xref: /openbmc/linux/kernel/kprobes.c (revision 9dbbc3b9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *		Probes initial implementation (includes suggestions from
10  *		Rusty Russell).
11  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *		hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *		interface to access function arguments.
15  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *		exceptions notifier to be first on the priority list.
17  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *		<prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38 #include <linux/perf_event.h>
39 
40 #include <asm/sections.h>
41 #include <asm/cacheflush.h>
42 #include <asm/errno.h>
43 #include <linux/uaccess.h>
44 
45 #define KPROBE_HASH_BITS 6
46 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
47 
48 
49 static int kprobes_initialized;
50 /* kprobe_table can be accessed by
51  * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
52  * Or
53  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
54  */
55 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
56 
57 /* NOTE: change this value only with kprobe_mutex held */
58 static bool kprobes_all_disarmed;
59 
60 /* This protects kprobe_table and optimizing_list */
61 static DEFINE_MUTEX(kprobe_mutex);
62 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
63 
64 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
65 					unsigned int __unused)
66 {
67 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
68 }
69 
70 /* Blacklist -- list of struct kprobe_blacklist_entry */
71 static LIST_HEAD(kprobe_blacklist);
72 
73 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
74 /*
75  * kprobe->ainsn.insn points to the copy of the instruction to be
76  * single-stepped. x86_64, POWER4 and above have no-exec support and
77  * stepping on the instruction on a vmalloced/kmalloced/data page
78  * is a recipe for disaster
79  */
80 struct kprobe_insn_page {
81 	struct list_head list;
82 	kprobe_opcode_t *insns;		/* Page of instruction slots */
83 	struct kprobe_insn_cache *cache;
84 	int nused;
85 	int ngarbage;
86 	char slot_used[];
87 };
88 
89 #define KPROBE_INSN_PAGE_SIZE(slots)			\
90 	(offsetof(struct kprobe_insn_page, slot_used) +	\
91 	 (sizeof(char) * (slots)))
92 
93 static int slots_per_page(struct kprobe_insn_cache *c)
94 {
95 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
96 }
97 
98 enum kprobe_slot_state {
99 	SLOT_CLEAN = 0,
100 	SLOT_DIRTY = 1,
101 	SLOT_USED = 2,
102 };
103 
104 void __weak *alloc_insn_page(void)
105 {
106 	return module_alloc(PAGE_SIZE);
107 }
108 
109 static void free_insn_page(void *page)
110 {
111 	module_memfree(page);
112 }
113 
114 struct kprobe_insn_cache kprobe_insn_slots = {
115 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
116 	.alloc = alloc_insn_page,
117 	.free = free_insn_page,
118 	.sym = KPROBE_INSN_PAGE_SYM,
119 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
120 	.insn_size = MAX_INSN_SIZE,
121 	.nr_garbage = 0,
122 };
123 static int collect_garbage_slots(struct kprobe_insn_cache *c);
124 
125 /**
126  * __get_insn_slot() - Find a slot on an executable page for an instruction.
127  * We allocate an executable page if there's no room on existing ones.
128  */
129 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
130 {
131 	struct kprobe_insn_page *kip;
132 	kprobe_opcode_t *slot = NULL;
133 
134 	/* Since the slot array is not protected by rcu, we need a mutex */
135 	mutex_lock(&c->mutex);
136  retry:
137 	rcu_read_lock();
138 	list_for_each_entry_rcu(kip, &c->pages, list) {
139 		if (kip->nused < slots_per_page(c)) {
140 			int i;
141 			for (i = 0; i < slots_per_page(c); i++) {
142 				if (kip->slot_used[i] == SLOT_CLEAN) {
143 					kip->slot_used[i] = SLOT_USED;
144 					kip->nused++;
145 					slot = kip->insns + (i * c->insn_size);
146 					rcu_read_unlock();
147 					goto out;
148 				}
149 			}
150 			/* kip->nused is broken. Fix it. */
151 			kip->nused = slots_per_page(c);
152 			WARN_ON(1);
153 		}
154 	}
155 	rcu_read_unlock();
156 
157 	/* If there are any garbage slots, collect it and try again. */
158 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
159 		goto retry;
160 
161 	/* All out of space.  Need to allocate a new page. */
162 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
163 	if (!kip)
164 		goto out;
165 
166 	/*
167 	 * Use module_alloc so this page is within +/- 2GB of where the
168 	 * kernel image and loaded module images reside. This is required
169 	 * so x86_64 can correctly handle the %rip-relative fixups.
170 	 */
171 	kip->insns = c->alloc();
172 	if (!kip->insns) {
173 		kfree(kip);
174 		goto out;
175 	}
176 	INIT_LIST_HEAD(&kip->list);
177 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
178 	kip->slot_used[0] = SLOT_USED;
179 	kip->nused = 1;
180 	kip->ngarbage = 0;
181 	kip->cache = c;
182 	list_add_rcu(&kip->list, &c->pages);
183 	slot = kip->insns;
184 
185 	/* Record the perf ksymbol register event after adding the page */
186 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
187 			   PAGE_SIZE, false, c->sym);
188 out:
189 	mutex_unlock(&c->mutex);
190 	return slot;
191 }
192 
193 /* Return 1 if all garbages are collected, otherwise 0. */
194 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
195 {
196 	kip->slot_used[idx] = SLOT_CLEAN;
197 	kip->nused--;
198 	if (kip->nused == 0) {
199 		/*
200 		 * Page is no longer in use.  Free it unless
201 		 * it's the last one.  We keep the last one
202 		 * so as not to have to set it up again the
203 		 * next time somebody inserts a probe.
204 		 */
205 		if (!list_is_singular(&kip->list)) {
206 			/*
207 			 * Record perf ksymbol unregister event before removing
208 			 * the page.
209 			 */
210 			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
211 					   (unsigned long)kip->insns, PAGE_SIZE, true,
212 					   kip->cache->sym);
213 			list_del_rcu(&kip->list);
214 			synchronize_rcu();
215 			kip->cache->free(kip->insns);
216 			kfree(kip);
217 		}
218 		return 1;
219 	}
220 	return 0;
221 }
222 
223 static int collect_garbage_slots(struct kprobe_insn_cache *c)
224 {
225 	struct kprobe_insn_page *kip, *next;
226 
227 	/* Ensure no-one is interrupted on the garbages */
228 	synchronize_rcu();
229 
230 	list_for_each_entry_safe(kip, next, &c->pages, list) {
231 		int i;
232 		if (kip->ngarbage == 0)
233 			continue;
234 		kip->ngarbage = 0;	/* we will collect all garbages */
235 		for (i = 0; i < slots_per_page(c); i++) {
236 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
237 				break;
238 		}
239 	}
240 	c->nr_garbage = 0;
241 	return 0;
242 }
243 
244 void __free_insn_slot(struct kprobe_insn_cache *c,
245 		      kprobe_opcode_t *slot, int dirty)
246 {
247 	struct kprobe_insn_page *kip;
248 	long idx;
249 
250 	mutex_lock(&c->mutex);
251 	rcu_read_lock();
252 	list_for_each_entry_rcu(kip, &c->pages, list) {
253 		idx = ((long)slot - (long)kip->insns) /
254 			(c->insn_size * sizeof(kprobe_opcode_t));
255 		if (idx >= 0 && idx < slots_per_page(c))
256 			goto out;
257 	}
258 	/* Could not find this slot. */
259 	WARN_ON(1);
260 	kip = NULL;
261 out:
262 	rcu_read_unlock();
263 	/* Mark and sweep: this may sleep */
264 	if (kip) {
265 		/* Check double free */
266 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
267 		if (dirty) {
268 			kip->slot_used[idx] = SLOT_DIRTY;
269 			kip->ngarbage++;
270 			if (++c->nr_garbage > slots_per_page(c))
271 				collect_garbage_slots(c);
272 		} else {
273 			collect_one_slot(kip, idx);
274 		}
275 	}
276 	mutex_unlock(&c->mutex);
277 }
278 
279 /*
280  * Check given address is on the page of kprobe instruction slots.
281  * This will be used for checking whether the address on a stack
282  * is on a text area or not.
283  */
284 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
285 {
286 	struct kprobe_insn_page *kip;
287 	bool ret = false;
288 
289 	rcu_read_lock();
290 	list_for_each_entry_rcu(kip, &c->pages, list) {
291 		if (addr >= (unsigned long)kip->insns &&
292 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
293 			ret = true;
294 			break;
295 		}
296 	}
297 	rcu_read_unlock();
298 
299 	return ret;
300 }
301 
302 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
303 			     unsigned long *value, char *type, char *sym)
304 {
305 	struct kprobe_insn_page *kip;
306 	int ret = -ERANGE;
307 
308 	rcu_read_lock();
309 	list_for_each_entry_rcu(kip, &c->pages, list) {
310 		if ((*symnum)--)
311 			continue;
312 		strlcpy(sym, c->sym, KSYM_NAME_LEN);
313 		*type = 't';
314 		*value = (unsigned long)kip->insns;
315 		ret = 0;
316 		break;
317 	}
318 	rcu_read_unlock();
319 
320 	return ret;
321 }
322 
323 #ifdef CONFIG_OPTPROBES
324 void __weak *alloc_optinsn_page(void)
325 {
326 	return alloc_insn_page();
327 }
328 
329 void __weak free_optinsn_page(void *page)
330 {
331 	free_insn_page(page);
332 }
333 
334 /* For optimized_kprobe buffer */
335 struct kprobe_insn_cache kprobe_optinsn_slots = {
336 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
337 	.alloc = alloc_optinsn_page,
338 	.free = free_optinsn_page,
339 	.sym = KPROBE_OPTINSN_PAGE_SYM,
340 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
341 	/* .insn_size is initialized later */
342 	.nr_garbage = 0,
343 };
344 #endif
345 #endif
346 
347 /* We have preemption disabled.. so it is safe to use __ versions */
348 static inline void set_kprobe_instance(struct kprobe *kp)
349 {
350 	__this_cpu_write(kprobe_instance, kp);
351 }
352 
353 static inline void reset_kprobe_instance(void)
354 {
355 	__this_cpu_write(kprobe_instance, NULL);
356 }
357 
358 /*
359  * This routine is called either:
360  * 	- under the kprobe_mutex - during kprobe_[un]register()
361  * 				OR
362  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
363  */
364 struct kprobe *get_kprobe(void *addr)
365 {
366 	struct hlist_head *head;
367 	struct kprobe *p;
368 
369 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
370 	hlist_for_each_entry_rcu(p, head, hlist,
371 				 lockdep_is_held(&kprobe_mutex)) {
372 		if (p->addr == addr)
373 			return p;
374 	}
375 
376 	return NULL;
377 }
378 NOKPROBE_SYMBOL(get_kprobe);
379 
380 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
381 
382 /* Return true if the kprobe is an aggregator */
383 static inline int kprobe_aggrprobe(struct kprobe *p)
384 {
385 	return p->pre_handler == aggr_pre_handler;
386 }
387 
388 /* Return true(!0) if the kprobe is unused */
389 static inline int kprobe_unused(struct kprobe *p)
390 {
391 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
392 	       list_empty(&p->list);
393 }
394 
395 /*
396  * Keep all fields in the kprobe consistent
397  */
398 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
399 {
400 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
401 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
402 }
403 
404 #ifdef CONFIG_OPTPROBES
405 /* NOTE: change this value only with kprobe_mutex held */
406 static bool kprobes_allow_optimization;
407 
408 /*
409  * Call all pre_handler on the list, but ignores its return value.
