1 /* 2 * Kernel Probes (KProbes) 3 * kernel/kprobes.c 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * Copyright (C) IBM Corporation, 2002, 2004 20 * 21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 22 * Probes initial implementation (includes suggestions from 23 * Rusty Russell). 24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 25 * hlists and exceptions notifier as suggested by Andi Kleen. 26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 27 * interface to access function arguments. 28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 29 * exceptions notifier to be first on the priority list. 30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 32 * <prasanna@in.ibm.com> added function-return probes. 33 */ 34 #include <linux/kprobes.h> 35 #include <linux/hash.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/stddef.h> 39 #include <linux/export.h> 40 #include <linux/moduleloader.h> 41 #include <linux/kallsyms.h> 42 #include <linux/freezer.h> 43 #include <linux/seq_file.h> 44 #include <linux/debugfs.h> 45 #include <linux/sysctl.h> 46 #include <linux/kdebug.h> 47 #include <linux/memory.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 #include <linux/jump_label.h> 51 52 #include <asm/sections.h> 53 #include <asm/cacheflush.h> 54 #include <asm/errno.h> 55 #include <linux/uaccess.h> 56 57 #define KPROBE_HASH_BITS 6 58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 59 60 61 static int kprobes_initialized; 62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 64 65 /* NOTE: change this value only with kprobe_mutex held */ 66 static bool kprobes_all_disarmed; 67 68 /* This protects kprobe_table and optimizing_list */ 69 static DEFINE_MUTEX(kprobe_mutex); 70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 71 static struct { 72 raw_spinlock_t lock ____cacheline_aligned_in_smp; 73 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 74 75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, 76 unsigned int __unused) 77 { 78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); 79 } 80 81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 82 { 83 return &(kretprobe_table_locks[hash].lock); 84 } 85 86 /* List of symbols that can be overriden for error injection. */ 87 static LIST_HEAD(kprobe_error_injection_list); 88 static DEFINE_MUTEX(kprobe_ei_mutex); 89 struct kprobe_ei_entry { 90 struct list_head list; 91 unsigned long start_addr; 92 unsigned long end_addr; 93 void *priv; 94 }; 95 96 /* Blacklist -- list of struct kprobe_blacklist_entry */ 97 static LIST_HEAD(kprobe_blacklist); 98 99 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 100 /* 101 * kprobe->ainsn.insn points to the copy of the instruction to be 102 * single-stepped. x86_64, POWER4 and above have no-exec support and 103 * stepping on the instruction on a vmalloced/kmalloced/data page 104 * is a recipe for disaster 105 */ 106 struct kprobe_insn_page { 107 struct list_head list; 108 kprobe_opcode_t *insns; /* Page of instruction slots */ 109 struct kprobe_insn_cache *cache; 110 int nused; 111 int ngarbage; 112 char slot_used[]; 113 }; 114 115 #define KPROBE_INSN_PAGE_SIZE(slots) \ 116 (offsetof(struct kprobe_insn_page, slot_used) + \ 117 (sizeof(char) * (slots))) 118 119 static int slots_per_page(struct kprobe_insn_cache *c) 120 { 121 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 122 } 123 124 enum kprobe_slot_state { 125 SLOT_CLEAN = 0, 126 SLOT_DIRTY = 1, 127 SLOT_USED = 2, 128 }; 129 130 void __weak *alloc_insn_page(void) 131 { 132 return module_alloc(PAGE_SIZE); 133 } 134 135 void __weak free_insn_page(void *page) 136 { 137 module_memfree(page); 138 } 139 140 struct kprobe_insn_cache kprobe_insn_slots = { 141 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 142 .alloc = alloc_insn_page, 143 .free = free_insn_page, 144 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 145 .insn_size = MAX_INSN_SIZE, 146 .nr_garbage = 0, 147 }; 148 static int collect_garbage_slots(struct kprobe_insn_cache *c); 149 150 /** 151 * __get_insn_slot() - Find a slot on an executable page for an instruction. 