } 97 98 enum kprobe_slot_state { 99 SLOT_CLEAN = 0, 100 SLOT_DIRTY = 1, 101 SLOT_USED = 2, 102 }; 103 104 void __weak *alloc_insn_page(void) 105 { 106 return module_alloc(PAGE_SIZE); 107 } 108 109 static void free_insn_page(void *page) 110 { 111 module_memfree(page); 112 } 113 114 struct kprobe_insn_cache kprobe_insn_slots = { 115 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 116 .alloc = alloc_insn_page, 117 .free = free_insn_page, 118 .sym = KPROBE_INSN_PAGE_SYM, 119 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 120 .insn_size = MAX_INSN_SIZE, 121 .nr_garbage = 0, 122 }; 123 static int collect_garbage_slots(struct kprobe_insn_cache *c); 124 125 /** 126 * __get_insn_slot() - Find a slot on an executable page for an instruction. 127 * We allocate an executable page if there's no room on existing ones. 128 */ 129 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 130 { 131 struct kprobe_insn_page *kip; 132 kprobe_opcode_t *slot = NULL; 133 134 /* Since the slot array is not protected by rcu, we need a mutex */ 135 mutex_lock(&c->mutex); 136 retry: 137 rcu_read_lock(); 138 list_for_each_entry_rcu(kip, &c->pages, list) { 139 if (kip->nused < slots_per_page(c)) { 140 int i; 141 for (i = 0; i < slots_per_page(c); i++) { 142 if (kip->slot_used[i] == SLOT_CLEAN) { 143 kip->slot_used[i] = SLOT_USED; 144 kip->nused++; 145 slot = kip->insns + (i * c->insn_size); 146 rcu_read_unlock(); 147 goto out; 148 } 149 } 150 /* kip->nused is broken. Fix it. */ 151 kip->nused = slots_per_page(c); 152 WARN_ON(1); 153 } 154 } 155 rcu_read_unlock(); 156 157 /* If there are any garbage slots, collect it and try again. */ 158 if (c->nr_garbage && collect_garbage_slots(c) == 0) 159 goto retry; 160 161 /* All out of space. Need to allocate a new page. */ 162 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 163 if (!kip) 164 goto out; 165 166 /* 167 * Use module_alloc so this page is within +/- 2GB of where the 168 * kernel image and loaded module images reside. This is required 169 * so x86_64 can correctly handle the %rip-relative fixups. 170 */ 171 kip->insns = c->alloc(); 172 if (!kip->insns) { 173 kfree(kip); 174 goto out; 175 } 176 INIT_LIST_HEAD(&kip->list); 177 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 178 kip->slot_used[0] = SLOT_USED; 179 kip->nused = 1; 180 kip->ngarbage = 0; 181 kip->cache = c; 182 list_add_rcu(&kip->list, &c->pages); 183 slot = kip->insns; 184 185 /* Record the perf ksymbol register event after adding the page */ 186 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns, 187 PAGE_SIZE, false, c->sym); 188 out: 189 mutex_unlock(&c->mutex); 190 return slot; 191 } 192 193 /* Return 1 if all garbages are collected, otherwise 0. */ 194 static int collect_one_slot(struct kprobe_insn_page *kip, int idx) 195 { 196 kip->slot_used[idx] = SLOT_CLEAN; 197 kip->nused--; 198 if (kip->nused == 0) { 199 /* 200 * Page is no longer in use. Free it unless 201 * it's the last one. We keep the last one 202 * so as not to have to set it up again the 203 * next time somebody inserts a probe. 204 */ 205 if (!list_is_singular(&kip->list)) { 206 /* 207 * Record perf ksymbol unregister event before removing 208 * the page. 209 */ 210 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 211 (unsigned long)kip->insns, PAGE_SIZE, true, 212 kip->cache->sym); 213 list_del_rcu(&kip->list); 214 synchronize_rcu(); 215 kip->cache->free(kip->insns); 216 kfree(kip); 217 } 218 return 1; 219 } 220 return 0; 221 } 222 223 static int collect_garbage_slots(struct kprobe_insn_cache *c) 224 { 225 struct kprobe_insn_page *kip, *next; 226 227 /* Ensure no-one is interrupted on the garbages */ 228 synchronize_rcu(); 229 230 list_for_each_entry_safe(kip, next, &c->pages, list) { 231 int i; 232 if (kip->ngarbage == 0) 233 continue; 234 kip->ngarbage = 0; /* we will collect all garbages */ 235 for (i = 0; i < slots_per_page(c); i++) { 236 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 237 break; 238 } 239 } 240 c->nr_garbage = 0; 241 return 0; 242 } 243 244 void __free_insn_slot(struct kprobe_insn_cache *c, 245 kprobe_opcode_t *slot, int dirty) 246 { 247 struct kprobe_insn_page *kip; 248 long idx; 249 250 mutex_lock(&c->mutex); 251 rcu_read_lock(); 252 list_for_each_entry_rcu(kip, &c->pages, list) { 253 idx = ((long)slot - (long)kip->insns) / 254 (c->insn_size * sizeof(kprobe_opcode_t)); 255 if (idx >= 0 && idx < slots_per_page(c)) 256 goto out; 257 } 258 /* Could not find this slot. */ 259 WARN_ON(1); 260 kip = NULL; 261 out: 262 rcu_read_unlock(); 263 /* Mark and sweep: this may sleep */ 264 if (kip) { 265 /* Check double free */ 266 WARN_ON(kip->slot_used[idx] != SLOT_USED); 267 if (dirty) { 268 kip->slot_used[idx] = SLOT_DIRTY; 269 kip->ngarbage++; 270 if (++c->nr_garbage > slots_per_page(c)) 271 collect_garbage_slots(c); 272 } else { 273 collect_one_slot(kip, idx); 274 } 275 } 276 mutex_unlock(&c->mutex); 277 } 278 279 /* 280 * Check given address is on the page of kprobe instruction slots. 281 * This will be used for checking whether the address on a stack 282 * is on a text area or not. 283 */ 284 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 285 { 286 struct kprobe_insn_page *kip; 287 bool ret = false; 288 289 rcu_read_lock(); 290 list_for_each_entry_rcu(kip, &c->pages, list) { 291 if (addr >= (unsigned long)kip->insns && 292 addr < (unsigned long)kip->insns + PAGE_SIZE) { 293 ret = true; 294 break; 295 } 296 } 297 rcu_read_unlock(); 298 299 return ret; 300 } 301 302 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum, 303 unsigned long *value, char *type, char *sym) 304 { 305 struct kprobe_insn_page *kip; 306 int ret = -ERANGE; 307 308 rcu_read_lock(); 309 list_for_each_entry_rcu(kip, &c->pages, list) { 310 if ((*symnum)--) 311 continue; 312 strlcpy(sym, c->sym, KSYM_NAME_LEN); 313 *type = 't'; 314 *value = (unsigned long)kip->insns; 315 ret = 0; 316 break; 317 } 318 rcu_read_unlock(); 319 320 return ret; 321 } 322 323 #ifdef CONFIG_OPTPROBES 324 void __weak *alloc_optinsn_page(void) 325 { 326 return alloc_insn_page(); 327 } 328 329 void __weak free_optinsn_page(void *page) 330 { 331 free_insn_page(page); 332 } 333 334 /* For optimized_kprobe buffer */ 335 struct kprobe_insn_cache kprobe_optinsn_slots = { 336 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 337 .alloc = alloc_optinsn_page, 338 .free = free_optinsn_page, 339 .sym = KPROBE_OPTINSN_PAGE_SYM, 340 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 341 /* .insn_size is initialized later */ 342 .nr_garbage = 0, 343 }; 344 #endif 345 #endif 346 347 /* We have preemption disabled.. so it is safe to use __ versions */ 348 static inline void set_kprobe_instance(struct kprobe *kp) 349 { 350 __this_cpu_write(kprobe_instance, kp); 351 } 352 353 static inline void reset_kprobe_instance(void) 354 { 355 __this_cpu_write(kprobe_instance, NULL); 356 } 357 358 /* 359 * This routine is called either: 360 * - under the kprobe_mutex - during kprobe_[un]register() 361 * OR 362 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 363 */ 364 struct kprobe *get_kprobe(void *addr) 365 { 366 struct hlist_head *head; 367 struct kprobe *p; 368 369 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 370 hlist_for_each_entry_rcu(p, head, hlist, 371 lockdep_is_held(&kprobe_mutex)) { 372 if (p->addr == addr) 373 return p; 374 } 375 376 return NULL; 377 } 378 NOKPROBE_SYMBOL(get_kprobe); 379 380 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 381 382 /* Return true if the kprobe is an aggregator */ 383 static inline int kprobe_aggrprobe(struct kprobe *p) 384 { 385 return p->pre_handler == aggr_pre_handler; 386 } 387 388 /* Return true(!0) if the kprobe is unused */ 389 static inline int kprobe_unused(struct kprobe *p) 390 { 391 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 392 list_empty(&p->list); 393 } 394 395 /* 396 * Keep all fields in the kprobe consistent 397 */ 398 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 399 { 400 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 401 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 402 } 403 404 #ifdef CONFIG_OPTPROBES 405 /* NOTE: change this value only with kprobe_mutex held */ 406 static bool kprobes_allow_optimization; 407 408 /* 409 * Call all pre_handler on the list, but ignores its return value. 410 * This must be called from arch-dep optimized caller. 411 */ 412 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 413 { 414 struct kprobe *kp; 415 416 list_for_each_entry_rcu(kp, &p->list, list) { 417 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 418 set_kprobe_instance(kp); 419 kp->pre_handler(kp, regs); 420 } 421 reset_kprobe_instance(); 422 } 423 } 424 NOKPROBE_SYMBOL(opt_pre_handler); 425 426 /* Free optimized instructions and optimized_kprobe */ 427 static void free_aggr_kprobe(struct kprobe *p) 428 { 429 struct optimized_kprobe *op; 430 431 op = container_of(p, struct optimized_kprobe, kp); 432 arch_remove_optimized_kprobe(op); 433 arch_remove_kprobe(p); 434 kfree(op); 435 } 436 437 /* Return true(!0) if the kprobe is ready for optimization. */ 438 static inline int kprobe_optready(struct kprobe *p) 439 { 440 struct optimized_kprobe *op; 441 442 if (kprobe_aggrprobe(p)) { 443 op = container_of(p, struct optimized_kprobe, kp); 444 return arch_prepared_optinsn(&op->optinsn); 445 } 446 447 return 0; 448 } 449 450 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 451 static inline int kprobe_disarmed(struct kprobe *p) 452 { 453 struct optimized_kprobe *op; 454 455 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 456 if (!kprobe_aggrprobe(p)) 457 return kprobe_disabled(p); 458 459 op = container_of(p, struct optimized_kprobe, kp); 460 461 return kprobe_disabled(p) && list_empty(&op->list); 462 } 463 464 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 465 static int kprobe_queued(struct kprobe *p) 466 { 467 struct optimized_kprobe *op; 468 469 if (kprobe_aggrprobe(p)) { 470 op = container_of(p, struct optimized_kprobe, kp); 471 if (!list_empty(&op->list)) 472 return 1; 473 } 474 return 0; 475 } 476 477 /* 478 * Return an optimized kprobe whose optimizing code replaces 479 * instructions including addr (exclude breakpoint). 