410  * This must be called from arch-dep optimized caller.
411  */
412 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
413 {
414 	struct kprobe *kp;
415 
416 	list_for_each_entry_rcu(kp, &p->list, list) {
417 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
418 			set_kprobe_instance(kp);
419 			kp->pre_handler(kp, regs);
420 		}
421 		reset_kprobe_instance();
422 	}
423 }
424 NOKPROBE_SYMBOL(opt_pre_handler);
425 
426 /* Free optimized instructions and optimized_kprobe */
427 static void free_aggr_kprobe(struct kprobe *p)
428 {
429 	struct optimized_kprobe *op;
430 
431 	op = container_of(p, struct optimized_kprobe, kp);
432 	arch_remove_optimized_kprobe(op);
433 	arch_remove_kprobe(p);
434 	kfree(op);
435 }
436 
437 /* Return true(!0) if the kprobe is ready for optimization. */
438 static inline int kprobe_optready(struct kprobe *p)
439 {
440 	struct optimized_kprobe *op;
441 
442 	if (kprobe_aggrprobe(p)) {
443 		op = container_of(p, struct optimized_kprobe, kp);
444 		return arch_prepared_optinsn(&op->optinsn);
445 	}
446 
447 	return 0;
448 }
449 
450 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
451 static inline int kprobe_disarmed(struct kprobe *p)
452 {
453 	struct optimized_kprobe *op;
454 
455 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
456 	if (!kprobe_aggrprobe(p))
457 		return kprobe_disabled(p);
458 
459 	op = container_of(p, struct optimized_kprobe, kp);
460 
461 	return kprobe_disabled(p) && list_empty(&op->list);
462 }
463 
464 /* Return true(!0) if the probe is queued on (un)optimizing lists */
465 static int kprobe_queued(struct kprobe *p)
466 {
467 	struct optimized_kprobe *op;
468 
469 	if (kprobe_aggrprobe(p)) {
470 		op = container_of(p, struct optimized_kprobe, kp);
471 		if (!list_empty(&op->list))
472 			return 1;
473 	}
474 	return 0;
475 }
476 
477 /*
478  * Return an optimized kprobe whose optimizing code replaces
479  * instructions including addr (exclude breakpoint).
480  */
481 static struct kprobe *get_optimized_kprobe(unsigned long addr)
482 {
483 	int i;
484 	struct kprobe *p = NULL;
485 	struct optimized_kprobe *op;
486 
487 	/* Don't check i == 0, since that is a breakpoint case. */
488 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
489 		p = get_kprobe((void *)(addr - i));
490 
491 	if (p && kprobe_optready(p)) {
492 		op = container_of(p, struct optimized_kprobe, kp);
493 		if (arch_within_optimized_kprobe(op, addr))
494 			return p;
495 	}
496 
497 	return NULL;
498 }
499 
500 /* Optimization staging list, protected by kprobe_mutex */
501 static LIST_HEAD(optimizing_list);
502 static LIST_HEAD(unoptimizing_list);
503 static LIST_HEAD(freeing_list);
504 
505 static void kprobe_optimizer(struct work_struct *work);
506 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
507 #define OPTIMIZE_DELAY 5
508 
509 /*
510  * Optimize (replace a breakpoint with a jump) kprobes listed on
511  * optimizing_list.
512  */
513 static void do_optimize_kprobes(void)
514 {
515 	lockdep_assert_held(&text_mutex);
516 	/*
517 	 * The optimization/unoptimization refers online_cpus via
518 	 * stop_machine() and cpu-hotplug modifies online_cpus.
519 	 * And same time, text_mutex will be held in cpu-hotplug and here.
520 	 * This combination can cause a deadlock (cpu-hotplug try to lock
521 	 * text_mutex but stop_machine can not be done because online_cpus
522 	 * has been changed)
523 	 * To avoid this deadlock, caller must have locked cpu hotplug
524 	 * for preventing cpu-hotplug outside of text_mutex locking.
525 	 */
526 	lockdep_assert_cpus_held();
527 
528 	/* Optimization never be done when disarmed */
529 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
530 	    list_empty(&optimizing_list))
531 		return;
532 
533 	arch_optimize_kprobes(&optimizing_list);
534 }
535 
536 /*
537  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
538  * if need) kprobes listed on unoptimizing_list.
539  */
540 static void do_unoptimize_kprobes(void)
541 {
542 	struct optimized_kprobe *op, *tmp;
543 
544 	lockdep_assert_held(&text_mutex);
545 	/* See comment in do_optimize_kprobes() */
546 	lockdep_assert_cpus_held();
547 
548 	/* Unoptimization must be done anytime */
549 	if (list_empty(&unoptimizing_list))
550 		return;
551 
552 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
553 	/* Loop free_list for disarming */
554 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
555 		/* Switching from detour code to origin */
556 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
557 		/* Disarm probes if marked disabled */
558 		if (kprobe_disabled(&op->kp))
559 			arch_disarm_kprobe(&op->kp);
560 		if (kprobe_unused(&op->kp)) {
561 			/*
562 			 * Remove unused probes from hash list. After waiting
563 			 * for synchronization, these probes are reclaimed.
564 			 * (reclaiming is done by do_free_cleaned_kprobes.)
565 			 */
566 			hlist_del_rcu(&op->kp.hlist);
567 		} else
568 			list_del_init(&op->list);
569 	}
570 }
571 
572 /* Reclaim all kprobes on the free_list */
573 static void do_free_cleaned_kprobes(void)
574 {
575 	struct optimized_kprobe *op, *tmp;
576 
577 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
578 		list_del_init(&op->list);
579 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
580 			/*
581 			 * This must not happen, but if there is a kprobe
582 			 * still in use, keep it on kprobes hash list.
583 			 */
584 			continue;
585 		}
586 		free_aggr_kprobe(&op->kp);
587 	}
588 }
589 
590 /* Start optimizer after OPTIMIZE_DELAY passed */
591 static void kick_kprobe_optimizer(void)
592 {
593 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
594 }
595 
596 /* Kprobe jump optimizer */
597 static void kprobe_optimizer(struct work_struct *work)
598 {
599 	mutex_lock(&kprobe_mutex);
600 	cpus_read_lock();
601 	mutex_lock(&text_mutex);
602 
603 	/*
604 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
605 	 * kprobes before waiting for quiesence period.
606 	 */
607 	do_unoptimize_kprobes();
608 
609 	/*
610 	 * Step 2: Wait for quiesence period to ensure all potentially
611 	 * preempted tasks to have normally scheduled. Because optprobe
612 	 * may modify multiple instructions, there is a chance that Nth
613 	 * instruction is preempted. In that case, such tasks can return
614 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
615 	 * Note that on non-preemptive kernel, this is transparently converted
616 	 * to synchronoze_sched() to wait for all interrupts to have completed.
617 	 */
618 	synchronize_rcu_tasks();
619 
620 	/* Step 3: Optimize kprobes after quiesence period */
621 	do_optimize_kprobes();
622 
623 	/* Step 4: Free cleaned kprobes after quiesence period */
624 	do_free_cleaned_kprobes();
625 
626 	mutex_unlock(&text_mutex);
627 	cpus_read_unlock();
628 
629 	/* Step 5: Kick optimizer again if needed */
630 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
631 		kick_kprobe_optimizer();
632 
633 	mutex_unlock(&kprobe_mutex);
634 }
635 
636 /* Wait for completing optimization and unoptimization */
637 void wait_for_kprobe_optimizer(void)
638 {
639 	mutex_lock(&kprobe_mutex);
640 
641 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
642 		mutex_unlock(&kprobe_mutex);
643 
644 		/* this will also make optimizing_work execute immmediately */
645 		flush_delayed_work(&optimizing_work);
646 		/* @optimizing_work might not have been queued yet, relax */
647 		cpu_relax();
648 
649 		mutex_lock(&kprobe_mutex);
650 	}
651 
652 	mutex_unlock(&kprobe_mutex);
653 }
654 
655 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
656 {
657 	struct optimized_kprobe *_op;
658 
659 	list_for_each_entry(_op, &unoptimizing_list, list) {
660 		if (op == _op)
661 			return true;
662 	}
663 
664 	return false;
665 }
666 
667 /* Optimize kprobe if p is ready to be optimized */
668 static void optimize_kprobe(struct kprobe *p)
669 {
670 	struct optimized_kprobe *op;
671 
672 	/* Check if the kprobe is disabled or not ready for optimization. */
673 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
674 	    (kprobe_disabled(p) || kprobes_all_disarmed))
675 		return;
676 
677 	/* kprobes with post_handler can not be optimized */
678 	if (p->post_handler)
679 		return;
680 
681 	op = container_of(p, struct optimized_kprobe, kp);
682 
683 	/* Check there is no other kprobes at the optimized instructions */
684 	if (arch_check_optimized_kprobe(op) < 0)
685 		return;
686 
687 	/* Check if it is already optimized. */
688 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
689 		if (optprobe_queued_unopt(op)) {
690 			/* This is under unoptimizing. Just dequeue the probe */
691 			list_del_init(&op->list);
692 		}
693 		return;
694 	}
695 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
696 
697 	/* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
698 	if (WARN_ON_ONCE(!list_empty(&op->list)))
699 		return;
700 
701 	list_add(&op->list, &optimizing_list);
702 	kick_kprobe_optimizer();
703 }
704 
705 /* Short cut to direct unoptimizing */
706 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
707 {
708 	lockdep_assert_cpus_held();
709 	arch_unoptimize_kprobe(op);
710 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
711 }
712 
713 /* Unoptimize a kprobe if p is optimized */
714 static void unoptimize_kprobe(struct kprobe *p, bool force)
715 {
716 	struct optimized_kprobe *op;
717 
718 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
719 		return; /* This is not an optprobe nor optimized */
720 
721 	op = container_of(p, struct optimized_kprobe, kp);
722 	if (!kprobe_optimized(p))
723 		return;
724 
725 	if (!list_empty(&op->list)) {
726 		if (optprobe_queued_unopt(op)) {
727 			/* Queued in unoptimizing queue */
728 			if (force) {
729 				/*
730 				 * Forcibly unoptimize the kprobe here, and queue it
731 				 * in the freeing list for release afterwards.