152 * We allocate an executable page if there's no room on existing ones. 153 */ 154 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 155 { 156 struct kprobe_insn_page *kip; 157 kprobe_opcode_t *slot = NULL; 158 159 /* Since the slot array is not protected by rcu, we need a mutex */ 160 mutex_lock(&c->mutex); 161 retry: 162 rcu_read_lock(); 163 list_for_each_entry_rcu(kip, &c->pages, list) { 164 if (kip->nused < slots_per_page(c)) { 165 int i; 166 for (i = 0; i < slots_per_page(c); i++) { 167 if (kip->slot_used[i] == SLOT_CLEAN) { 168 kip->slot_used[i] = SLOT_USED; 169 kip->nused++; 170 slot = kip->insns + (i * c->insn_size); 171 rcu_read_unlock(); 172 goto out; 173 } 174 } 175 /* kip->nused is broken. Fix it. */ 176 kip->nused = slots_per_page(c); 177 WARN_ON(1); 178 } 179 } 180 rcu_read_unlock(); 181 182 /* If there are any garbage slots, collect it and try again. */ 183 if (c->nr_garbage && collect_garbage_slots(c) == 0) 184 goto retry; 185 186 /* All out of space. Need to allocate a new page. */ 187 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 188 if (!kip) 189 goto out; 190 191 /* 192 * Use module_alloc so this page is within +/- 2GB of where the 193 * kernel image and loaded module images reside. This is required 194 * so x86_64 can correctly handle the %rip-relative fixups. 195 */ 196 kip->insns = c->alloc(); 197 if (!kip->insns) { 198 kfree(kip); 199 goto out; 200 } 201 INIT_LIST_HEAD(&kip->list); 202 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 203 kip->slot_used[0] = SLOT_USED; 204 kip->nused = 1; 205 kip->ngarbage = 0; 206 kip->cache = c; 207 list_add_rcu(&kip->list, &c->pages); 208 slot = kip->insns; 209 out: 210 mutex_unlock(&c->mutex); 211 return slot; 212 } 213 214 /* Return 1 if all garbages are collected, otherwise 0. */ 215 static int collect_one_slot(struct kprobe_insn_page *kip, int idx) 216 { 217 kip->slot_used[idx] = SLOT_CLEAN; 218 kip->nused--; 219 if (kip->nused == 0) { 220 /* 221 * Page is no longer in use. Free it unless 222 * it's the last one. We keep the last one 223 * so as not to have to set it up again the 224 * next time somebody inserts a probe. 225 */ 226 if (!list_is_singular(&kip->list)) { 227 list_del_rcu(&kip->list); 228 synchronize_rcu(); 229 kip->cache->free(kip->insns); 230 kfree(kip); 231 } 232 return 1; 233 } 234 return 0; 235 } 236 237 static int collect_garbage_slots(struct kprobe_insn_cache *c) 238 { 239 struct kprobe_insn_page *kip, *next; 240 241 /* Ensure no-one is interrupted on the garbages */ 242 synchronize_sched(); 243 244 list_for_each_entry_safe(kip, next, &c->pages, list) { 245 int i; 246 if (kip->ngarbage == 0) 247 continue; 248 kip->ngarbage = 0; /* we will collect all garbages */ 249 for (i = 0; i < slots_per_page(c); i++) { 250 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 251 break; 252 } 253 } 254 c->nr_garbage = 0; 255 return 0; 256 } 257 258 void __free_insn_slot(struct kprobe_insn_cache *c, 259 kprobe_opcode_t *slot, int dirty) 260 { 261 struct kprobe_insn_page *kip; 262 long idx; 263 264 mutex_lock(&c->mutex); 265 rcu_read_lock(); 266 list_for_each_entry_rcu(kip, &c->pages, list) { 267 idx = ((long)slot - (long)kip->insns) / 268 (c->insn_size * sizeof(kprobe_opcode_t)); 269 if (idx >= 0 && idx < slots_per_page(c)) 270 goto out; 271 } 272 /* Could not find this slot. */ 273 WARN_ON(1); 274 kip = NULL; 275 out: 276 rcu_read_unlock(); 277 /* Mark and sweep: this may sleep */ 278 if (kip) { 279 /* Check double free */ 280 WARN_ON(kip->slot_used[idx] != SLOT_USED); 281 if (dirty) { 282 kip->slot_used[idx] = SLOT_DIRTY; 283 kip->ngarbage++; 284 if (++c->nr_garbage > slots_per_page(c)) 285 collect_garbage_slots(c); 286 } else { 287 collect_one_slot(kip, idx); 288 } 289 } 290 mutex_unlock(&c->mutex); 291 } 292 293 /* 294 * Check given address is on the page of kprobe instruction slots. 