480 */ 481 static struct kprobe *get_optimized_kprobe(unsigned long addr) 482 { 483 int i; 484 struct kprobe *p = NULL; 485 struct optimized_kprobe *op; 486 487 /* Don't check i == 0, since that is a breakpoint case. */ 488 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 489 p = get_kprobe((void *)(addr - i)); 490 491 if (p && kprobe_optready(p)) { 492 op = container_of(p, struct optimized_kprobe, kp); 493 if (arch_within_optimized_kprobe(op, addr)) 494 return p; 495 } 496 497 return NULL; 498 } 499 500 /* Optimization staging list, protected by kprobe_mutex */ 501 static LIST_HEAD(optimizing_list); 502 static LIST_HEAD(unoptimizing_list); 503 static LIST_HEAD(freeing_list); 504 505 static void kprobe_optimizer(struct work_struct *work); 506 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 507 #define OPTIMIZE_DELAY 5 508 509 /* 510 * Optimize (replace a breakpoint with a jump) kprobes listed on 511 * optimizing_list. 512 */ 513 static void do_optimize_kprobes(void) 514 { 515 lockdep_assert_held(&text_mutex); 516 /* 517 * The optimization/unoptimization refers online_cpus via 518 * stop_machine() and cpu-hotplug modifies online_cpus. 519 * And same time, text_mutex will be held in cpu-hotplug and here. 520 * This combination can cause a deadlock (cpu-hotplug try to lock 521 * text_mutex but stop_machine can not be done because online_cpus 522 * has been changed) 523 * To avoid this deadlock, caller must have locked cpu hotplug 524 * for preventing cpu-hotplug outside of text_mutex locking. 525 */ 526 lockdep_assert_cpus_held(); 527 528 /* Optimization never be done when disarmed */ 529 if (kprobes_all_disarmed || !kprobes_allow_optimization || 530 list_empty(&optimizing_list)) 531 return; 532 533 arch_optimize_kprobes(&optimizing_list); 534 } 535 536 /* 537 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 538 * if need) kprobes listed on unoptimizing_list. 539 */ 540 static void do_unoptimize_kprobes(void) 541 { 542 struct optimized_kprobe *op, *tmp; 543 544 lockdep_assert_held(&text_mutex); 545 /* See comment in do_optimize_kprobes() */ 546 lockdep_assert_cpus_held(); 547 548 /* Unoptimization must be done anytime */ 549 if (list_empty(&unoptimizing_list)) 550 return; 551 552 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 553 /* Loop free_list for disarming */ 554 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 555 /* Switching from detour code to origin */ 556 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 557 /* Disarm probes if marked disabled */ 558 if (kprobe_disabled(&op->kp)) 559 arch_disarm_kprobe(&op->kp); 560 if (kprobe_unused(&op->kp)) { 561 /* 562 * Remove unused probes from hash list. After waiting 563 * for synchronization, these probes are reclaimed. 564 * (reclaiming is done by do_free_cleaned_kprobes.) 565 */ 566 hlist_del_rcu(&op->kp.hlist); 567 } else 568 list_del_init(&op->list); 569 } 570 } 571 572 /* Reclaim all kprobes on the free_list */ 573 static void do_free_cleaned_kprobes(void) 574 { 575 struct optimized_kprobe *op, *tmp; 576 577 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 578 list_del_init(&op->list); 579 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) { 580 /* 581 * This must not happen, but if there is a kprobe 582 * still in use, keep it on kprobes hash list. 583 */ 584 continue; 585 } 586 free_aggr_kprobe(&op->kp); 587 } 588 } 589 590 /* Start optimizer after OPTIMIZE_DELAY passed */ 591 static void kick_kprobe_optimizer(void) 592 { 593 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 594 } 595 596 /* Kprobe jump optimizer */ 597 static void kprobe_optimizer(struct work_struct *work) 598 { 599 mutex_lock(&kprobe_mutex); 600 cpus_read_lock(); 601 mutex_lock(&text_mutex); 602 603 /* 604 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 605 * kprobes before waiting for quiesence period. 606 */ 607 do_unoptimize_kprobes(); 608 609 /* 610 * Step 2: Wait for quiesence period to ensure all potentially 611 * preempted tasks to have normally scheduled. Because optprobe 612 * may modify multiple instructions, there is a chance that Nth 613 * instruction is preempted. In that case, such tasks can return 614 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. 615 * Note that on non-preemptive kernel, this is transparently converted 616 * to synchronoze_sched() to wait for all interrupts to have completed. 617 */ 618 synchronize_rcu_tasks(); 619 620 /* Step 3: Optimize kprobes after quiesence period */ 621 do_optimize_kprobes(); 622 623 /* Step 4: Free cleaned kprobes after quiesence period */ 624 do_free_cleaned_kprobes(); 625 626 mutex_unlock(&text_mutex); 627 cpus_read_unlock(); 628 629 /* Step 5: Kick optimizer again if needed */ 630 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 631 kick_kprobe_optimizer(); 632 633 mutex_unlock(&kprobe_mutex); 634 } 635 636 /* Wait for completing optimization and unoptimization */ 637 void wait_for_kprobe_optimizer(void) 638 { 639 mutex_lock(&kprobe_mutex); 640 641 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 642 mutex_unlock(&kprobe_mutex); 643 644 /* this will also make optimizing_work execute immmediately */ 645 flush_delayed_work(&optimizing_work); 646 /* @optimizing_work might not have been queued yet, relax */ 647 cpu_relax(); 648 649 mutex_lock(&kprobe_mutex); 650 } 651 652 mutex_unlock(&kprobe_mutex); 653 } 654 655 static bool optprobe_queued_unopt(struct optimized_kprobe *op) 656 { 657 struct optimized_kprobe *_op; 658 659 list_for_each_entry(_op, &unoptimizing_list, list) { 660 if (op == _op) 661 return true; 662 } 663 664 return false; 665 } 666 667 /* Optimize kprobe if p is ready to be optimized */ 668 static void optimize_kprobe(struct kprobe *p) 669 { 670 struct optimized_kprobe *op; 671 672 /* Check if the kprobe is disabled or not ready for optimization. */ 673 if (!kprobe_optready(p) || !kprobes_allow_optimization || 674 (kprobe_disabled(p) || kprobes_all_disarmed)) 675 return; 676 677 /* kprobes with post_handler can not be optimized */ 678 if (p->post_handler) 679 return; 680 681 op = container_of(p, struct optimized_kprobe, kp); 682 683 /* Check there is no other kprobes at the optimized instructions */ 684 if (arch_check_optimized_kprobe(op) < 0) 685 return; 686 687 /* Check if it is already optimized. */ 688 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) { 689 if (optprobe_queued_unopt(op)) { 690 /* This is under unoptimizing. Just dequeue the probe */ 691 list_del_init(&op->list); 692 } 693 return; 694 } 695 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 696 697 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */ 698 if (WARN_ON_ONCE(!list_empty(&op->list))) 699 return; 700 701 list_add(&op->list, &optimizing_list); 702 kick_kprobe_optimizer(); 703 } 704 705 /* Short cut to direct unoptimizing */ 706 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 707 { 708 lockdep_assert_cpus_held(); 709 arch_unoptimize_kprobe(op); 710 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 711 } 712 713 /* Unoptimize a kprobe if p is optimized */ 714 static void unoptimize_kprobe(struct kprobe *p, bool force) 715 { 716 struct optimized_kprobe *op; 717 718 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 719 return; /* This is not an optprobe nor optimized */ 720 721 op = container_of(p, struct optimized_kprobe, kp); 722 if (!kprobe_optimized(p)) 723 return; 724 725 if (!list_empty(&op->list)) { 726 if (optprobe_queued_unopt(op)) { 727 /* Queued in unoptimizing queue */ 728 if (force) { 729 /* 730 * Forcibly unoptimize the kprobe here, and queue it 731 * in the freeing list for release afterwards. 732 */ 733 force_unoptimize_kprobe(op); 734 list_move(&op->list, &freeing_list); 735 } 736 } else { 737 /* Dequeue from the optimizing queue */ 738 list_del_init(&op->list); 739 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 740 } 741 return; 742 } 743 744 /* Optimized kprobe case */ 745 if (force) { 746 /* Forcibly update the code: this is a special case */ 747 force_unoptimize_kprobe(op); 748 } else { 749 list_add(&op->list, &unoptimizing_list); 750 kick_kprobe_optimizer(); 751 } 752 } 753 754 /* Cancel unoptimizing for reusing */ 755 static int reuse_unused_kprobe(struct kprobe *ap) 756 { 757 struct optimized_kprobe *op; 758 759 /* 760 * Unused kprobe MUST be on the way of delayed unoptimizing (means 761 * there is still a relative jump) and disabled. 