732 				 */
733 				force_unoptimize_kprobe(op);
734 				list_move(&op->list, &freeing_list);
735 			}
736 		} else {
737 			/* Dequeue from the optimizing queue */
738 			list_del_init(&op->list);
739 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
740 		}
741 		return;
742 	}
743 
744 	/* Optimized kprobe case */
745 	if (force) {
746 		/* Forcibly update the code: this is a special case */
747 		force_unoptimize_kprobe(op);
748 	} else {
749 		list_add(&op->list, &unoptimizing_list);
750 		kick_kprobe_optimizer();
751 	}
752 }
753 
754 /* Cancel unoptimizing for reusing */
755 static int reuse_unused_kprobe(struct kprobe *ap)
756 {
757 	struct optimized_kprobe *op;
758 
759 	/*
760 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
761 	 * there is still a relative jump) and disabled.
762 	 */
763 	op = container_of(ap, struct optimized_kprobe, kp);
764 	WARN_ON_ONCE(list_empty(&op->list));
765 	/* Enable the probe again */
766 	ap->flags &= ~KPROBE_FLAG_DISABLED;
767 	/* Optimize it again (remove from op->list) */
768 	if (!kprobe_optready(ap))
769 		return -EINVAL;
770 
771 	optimize_kprobe(ap);
772 	return 0;
773 }
774 
775 /* Remove optimized instructions */
776 static void kill_optimized_kprobe(struct kprobe *p)
777 {
778 	struct optimized_kprobe *op;
779 
780 	op = container_of(p, struct optimized_kprobe, kp);
781 	if (!list_empty(&op->list))
782 		/* Dequeue from the (un)optimization queue */
783 		list_del_init(&op->list);
784 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
785 
786 	if (kprobe_unused(p)) {
787 		/* Enqueue if it is unused */
788 		list_add(&op->list, &freeing_list);
789 		/*
790 		 * Remove unused probes from the hash list. After waiting
791 		 * for synchronization, this probe is reclaimed.
792 		 * (reclaiming is done by do_free_cleaned_kprobes().)
793 		 */
794 		hlist_del_rcu(&op->kp.hlist);
795 	}
796 
797 	/* Don't touch the code, because it is already freed. */
798 	arch_remove_optimized_kprobe(op);
799 }
800 
801 static inline
802 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
803 {
804 	if (!kprobe_ftrace(p))
805 		arch_prepare_optimized_kprobe(op, p);
806 }
807 
808 /* Try to prepare optimized instructions */
809 static void prepare_optimized_kprobe(struct kprobe *p)
810 {
811 	struct optimized_kprobe *op;
812 
813 	op = container_of(p, struct optimized_kprobe, kp);
814 	__prepare_optimized_kprobe(op, p);
815 }
816 
817 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
818 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
819 {
820 	struct optimized_kprobe *op;
821 
822 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
823 	if (!op)
824 		return NULL;
825 
826 	INIT_LIST_HEAD(&op->list);
827 	op->kp.addr = p->addr;
828 	__prepare_optimized_kprobe(op, p);
829 
830 	return &op->kp;
831 }
832 
833 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
834 
835 /*
836  * Prepare an optimized_kprobe and optimize it
837  * NOTE: p must be a normal registered kprobe
838  */
839 static void try_to_optimize_kprobe(struct kprobe *p)
840 {
841 	struct kprobe *ap;
842 	struct optimized_kprobe *op;
843 
844 	/* Impossible to optimize ftrace-based kprobe */
845 	if (kprobe_ftrace(p))
846 		return;
847 
848 	/* For preparing optimization, jump_label_text_reserved() is called */
849 	cpus_read_lock();
850 	jump_label_lock();
851 	mutex_lock(&text_mutex);
852 
853 	ap = alloc_aggr_kprobe(p);
854 	if (!ap)
855 		goto out;
856 
857 	op = container_of(ap, struct optimized_kprobe, kp);
858 	if (!arch_prepared_optinsn(&op->optinsn)) {
859 		/* If failed to setup optimizing, fallback to kprobe */
860 		arch_remove_optimized_kprobe(op);
861 		kfree(op);
862 		goto out;
863 	}
864 
865 	init_aggr_kprobe(ap, p);
866 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
867 
868 out:
869 	mutex_unlock(&text_mutex);
870 	jump_label_unlock();
871 	cpus_read_unlock();
872 }
873 
874 static void optimize_all_kprobes(void)
875 {
876 	struct hlist_head *head;
877 	struct kprobe *p;
878 	unsigned int i;
879 
880 	mutex_lock(&kprobe_mutex);
881 	/* If optimization is already allowed, just return */
882 	if (kprobes_allow_optimization)
883 		goto out;
884 
885 	cpus_read_lock();
886 	kprobes_allow_optimization = true;
887 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
888 		head = &kprobe_table[i];
889 		hlist_for_each_entry(p, head, hlist)
890 			if (!kprobe_disabled(p))
891 				optimize_kprobe(p);
892 	}
893 	cpus_read_unlock();
894 	printk(KERN_INFO "Kprobes globally optimized\n");
895 out:
896 	mutex_unlock(&kprobe_mutex);
897 }
898 
899 #ifdef CONFIG_SYSCTL
900 static void unoptimize_all_kprobes(void)
901 {
902 	struct hlist_head *head;
903 	struct kprobe *p;
904 	unsigned int i;
905 
906 	mutex_lock(&kprobe_mutex);
907 	/* If optimization is already prohibited, just return */
908 	if (!kprobes_allow_optimization) {
909 		mutex_unlock(&kprobe_mutex);
910 		return;
911 	}
912 
913 	cpus_read_lock();
914 	kprobes_allow_optimization = false;
915 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
916 		head = &kprobe_table[i];
917 		hlist_for_each_entry(p, head, hlist) {
918 			if (!kprobe_disabled(p))
919 				unoptimize_kprobe(p, false);
920 		}
921 	}
922 	cpus_read_unlock();
923 	mutex_unlock(&kprobe_mutex);
924 
925 	/* Wait for unoptimizing completion */
926 	wait_for_kprobe_optimizer();
927 	printk(KERN_INFO "Kprobes globally unoptimized\n");
928 }
929 
930 static DEFINE_MUTEX(kprobe_sysctl_mutex);
931 int sysctl_kprobes_optimization;
932 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
933 				      void *buffer, size_t *length,
934 				      loff_t *ppos)
935 {
936 	int ret;
937 
938 	mutex_lock(&kprobe_sysctl_mutex);
939 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
940 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
941 
942 	if (sysctl_kprobes_optimization)
943 		optimize_all_kprobes();
944 	else
945 		unoptimize_all_kprobes();
946 	mutex_unlock(&kprobe_sysctl_mutex);
947 
948 	return ret;
949 }
950 #endif /* CONFIG_SYSCTL */
951 
952 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
953 static void __arm_kprobe(struct kprobe *p)
954 {
955 	struct kprobe *_p;
956 
957 	/* Check collision with other optimized kprobes */
958 	_p = get_optimized_kprobe((unsigned long)p->addr);
959 	if (unlikely(_p))
960 		/* Fallback to unoptimized kprobe */
961 		unoptimize_kprobe(_p, true);
962 
963 	arch_arm_kprobe(p);
964 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
965 }
966 
967 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
968 static void __disarm_kprobe(struct kprobe *p, bool reopt)
969 {
970 	struct kprobe *_p;
971 
972 	/* Try to unoptimize */
973 	unoptimize_kprobe(p, kprobes_all_disarmed);
974 
975 	if (!kprobe_queued(p)) {
976 		arch_disarm_kprobe(p);
977 		/* If another kprobe was blocked, optimize it. */
978 		_p = get_optimized_kprobe((unsigned long)p->addr);
979 		if (unlikely(_p) && reopt)
980 			optimize_kprobe(_p);
981 	}
982 	/* TODO: reoptimize others after unoptimized this probe */
983 }
984 
985 #else /* !CONFIG_OPTPROBES */
986 
987 #define optimize_kprobe(p)			do {} while (0)
988 #define unoptimize_kprobe(p, f)			do {} while (0)
989 #define kill_optimized_kprobe(p)		do {} while (0)
990 #define prepare_optimized_kprobe(p)		do {} while (0)
991 #define try_to_optimize_kprobe(p)		do {} while (0)
992 #define __arm_kprobe(p)				arch_arm_kprobe(p)
993 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
994 #define kprobe_disarmed(p)			kprobe_disabled(p)
995 #define wait_for_kprobe_optimizer()		do {} while (0)
996 
997 static int reuse_unused_kprobe(struct kprobe *ap)
998 {
999 	/*
1000 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
1001 	 * released at the same time that the last aggregated kprobe is
1002 	 * unregistered.
1003 	 * Thus there should be no chance to reuse unused kprobe.
1004 	 */
1005 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1006 	return -EINVAL;
1007 }
1008 
1009 static void free_aggr_kprobe(struct kprobe *p)
1010 {
1011 	arch_remove_kprobe(p);
1012 	kfree(p);
1013 }
1014 
1015 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1016 {
1017 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1018 }
1019 #endif /* CONFIG_OPTPROBES */
1020 
1021 #ifdef CONFIG_KPROBES_ON_FTRACE
1022 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1023 	.func = kprobe_ftrace_handler,
1024 	.flags = FTRACE_OPS_FL_SAVE_REGS,
1025 };
1026 
1027 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1028 	.func = kprobe_ftrace_handler,
1029 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1030 };
1031 
1032 static int kprobe_ipmodify_enabled;
1033 static int kprobe_ftrace_enabled;
1034 
1035 /* Must ensure p->addr is really on ftrace */
1036 static int prepare_kprobe(struct kprobe *p)
1037 {
1038 	if (!kprobe_ftrace(p))
1039 		return arch_prepare_kprobe(p);
1040 
1041 	return arch_prepare_kprobe_ftrace(p);
1042 }
1043 
1044 /* Caller must lock kprobe_mutex */
1045 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1046 			       int *cnt)
1047 {
1048 	int ret = 0;
1049 
1050 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1051 	if (ret) {
1052 		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1053 			 p->addr, ret);
1054 		return ret;
1055 	}
1056 
1057 	if (*cnt == 0) {
1058 		ret = register_ftrace_function(ops);
1059 		if (ret) {
1060 			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1061 			goto err_ftrace;
1062 		}
1063 	}
1064 
1065 	(*cnt)++;
1066 	return ret;
1067 
1068 err_ftrace:
1069 	/*
1070 	 * At this point, sinec ops is not registered, we should be sefe from
1071 	 * registering empty filter.