295 * This will be used for checking whether the address on a stack 296 * is on a text area or not. 297 */ 298 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 299 { 300 struct kprobe_insn_page *kip; 301 bool ret = false; 302 303 rcu_read_lock(); 304 list_for_each_entry_rcu(kip, &c->pages, list) { 305 if (addr >= (unsigned long)kip->insns && 306 addr < (unsigned long)kip->insns + PAGE_SIZE) { 307 ret = true; 308 break; 309 } 310 } 311 rcu_read_unlock(); 312 313 return ret; 314 } 315 316 #ifdef CONFIG_OPTPROBES 317 /* For optimized_kprobe buffer */ 318 struct kprobe_insn_cache kprobe_optinsn_slots = { 319 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 320 .alloc = alloc_insn_page, 321 .free = free_insn_page, 322 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 323 /* .insn_size is initialized later */ 324 .nr_garbage = 0, 325 }; 326 #endif 327 #endif 328 329 /* We have preemption disabled.. so it is safe to use __ versions */ 330 static inline void set_kprobe_instance(struct kprobe *kp) 331 { 332 __this_cpu_write(kprobe_instance, kp); 333 } 334 335 static inline void reset_kprobe_instance(void) 336 { 337 __this_cpu_write(kprobe_instance, NULL); 338 } 339 340 /* 341 * This routine is called either: 342 * - under the kprobe_mutex - during kprobe_[un]register() 343 * OR 344 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 345 */ 346 struct kprobe *get_kprobe(void *addr) 347 { 348 struct hlist_head *head; 349 struct kprobe *p; 350 351 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 352 hlist_for_each_entry_rcu(p, head, hlist) { 353 if (p->addr == addr) 354 return p; 355 } 356 357 return NULL; 358 } 359 NOKPROBE_SYMBOL(get_kprobe); 360 361 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 362 363 /* Return true if the kprobe is an aggregator */ 364 static inline int kprobe_aggrprobe(struct kprobe *p) 365 { 366 return p->pre_handler == aggr_pre_handler; 367 } 368 369 /* Return true(!0) if the kprobe is unused */ 370 static inline int kprobe_unused(struct kprobe *p) 371 { 372 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 373 list_empty(&p->list); 374 } 375 376 /* 377 * Keep all fields in the kprobe consistent 378 */ 379 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 380 { 381 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 382 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 383 } 384 385 #ifdef CONFIG_OPTPROBES 386 /* NOTE: change this value only with kprobe_mutex held */ 387 static bool kprobes_allow_optimization; 388 389 /* 390 * Call all pre_handler on the list, but ignores its return value. 391 * This must be called from arch-dep optimized caller. 392 */ 393 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 394 { 395 struct kprobe *kp; 396 397 list_for_each_entry_rcu(kp, &p->list, list) { 398 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 399 set_kprobe_instance(kp); 400 kp->pre_handler(kp, regs); 401 } 402 reset_kprobe_instance(); 403 } 404 } 405 NOKPROBE_SYMBOL(opt_pre_handler); 406 407 /* Free optimized instructions and optimized_kprobe */ 408 static void free_aggr_kprobe(struct kprobe *p) 409 { 410 struct optimized_kprobe *op; 411 412 op = container_of(p, struct optimized_kprobe, kp); 413 arch_remove_optimized_kprobe(op); 414 arch_remove_kprobe(p); 415 kfree(op); 416 } 417 418 /* Return true(!0) if the kprobe is ready for optimization. */ 419 static inline int kprobe_optready(struct kprobe *p) 420 { 421 struct optimized_kprobe *op; 422 423 if (kprobe_aggrprobe(p)) { 424 op = container_of(p, struct optimized_kprobe, kp); 425 return arch_prepared_optinsn(&op->optinsn); 426 } 427 428 return 0; 429 } 430 431 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 432 static inline int kprobe_disarmed(struct kprobe *p) 433 { 434 struct optimized_kprobe *op; 435 436 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 437 if (!kprobe_aggrprobe(p)) 438 return kprobe_disabled(p); 439 440 op = container_of(p, struct optimized_kprobe, kp); 441 442 return kprobe_disabled(p) && list_empty(&op->list); 443 } 444 445 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 446 static int kprobe_queued(struct kprobe *p) 447 { 448 struct optimized_kprobe *op; 449 450 if (kprobe_aggrprobe(p)) { 451 op = container_of(p, struct optimized_kprobe, kp); 452 if (!list_empty(&op->list)) 453 return 1; 454 } 455 return 0; 456 } 457 458 /* 459 * Return an optimized kprobe whose optimizing code replaces 460 * instructions including addr (exclude breakpoint). 