762 */ 763 op = container_of(ap, struct optimized_kprobe, kp); 764 WARN_ON_ONCE(list_empty(&op->list)); 765 /* Enable the probe again */ 766 ap->flags &= ~KPROBE_FLAG_DISABLED; 767 /* Optimize it again (remove from op->list) */ 768 if (!kprobe_optready(ap)) 769 return -EINVAL; 770 771 optimize_kprobe(ap); 772 return 0; 773 } 774 775 /* Remove optimized instructions */ 776 static void kill_optimized_kprobe(struct kprobe *p) 777 { 778 struct optimized_kprobe *op; 779 780 op = container_of(p, struct optimized_kprobe, kp); 781 if (!list_empty(&op->list)) 782 /* Dequeue from the (un)optimization queue */ 783 list_del_init(&op->list); 784 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 785 786 if (kprobe_unused(p)) { 787 /* Enqueue if it is unused */ 788 list_add(&op->list, &freeing_list); 789 /* 790 * Remove unused probes from the hash list. After waiting 791 * for synchronization, this probe is reclaimed. 792 * (reclaiming is done by do_free_cleaned_kprobes().) 793 */ 794 hlist_del_rcu(&op->kp.hlist); 795 } 796 797 /* Don't touch the code, because it is already freed. */ 798 arch_remove_optimized_kprobe(op); 799 } 800 801 static inline 802 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) 803 { 804 if (!kprobe_ftrace(p)) 805 arch_prepare_optimized_kprobe(op, p); 806 } 807 808 /* Try to prepare optimized instructions */ 809 static void prepare_optimized_kprobe(struct kprobe *p) 810 { 811 struct optimized_kprobe *op; 812 813 op = container_of(p, struct optimized_kprobe, kp); 814 __prepare_optimized_kprobe(op, p); 815 } 816 817 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 818 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 819 { 820 struct optimized_kprobe *op; 821 822 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 823 if (!op) 824 return NULL; 825 826 INIT_LIST_HEAD(&op->list); 827 op->kp.addr = p->addr; 828 __prepare_optimized_kprobe(op, p); 829 830 return &op->kp; 831 } 832 833 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 834 835 /* 836 * Prepare an optimized_kprobe and optimize it 837 * NOTE: p must be a normal registered kprobe 838 */ 839 static void try_to_optimize_kprobe(struct kprobe *p) 840 { 841 struct kprobe *ap; 842 struct optimized_kprobe *op; 843 844 /* Impossible to optimize ftrace-based kprobe */ 845 if (kprobe_ftrace(p)) 846 return; 847 848 /* For preparing optimization, jump_label_text_reserved() is called */ 849 cpus_read_lock(); 850 jump_label_lock(); 851 mutex_lock(&text_mutex); 852 853 ap = alloc_aggr_kprobe(p); 854 if (!ap) 855 goto out; 856 857 op = container_of(ap, struct optimized_kprobe, kp); 858 if (!arch_prepared_optinsn(&op->optinsn)) { 859 /* If failed to setup optimizing, fallback to kprobe */ 860 arch_remove_optimized_kprobe(op); 861 kfree(op); 862 goto out; 863 } 864 865 init_aggr_kprobe(ap, p); 866 optimize_kprobe(ap); /* This just kicks optimizer thread */ 867 868 out: 869 mutex_unlock(&text_mutex); 870 jump_label_unlock(); 871 cpus_read_unlock(); 872 } 873 874 static void optimize_all_kprobes(void) 875 { 876 struct hlist_head *head; 877 struct kprobe *p; 878 unsigned int i; 879 880 mutex_lock(&kprobe_mutex); 881 /* If optimization is already allowed, just return */ 882 if (kprobes_allow_optimization) 883 goto out; 884 885 cpus_read_lock(); 886 kprobes_allow_optimization = true; 887 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 888 head = &kprobe_table[i]; 889 hlist_for_each_entry(p, head, hlist) 890 if (!kprobe_disabled(p)) 891 optimize_kprobe(p); 892 } 893 cpus_read_unlock(); 894 printk(KERN_INFO "Kprobes globally optimized\n"); 895 out: 896 mutex_unlock(&kprobe_mutex); 897 } 898 899 #ifdef CONFIG_SYSCTL 900 static void unoptimize_all_kprobes(void) 901 { 902 struct hlist_head *head; 903 struct kprobe *p; 904 unsigned int i; 905 906 mutex_lock(&kprobe_mutex); 907 /* If optimization is already prohibited, just return */ 908 if (!kprobes_allow_optimization) { 909 mutex_unlock(&kprobe_mutex); 910 return; 911 } 912 913 cpus_read_lock(); 914 kprobes_allow_optimization = false; 915 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 916 head = &kprobe_table[i]; 917 hlist_for_each_entry(p, head, hlist) { 918 if (!kprobe_disabled(p)) 919 unoptimize_kprobe(p, false); 920 } 921 } 922 cpus_read_unlock(); 923 mutex_unlock(&kprobe_mutex); 924 925 /* Wait for unoptimizing completion */ 926 wait_for_kprobe_optimizer(); 927 printk(KERN_INFO "Kprobes globally unoptimized\n"); 928 } 929 930 static DEFINE_MUTEX(kprobe_sysctl_mutex); 931 int sysctl_kprobes_optimization; 932 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 933 void *buffer, size_t *length, 934 loff_t *ppos) 935 { 936 int ret; 937 938 mutex_lock(&kprobe_sysctl_mutex); 939 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 940 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 941 942 if (sysctl_kprobes_optimization) 943 optimize_all_kprobes(); 944 else 945 unoptimize_all_kprobes(); 946 mutex_unlock(&kprobe_sysctl_mutex); 947 948 return ret; 949 } 950 #endif /* CONFIG_SYSCTL */ 951 952 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 953 static void __arm_kprobe(struct kprobe *p) 954 { 955 struct kprobe *_p; 956 957 /* Check collision with other optimized kprobes */ 958 _p = get_optimized_kprobe((unsigned long)p->addr); 959 if (unlikely(_p)) 960 /* Fallback to unoptimized kprobe */ 961 unoptimize_kprobe(_p, true); 962 963 arch_arm_kprobe(p); 964 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 965 } 966 967 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 968 static void __disarm_kprobe(struct kprobe *p, bool reopt) 969 { 970 struct kprobe *_p; 971 972 /* Try to unoptimize */ 973 unoptimize_kprobe(p, kprobes_all_disarmed); 974 975 if (!kprobe_queued(p)) { 976 arch_disarm_kprobe(p); 977 /* If another kprobe was blocked, optimize it. */ 978 _p = get_optimized_kprobe((unsigned long)p->addr); 979 if (unlikely(_p) && reopt) 980 optimize_kprobe(_p); 981 } 982 /* TODO: reoptimize others after unoptimized this probe */ 983 } 984 985 #else /* !CONFIG_OPTPROBES */ 986 987 #define optimize_kprobe(p) do {} while (0) 988 #define unoptimize_kprobe(p, f) do {} while (0) 989 #define kill_optimized_kprobe(p) do {} while (0) 990 #define prepare_optimized_kprobe(p) do {} while (0) 991 #define try_to_optimize_kprobe(p) do {} while (0) 992 #define __arm_kprobe(p) arch_arm_kprobe(p) 993 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 994 #define kprobe_disarmed(p) kprobe_disabled(p) 995 #define wait_for_kprobe_optimizer() do {} while (0) 996 997 static int reuse_unused_kprobe(struct kprobe *ap) 998 { 999 /* 1000 * If the optimized kprobe is NOT supported, the aggr kprobe is 1001 * released at the same time that the last aggregated kprobe is 1002 * unregistered. 1003 * Thus there should be no chance to reuse unused kprobe. 1004 */ 1005 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 1006 return -EINVAL; 1007 } 1008 1009 static void free_aggr_kprobe(struct kprobe *p) 1010 { 1011 arch_remove_kprobe(p); 1012 kfree(p); 1013 } 1014 1015 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 1016 { 1017 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 1018 } 1019 #endif /* CONFIG_OPTPROBES */ 1020 1021 #ifdef CONFIG_KPROBES_ON_FTRACE 1022 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 1023 .func = kprobe_ftrace_handler, 1024 .flags = FTRACE_OPS_FL_SAVE_REGS, 1025 }; 1026 1027 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = { 1028 .func = kprobe_ftrace_handler, 1029 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 1030 }; 1031 1032 static int kprobe_ipmodify_enabled; 1033 static int kprobe_ftrace_enabled; 1034 1035 /* Must ensure p->addr is really on ftrace */ 1036 static int prepare_kprobe(struct kprobe *p) 1037 { 1038 if (!kprobe_ftrace(p)) 1039 return arch_prepare_kprobe(p); 1040 1041 return arch_prepare_kprobe_ftrace(p); 1042 } 1043 1044 /* Caller must lock kprobe_mutex */ 1045 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1046 int *cnt) 1047 { 1048 int ret = 0; 1049 1050 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0); 1051 if (ret) { 1052 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n", 1053 p->addr, ret); 1054 return ret; 1055 } 1056 1057 if (*cnt == 0) { 1058 ret = register_ftrace_function(ops); 1059 if (ret) { 1060 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret); 1061 goto err_ftrace; 1062 } 1063 } 1064 1065 (*cnt)++; 1066 return ret; 1067 1068 err_ftrace: 1069 /* 1070 * At this point, sinec ops is not registered, we should be sefe from 1071 * registering empty filter. 