1072 	 */
1073 	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1074 	return ret;
1075 }
1076 
1077 static int arm_kprobe_ftrace(struct kprobe *p)
1078 {
1079 	bool ipmodify = (p->post_handler != NULL);
1080 
1081 	return __arm_kprobe_ftrace(p,
1082 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1083 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1084 }
1085 
1086 /* Caller must lock kprobe_mutex */
1087 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1088 				  int *cnt)
1089 {
1090 	int ret = 0;
1091 
1092 	if (*cnt == 1) {
1093 		ret = unregister_ftrace_function(ops);
1094 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1095 			return ret;
1096 	}
1097 
1098 	(*cnt)--;
1099 
1100 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1101 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1102 		  p->addr, ret);
1103 	return ret;
1104 }
1105 
1106 static int disarm_kprobe_ftrace(struct kprobe *p)
1107 {
1108 	bool ipmodify = (p->post_handler != NULL);
1109 
1110 	return __disarm_kprobe_ftrace(p,
1111 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1112 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1113 }
1114 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1115 static inline int prepare_kprobe(struct kprobe *p)
1116 {
1117 	return arch_prepare_kprobe(p);
1118 }
1119 
1120 static inline int arm_kprobe_ftrace(struct kprobe *p)
1121 {
1122 	return -ENODEV;
1123 }
1124 
1125 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1126 {
1127 	return -ENODEV;
1128 }
1129 #endif
1130 
1131 /* Arm a kprobe with text_mutex */
1132 static int arm_kprobe(struct kprobe *kp)
1133 {
1134 	if (unlikely(kprobe_ftrace(kp)))
1135 		return arm_kprobe_ftrace(kp);
1136 
1137 	cpus_read_lock();
1138 	mutex_lock(&text_mutex);
1139 	__arm_kprobe(kp);
1140 	mutex_unlock(&text_mutex);
1141 	cpus_read_unlock();
1142 
1143 	return 0;
1144 }
1145 
1146 /* Disarm a kprobe with text_mutex */
1147 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1148 {
1149 	if (unlikely(kprobe_ftrace(kp)))
1150 		return disarm_kprobe_ftrace(kp);
1151 
1152 	cpus_read_lock();
1153 	mutex_lock(&text_mutex);
1154 	__disarm_kprobe(kp, reopt);
1155 	mutex_unlock(&text_mutex);
1156 	cpus_read_unlock();
1157 
1158 	return 0;
1159 }
1160 
1161 /*
1162  * Aggregate handlers for multiple kprobes support - these handlers
1163  * take care of invoking the individual kprobe handlers on p->list
1164  */
1165 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1166 {
1167 	struct kprobe *kp;
1168 
1169 	list_for_each_entry_rcu(kp, &p->list, list) {
1170 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1171 			set_kprobe_instance(kp);
1172 			if (kp->pre_handler(kp, regs))
1173 				return 1;
1174 		}
1175 		reset_kprobe_instance();
1176 	}
1177 	return 0;
1178 }
1179 NOKPROBE_SYMBOL(aggr_pre_handler);
1180 
1181 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1182 			      unsigned long flags)
1183 {
1184 	struct kprobe *kp;
1185 
1186 	list_for_each_entry_rcu(kp, &p->list, list) {
1187 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1188 			set_kprobe_instance(kp);
1189 			kp->post_handler(kp, regs, flags);
1190 			reset_kprobe_instance();
1191 		}
1192 	}
1193 }
1194 NOKPROBE_SYMBOL(aggr_post_handler);
1195 
1196 /* Walks the list and increments nmissed count for multiprobe case */
1197 void kprobes_inc_nmissed_count(struct kprobe *p)
1198 {
1199 	struct kprobe *kp;
1200 	if (!kprobe_aggrprobe(p)) {
1201 		p->nmissed++;
1202 	} else {
1203 		list_for_each_entry_rcu(kp, &p->list, list)
1204 			kp->nmissed++;
1205 	}
1206 	return;
1207 }
1208 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1209 
1210 static void free_rp_inst_rcu(struct rcu_head *head)
1211 {
1212 	struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1213 
1214 	if (refcount_dec_and_test(&ri->rph->ref))
1215 		kfree(ri->rph);
1216 	kfree(ri);
1217 }
1218 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1219 
1220 static void recycle_rp_inst(struct kretprobe_instance *ri)
1221 {
1222 	struct kretprobe *rp = get_kretprobe(ri);
1223 
1224 	if (likely(rp)) {
1225 		freelist_add(&ri->freelist, &rp->freelist);
1226 	} else
1227 		call_rcu(&ri->rcu, free_rp_inst_rcu);
1228 }
1229 NOKPROBE_SYMBOL(recycle_rp_inst);
1230 
1231 static struct kprobe kprobe_busy = {
1232 	.addr = (void *) get_kprobe,
1233 };
1234 
1235 void kprobe_busy_begin(void)
1236 {
1237 	struct kprobe_ctlblk *kcb;
1238 
1239 	preempt_disable();
1240 	__this_cpu_write(current_kprobe, &kprobe_busy);
1241 	kcb = get_kprobe_ctlblk();
1242 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1243 }
1244 
1245 void kprobe_busy_end(void)
1246 {
1247 	__this_cpu_write(current_kprobe, NULL);
1248 	preempt_enable();
1249 }
1250 
1251 /*
1252  * This function is called from finish_task_switch when task tk becomes dead,
1253  * so that we can recycle any function-return probe instances associated
1254  * with this task. These left over instances represent probed functions
1255  * that have been called but will never return.
1256  */
1257 void kprobe_flush_task(struct task_struct *tk)
1258 {
1259 	struct kretprobe_instance *ri;
1260 	struct llist_node *node;
1261 
1262 	/* Early boot, not yet initialized. */
1263 	if (unlikely(!kprobes_initialized))
1264 		return;
1265 
1266 	kprobe_busy_begin();
1267 
1268 	node = __llist_del_all(&tk->kretprobe_instances);
1269 	while (node) {
1270 		ri = container_of(node, struct kretprobe_instance, llist);
1271 		node = node->next;
1272 
1273 		recycle_rp_inst(ri);
1274 	}
1275 
1276 	kprobe_busy_end();
1277 }
1278 NOKPROBE_SYMBOL(kprobe_flush_task);
1279 
1280 static inline void free_rp_inst(struct kretprobe *rp)
1281 {
1282 	struct kretprobe_instance *ri;
1283 	struct freelist_node *node;
1284 	int count = 0;
1285 
1286 	node = rp->freelist.head;
1287 	while (node) {
1288 		ri = container_of(node, struct kretprobe_instance, freelist);
1289 		node = node->next;
1290 
1291 		kfree(ri);
1292 		count++;
1293 	}
1294 
1295 	if (refcount_sub_and_test(count, &rp->rph->ref)) {
1296 		kfree(rp->rph);
1297 		rp->rph = NULL;
1298 	}
1299 }
1300 
1301 /* Add the new probe to ap->list */
1302 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1303 {
1304 	if (p->post_handler)
1305 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1306 
1307 	list_add_rcu(&p->list, &ap->list);
1308 	if (p->post_handler && !ap->post_handler)
1309 		ap->post_handler = aggr_post_handler;
1310 
1311 	return 0;
1312 }
1313 
1314 /*
1315  * Fill in the required fields of the "manager kprobe". Replace the
1316  * earlier kprobe in the hlist with the manager kprobe
1317  */
1318 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1319 {
1320 	/* Copy p's insn slot to ap */
1321 	copy_kprobe(p, ap);
1322 	flush_insn_slot(ap);
1323 	ap->addr = p->addr;
1324 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1325 	ap->pre_handler = aggr_pre_handler;
1326 	/* We don't care the kprobe which has gone. */
1327 	if (p->post_handler && !kprobe_gone(p))
1328 		ap->post_handler = aggr_post_handler;
1329 
1330 	INIT_LIST_HEAD(&ap->list);
1331 	INIT_HLIST_NODE(&ap->hlist);
1332 
1333 	list_add_rcu(&p->list, &ap->list);
1334 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1335 }
1336 
1337 /*
1338  * This is the second or subsequent kprobe at the address - handle
1339  * the intricacies
1340  */
1341 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1342 {
1343 	int ret = 0;
1344 	struct kprobe *ap = orig_p;
1345 
1346 	cpus_read_lock();
1347 
1348 	/* For preparing optimization, jump_label_text_reserved() is called */
1349 	jump_label_lock();
1350 	mutex_lock(&text_mutex);
1351 
1352 	if (!kprobe_aggrprobe(orig_p)) {
1353 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1354 		ap = alloc_aggr_kprobe(orig_p);
1355 		if (!ap) {
1356 			ret = -ENOMEM;
1357 			goto out;
1358 		}
1359 		init_aggr_kprobe(ap, orig_p);
1360 	} else if (kprobe_unused(ap)) {
1361 		/* This probe is going to die. Rescue it */
1362 		ret = reuse_unused_kprobe(ap);
1363 		if (ret)
1364 			goto out;
1365 	}
1366 
1367 	if (kprobe_gone(ap)) {
1368 		/*
1369 		 * Attempting to insert new probe at the same location that
1370 		 * had a probe in the module vaddr area which already
1371 		 * freed. So, the instruction slot has already been
1372 		 * released. We need a new slot for the new probe.
1373 		 */
1374 		ret = arch_prepare_kprobe(ap);
1375 		if (ret)
1376 			/*
1377 			 * Even if fail to allocate new slot, don't need to
1378 			 * free aggr_probe. It will be used next time, or
1379 			 * freed by unregister_kprobe.
1380 			 */
1381 			goto out;
1382 
1383 		/* Prepare optimized instructions if possible. */
1384 		prepare_optimized_kprobe(ap);
1385 
1386 		/*
1387 		 * Clear gone flag to prevent allocating new slot again, and
1388 		 * set disabled flag because it is not armed yet.
1389 		 */
1390 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1391 			    | KPROBE_FLAG_DISABLED;
1392 	}
1393 
1394 	/* Copy ap's insn slot to p */
1395 	copy_kprobe(ap, p);
1396 	ret = add_new_kprobe(ap, p);
1397 
1398 out:
1399 	mutex_unlock(&text_mutex);
1400 	jump_label_unlock();
1401 	cpus_read_unlock();
1402 
1403 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1404 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1405 		if (!kprobes_all_disarmed) {
1406 			/* Arm the breakpoint again. */
1407 			ret = arm_kprobe(ap);
1408 			if (ret) {
1409 				ap->flags |= KPROBE_FLAG_DISABLED;
1410 				list_del_rcu(&p->list);
1411 				synchronize_rcu();
1412 			}
1413 		}
1414 	}
1415 	return ret;
1416 }
1417 
1418 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1419 {
1420 	/* The __kprobes marked functions and entry code must not be probed */
1421 	return addr >= (unsigned long)__kprobes_text_start &&
1422 	       addr < (unsigned long)__kprobes_text_end;
1423 }
1424 
1425 static bool __within_kprobe_blacklist(unsigned long addr)
1426 {
1427 	struct kprobe_blacklist_entry *ent;
1428 
1429 	if (arch_within_kprobe_blacklist(addr))
1430 		return true;
1431 	/*
1432 	 * If there exists a kprobe_blacklist, verify and
1433 	 * fail any probe registration in the prohibited area
1434 	 */
1435 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1436 		if (addr >= ent->start_addr && addr < ent->end_addr)
1437 			return true;
1438 	}
1439 	return false;
1440 }
1441 
1442 bool within_kprobe_blacklist(unsigned long addr)
1443 {
1444 	char symname[KSYM_NAME_LEN], *p;
1445 
1446 	if (__within_kprobe_blacklist(addr))
1447 		return true;
1448 
1449 	/* Check if the address is on a suffixed-symbol */
1450 	if (!lookup_symbol_name(addr, symname)) {
1451 		p = strchr(symname, '.');
1452 		if (!p)
1453 			return false;
1454 		*p = '\0';
1455 		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1456 		if (addr)
1457 			return __within_kprobe_blacklist(addr);
1458 	}
1459 	return false;
1460 }
1461 
1462 /*
1463  * If we have a symbol_name argument, look it up and add the offset field
1464  * to it. This way, we can specify a relative address to a symbol.
1465  * This returns encoded errors if it fails to look up symbol or invalid
1466  * combination of parameters.
1467  */
1468 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1469 			const char *symbol_name, unsigned int offset)
1470 {
1471 	if ((symbol_name && addr) || (!symbol_name && !addr))
1472 		goto invalid;
1473 
1474 	if (symbol_name) {
1475 		addr = kprobe_lookup_name(symbol_name, offset);
1476 		if (!addr)
1477 			return ERR_PTR(-ENOENT);
1478 	}
1479 
1480 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1481 	if (addr)
1482 		return addr;
1483 
1484 invalid:
1485 	return ERR_PTR(-EINVAL);
1486 }
1487 
1488 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1489 {
1490 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1491 }
1492 
1493 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1494 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1495 {
1496 	struct kprobe *ap, *list_p;
1497 
1498 	lockdep_assert_held(&kprobe_mutex);
1499 
1500 	ap = get_kprobe(p->addr);
1501 	if (unlikely(!ap))
1502 		return NULL;
1503 
1504 	if (p != ap) {
1505 		list_for_each_entry(list_p, &ap->list, list)
1506 			if (list_p == p)
1507 			/* kprobe p is a valid probe */
1508 				goto valid;
1509 		return NULL;
1510 	}
1511 valid:
1512 	return ap;
1513 }
1514 
1515 /*
1516  * Warn and return error if the kprobe is being re-registered since
1517  * there must be a software bug.
1518  */
1519 static inline int warn_kprobe_rereg(struct kprobe *p)
1520 {
1521 	int ret = 0;
1522 
1523 	mutex_lock(&kprobe_mutex);
1524 	if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1525 		ret = -EINVAL;
1526 	mutex_unlock(&kprobe_mutex);
1527 
1528 	return ret;
1529 }
1530 
1531 int __weak arch_check_ftrace_location(struct kprobe *p)
1532 {
1533 	unsigned long ftrace_addr;
1534 
1535 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1536 	if (ftrace_addr) {
1537 #ifdef CONFIG_KPROBES_ON_FTRACE
1538 		/* Given address is not on the instruction boundary */
1539 		if ((unsigned long)p->addr != ftrace_addr)
1540 			return -EILSEQ;
1541 		p->flags |= KPROBE_FLAG_FTRACE;
1542 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1543 		return -EINVAL;
1544 #endif
1545 	}
1546 	return 0;
1547 }
1548 
1549 static int check_kprobe_address_safe(struct kprobe *p,
1550 				     struct module **probed_mod)
1551 {
1552 	int ret;
1553 
1554 	ret = arch_check_ftrace_location(p);
1555 	if (ret)
1556 		return ret;
1557 	jump_label_lock();
1558 	preempt_disable();
1559 
1560 	/* Ensure it is not in reserved area nor out of text */
1561 	if (!kernel_text_address((unsigned long) p->addr) ||
1562 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1563 	    jump_label_text_reserved(p->addr, p->addr) ||
1564 	    find_bug((unsigned long)p->addr)) {
1565 		ret = -EINVAL;
1566 		goto out;
1567 	}
1568 
1569 	/* Check if are we probing a module */
1570 	*probed_mod = __module_text_address((unsigned long) p->addr);
1571 	if (*probed_mod) {
1572 		/*
1573 		 * We must hold a refcount of the probed module while updating
1574 		 * its code to prohibit unexpected unloading.
1575 		 */
1576 		if (unlikely(!try_module_get(*probed_mod))) {
1577 			ret = -ENOENT;
1578 			goto out;
1579 		}
1580 
1581 		/*
1582 		 * If the module freed .init.text, we couldn't insert
1583 		 * kprobes in there.
1584 		 */
1585 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1586 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1587 			module_put(*probed_mod);
1588 			*probed_mod = NULL;
1589 			ret = -ENOENT;
1590 		}
1591 	}
1592 out:
1593 	preempt_enable();
1594 	jump_label_unlock();
1595 
1596 	return ret;
1597 }
1598 
1599 int register_kprobe(struct kprobe *p)
1600 {
1601 	int ret;
1602 	struct kprobe *old_p;
1603 	struct module *probed_mod;
1604 	kprobe_opcode_t *addr;
1605 
1606 	/* Adjust probe address from symbol */
1607 	addr = kprobe_addr(p);
1608 	if (IS_ERR(addr))
1609 		return PTR_ERR(addr);
1610 	p->addr = addr;
1611 
1612 	ret = warn_kprobe_rereg(p);
1613 	if (ret)
1614 		return ret;
1615 
1616 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1617 	p->flags &= KPROBE_FLAG_DISABLED;
1618 	p->nmissed = 0;
1619 	INIT_LIST_HEAD(&p->list);
1620 
1621 	ret = check_kprobe_address_safe(p, &probed_mod);
1622 	if (ret)
1623 		return ret;
1624 
1625 	mutex_lock(&kprobe_mutex);
1626 
1627 	old_p = get_kprobe(p->addr);
1628 	if (old_p) {
1629 		/* Since this may unoptimize old_p, locking text_mutex. */
1630 		ret = register_aggr_kprobe(old_p, p);
1631 		goto out;
1632 	}
1633 
1634 	cpus_read_lock();
1635 	/* Prevent text modification */
1636 	mutex_lock(&text_mutex);
1637 	ret = prepare_kprobe(p);
1638 	mutex_unlock(&text_mutex);
1639 	cpus_read_unlock();
1640 	if (ret)
1641 		goto out;
1642 
1643 	INIT_HLIST_NODE(&p->hlist);
1644 	hlist_add_head_rcu(&p->hlist,
1645 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1646 
1647 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1648 		ret = arm_kprobe(p);
1649 		if (ret) {
1650 			hlist_del_rcu(&p->hlist);
1651 			synchronize_rcu();
1652 			goto out;
1653 		}
1654 	}
1655 
1656 	/* Try to optimize kprobe */
1657 	try_to_optimize_kprobe(p);
1658 out:
1659 	mutex_unlock(&kprobe_mutex);
1660 
1661 	if (probed_mod)
1662 		module_put(probed_mod);
1663 
1664 	return ret;
1665 }
1666 EXPORT_SYMBOL_GPL(register_kprobe);
1667 
1668 /* Check if all probes on the aggrprobe are disabled */
1669 static int aggr_kprobe_disabled(struct kprobe *ap)
1670 {
1671 	struct kprobe *kp;
1672 
1673 	lockdep_assert_held(&kprobe_mutex);
1674 
1675 	list_for_each_entry(kp, &ap->list, list)
1676 		if (!kprobe_disabled(kp))
1677 			/*
1678 			 * There is an active probe on the list.
1679 			 * We can't disable this ap.
1680 			 */
1681 			return 0;
1682 
1683 	return 1;
1684 }
1685 
1686 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1687 static struct kprobe *__disable_kprobe(struct kprobe *p)
1688 {
1689 	struct kprobe *orig_p;
1690 	int ret;
1691 
1692 	/* Get an original kprobe for return */
1693 	orig_p = __get_valid_kprobe(p);
1694 	if (unlikely(orig_p == NULL))
1695 		return ERR_PTR(-EINVAL);
1696 
1697 	if (!kprobe_disabled(p)) {
1698 		/* Disable probe if it is a child probe */
1699 		if (p != orig_p)
1700 			p->flags |= KPROBE_FLAG_DISABLED;
1701 
1702 		/* Try to disarm and disable this/parent probe */
1703 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1704 			/*
1705 			 * If kprobes_all_disarmed is set, orig_p
1706 			 * should have already been disarmed, so
1707 			 * skip unneed disarming process.
1708 			 */
1709 			if (!kprobes_all_disarmed) {
1710 				ret = disarm_kprobe(orig_p, true);
1711 				if (ret) {
1712 					p->flags &= ~KPROBE_FLAG_DISABLED;
1713 					return ERR_PTR(ret);
1714 				}
1715 			}
1716 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1717 		}
1718 	}
1719 
1720 	return orig_p;
1721 }
1722 
1723 /*
1724  * Unregister a kprobe without a scheduler synchronization.
1725  */
1726 static int __unregister_kprobe_top(struct kprobe *p)
1727 {
1728 	struct kprobe *ap, *list_p;
1729 
1730 	/* Disable kprobe. This will disarm it if needed. */
1731 	ap = __disable_kprobe(p);
1732 	if (IS_ERR(ap))
1733 		return PTR_ERR(ap);
1734 
1735 	if (ap == p)
1736 		/*
1737 		 * This probe is an independent(and non-optimized) kprobe
1738 		 * (not an aggrprobe). Remove from the hash list.
1739 		 */
1740 		goto disarmed;
1741 
1742 	/* Following process expects this probe is an aggrprobe */
1743 	WARN_ON(!kprobe_aggrprobe(ap));
1744 
1745 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1746 		/*
1747 		 * !disarmed could be happen if the probe is under delayed
1748 		 * unoptimizing.
1749 		 */
1750 		goto disarmed;
1751 	else {
1752 		/* If disabling probe has special handlers, update aggrprobe */
1753 		if (p->post_handler && !kprobe_gone(p)) {
1754 			list_for_each_entry(list_p, &ap->list, list) {
1755 				if ((list_p != p) && (list_p->post_handler))
1756 					goto noclean;
1757 			}
1758 			ap->post_handler = NULL;
1759 		}
1760 noclean:
1761 		/*
1762 		 * Remove from the aggrprobe: this path will do nothing in
1763 		 * __unregister_kprobe_bottom().
1764 		 */
1765 		list_del_rcu(&p->list);
1766 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1767 			/*
1768 			 * Try to optimize this probe again, because post
1769 			 * handler may have been changed.