1072 */ 1073 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1074 return ret; 1075 } 1076 1077 static int arm_kprobe_ftrace(struct kprobe *p) 1078 { 1079 bool ipmodify = (p->post_handler != NULL); 1080 1081 return __arm_kprobe_ftrace(p, 1082 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1083 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1084 } 1085 1086 /* Caller must lock kprobe_mutex */ 1087 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1088 int *cnt) 1089 { 1090 int ret = 0; 1091 1092 if (*cnt == 1) { 1093 ret = unregister_ftrace_function(ops); 1094 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret)) 1095 return ret; 1096 } 1097 1098 (*cnt)--; 1099 1100 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1101 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n", 1102 p->addr, ret); 1103 return ret; 1104 } 1105 1106 static int disarm_kprobe_ftrace(struct kprobe *p) 1107 { 1108 bool ipmodify = (p->post_handler != NULL); 1109 1110 return __disarm_kprobe_ftrace(p, 1111 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1112 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1113 } 1114 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1115 static inline int prepare_kprobe(struct kprobe *p) 1116 { 1117 return arch_prepare_kprobe(p); 1118 } 1119 1120 static inline int arm_kprobe_ftrace(struct kprobe *p) 1121 { 1122 return -ENODEV; 1123 } 1124 1125 static inline int disarm_kprobe_ftrace(struct kprobe *p) 1126 { 1127 return -ENODEV; 1128 } 1129 #endif 1130 1131 /* Arm a kprobe with text_mutex */ 1132 static int arm_kprobe(struct kprobe *kp) 1133 { 1134 if (unlikely(kprobe_ftrace(kp))) 1135 return arm_kprobe_ftrace(kp); 1136 1137 cpus_read_lock(); 1138 mutex_lock(&text_mutex); 1139 __arm_kprobe(kp); 1140 mutex_unlock(&text_mutex); 1141 cpus_read_unlock(); 1142 1143 return 0; 1144 } 1145 1146 /* Disarm a kprobe with text_mutex */ 1147 static int disarm_kprobe(struct kprobe *kp, bool reopt) 1148 { 1149 if (unlikely(kprobe_ftrace(kp))) 1150 return disarm_kprobe_ftrace(kp); 1151 1152 cpus_read_lock(); 1153 mutex_lock(&text_mutex); 1154 __disarm_kprobe(kp, reopt); 1155 mutex_unlock(&text_mutex); 1156 cpus_read_unlock(); 1157 1158 return 0; 1159 } 1160 1161 /* 1162 * Aggregate handlers for multiple kprobes support - these handlers 1163 * take care of invoking the individual kprobe handlers on p->list 1164 */ 1165 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1166 { 1167 struct kprobe *kp; 1168 1169 list_for_each_entry_rcu(kp, &p->list, list) { 1170 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1171 set_kprobe_instance(kp); 1172 if (kp->pre_handler(kp, regs)) 1173 return 1; 1174 } 1175 reset_kprobe_instance(); 1176 } 1177 return 0; 1178 } 1179 NOKPROBE_SYMBOL(aggr_pre_handler); 1180 1181 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1182 unsigned long flags) 1183 { 1184 struct kprobe *kp; 1185 1186 list_for_each_entry_rcu(kp, &p->list, list) { 1187 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1188 set_kprobe_instance(kp); 1189 kp->post_handler(kp, regs, flags); 1190 reset_kprobe_instance(); 1191 } 1192 } 1193 } 1194 NOKPROBE_SYMBOL(aggr_post_handler); 1195 1196 /* Walks the list and increments nmissed count for multiprobe case */ 1197 void kprobes_inc_nmissed_count(struct kprobe *p) 1198 { 1199 struct kprobe *kp; 1200 if (!kprobe_aggrprobe(p)) { 1201 p->nmissed++; 1202 } else { 1203 list_for_each_entry_rcu(kp, &p->list, list) 1204 kp->nmissed++; 1205 } 1206 return; 1207 } 1208 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1209 1210 static void free_rp_inst_rcu(struct rcu_head *head) 1211 { 1212 struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu); 1213 1214 if (refcount_dec_and_test(&ri->rph->ref)) 1215 kfree(ri->rph); 1216 kfree(ri); 1217 } 1218 NOKPROBE_SYMBOL(free_rp_inst_rcu); 1219 1220 static void recycle_rp_inst(struct kretprobe_instance *ri) 1221 { 1222 struct kretprobe *rp = get_kretprobe(ri); 1223 1224 if (likely(rp)) { 1225 freelist_add(&ri->freelist, &rp->freelist); 1226 } else 1227 call_rcu(&ri->rcu, free_rp_inst_rcu); 1228 } 1229 NOKPROBE_SYMBOL(recycle_rp_inst); 1230 1231 static struct kprobe kprobe_busy = { 1232 .addr = (void *) get_kprobe, 1233 }; 1234 1235 void kprobe_busy_begin(void) 1236 { 1237 struct kprobe_ctlblk *kcb; 1238 1239 preempt_disable(); 1240 __this_cpu_write(current_kprobe, &kprobe_busy); 1241 kcb = get_kprobe_ctlblk(); 1242 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 1243 } 1244 1245 void kprobe_busy_end(void) 1246 { 1247 __this_cpu_write(current_kprobe, NULL); 1248 preempt_enable(); 1249 } 1250 1251 /* 1252 * This function is called from finish_task_switch when task tk becomes dead, 1253 * so that we can recycle any function-return probe instances associated 1254 * with this task. These left over instances represent probed functions 1255 * that have been called but will never return. 1256 */ 1257 void kprobe_flush_task(struct task_struct *tk) 1258 { 1259 struct kretprobe_instance *ri; 1260 struct llist_node *node; 1261 1262 /* Early boot, not yet initialized. */ 1263 if (unlikely(!kprobes_initialized)) 1264 return; 1265 1266 kprobe_busy_begin(); 1267 1268 node = __llist_del_all(&tk->kretprobe_instances); 1269 while (node) { 1270 ri = container_of(node, struct kretprobe_instance, llist); 1271 node = node->next; 1272 1273 recycle_rp_inst(ri); 1274 } 1275 1276 kprobe_busy_end(); 1277 } 1278 NOKPROBE_SYMBOL(kprobe_flush_task); 1279 1280 static inline void free_rp_inst(struct kretprobe *rp) 1281 { 1282 struct kretprobe_instance *ri; 1283 struct freelist_node *node; 1284 int count = 0; 1285 1286 node = rp->freelist.head; 1287 while (node) { 1288 ri = container_of(node, struct kretprobe_instance, freelist); 1289 node = node->next; 1290 1291 kfree(ri); 1292 count++; 1293 } 1294 1295 if (refcount_sub_and_test(count, &rp->rph->ref)) { 1296 kfree(rp->rph); 1297 rp->rph = NULL; 1298 } 1299 } 1300 1301 /* Add the new probe to ap->list */ 1302 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1303 { 1304 if (p->post_handler) 1305 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1306 1307 list_add_rcu(&p->list, &ap->list); 1308 if (p->post_handler && !ap->post_handler) 1309 ap->post_handler = aggr_post_handler; 1310 1311 return 0; 1312 } 1313 1314 /* 1315 * Fill in the required fields of the "manager kprobe". Replace the 1316 * earlier kprobe in the hlist with the manager kprobe 1317 */ 1318 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1319 { 1320 /* Copy p's insn slot to ap */ 1321 copy_kprobe(p, ap); 1322 flush_insn_slot(ap); 1323 ap->addr = p->addr; 1324 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1325 ap->pre_handler = aggr_pre_handler; 1326 /* We don't care the kprobe which has gone. */ 1327 if (p->post_handler && !kprobe_gone(p)) 1328 ap->post_handler = aggr_post_handler; 1329 1330 INIT_LIST_HEAD(&ap->list); 1331 INIT_HLIST_NODE(&ap->hlist); 1332 1333 list_add_rcu(&p->list, &ap->list); 1334 hlist_replace_rcu(&p->hlist, &ap->hlist); 1335 } 1336 1337 /* 1338 * This is the second or subsequent kprobe at the address - handle 1339 * the intricacies 1340 */ 1341 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1342 { 1343 int ret = 0; 1344 struct kprobe *ap = orig_p; 1345 1346 cpus_read_lock(); 1347 1348 /* For preparing optimization, jump_label_text_reserved() is called */ 1349 jump_label_lock(); 1350 mutex_lock(&text_mutex); 1351 1352 if (!kprobe_aggrprobe(orig_p)) { 1353 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1354 ap = alloc_aggr_kprobe(orig_p); 1355 if (!ap) { 1356 ret = -ENOMEM; 1357 goto out; 1358 } 1359 init_aggr_kprobe(ap, orig_p); 1360 } else if (kprobe_unused(ap)) { 1361 /* This probe is going to die. Rescue it */ 1362 ret = reuse_unused_kprobe(ap); 1363 if (ret) 1364 goto out; 1365 } 1366 1367 if (kprobe_gone(ap)) { 1368 /* 1369 * Attempting to insert new probe at the same location that 1370 * had a probe in the module vaddr area which already 1371 * freed. So, the instruction slot has already been 1372 * released. We need a new slot for the new probe. 1373 */ 1374 ret = arch_prepare_kprobe(ap); 1375 if (ret) 1376 /* 1377 * Even if fail to allocate new slot, don't need to 1378 * free aggr_probe. It will be used next time, or 1379 * freed by unregister_kprobe. 1380 */ 1381 goto out; 1382 1383 /* Prepare optimized instructions if possible. */ 1384 prepare_optimized_kprobe(ap); 1385 1386 /* 1387 * Clear gone flag to prevent allocating new slot again, and 1388 * set disabled flag because it is not armed yet. 1389 */ 1390 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1391 | KPROBE_FLAG_DISABLED; 1392 } 1393 1394 /* Copy ap's insn slot to p */ 1395 copy_kprobe(ap, p); 1396 ret = add_new_kprobe(ap, p); 1397 1398 out: 1399 mutex_unlock(&text_mutex); 1400 jump_label_unlock(); 1401 cpus_read_unlock(); 1402 1403 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1404 ap->flags &= ~KPROBE_FLAG_DISABLED; 1405 if (!kprobes_all_disarmed) { 1406 /* Arm the breakpoint again. */ 1407 ret = arm_kprobe(ap); 1408 if (ret) { 1409 ap->flags |= KPROBE_FLAG_DISABLED; 1410 list_del_rcu(&p->list); 1411 synchronize_rcu(); 1412 } 1413 } 1414 } 1415 return ret; 1416 } 1417 1418 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1419 { 1420 /* The __kprobes marked functions and entry code must not be probed */ 1421 return addr >= (unsigned long)__kprobes_text_start && 1422 addr < (unsigned long)__kprobes_text_end; 1423 } 1424 1425 static bool __within_kprobe_blacklist(unsigned long addr) 1426 { 1427 struct kprobe_blacklist_entry *ent; 1428 1429 if (arch_within_kprobe_blacklist(addr)) 1430 return true; 1431 /* 1432 * If there exists a kprobe_blacklist, verify and 1433 * fail any probe registration in the prohibited area 1434 */ 1435 list_for_each_entry(ent, &kprobe_blacklist, list) { 1436 if (addr >= ent->start_addr && addr < ent->end_addr) 1437 return true; 1438 } 1439 return false; 1440 } 1441 1442 bool within_kprobe_blacklist(unsigned long addr) 1443 { 1444 char symname[KSYM_NAME_LEN], *p; 1445 1446 if (__within_kprobe_blacklist(addr)) 1447 return true; 1448 1449 /* Check if the address is on a suffixed-symbol */ 1450 if (!lookup_symbol_name(addr, symname)) { 1451 p = strchr(symname, '.'); 1452 if (!p) 1453 return false; 1454 *p = '\0'; 1455 addr = (unsigned long)kprobe_lookup_name(symname, 0); 1456 if (addr) 1457 return __within_kprobe_blacklist(addr); 1458 } 1459 return false; 1460 } 1461 1462 /* 1463 * If we have a symbol_name argument, look it up and add the offset field 1464 * to it. This way, we can specify a relative address to a symbol. 