1770 			 */
1771 			optimize_kprobe(ap);
1772 	}
1773 	return 0;
1774 
1775 disarmed:
1776 	hlist_del_rcu(&ap->hlist);
1777 	return 0;
1778 }
1779 
1780 static void __unregister_kprobe_bottom(struct kprobe *p)
1781 {
1782 	struct kprobe *ap;
1783 
1784 	if (list_empty(&p->list))
1785 		/* This is an independent kprobe */
1786 		arch_remove_kprobe(p);
1787 	else if (list_is_singular(&p->list)) {
1788 		/* This is the last child of an aggrprobe */
1789 		ap = list_entry(p->list.next, struct kprobe, list);
1790 		list_del(&p->list);
1791 		free_aggr_kprobe(ap);
1792 	}
1793 	/* Otherwise, do nothing. */
1794 }
1795 
1796 int register_kprobes(struct kprobe **kps, int num)
1797 {
1798 	int i, ret = 0;
1799 
1800 	if (num <= 0)
1801 		return -EINVAL;
1802 	for (i = 0; i < num; i++) {
1803 		ret = register_kprobe(kps[i]);
1804 		if (ret < 0) {
1805 			if (i > 0)
1806 				unregister_kprobes(kps, i);
1807 			break;
1808 		}
1809 	}
1810 	return ret;
1811 }
1812 EXPORT_SYMBOL_GPL(register_kprobes);
1813 
1814 void unregister_kprobe(struct kprobe *p)
1815 {
1816 	unregister_kprobes(&p, 1);
1817 }
1818 EXPORT_SYMBOL_GPL(unregister_kprobe);
1819 
1820 void unregister_kprobes(struct kprobe **kps, int num)
1821 {
1822 	int i;
1823 
1824 	if (num <= 0)
1825 		return;
1826 	mutex_lock(&kprobe_mutex);
1827 	for (i = 0; i < num; i++)
1828 		if (__unregister_kprobe_top(kps[i]) < 0)
1829 			kps[i]->addr = NULL;
1830 	mutex_unlock(&kprobe_mutex);
1831 
1832 	synchronize_rcu();
1833 	for (i = 0; i < num; i++)
1834 		if (kps[i]->addr)
1835 			__unregister_kprobe_bottom(kps[i]);
1836 }
1837 EXPORT_SYMBOL_GPL(unregister_kprobes);
1838 
1839 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1840 					unsigned long val, void *data)
1841 {
1842 	return NOTIFY_DONE;
1843 }
1844 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1845 
1846 static struct notifier_block kprobe_exceptions_nb = {
1847 	.notifier_call = kprobe_exceptions_notify,
1848 	.priority = 0x7fffffff /* we need to be notified first */
1849 };
1850 
1851 unsigned long __weak arch_deref_entry_point(void *entry)
1852 {
1853 	return (unsigned long)entry;
1854 }
1855 
1856 #ifdef CONFIG_KRETPROBES
1857 
1858 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1859 					     void *trampoline_address,
1860 					     void *frame_pointer)
1861 {
1862 	kprobe_opcode_t *correct_ret_addr = NULL;
1863 	struct kretprobe_instance *ri = NULL;
1864 	struct llist_node *first, *node;
1865 	struct kretprobe *rp;
1866 
1867 	/* Find all nodes for this frame. */
1868 	first = node = current->kretprobe_instances.first;
1869 	while (node) {
1870 		ri = container_of(node, struct kretprobe_instance, llist);
1871 
1872 		BUG_ON(ri->fp != frame_pointer);
1873 
1874 		if (ri->ret_addr != trampoline_address) {
1875 			correct_ret_addr = ri->ret_addr;
1876 			/*
1877 			 * This is the real return address. Any other
1878 			 * instances associated with this task are for
1879 			 * other calls deeper on the call stack
1880 			 */
1881 			goto found;
1882 		}
1883 
1884 		node = node->next;
1885 	}
1886 	pr_err("Oops! Kretprobe fails to find correct return address.\n");
1887 	BUG_ON(1);
1888 
1889 found:
1890 	/* Unlink all nodes for this frame. */
1891 	current->kretprobe_instances.first = node->next;
1892 	node->next = NULL;
1893 
1894 	/* Run them..  */
1895 	while (first) {
1896 		ri = container_of(first, struct kretprobe_instance, llist);
1897 		first = first->next;
1898 
1899 		rp = get_kretprobe(ri);
1900 		if (rp && rp->handler) {
1901 			struct kprobe *prev = kprobe_running();
1902 
1903 			__this_cpu_write(current_kprobe, &rp->kp);
1904 			ri->ret_addr = correct_ret_addr;
1905 			rp->handler(ri, regs);
1906 			__this_cpu_write(current_kprobe, prev);
1907 		}
1908 
1909 		recycle_rp_inst(ri);
1910 	}
1911 
1912 	return (unsigned long)correct_ret_addr;
1913 }
1914 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
1915 
1916 /*
1917  * This kprobe pre_handler is registered with every kretprobe. When probe
1918  * hits it will set up the return probe.
1919  */
1920 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1921 {
1922 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1923 	struct kretprobe_instance *ri;
1924 	struct freelist_node *fn;
1925 
1926 	fn = freelist_try_get(&rp->freelist);
1927 	if (!fn) {
1928 		rp->nmissed++;
1929 		return 0;
1930 	}
1931 
1932 	ri = container_of(fn, struct kretprobe_instance, freelist);
1933 
1934 	if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1935 		freelist_add(&ri->freelist, &rp->freelist);
1936 		return 0;
1937 	}
1938 
1939 	arch_prepare_kretprobe(ri, regs);
1940 
1941 	__llist_add(&ri->llist, &current->kretprobe_instances);
1942 
1943 	return 0;
1944 }
1945 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1946 
1947 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1948 {
1949 	return !offset;
1950 }
1951 
1952 /**
1953  * kprobe_on_func_entry() -- check whether given address is function entry
1954  * @addr: Target address
1955  * @sym:  Target symbol name
1956  * @offset: The offset from the symbol or the address
1957  *
1958  * This checks whether the given @addr+@offset or @sym+@offset is on the
1959  * function entry address or not.
1960  * This returns 0 if it is the function entry, or -EINVAL if it is not.
1961  * And also it returns -ENOENT if it fails the symbol or address lookup.
1962  * Caller must pass @addr or @sym (either one must be NULL), or this
1963  * returns -EINVAL.
1964  */
1965 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1966 {
1967 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1968 
1969 	if (IS_ERR(kp_addr))
1970 		return PTR_ERR(kp_addr);
1971 
1972 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1973 		return -ENOENT;
1974 
1975 	if (!arch_kprobe_on_func_entry(offset))
1976 		return -EINVAL;
1977 
1978 	return 0;
1979 }
1980 
1981 int register_kretprobe(struct kretprobe *rp)
1982 {
1983 	int ret;
1984 	struct kretprobe_instance *inst;
1985 	int i;
1986 	void *addr;
1987 
1988 	ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
1989 	if (ret)
1990 		return ret;
1991 
1992 	/* If only rp->kp.addr is specified, check reregistering kprobes */
1993 	if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
1994 		return -EINVAL;
1995 
1996 	if (kretprobe_blacklist_size) {
1997 		addr = kprobe_addr(&rp->kp);
1998 		if (IS_ERR(addr))
1999 			return PTR_ERR(addr);
2000 
2001 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2002 			if (kretprobe_blacklist[i].addr == addr)
2003 				return -EINVAL;
2004 		}
2005 	}
2006 
2007 	rp->kp.pre_handler = pre_handler_kretprobe;
2008 	rp->kp.post_handler = NULL;
2009 
2010 	/* Pre-allocate memory for max kretprobe instances */
2011 	if (rp->maxactive <= 0) {
2012 #ifdef CONFIG_PREEMPTION
2013 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2014 #else
2015 		rp->maxactive = num_possible_cpus();
2016 #endif
2017 	}
2018 	rp->freelist.head = NULL;
2019 	rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2020 	if (!rp->rph)
2021 		return -ENOMEM;
2022 
2023 	rp->rph->rp = rp;
2024 	for (i = 0; i < rp->maxactive; i++) {
2025 		inst = kzalloc(sizeof(struct kretprobe_instance) +
2026 			       rp->data_size, GFP_KERNEL);
2027 		if (inst == NULL) {
2028 			refcount_set(&rp->rph->ref, i);
2029 			free_rp_inst(rp);
2030 			return -ENOMEM;
2031 		}
2032 		inst->rph = rp->rph;
2033 		freelist_add(&inst->freelist, &rp->freelist);
2034 	}
2035 	refcount_set(&rp->rph->ref, i);
2036 
2037 	rp->nmissed = 0;
2038 	/* Establish function entry probe point */
2039 	ret = register_kprobe(&rp->kp);
2040 	if (ret != 0)
2041 		free_rp_inst(rp);
2042 	return ret;
2043 }
2044 EXPORT_SYMBOL_GPL(register_kretprobe);
2045 
2046 int register_kretprobes(struct kretprobe **rps, int num)
2047 {
2048 	int ret = 0, i;
2049 
2050 	if (num <= 0)
2051 		return -EINVAL;
2052 	for (i = 0; i < num; i++) {
2053 		ret = register_kretprobe(rps[i]);
2054 		if (ret < 0) {
2055 			if (i > 0)
2056 				unregister_kretprobes(rps, i);
2057 			break;
2058 		}
2059 	}
2060 	return ret;
2061 }
2062 EXPORT_SYMBOL_GPL(register_kretprobes);
2063 
2064 void unregister_kretprobe(struct kretprobe *rp)
2065 {
2066 	unregister_kretprobes(&rp, 1);
2067 }
2068 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2069 
2070 void unregister_kretprobes(struct kretprobe **rps, int num)
2071 {
2072 	int i;
2073 
2074 	if (num <= 0)
2075 		return;
2076 	mutex_lock(&kprobe_mutex);
2077 	for (i = 0; i < num; i++) {
2078 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2079 			rps[i]->kp.addr = NULL;
2080 		rps[i]->rph->rp = NULL;
2081 	}
2082 	mutex_unlock(&kprobe_mutex);
2083 
2084 	synchronize_rcu();
2085 	for (i = 0; i < num; i++) {
2086 		if (rps[i]->kp.addr) {
2087 			__unregister_kprobe_bottom(&rps[i]->kp);
2088 			free_rp_inst(rps[i]);
2089 		}
2090 	}
2091 }
2092 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2093 
2094 #else /* CONFIG_KRETPROBES */
2095 int register_kretprobe(struct kretprobe *rp)
2096 {
2097 	return -ENOSYS;
2098 }
2099 EXPORT_SYMBOL_GPL(register_kretprobe);
2100 
2101 int register_kretprobes(struct kretprobe **rps, int num)
2102 {
2103 	return -ENOSYS;
2104 }
2105 EXPORT_SYMBOL_GPL(register_kretprobes);
2106 
2107 void unregister_kretprobe(struct kretprobe *rp)
2108 {
2109 }
2110 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2111 
2112 void unregister_kretprobes(struct kretprobe **rps, int num)
2113 {
2114 }
2115 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2116 
2117 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2118 {
2119 	return 0;
2120 }
2121 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2122 
2123 #endif /* CONFIG_KRETPROBES */
2124 
2125 /* Set the kprobe gone and remove its instruction buffer. */
2126 static void kill_kprobe(struct kprobe *p)
2127 {
2128 	struct kprobe *kp;
2129 
2130 	lockdep_assert_held(&kprobe_mutex);
2131 
2132 	p->flags |= KPROBE_FLAG_GONE;
2133 	if (kprobe_aggrprobe(p)) {
2134 		/*
2135 		 * If this is an aggr_kprobe, we have to list all the
2136 		 * chained probes and mark them GONE.