1465 * This returns encoded errors if it fails to look up symbol or invalid 1466 * combination of parameters. 1467 */ 1468 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr, 1469 const char *symbol_name, unsigned int offset) 1470 { 1471 if ((symbol_name && addr) || (!symbol_name && !addr)) 1472 goto invalid; 1473 1474 if (symbol_name) { 1475 addr = kprobe_lookup_name(symbol_name, offset); 1476 if (!addr) 1477 return ERR_PTR(-ENOENT); 1478 } 1479 1480 addr = (kprobe_opcode_t *)(((char *)addr) + offset); 1481 if (addr) 1482 return addr; 1483 1484 invalid: 1485 return ERR_PTR(-EINVAL); 1486 } 1487 1488 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1489 { 1490 return _kprobe_addr(p->addr, p->symbol_name, p->offset); 1491 } 1492 1493 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1494 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1495 { 1496 struct kprobe *ap, *list_p; 1497 1498 lockdep_assert_held(&kprobe_mutex); 1499 1500 ap = get_kprobe(p->addr); 1501 if (unlikely(!ap)) 1502 return NULL; 1503 1504 if (p != ap) { 1505 list_for_each_entry(list_p, &ap->list, list) 1506 if (list_p == p) 1507 /* kprobe p is a valid probe */ 1508 goto valid; 1509 return NULL; 1510 } 1511 valid: 1512 return ap; 1513 } 1514 1515 /* 1516 * Warn and return error if the kprobe is being re-registered since 1517 * there must be a software bug. 1518 */ 1519 static inline int warn_kprobe_rereg(struct kprobe *p) 1520 { 1521 int ret = 0; 1522 1523 mutex_lock(&kprobe_mutex); 1524 if (WARN_ON_ONCE(__get_valid_kprobe(p))) 1525 ret = -EINVAL; 1526 mutex_unlock(&kprobe_mutex); 1527 1528 return ret; 1529 } 1530 1531 int __weak arch_check_ftrace_location(struct kprobe *p) 1532 { 1533 unsigned long ftrace_addr; 1534 1535 ftrace_addr = ftrace_location((unsigned long)p->addr); 1536 if (ftrace_addr) { 1537 #ifdef CONFIG_KPROBES_ON_FTRACE 1538 /* Given address is not on the instruction boundary */ 1539 if ((unsigned long)p->addr != ftrace_addr) 1540 return -EILSEQ; 1541 p->flags |= KPROBE_FLAG_FTRACE; 1542 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1543 return -EINVAL; 1544 #endif 1545 } 1546 return 0; 1547 } 1548 1549 static int check_kprobe_address_safe(struct kprobe *p, 1550 struct module **probed_mod) 1551 { 1552 int ret; 1553 1554 ret = arch_check_ftrace_location(p); 1555 if (ret) 1556 return ret; 1557 jump_label_lock(); 1558 preempt_disable(); 1559 1560 /* Ensure it is not in reserved area nor out of text */ 1561 if (!kernel_text_address((unsigned long) p->addr) || 1562 within_kprobe_blacklist((unsigned long) p->addr) || 1563 jump_label_text_reserved(p->addr, p->addr) || 1564 find_bug((unsigned long)p->addr)) { 1565 ret = -EINVAL; 1566 goto out; 1567 } 1568 1569 /* Check if are we probing a module */ 1570 *probed_mod = __module_text_address((unsigned long) p->addr); 1571 if (*probed_mod) { 1572 /* 1573 * We must hold a refcount of the probed module while updating 1574 * its code to prohibit unexpected unloading. 1575 */ 1576 if (unlikely(!try_module_get(*probed_mod))) { 1577 ret = -ENOENT; 1578 goto out; 1579 } 1580 1581 /* 1582 * If the module freed .init.text, we couldn't insert 1583 * kprobes in there. 1584 */ 1585 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1586 (*probed_mod)->state != MODULE_STATE_COMING) { 1587 module_put(*probed_mod); 1588 *probed_mod = NULL; 1589 ret = -ENOENT; 1590 } 1591 } 1592 out: 1593 preempt_enable(); 1594 jump_label_unlock(); 1595 1596 return ret; 1597 } 1598 1599 int register_kprobe(struct kprobe *p) 1600 { 1601 int ret; 1602 struct kprobe *old_p; 1603 struct module *probed_mod; 1604 kprobe_opcode_t *addr; 1605 1606 /* Adjust probe address from symbol */ 1607 addr = kprobe_addr(p); 1608 if (IS_ERR(addr)) 1609 return PTR_ERR(addr); 1610 p->addr = addr; 1611 1612 ret = warn_kprobe_rereg(p); 1613 if (ret) 1614 return ret; 1615 1616 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1617 p->flags &= KPROBE_FLAG_DISABLED; 1618 p->nmissed = 0; 1619 INIT_LIST_HEAD(&p->list); 1620 1621 ret = check_kprobe_address_safe(p, &probed_mod); 1622 if (ret) 1623 return ret; 1624 1625 mutex_lock(&kprobe_mutex); 1626 1627 old_p = get_kprobe(p->addr); 1628 if (old_p) { 1629 /* Since this may unoptimize old_p, locking text_mutex. */ 1630 ret = register_aggr_kprobe(old_p, p); 1631 goto out; 1632 } 1633 1634 cpus_read_lock(); 1635 /* Prevent text modification */ 1636 mutex_lock(&text_mutex); 1637 ret = prepare_kprobe(p); 1638 mutex_unlock(&text_mutex); 1639 cpus_read_unlock(); 1640 if (ret) 1641 goto out; 1642 1643 INIT_HLIST_NODE(&p->hlist); 1644 hlist_add_head_rcu(&p->hlist, 1645 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1646 1647 if (!kprobes_all_disarmed && !kprobe_disabled(p)) { 1648 ret = arm_kprobe(p); 1649 if (ret) { 1650 hlist_del_rcu(&p->hlist); 1651 synchronize_rcu(); 1652 goto out; 1653 } 1654 } 1655 1656 /* Try to optimize kprobe */ 1657 try_to_optimize_kprobe(p); 1658 out: 1659 mutex_unlock(&kprobe_mutex); 1660 1661 if (probed_mod) 1662 module_put(probed_mod); 1663 1664 return ret; 1665 } 1666 EXPORT_SYMBOL_GPL(register_kprobe); 1667 1668 /* Check if all probes on the aggrprobe are disabled */ 1669 static int aggr_kprobe_disabled(struct kprobe *ap) 1670 { 1671 struct kprobe *kp; 1672 1673 lockdep_assert_held(&kprobe_mutex); 1674 1675 list_for_each_entry(kp, &ap->list, list) 1676 if (!kprobe_disabled(kp)) 1677 /* 1678 * There is an active probe on the list. 1679 * We can't disable this ap. 1680 */ 1681 return 0; 1682 1683 return 1; 1684 } 1685 1686 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1687 static struct kprobe *__disable_kprobe(struct kprobe *p) 1688 { 1689 struct kprobe *orig_p; 1690 int ret; 1691 1692 /* Get an original kprobe for return */ 1693 orig_p = __get_valid_kprobe(p); 1694 if (unlikely(orig_p == NULL)) 1695 return ERR_PTR(-EINVAL); 1696 1697 if (!kprobe_disabled(p)) { 1698 /* Disable probe if it is a child probe */ 1699 if (p != orig_p) 1700 p->flags |= KPROBE_FLAG_DISABLED; 1701 1702 /* Try to disarm and disable this/parent probe */ 1703 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1704 /* 1705 * If kprobes_all_disarmed is set, orig_p 1706 * should have already been disarmed, so 1707 * skip unneed disarming process. 1708 */ 1709 if (!kprobes_all_disarmed) { 1710 ret = disarm_kprobe(orig_p, true); 1711 if (ret) { 1712 p->flags &= ~KPROBE_FLAG_DISABLED; 1713 return ERR_PTR(ret); 1714 } 1715 } 1716 orig_p->flags |= KPROBE_FLAG_DISABLED; 1717 } 1718 } 1719 1720 return orig_p; 1721 } 1722 1723 /* 1724 * Unregister a kprobe without a scheduler synchronization. 1725 */ 1726 static int __unregister_kprobe_top(struct kprobe *p) 1727 { 1728 struct kprobe *ap, *list_p; 1729 1730 /* Disable kprobe. This will disarm it if needed. */ 1731 ap = __disable_kprobe(p); 1732 if (IS_ERR(ap)) 1733 return PTR_ERR(ap); 1734 1735 if (ap == p) 1736 /* 1737 * This probe is an independent(and non-optimized) kprobe 1738 * (not an aggrprobe). Remove from the hash list. 1739 */ 1740 goto disarmed; 1741 1742 /* Following process expects this probe is an aggrprobe */ 1743 WARN_ON(!kprobe_aggrprobe(ap)); 1744 1745 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1746 /* 1747 * !disarmed could be happen if the probe is under delayed 1748 * unoptimizing. 1749 */ 1750 goto disarmed; 1751 else { 1752 /* If disabling probe has special handlers, update aggrprobe */ 1753 if (p->post_handler && !kprobe_gone(p)) { 1754 list_for_each_entry(list_p, &ap->list, list) { 1755 if ((list_p != p) && (list_p->post_handler)) 1756 goto noclean; 1757 } 1758 ap->post_handler = NULL; 1759 } 1760 noclean: 1761 /* 1762 * Remove from the aggrprobe: this path will do nothing in 1763 * __unregister_kprobe_bottom(). 1764 */ 1765 list_del_rcu(&p->list); 1766 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1767 /* 1768 * Try to optimize this probe again, because post 1769 * handler may have been changed. 1770 */ 1771 optimize_kprobe(ap); 1772 } 1773 return 0; 1774 1775 disarmed: 1776 hlist_del_rcu(&ap->hlist); 1777 return 0; 1778 } 1779 1780 static void __unregister_kprobe_bottom(struct kprobe *p) 1781 { 1782 struct kprobe *ap; 1783 1784 if (list_empty(&p->list)) 1785 /* This is an independent kprobe */ 1786 arch_remove_kprobe(p); 1787 else if (list_is_singular(&p->list)) { 1788 /* This is the last child of an aggrprobe */ 1789 ap = list_entry(p->list.next, struct kprobe, list); 1790 list_del(&p->list); 1791 free_aggr_kprobe(ap); 1792 } 1793 /* Otherwise, do nothing. */ 1794 } 1795 1796 int register_kprobes(struct kprobe **kps, int num) 1797 { 1798 int i, ret = 0; 1799 1800 if (num <= 0) 1801 return -EINVAL; 1802 for (i = 0; i < num; i++) { 1803 ret = register_kprobe(kps[i]); 1804 if (ret < 0) { 1805 if (i > 0) 1806 unregister_kprobes(kps, i); 1807 break; 1808 } 1809 } 1810 return ret; 1811 } 1812 EXPORT_SYMBOL_GPL(register_kprobes); 1813 1814 void unregister_kprobe(struct kprobe *p) 1815 { 1816 unregister_kprobes(&p, 1); 1817 } 1818 EXPORT_SYMBOL_GPL(unregister_kprobe); 1819 1820 void unregister_kprobes(struct kprobe **kps, int num) 1821 { 1822 int i; 1823 1824 if (num <= 0) 1825 return; 1826 mutex_lock(&kprobe_mutex); 1827 for (i = 0; i < num; i++) 1828 if (__unregister_kprobe_top(kps[i]) < 0) 1829 kps[i]->addr = NULL; 1830 mutex_unlock(&kprobe_mutex); 1831 1832 synchronize_rcu(); 1833 for (i = 0; i < num; i++) 1834 if (kps[i]->addr) 1835 __unregister_kprobe_bottom(kps[i]); 1836 } 1837 EXPORT_SYMBOL_GPL(unregister_kprobes); 1838 1839 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1840 unsigned long val, void *data) 1841 { 1842 return NOTIFY_DONE; 1843 } 1844 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1845 1846 static struct notifier_block kprobe_exceptions_nb = { 1847 .notifier_call = kprobe_exceptions_notify, 1848 .priority = 0x7fffffff /* we need to be notified first */ 1849 }; 1850 1851 unsigned long __weak arch_deref_entry_point(void *entry) 1852 { 1853 return (unsigned long)entry; 1854 } 1855 1856 #ifdef CONFIG_KRETPROBES 1857 1858 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs, 1859 void *trampoline_address, 1860 void *frame_pointer) 1861 { 1862 kprobe_opcode_t *correct_ret_addr = NULL; 1863 struct kretprobe_instance *ri = NULL; 1864 struct llist_node *first, *node; 1865 struct kretprobe *rp; 1866 1867 /* Find all nodes for this frame. */ 1868 first = node = current->kretprobe_instances.first; 1869 while (node) { 1870 ri = container_of(node, struct kretprobe_instance, llist); 1871 1872 BUG_ON(ri->fp != frame_pointer); 1873 1874 if (ri->ret_addr != trampoline_address) { 1875 correct_ret_addr = ri->ret_addr; 1876 /* 1877 * This is the real return address. Any other 1878 * instances associated with this task are for 1879 * other calls deeper on the call stack 1880 */ 1881 goto found; 1882 } 1883 1884 node = node->next; 1885 } 1886 pr_err("Oops! Kretprobe fails to find correct return address.\n"); 1887 BUG_ON(1); 1888 1889 found: 1890 /* Unlink all nodes for this frame. */ 1891 current->kretprobe_instances.first = node->next; 1892 node->next = NULL; 1893 1894 /* Run them.. */ 1895 while (first) { 1896 ri = container_of(first, struct kretprobe_instance, llist); 1897 first = first->next; 1898 1899 rp = get_kretprobe(ri); 1900 if (rp && rp->handler) { 1901 struct kprobe *prev = kprobe_running(); 1902 1903 __this_cpu_write(current_kprobe, &rp->kp); 1904 ri->ret_addr = correct_ret_addr; 1905 rp->handler(ri, regs); 1906 __this_cpu_write(current_kprobe, prev); 1907 } 1908 1909 recycle_rp_inst(ri); 1910 } 1911 1912 return (unsigned long)correct_ret_addr; 1913 } 1914 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler) 1915 1916 /* 1917 * This kprobe pre_handler is registered with every kretprobe. When probe 1918 * hits it will set up the return probe. 1919 */ 1920 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 1921 { 1922 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1923 struct kretprobe_instance *ri; 1924 struct freelist_node *fn; 1925 1926 fn = freelist_try_get(&rp->freelist); 1927 if (!fn) { 1928 rp->nmissed++; 1929 return 0; 1930 } 1931 1932 ri = container_of(fn, struct kretprobe_instance, freelist); 1933 1934 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 1935 freelist_add(&ri->freelist, &rp->freelist); 1936 return 0; 1937 } 1938 1939 arch_prepare_kretprobe(ri, regs); 1940 1941 __llist_add(&ri->llist, ¤t->kretprobe_instances); 1942 1943 return 0; 1944 } 1945 NOKPROBE_SYMBOL(pre_handler_kretprobe); 1946 1947 bool __weak arch_kprobe_on_func_entry(unsigned long offset) 1948 { 1949 return !offset; 1950 } 1951 1952 /** 1953 * kprobe_on_func_entry() -- check whether given address is function entry 1954 * @addr: Target address 1955 * @sym: Target symbol name 1956 * @offset: The offset from the symbol or the address 1957 * 1958 * This checks whether the given @addr+@offset or @sym+@offset is on the 1959 * function entry address or not. 1960 * This returns 0 if it is the function entry, or -EINVAL if it is not. 1961 * And also it returns -ENOENT if it fails the symbol or address lookup. 1962 * Caller must pass @addr or @sym (either one must be NULL), or this 1963 * returns -EINVAL. 1964 */ 1965 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 1966 { 1967 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset); 1968 1969 if (IS_ERR(kp_addr)) 1970 return PTR_ERR(kp_addr); 1971 1972 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset)) 1973 return -ENOENT; 1974 1975 if (!arch_kprobe_on_func_entry(offset)) 1976 return -EINVAL; 1977 1978 return 0; 1979 } 1980 1981 int register_kretprobe(struct kretprobe *rp) 1982 { 1983 int ret; 1984 struct kretprobe_instance *inst; 1985 int i; 1986 void *addr; 1987 1988 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset); 1989 if (ret) 1990 return ret; 1991 1992 /* If only rp->kp.addr is specified, check reregistering kprobes */ 1993 if (rp->kp.addr && warn_kprobe_rereg(&rp->kp)) 1994 return -EINVAL; 1995 1996 if (kretprobe_blacklist_size) { 1997 addr = kprobe_addr(&rp->kp); 1998 if (IS_ERR(addr)) 1999 return PTR_ERR(addr); 2000 2001 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2002 if (kretprobe_blacklist[i].addr == addr) 2003 return -EINVAL; 2004 } 2005 } 2006 2007 rp->kp.pre_handler = pre_handler_kretprobe; 2008 rp->kp.post_handler = NULL; 2009 2010 /* Pre-allocate memory for max kretprobe instances */ 2011 if (rp->maxactive <= 0) { 2012 #ifdef CONFIG_PREEMPTION 2013 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 2014 #else 2015 rp->maxactive = num_possible_cpus(); 2016 #endif 2017 } 2018 rp->freelist.head = NULL; 2019 rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL); 2020 if (!rp->rph) 2021 return -ENOMEM; 2022 2023 rp->rph->rp = rp; 2024 for (i = 0; i < rp->maxactive; i++) { 2025 inst = kzalloc(sizeof(struct kretprobe_instance) + 2026 rp->data_size, GFP_KERNEL); 2027 if (inst == NULL) { 2028 refcount_set(&rp->rph->ref, i); 2029 free_rp_inst(rp); 2030 return -ENOMEM; 2031 } 2032 inst->rph = rp->rph; 2033 freelist_add(&inst->freelist, &rp->freelist); 2034 } 2035 refcount_set(&rp->rph->ref, i); 2036 2037 rp->nmissed = 0; 2038 /* Establish function entry probe point */ 2039 ret = register_kprobe(&rp->kp); 2040 if (ret != 0) 2041 free_rp_inst(rp); 2042 return ret; 2043 } 2044 EXPORT_SYMBOL_GPL(register_kretprobe); 2045 2046 int register_kretprobes(struct kretprobe **rps, int num) 2047 { 2048 int ret = 0, i; 2049 2050 if (num <= 0) 2051 return -EINVAL; 2052 for (i = 0; i < num; i++) { 2053 ret = register_kretprobe(rps[i]); 2054 if (ret < 0) { 2055 if (i > 0) 2056 unregister_kretprobes(rps, i); 2057 break; 2058 } 2059 } 2060 return ret; 2061 } 2062 EXPORT_SYMBOL_GPL(register_kretprobes); 2063 2064 void unregister_kretprobe(struct kretprobe *rp) 2065 { 2066 unregister_kretprobes(&rp, 1); 2067 } 2068 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2069 2070 void unregister_kretprobes(struct kretprobe **rps, int num) 2071 { 2072 int i; 2073 2074 if (num <= 0) 2075 return; 2076 mutex_lock(&kprobe_mutex); 2077 for (i = 0; i < num; i++) { 2078 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 2079 rps[i]->kp.addr = NULL; 2080 rps[i]->rph->rp = NULL; 2081 } 2082 mutex_unlock(&kprobe_mutex); 2083 2084 synchronize_rcu(); 2085 for (i = 0; i < num; i++) { 2086 if (rps[i]->kp.addr) { 2087 __unregister_kprobe_bottom(&rps[i]->kp); 2088 free_rp_inst(rps[i]); 2089 } 2090 } 2091 } 2092 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2093 2094 #else /* CONFIG_KRETPROBES */ 2095 int register_kretprobe(struct kretprobe *rp) 2096 { 2097 return -ENOSYS; 2098 } 2099 EXPORT_SYMBOL_GPL(register_kretprobe); 2100 2101 int register_kretprobes(struct kretprobe **rps, int num) 2102 { 2103 return -ENOSYS; 2104 } 2105 EXPORT_SYMBOL_GPL(register_kretprobes); 2106 2107 void unregister_kretprobe(struct kretprobe *rp) 2108 { 2109 } 2110 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2111 2112 void unregister_kretprobes(struct kretprobe **rps, int num) 2113 { 2114 } 2115 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2116 2117 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2118 { 2119 return 0; 2120 } 2121 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2122 2123 #endif /* CONFIG_KRETPROBES */ 2124 2125 /* Set the kprobe gone and remove its instruction buffer. */ 2126 static void kill_kprobe(struct kprobe *p) 2127 { 2128 struct kprobe *kp; 2129 2130 lockdep_assert_held(&kprobe_mutex); 2131 2132 p->flags |= KPROBE_FLAG_GONE; 2133 if (kprobe_aggrprobe(p)) { 2134 /* 2135 * If this is an aggr_kprobe, we have to list all the 2136 * chained probes and mark them GONE. 2137 */ 2138 list_for_each_entry(kp, &p->list, list) 2139 kp->flags |= KPROBE_FLAG_GONE; 2140 p->post_handler = NULL; 2141 kill_optimized_kprobe(p); 2142 } 2143 /* 2144 * Here, we can remove insn_slot safely, because no thread calls 2145 * the original probed function (which will be freed soon) any more. 2146 */ 2147 arch_remove_kprobe(p); 2148 2149 /* 2150 * The module is going away. We should disarm the kprobe which 2151 * is using ftrace, because ftrace framework is still available at 2152 * MODULE_STATE_GOING notification. 