2137 		 */
2138 		list_for_each_entry(kp, &p->list, list)
2139 			kp->flags |= KPROBE_FLAG_GONE;
2140 		p->post_handler = NULL;
2141 		kill_optimized_kprobe(p);
2142 	}
2143 	/*
2144 	 * Here, we can remove insn_slot safely, because no thread calls
2145 	 * the original probed function (which will be freed soon) any more.
2146 	 */
2147 	arch_remove_kprobe(p);
2148 
2149 	/*
2150 	 * The module is going away. We should disarm the kprobe which
2151 	 * is using ftrace, because ftrace framework is still available at
2152 	 * MODULE_STATE_GOING notification.
2153 	 */
2154 	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2155 		disarm_kprobe_ftrace(p);
2156 }
2157 
2158 /* Disable one kprobe */
2159 int disable_kprobe(struct kprobe *kp)
2160 {
2161 	int ret = 0;
2162 	struct kprobe *p;
2163 
2164 	mutex_lock(&kprobe_mutex);
2165 
2166 	/* Disable this kprobe */
2167 	p = __disable_kprobe(kp);
2168 	if (IS_ERR(p))
2169 		ret = PTR_ERR(p);
2170 
2171 	mutex_unlock(&kprobe_mutex);
2172 	return ret;
2173 }
2174 EXPORT_SYMBOL_GPL(disable_kprobe);
2175 
2176 /* Enable one kprobe */
2177 int enable_kprobe(struct kprobe *kp)
2178 {
2179 	int ret = 0;
2180 	struct kprobe *p;
2181 
2182 	mutex_lock(&kprobe_mutex);
2183 
2184 	/* Check whether specified probe is valid. */
2185 	p = __get_valid_kprobe(kp);
2186 	if (unlikely(p == NULL)) {
2187 		ret = -EINVAL;
2188 		goto out;
2189 	}
2190 
2191 	if (kprobe_gone(kp)) {
2192 		/* This kprobe has gone, we couldn't enable it. */
2193 		ret = -EINVAL;
2194 		goto out;
2195 	}
2196 
2197 	if (p != kp)
2198 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2199 
2200 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2201 		p->flags &= ~KPROBE_FLAG_DISABLED;
2202 		ret = arm_kprobe(p);
2203 		if (ret)
2204 			p->flags |= KPROBE_FLAG_DISABLED;
2205 	}
2206 out:
2207 	mutex_unlock(&kprobe_mutex);
2208 	return ret;
2209 }
2210 EXPORT_SYMBOL_GPL(enable_kprobe);
2211 
2212 /* Caller must NOT call this in usual path. This is only for critical case */
2213 void dump_kprobe(struct kprobe *kp)
2214 {
2215 	pr_err("Dumping kprobe:\n");
2216 	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2217 	       kp->symbol_name, kp->offset, kp->addr);
2218 }
2219 NOKPROBE_SYMBOL(dump_kprobe);
2220 
2221 int kprobe_add_ksym_blacklist(unsigned long entry)
2222 {
2223 	struct kprobe_blacklist_entry *ent;
2224 	unsigned long offset = 0, size = 0;
2225 
2226 	if (!kernel_text_address(entry) ||
2227 	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2228 		return -EINVAL;
2229 
2230 	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2231 	if (!ent)
2232 		return -ENOMEM;
2233 	ent->start_addr = entry;
2234 	ent->end_addr = entry + size;
2235 	INIT_LIST_HEAD(&ent->list);
2236 	list_add_tail(&ent->list, &kprobe_blacklist);
2237 
2238 	return (int)size;
2239 }
2240 
2241 /* Add all symbols in given area into kprobe blacklist */
2242 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2243 {
2244 	unsigned long entry;
2245 	int ret = 0;
2246 
2247 	for (entry = start; entry < end; entry += ret) {
2248 		ret = kprobe_add_ksym_blacklist(entry);
2249 		if (ret < 0)
2250 			return ret;
2251 		if (ret == 0)	/* In case of alias symbol */
2252 			ret = 1;
2253 	}
2254 	return 0;
2255 }
2256 
2257 /* Remove all symbols in given area from kprobe blacklist */
2258 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2259 {
2260 	struct kprobe_blacklist_entry *ent, *n;
2261 
2262 	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2263 		if (ent->start_addr < start || ent->start_addr >= end)
2264 			continue;
2265 		list_del(&ent->list);
2266 		kfree(ent);
2267 	}
2268 }
2269 
2270 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2271 {
2272 	kprobe_remove_area_blacklist(entry, entry + 1);
2273 }
2274 
2275 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2276 				   char *type, char *sym)
2277 {
2278 	return -ERANGE;
2279 }
2280 
2281 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2282 		       char *sym)
2283 {
2284 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2285 	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2286 		return 0;
2287 #ifdef CONFIG_OPTPROBES
2288 	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2289 		return 0;
2290 #endif
2291 #endif
2292 	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2293 		return 0;
2294 	return -ERANGE;
2295 }
2296 
2297 int __init __weak arch_populate_kprobe_blacklist(void)
2298 {
2299 	return 0;
2300 }
2301 
2302 /*
2303  * Lookup and populate the kprobe_blacklist.
2304  *
2305  * Unlike the kretprobe blacklist, we'll need to determine
2306  * the range of addresses that belong to the said functions,
2307  * since a kprobe need not necessarily be at the beginning
2308  * of a function.
2309  */
2310 static int __init populate_kprobe_blacklist(unsigned long *start,
2311 					     unsigned long *end)
2312 {
2313 	unsigned long entry;
2314 	unsigned long *iter;
2315 	int ret;
2316 
2317 	for (iter = start; iter < end; iter++) {
2318 		entry = arch_deref_entry_point((void *)*iter);
2319 		ret = kprobe_add_ksym_blacklist(entry);
2320 		if (ret == -EINVAL)
2321 			continue;
2322 		if (ret < 0)
2323 			return ret;
2324 	}
2325 
2326 	/* Symbols in __kprobes_text are blacklisted */
2327 	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2328 					(unsigned long)__kprobes_text_end);
2329 	if (ret)
2330 		return ret;
2331 
2332 	/* Symbols in noinstr section are blacklisted */
2333 	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2334 					(unsigned long)__noinstr_text_end);
2335 
2336 	return ret ? : arch_populate_kprobe_blacklist();
2337 }
2338 
2339 static void add_module_kprobe_blacklist(struct module *mod)
2340 {
2341 	unsigned long start, end;
2342 	int i;
2343 
2344 	if (mod->kprobe_blacklist) {
2345 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2346 			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2347 	}
2348 
2349 	start = (unsigned long)mod->kprobes_text_start;
2350 	if (start) {
2351 		end = start + mod->kprobes_text_size;
2352 		kprobe_add_area_blacklist(start, end);
2353 	}
2354 
2355 	start = (unsigned long)mod->noinstr_text_start;
2356 	if (start) {
2357 		end = start + mod->noinstr_text_size;
2358 		kprobe_add_area_blacklist(start, end);
2359 	}
2360 }
2361 
2362 static void remove_module_kprobe_blacklist(struct module *mod)
2363 {
2364 	unsigned long start, end;
2365 	int i;
2366 
2367 	if (mod->kprobe_blacklist) {
2368 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2369 			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2370 	}
2371 
2372 	start = (unsigned long)mod->kprobes_text_start;
2373 	if (start) {
2374 		end = start + mod->kprobes_text_size;
2375 		kprobe_remove_area_blacklist(start, end);
2376 	}
2377 
2378 	start = (unsigned long)mod->noinstr_text_start;
2379 	if (start) {
2380 		end = start + mod->noinstr_text_size;
2381 		kprobe_remove_area_blacklist(start, end);
2382 	}
2383 }
2384 
2385 /* Module notifier call back, checking kprobes on the module */
2386 static int kprobes_module_callback(struct notifier_block *nb,
2387 				   unsigned long val, void *data)
2388 {
2389 	struct module *mod = data;
2390 	struct hlist_head *head;
2391 	struct kprobe *p;
2392 	unsigned int i;
2393 	int checkcore = (val == MODULE_STATE_GOING);
2394 
2395 	if (val == MODULE_STATE_COMING) {
2396 		mutex_lock(&kprobe_mutex);
2397 		add_module_kprobe_blacklist(mod);
2398 		mutex_unlock(&kprobe_mutex);
2399 	}
2400 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2401 		return NOTIFY_DONE;
2402 
2403 	/*
2404 	 * When MODULE_STATE_GOING was notified, both of module .text and
2405 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2406 	 * notified, only .init.text section would be freed. We need to
2407 	 * disable kprobes which have been inserted in the sections.
2408 	 */
2409 	mutex_lock(&kprobe_mutex);
2410 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2411 		head = &kprobe_table[i];
2412 		hlist_for_each_entry(p, head, hlist)
2413 			if (within_module_init((unsigned long)p->addr, mod) ||
2414 			    (checkcore &&
2415 			     within_module_core((unsigned long)p->addr, mod))) {
2416 				/*
2417 				 * The vaddr this probe is installed will soon
2418 				 * be vfreed buy not synced to disk. Hence,
2419 				 * disarming the breakpoint isn't needed.
2420 				 *
2421 				 * Note, this will also move any optimized probes
2422 				 * that are pending to be removed from their
2423 				 * corresponding lists to the freeing_list and
2424 				 * will not be touched by the delayed
2425 				 * kprobe_optimizer work handler.