2153 */ 2154 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed) 2155 disarm_kprobe_ftrace(p); 2156 } 2157 2158 /* Disable one kprobe */ 2159 int disable_kprobe(struct kprobe *kp) 2160 { 2161 int ret = 0; 2162 struct kprobe *p; 2163 2164 mutex_lock(&kprobe_mutex); 2165 2166 /* Disable this kprobe */ 2167 p = __disable_kprobe(kp); 2168 if (IS_ERR(p)) 2169 ret = PTR_ERR(p); 2170 2171 mutex_unlock(&kprobe_mutex); 2172 return ret; 2173 } 2174 EXPORT_SYMBOL_GPL(disable_kprobe); 2175 2176 /* Enable one kprobe */ 2177 int enable_kprobe(struct kprobe *kp) 2178 { 2179 int ret = 0; 2180 struct kprobe *p; 2181 2182 mutex_lock(&kprobe_mutex); 2183 2184 /* Check whether specified probe is valid. */ 2185 p = __get_valid_kprobe(kp); 2186 if (unlikely(p == NULL)) { 2187 ret = -EINVAL; 2188 goto out; 2189 } 2190 2191 if (kprobe_gone(kp)) { 2192 /* This kprobe has gone, we couldn't enable it. */ 2193 ret = -EINVAL; 2194 goto out; 2195 } 2196 2197 if (p != kp) 2198 kp->flags &= ~KPROBE_FLAG_DISABLED; 2199 2200 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2201 p->flags &= ~KPROBE_FLAG_DISABLED; 2202 ret = arm_kprobe(p); 2203 if (ret) 2204 p->flags |= KPROBE_FLAG_DISABLED; 2205 } 2206 out: 2207 mutex_unlock(&kprobe_mutex); 2208 return ret; 2209 } 2210 EXPORT_SYMBOL_GPL(enable_kprobe); 2211 2212 /* Caller must NOT call this in usual path. This is only for critical case */ 2213 void dump_kprobe(struct kprobe *kp) 2214 { 2215 pr_err("Dumping kprobe:\n"); 2216 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n", 2217 kp->symbol_name, kp->offset, kp->addr); 2218 } 2219 NOKPROBE_SYMBOL(dump_kprobe); 2220 2221 int kprobe_add_ksym_blacklist(unsigned long entry) 2222 { 2223 struct kprobe_blacklist_entry *ent; 2224 unsigned long offset = 0, size = 0; 2225 2226 if (!kernel_text_address(entry) || 2227 !kallsyms_lookup_size_offset(entry, &size, &offset)) 2228 return -EINVAL; 2229 2230 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2231 if (!ent) 2232 return -ENOMEM; 2233 ent->start_addr = entry; 2234 ent->end_addr = entry + size; 2235 INIT_LIST_HEAD(&ent->list); 2236 list_add_tail(&ent->list, &kprobe_blacklist); 2237 2238 return (int)size; 2239 } 2240 2241 /* Add all symbols in given area into kprobe blacklist */ 2242 int kprobe_add_area_blacklist(unsigned long start, unsigned long end) 2243 { 2244 unsigned long entry; 2245 int ret = 0; 2246 2247 for (entry = start; entry < end; entry += ret) { 2248 ret = kprobe_add_ksym_blacklist(entry); 2249 if (ret < 0) 2250 return ret; 2251 if (ret == 0) /* In case of alias symbol */ 2252 ret = 1; 2253 } 2254 return 0; 2255 } 2256 2257 /* Remove all symbols in given area from kprobe blacklist */ 2258 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end) 2259 { 2260 struct kprobe_blacklist_entry *ent, *n; 2261 2262 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) { 2263 if (ent->start_addr < start || ent->start_addr >= end) 2264 continue; 2265 list_del(&ent->list); 2266 kfree(ent); 2267 } 2268 } 2269 2270 static void kprobe_remove_ksym_blacklist(unsigned long entry) 2271 { 2272 kprobe_remove_area_blacklist(entry, entry + 1); 2273 } 2274 2275 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value, 2276 char *type, char *sym) 2277 { 2278 return -ERANGE; 2279 } 2280 2281 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 2282 char *sym) 2283 { 2284 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 2285 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym)) 2286 return 0; 2287 #ifdef CONFIG_OPTPROBES 2288 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym)) 2289 return 0; 2290 #endif 2291 #endif 2292 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym)) 2293 return 0; 2294 return -ERANGE; 2295 } 2296 2297 int __init __weak arch_populate_kprobe_blacklist(void) 2298 { 2299 return 0; 2300 } 2301 2302 /* 2303 * Lookup and populate the kprobe_blacklist. 2304 * 2305 * Unlike the kretprobe blacklist, we'll need to determine 2306 * the range of addresses that belong to the said functions, 2307 * since a kprobe need not necessarily be at the beginning 2308 * of a function. 2309 */ 2310 static int __init populate_kprobe_blacklist(unsigned long *start, 2311 unsigned long *end) 2312 { 2313 unsigned long entry; 2314 unsigned long *iter; 2315 int ret; 2316 2317 for (iter = start; iter < end; iter++) { 2318 entry = arch_deref_entry_point((void *)*iter); 2319 ret = kprobe_add_ksym_blacklist(entry); 2320 if (ret == -EINVAL) 2321 continue; 2322 if (ret < 0) 2323 return ret; 2324 } 2325 2326 /* Symbols in __kprobes_text are blacklisted */ 2327 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start, 2328 (unsigned long)__kprobes_text_end); 2329 if (ret) 2330 return ret; 2331 2332 /* Symbols in noinstr section are blacklisted */ 2333 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start, 2334 (unsigned long)__noinstr_text_end); 2335 2336 return ret ? : arch_populate_kprobe_blacklist(); 2337 } 2338 2339 static void add_module_kprobe_blacklist(struct module *mod) 2340 { 2341 unsigned long start, end; 2342 int i; 2343 2344 if (mod->kprobe_blacklist) { 2345 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2346 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]); 2347 } 2348 2349 start = (unsigned long)mod->kprobes_text_start; 2350 if (start) { 2351 end = start + mod->kprobes_text_size; 2352 kprobe_add_area_blacklist(start, end); 2353 } 2354 2355 start = (unsigned long)mod->noinstr_text_start; 2356 if (start) { 2357 end = start + mod->noinstr_text_size; 2358 kprobe_add_area_blacklist(start, end); 2359 } 2360 } 2361 2362 static void remove_module_kprobe_blacklist(struct module *mod) 2363 { 2364 unsigned long start, end; 2365 int i; 2366 2367 if (mod->kprobe_blacklist) { 2368 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2369 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]); 2370 } 2371 2372 start = (unsigned long)mod->kprobes_text_start; 2373 if (start) { 2374 end = start + mod->kprobes_text_size; 2375 kprobe_remove_area_blacklist(start, end); 2376 } 2377 2378 start = (unsigned long)mod->noinstr_text_start; 2379 if (start) { 2380 end = start + mod->noinstr_text_size; 2381 kprobe_remove_area_blacklist(start, end); 2382 } 2383 } 2384 2385 /* Module notifier call back, checking kprobes on the module */ 2386 static int kprobes_module_callback(struct notifier_block *nb, 2387 unsigned long val, void *data) 2388 { 2389 struct module *mod = data; 2390 struct hlist_head *head; 2391 struct kprobe *p; 2392 unsigned int i; 2393 int checkcore = (val == MODULE_STATE_GOING); 2394 2395 if (val == MODULE_STATE_COMING) { 2396 mutex_lock(&kprobe_mutex); 2397 add_module_kprobe_blacklist(mod); 2398 mutex_unlock(&kprobe_mutex); 2399 } 2400 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2401 return NOTIFY_DONE; 2402 2403 /* 2404 * When MODULE_STATE_GOING was notified, both of module .text and 2405 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2406 * notified, only .init.text section would be freed. We need to 2407 * disable kprobes which have been inserted in the sections. 2408 */ 2409 mutex_lock(&kprobe_mutex); 2410 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2411 head = &kprobe_table[i]; 2412 hlist_for_each_entry(p, head, hlist) 2413 if (within_module_init((unsigned long)p->addr, mod) || 2414 (checkcore && 2415 within_module_core((unsigned long)p->addr, mod))) { 2416 /* 2417 * The vaddr this probe is installed will soon 2418 * be vfreed buy not synced to disk. Hence, 2419 * disarming the breakpoint isn't needed. 2420 * 2421 * Note, this will also move any optimized probes 2422 * that are pending to be removed from their 2423 * corresponding lists to the freeing_list and 2424 * will not be touched by the delayed 2425 * kprobe_optimizer work handler. 2426 */ 2427 kill_kprobe(p); 2428 } 2429 } 2430 if (val == MODULE_STATE_GOING) 2431 remove_module_kprobe_blacklist(mod); 2432 mutex_unlock(&kprobe_mutex); 2433 return NOTIFY_DONE; 2434 } 2435 2436 static struct notifier_block kprobe_module_nb = { 2437 .notifier_call = kprobes_module_callback, 2438 .priority = 0 2439 }; 2440 2441 /* Markers of _kprobe_blacklist section */ 2442 extern unsigned long __start_kprobe_blacklist[]; 2443 extern unsigned long __stop_kprobe_blacklist[]; 2444 2445 void kprobe_free_init_mem(void) 2446 { 2447 void *start = (void *)(&__init_begin); 2448 void *end = (void *)(&__init_end); 2449 struct hlist_head *head; 2450 struct kprobe *p; 2451 int i; 2452 2453 mutex_lock(&kprobe_mutex); 2454 2455 /* Kill all kprobes on initmem */ 2456 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2457 head = &kprobe_table[i]; 2458 hlist_for_each_entry(p, head, hlist) { 2459 if (start <= (void *)p->addr && (void *)p->addr < end) 2460 kill_kprobe(p); 2461 } 2462 } 2463 2464 mutex_unlock(&kprobe_mutex); 2465 } 2466 2467 static int __init init_kprobes(void) 2468 { 2469 int i, err = 0; 2470 2471 /* FIXME allocate the probe table, currently defined statically */ 2472 /* initialize all list heads */ 2473 for (i = 0; i < KPROBE_TABLE_SIZE; i++) 2474 INIT_HLIST_HEAD(&kprobe_table[i]); 2475 2476 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2477 __stop_kprobe_blacklist); 2478 if (err) { 2479 pr_err("kprobes: failed to populate blacklist: %d\n", err); 2480 pr_err("Please take care of using kprobes.