2426 				 */
2427 				kill_kprobe(p);
2428 			}
2429 	}
2430 	if (val == MODULE_STATE_GOING)
2431 		remove_module_kprobe_blacklist(mod);
2432 	mutex_unlock(&kprobe_mutex);
2433 	return NOTIFY_DONE;
2434 }
2435 
2436 static struct notifier_block kprobe_module_nb = {
2437 	.notifier_call = kprobes_module_callback,
2438 	.priority = 0
2439 };
2440 
2441 /* Markers of _kprobe_blacklist section */
2442 extern unsigned long __start_kprobe_blacklist[];
2443 extern unsigned long __stop_kprobe_blacklist[];
2444 
2445 void kprobe_free_init_mem(void)
2446 {
2447 	void *start = (void *)(&__init_begin);
2448 	void *end = (void *)(&__init_end);
2449 	struct hlist_head *head;
2450 	struct kprobe *p;
2451 	int i;
2452 
2453 	mutex_lock(&kprobe_mutex);
2454 
2455 	/* Kill all kprobes on initmem */
2456 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2457 		head = &kprobe_table[i];
2458 		hlist_for_each_entry(p, head, hlist) {
2459 			if (start <= (void *)p->addr && (void *)p->addr < end)
2460 				kill_kprobe(p);
2461 		}
2462 	}
2463 
2464 	mutex_unlock(&kprobe_mutex);
2465 }
2466 
2467 static int __init init_kprobes(void)
2468 {
2469 	int i, err = 0;
2470 
2471 	/* FIXME allocate the probe table, currently defined statically */
2472 	/* initialize all list heads */
2473 	for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2474 		INIT_HLIST_HEAD(&kprobe_table[i]);
2475 
2476 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2477 					__stop_kprobe_blacklist);
2478 	if (err) {
2479 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2480 		pr_err("Please take care of using kprobes.\n");
2481 	}
2482 
2483 	if (kretprobe_blacklist_size) {
2484 		/* lookup the function address from its name */
2485 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2486 			kretprobe_blacklist[i].addr =
2487 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2488 			if (!kretprobe_blacklist[i].addr)
2489 				printk("kretprobe: lookup failed: %s\n",
2490 				       kretprobe_blacklist[i].name);
2491 		}
2492 	}
2493 
2494 	/* By default, kprobes are armed */
2495 	kprobes_all_disarmed = false;
2496 
2497 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2498 	/* Init kprobe_optinsn_slots for allocation */
2499 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2500 #endif
2501 
2502 	err = arch_init_kprobes();
2503 	if (!err)
2504 		err = register_die_notifier(&kprobe_exceptions_nb);
2505 	if (!err)
2506 		err = register_module_notifier(&kprobe_module_nb);
2507 
2508 	kprobes_initialized = (err == 0);
2509 
2510 	if (!err)
2511 		init_test_probes();
2512 	return err;
2513 }
2514 early_initcall(init_kprobes);
2515 
2516 #if defined(CONFIG_OPTPROBES)
2517 static int __init init_optprobes(void)
2518 {
2519 	/*
2520 	 * Enable kprobe optimization - this kicks the optimizer which
2521 	 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2522 	 * not spawned in early initcall. So delay the optimization.
2523 	 */
2524 	optimize_all_kprobes();
2525 
2526 	return 0;
2527 }
2528 subsys_initcall(init_optprobes);
2529 #endif
2530 
2531 #ifdef CONFIG_DEBUG_FS
2532 static void report_probe(struct seq_file *pi, struct kprobe *p,
2533 		const char *sym, int offset, char *modname, struct kprobe *pp)
2534 {
2535 	char *kprobe_type;
2536 	void *addr = p->addr;
2537 
2538 	if (p->pre_handler == pre_handler_kretprobe)
2539 		kprobe_type = "r";
2540 	else
2541 		kprobe_type = "k";
2542 
2543 	if (!kallsyms_show_value(pi->file->f_cred))
2544 		addr = NULL;
2545 
2546 	if (sym)
2547 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2548 			addr, kprobe_type, sym, offset,
2549 			(modname ? modname : " "));
2550 	else	/* try to use %pS */
2551 		seq_printf(pi, "%px  %s  %pS ",
2552 			addr, kprobe_type, p->addr);
2553 
2554 	if (!pp)
2555 		pp = p;
2556 	seq_printf(pi, "%s%s%s%s\n",
2557 		(kprobe_gone(p) ? "[GONE]" : ""),
2558 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2559 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2560 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2561 }
2562 
2563 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2564 {
2565 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2566 }
2567 
2568 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2569 {
2570 	(*pos)++;
2571 	if (*pos >= KPROBE_TABLE_SIZE)
2572 		return NULL;
2573 	return pos;
2574 }
2575 
2576 static void kprobe_seq_stop(struct seq_file *f, void *v)
2577 {
2578 	/* Nothing to do */
2579 }
2580 
2581 static int show_kprobe_addr(struct seq_file *pi, void *v)
2582 {
2583 	struct hlist_head *head;
2584 	struct kprobe *p, *kp;
2585 	const char *sym = NULL;
2586 	unsigned int i = *(loff_t *) v;
2587 	unsigned long offset = 0;
2588 	char *modname, namebuf[KSYM_NAME_LEN];
2589 
2590 	head = &kprobe_table[i];
2591 	preempt_disable();
2592 	hlist_for_each_entry_rcu(p, head, hlist) {
2593 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2594 					&offset, &modname, namebuf);
2595 		if (kprobe_aggrprobe(p)) {
2596 			list_for_each_entry_rcu(kp, &p->list, list)
2597 				report_probe(pi, kp, sym, offset, modname, p);
2598 		} else
2599 			report_probe(pi, p, sym, offset, modname, NULL);
2600 	}
2601 	preempt_enable();
2602 	return 0;
2603 }
2604 
2605 static const struct seq_operations kprobes_sops = {
2606 	.start = kprobe_seq_start,
2607 	.next  = kprobe_seq_next,
2608 	.stop  = kprobe_seq_stop,
2609 	.show  = show_kprobe_addr
2610 };
2611 
2612 DEFINE_SEQ_ATTRIBUTE(kprobes);
2613 
2614 /* kprobes/blacklist -- shows which functions can not be probed */
2615 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2616 {
2617 	mutex_lock(&kprobe_mutex);
2618 	return seq_list_start(&kprobe_blacklist, *pos);
2619 }
2620 
2621 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2622 {
2623 	return seq_list_next(v, &kprobe_blacklist, pos);
2624 }
2625 
2626 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2627 {
2628 	struct kprobe_blacklist_entry *ent =
2629 		list_entry(v, struct kprobe_blacklist_entry, list);
2630 
2631 	/*
2632 	 * If /proc/kallsyms is not showing kernel address, we won't
2633 	 * show them here either.
2634 	 */
2635 	if (!kallsyms_show_value(m->file->f_cred))
2636 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2637 			   (void *)ent->start_addr);
2638 	else
2639 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2640 			   (void *)ent->end_addr, (void *)ent->start_addr);
2641 	return 0;
2642 }
2643 
2644 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2645 {
2646 	mutex_unlock(&kprobe_mutex);
2647 }
2648 
2649 static const struct seq_operations kprobe_blacklist_sops = {
2650 	.start = kprobe_blacklist_seq_start,
2651 	.next  = kprobe_blacklist_seq_next,
2652 	.stop  = kprobe_blacklist_seq_stop,
2653 	.show  = kprobe_blacklist_seq_show,
2654 };
2655 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2656 
2657 static int arm_all_kprobes(void)
2658 {
2659 	struct hlist_head *head;
2660 	struct kprobe *p;
2661 	unsigned int i, total = 0, errors = 0;
2662 	int err, ret = 0;
2663 
2664 	mutex_lock(&kprobe_mutex);
2665 
2666 	/* If kprobes are armed, just return */
2667 	if (!kprobes_all_disarmed)
2668 		goto already_enabled;
2669 
2670 	/*
2671 	 * optimize_kprobe() called by arm_kprobe() checks
2672 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2673 	 * arm_kprobe.
2674 	 */
2675 	kprobes_all_disarmed = false;
2676 	/* Arming kprobes doesn't optimize kprobe itself */
2677 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2678 		head = &kprobe_table[i];
2679 		/* Arm all kprobes on a best-effort basis */
2680 		hlist_for_each_entry(p, head, hlist) {
2681 			if (!kprobe_disabled(p)) {
2682 				err = arm_kprobe(p);
2683 				if (err)  {
2684 					errors++;
2685 					ret = err;
2686 				}
2687 				total++;
2688 			}
2689 		}
2690 	}
2691 
2692 	if (errors)
2693 		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2694 			errors, total);
2695 	else
2696 		pr_info("Kprobes globally enabled\n");
2697 
2698 already_enabled:
2699 	mutex_unlock(&kprobe_mutex);
2700 	return ret;
2701 }
2702 
2703 static int disarm_all_kprobes(void)
2704 {
2705 	struct hlist_head *head;
2706 	struct kprobe *p;
2707 	unsigned int i, total = 0, errors = 0;
2708 	int err, ret = 0;
2709 
2710 	mutex_lock(&kprobe_mutex);
2711 
2712 	/* If kprobes are already disarmed, just return */
2713 	if (kprobes_all_disarmed) {
2714 		mutex_unlock(&kprobe_mutex);
2715 		return 0;
2716 	}
2717 
2718 	kprobes_all_disarmed = true;
2719 
2720 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2721 		head = &kprobe_table[i];
2722 		/* Disarm all kprobes on a best-effort basis */
2723 		hlist_for_each_entry(p, head, hlist) {
2724 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2725 				err = disarm_kprobe(p, false);
2726 				if (err) {
2727 					errors++;
2728 					ret = err;
2729 				}
2730 				total++;
2731 			}
2732 		}
2733 	}
2734 
2735 	if (errors)
2736 		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2737 			errors, total);
2738 	else
2739 		pr_info("Kprobes globally disabled\n");
2740 
2741 	mutex_unlock(&kprobe_mutex);
2742 
2743 	/* Wait for disarming all kprobes by optimizer */
2744 	wait_for_kprobe_optimizer();
2745 
2746 	return ret;
2747 }
2748 
2749 /*
2750  * XXX: The debugfs bool file interface doesn't allow for callbacks
2751  * when the bool state is switched. We can reuse that facility when
2752  * available
2753  */
2754 static ssize_t read_enabled_file_bool(struct file *file,
2755 	       char __user *user_buf, size_t count, loff_t *ppos)
2756 {
2757 	char buf[3];
2758 
2759 	if (!kprobes_all_disarmed)
2760 		buf[0] = '1';
2761 	else
2762 		buf[0] = '0';
2763 	buf[1] = '\n';
2764 	buf[2] = 0x00;
2765 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2766 }
2767 
2768 static ssize_t write_enabled_file_bool(struct file *file,
2769 	       const char __user *user_buf, size_t count, loff_t *ppos)
2770 {
2771 	char buf[32];
2772 	size_t buf_size;
2773 	int ret = 0;
2774 
2775 	buf_size = min(count, (sizeof(buf)-1));
2776 	if (copy_from_user(buf, user_buf, buf_size))
2777 		return -EFAULT;
2778 
2779 	buf[buf_size] = '\0';
2780 	switch (buf[0]) {
2781 	case 'y':
2782 	case 'Y':
2783 	case '1':
2784 		ret = arm_all_kprobes();
2785 		break;
2786 	case 'n':
2787 	case 'N':
2788 	case '0':
2789 		ret = disarm_all_kprobes();
2790 		break;
2791 	default:
2792 		return -EINVAL;
2793 	}
2794 
2795 	if (ret)
2796 		return ret;
2797 
2798 	return count;
2799 }
2800 
2801 static const struct file_operations fops_kp = {
2802 	.read =         read_enabled_file_bool,
2803 	.write =        write_enabled_file_bool,
2804 	.llseek =	default_llseek,
2805 };
2806 
2807 static int __init debugfs_kprobe_init(void)
2808 {
2809 	struct dentry *dir;
2810 	unsigned int value = 1;
2811 
2812 	dir = debugfs_create_dir("kprobes", NULL);
2813 
2814 	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2815 
2816 	debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2817 
2818 	debugfs_create_file("blacklist", 0400, dir, NULL,
2819 			    &kprobe_blacklist_fops);
2820 
2821 	return 0;
2822 }
2823 
2824 late_initcall(debugfs_kprobe_init);
2825 #endif /* CONFIG_DEBUG_FS */
2826