\n"); 2481 } 2482 2483 if (kretprobe_blacklist_size) { 2484 /* lookup the function address from its name */ 2485 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2486 kretprobe_blacklist[i].addr = 2487 kprobe_lookup_name(kretprobe_blacklist[i].name, 0); 2488 if (!kretprobe_blacklist[i].addr) 2489 printk("kretprobe: lookup failed: %s\n", 2490 kretprobe_blacklist[i].name); 2491 } 2492 } 2493 2494 /* By default, kprobes are armed */ 2495 kprobes_all_disarmed = false; 2496 2497 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2498 /* Init kprobe_optinsn_slots for allocation */ 2499 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2500 #endif 2501 2502 err = arch_init_kprobes(); 2503 if (!err) 2504 err = register_die_notifier(&kprobe_exceptions_nb); 2505 if (!err) 2506 err = register_module_notifier(&kprobe_module_nb); 2507 2508 kprobes_initialized = (err == 0); 2509 2510 if (!err) 2511 init_test_probes(); 2512 return err; 2513 } 2514 early_initcall(init_kprobes); 2515 2516 #if defined(CONFIG_OPTPROBES) 2517 static int __init init_optprobes(void) 2518 { 2519 /* 2520 * Enable kprobe optimization - this kicks the optimizer which 2521 * depends on synchronize_rcu_tasks() and ksoftirqd, that is 2522 * not spawned in early initcall. So delay the optimization. 2523 */ 2524 optimize_all_kprobes(); 2525 2526 return 0; 2527 } 2528 subsys_initcall(init_optprobes); 2529 #endif 2530 2531 #ifdef CONFIG_DEBUG_FS 2532 static void report_probe(struct seq_file *pi, struct kprobe *p, 2533 const char *sym, int offset, char *modname, struct kprobe *pp) 2534 { 2535 char *kprobe_type; 2536 void *addr = p->addr; 2537 2538 if (p->pre_handler == pre_handler_kretprobe) 2539 kprobe_type = "r"; 2540 else 2541 kprobe_type = "k"; 2542 2543 if (!kallsyms_show_value(pi->file->f_cred)) 2544 addr = NULL; 2545 2546 if (sym) 2547 seq_printf(pi, "%px %s %s+0x%x %s ", 2548 addr, kprobe_type, sym, offset, 2549 (modname ? modname : " ")); 2550 else /* try to use %pS */ 2551 seq_printf(pi, "%px %s %pS ", 2552 addr, kprobe_type, p->addr); 2553 2554 if (!pp) 2555 pp = p; 2556 seq_printf(pi, "%s%s%s%s\n", 2557 (kprobe_gone(p) ? "[GONE]" : ""), 2558 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2559 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2560 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2561 } 2562 2563 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2564 { 2565 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2566 } 2567 2568 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2569 { 2570 (*pos)++; 2571 if (*pos >= KPROBE_TABLE_SIZE) 2572 return NULL; 2573 return pos; 2574 } 2575 2576 static void kprobe_seq_stop(struct seq_file *f, void *v) 2577 { 2578 /* Nothing to do */ 2579 } 2580 2581 static int show_kprobe_addr(struct seq_file *pi, void *v) 2582 { 2583 struct hlist_head *head; 2584 struct kprobe *p, *kp; 2585 const char *sym = NULL; 2586 unsigned int i = *(loff_t *) v; 2587 unsigned long offset = 0; 2588 char *modname, namebuf[KSYM_NAME_LEN]; 2589 2590 head = &kprobe_table[i]; 2591 preempt_disable(); 2592 hlist_for_each_entry_rcu(p, head, hlist) { 2593 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2594 &offset, &modname, namebuf); 2595 if (kprobe_aggrprobe(p)) { 2596 list_for_each_entry_rcu(kp, &p->list, list) 2597 report_probe(pi, kp, sym, offset, modname, p); 2598 } else 2599 report_probe(pi, p, sym, offset, modname, NULL); 2600 } 2601 preempt_enable(); 2602 return 0; 2603 } 2604 2605 static const struct seq_operations kprobes_sops = { 2606 .start = kprobe_seq_start, 2607 .next = kprobe_seq_next, 2608 .stop = kprobe_seq_stop, 2609 .show = show_kprobe_addr 2610 }; 2611 2612 DEFINE_SEQ_ATTRIBUTE(kprobes); 2613 2614 /* kprobes/blacklist -- shows which functions can not be probed */ 2615 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2616 { 2617 mutex_lock(&kprobe_mutex); 2618 return seq_list_start(&kprobe_blacklist, *pos); 2619 } 2620 2621 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2622 { 2623 return seq_list_next(v, &kprobe_blacklist, pos); 2624 } 2625 2626 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2627 { 2628 struct kprobe_blacklist_entry *ent = 2629 list_entry(v, struct kprobe_blacklist_entry, list); 2630 2631 /* 2632 * If /proc/kallsyms is not showing kernel address, we won't 2633 * show them here either. 2634 */ 2635 if (!kallsyms_show_value(m->file->f_cred)) 2636 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL, 2637 (void *)ent->start_addr); 2638 else 2639 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr, 2640 (void *)ent->end_addr, (void *)ent->start_addr); 2641 return 0; 2642 } 2643 2644 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v) 2645 { 2646 mutex_unlock(&kprobe_mutex); 2647 } 2648 2649 static const struct seq_operations kprobe_blacklist_sops = { 2650 .start = kprobe_blacklist_seq_start, 2651 .next = kprobe_blacklist_seq_next, 2652 .stop = kprobe_blacklist_seq_stop, 2653 .show = kprobe_blacklist_seq_show, 2654 }; 2655 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist); 2656 2657 static int arm_all_kprobes(void) 2658 { 2659 struct hlist_head *head; 2660 struct kprobe *p; 2661 unsigned int i, total = 0, errors = 0; 2662 int err, ret = 0; 2663 2664 mutex_lock(&kprobe_mutex); 2665 2666 /* If kprobes are armed, just return */ 2667 if (!kprobes_all_disarmed) 2668 goto already_enabled; 2669 2670 /* 2671 * optimize_kprobe() called by arm_kprobe() checks 2672 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2673 * arm_kprobe. 2674 */ 2675 kprobes_all_disarmed = false; 2676 /* Arming kprobes doesn't optimize kprobe itself */ 2677 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2678 head = &kprobe_table[i]; 2679 /* Arm all kprobes on a best-effort basis */ 2680 hlist_for_each_entry(p, head, hlist) { 2681 if (!kprobe_disabled(p)) { 2682 err = arm_kprobe(p); 2683 if (err) { 2684 errors++; 2685 ret = err; 2686 } 2687 total++; 2688 } 2689 } 2690 } 2691 2692 if (errors) 2693 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n", 2694 errors, total); 2695 else 2696 pr_info("Kprobes globally enabled\n"); 2697 2698 already_enabled: 2699 mutex_unlock(&kprobe_mutex); 2700 return ret; 2701 } 2702 2703 static int disarm_all_kprobes(void) 2704 { 2705 struct hlist_head *head; 2706 struct kprobe *p; 2707 unsigned int i, total = 0, errors = 0; 2708 int err, ret = 0; 2709 2710 mutex_lock(&kprobe_mutex); 2711 2712 /* If kprobes are already disarmed, just return */ 2713 if (kprobes_all_disarmed) { 2714 mutex_unlock(&kprobe_mutex); 2715 return 0; 2716 } 2717 2718 kprobes_all_disarmed = true; 2719 2720 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2721 head = &kprobe_table[i]; 2722 /* Disarm all kprobes on a best-effort basis */ 2723 hlist_for_each_entry(p, head, hlist) { 2724 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { 2725 err = disarm_kprobe(p, false); 2726 if (err) { 2727 errors++; 2728 ret = err; 2729 } 2730 total++; 2731 } 2732 } 2733 } 2734 2735 if (errors) 2736 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n", 2737 errors, total); 2738 else 2739 pr_info("Kprobes globally disabled\n"); 2740 2741 mutex_unlock(&kprobe_mutex); 2742 2743 /* Wait for disarming all kprobes by optimizer */ 2744 wait_for_kprobe_optimizer(); 2745 2746 return ret; 2747 } 2748 2749 /* 2750 * XXX: The debugfs bool file interface doesn't allow for callbacks 2751 * when the bool state is switched. We can reuse that facility when 2752 * available 2753 */ 2754 static ssize_t read_enabled_file_bool(struct file *file, 2755 char __user *user_buf, size_t count, loff_t *ppos) 2756 { 2757 char buf[3]; 2758 2759 if (!kprobes_all_disarmed) 2760 buf[0] = '1'; 2761 else 2762 buf[0] = '0'; 2763 buf[1] = '\n'; 2764 buf[2] = 0x00; 2765 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2766 } 2767 2768 static ssize_t write_enabled_file_bool(struct file *file, 2769 const char __user *user_buf, size_t count, loff_t *ppos) 2770 { 2771 char buf[32]; 2772 size_t buf_size; 2773 int ret = 0; 2774 2775 buf_size = min(count, (sizeof(buf)-1)); 2776 if (copy_from_user(buf, user_buf, buf_size)) 2777 return -EFAULT; 2778 2779 buf[buf_size] = '\0'; 2780 switch (buf[0]) { 2781 case 'y': 2782 case 'Y': 2783 case '1': 2784 ret = arm_all_kprobes(); 2785 break; 2786 case 'n': 2787 case 'N': 2788 case '0': 2789 ret = disarm_all_kprobes(); 2790 break; 2791 default: 2792 return -EINVAL; 2793 } 2794 2795 if (ret) 2796 return ret; 2797 2798 return count; 2799 } 2800 2801 static const struct file_operations fops_kp = { 2802 .read = read_enabled_file_bool, 2803 .write = write_enabled_file_bool, 2804 .llseek = default_llseek, 2805 }; 2806 2807 static int __init debugfs_kprobe_init(void) 2808 { 2809 struct dentry *dir; 2810 unsigned int value = 1; 2811 2812 dir = debugfs_create_dir("kprobes", NULL); 2813 2814 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops); 2815 2816 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp); 2817 2818 debugfs_create_file("blacklist", 0400, dir, NULL, 2819 &kprobe_blacklist_fops); 2820 2821 return 0; 2822 } 2823 2824 late_initcall(debugfs_kprobe_init); 2825 #endif /* CONFIG_DEBUG_FS */ 2826