461 */ 462 static struct kprobe *get_optimized_kprobe(unsigned long addr) 463 { 464 int i; 465 struct kprobe *p = NULL; 466 struct optimized_kprobe *op; 467 468 /* Don't check i == 0, since that is a breakpoint case. */ 469 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 470 p = get_kprobe((void *)(addr - i)); 471 472 if (p && kprobe_optready(p)) { 473 op = container_of(p, struct optimized_kprobe, kp); 474 if (arch_within_optimized_kprobe(op, addr)) 475 return p; 476 } 477 478 return NULL; 479 } 480 481 /* Optimization staging list, protected by kprobe_mutex */ 482 static LIST_HEAD(optimizing_list); 483 static LIST_HEAD(unoptimizing_list); 484 static LIST_HEAD(freeing_list); 485 486 static void kprobe_optimizer(struct work_struct *work); 487 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 488 #define OPTIMIZE_DELAY 5 489 490 /* 491 * Optimize (replace a breakpoint with a jump) kprobes listed on 492 * optimizing_list. 493 */ 494 static void do_optimize_kprobes(void) 495 { 496 /* 497 * The optimization/unoptimization refers online_cpus via 498 * stop_machine() and cpu-hotplug modifies online_cpus. 499 * And same time, text_mutex will be held in cpu-hotplug and here. 500 * This combination can cause a deadlock (cpu-hotplug try to lock 501 * text_mutex but stop_machine can not be done because online_cpus 502 * has been changed) 503 * To avoid this deadlock, caller must have locked cpu hotplug 504 * for preventing cpu-hotplug outside of text_mutex locking. 505 */ 506 lockdep_assert_cpus_held(); 507 508 /* Optimization never be done when disarmed */ 509 if (kprobes_all_disarmed || !kprobes_allow_optimization || 510 list_empty(&optimizing_list)) 511 return; 512 513 mutex_lock(&text_mutex); 514 arch_optimize_kprobes(&optimizing_list); 515 mutex_unlock(&text_mutex); 516 } 517 518 /* 519 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 520 * if need) kprobes listed on unoptimizing_list. 521 */ 522 static void do_unoptimize_kprobes(void) 523 { 524 struct optimized_kprobe *op, *tmp; 525 526 /* See comment in do_optimize_kprobes() */ 527 lockdep_assert_cpus_held(); 528 529 /* Unoptimization must be done anytime */ 530 if (list_empty(&unoptimizing_list)) 531 return; 532 533 mutex_lock(&text_mutex); 534 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 535 /* Loop free_list for disarming */ 536 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 537 /* Disarm probes if marked disabled */ 538 if (kprobe_disabled(&op->kp)) 539 arch_disarm_kprobe(&op->kp); 540 if (kprobe_unused(&op->kp)) { 541 /* 542 * Remove unused probes from hash list. After waiting 543 * for synchronization, these probes are reclaimed. 544 * (reclaiming is done by do_free_cleaned_kprobes.) 545 */ 546 hlist_del_rcu(&op->kp.hlist); 547 } else 548 list_del_init(&op->list); 549 } 550 mutex_unlock(&text_mutex); 551 } 552 553 /* Reclaim all kprobes on the free_list */ 554 static void do_free_cleaned_kprobes(void) 555 { 556 struct optimized_kprobe *op, *tmp; 557 558 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 559 BUG_ON(!kprobe_unused(&op->kp)); 560 list_del_init(&op->list); 561 free_aggr_kprobe(&op->kp); 562 } 563 } 564 565 /* Start optimizer after OPTIMIZE_DELAY passed */ 566 static void kick_kprobe_optimizer(void) 567 { 568 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 569 } 570 571 /* Kprobe jump optimizer */ 572 static void kprobe_optimizer(struct work_struct *work) 573 { 574 mutex_lock(&kprobe_mutex); 575 cpus_read_lock(); 576 /* Lock modules while optimizing kprobes */ 577 mutex_lock(&module_mutex); 578 579 /* 580 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 581 * kprobes before waiting for quiesence period. 582 */ 583 do_unoptimize_kprobes(); 584 585 /* 586 * Step 2: Wait for quiesence period to ensure all potentially 587 * preempted tasks to have normally scheduled. Because optprobe 588 * may modify multiple instructions, there is a chance that Nth 589 * instruction is preempted. In that case, such tasks can return 590 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. 591 * Note that on non-preemptive kernel, this is transparently converted 592 * to synchronoze_sched() to wait for all interrupts to have completed. 593 */ 594 synchronize_rcu_tasks(); 595 596 /* Step 3: Optimize kprobes after quiesence period */ 597 do_optimize_kprobes(); 598 599 /* Step 4: Free cleaned kprobes after quiesence period */ 600 do_free_cleaned_kprobes(); 601 602 mutex_unlock(&module_mutex); 603 cpus_read_unlock(); 604 mutex_unlock(&kprobe_mutex); 605 606 /* Step 5: Kick optimizer again if needed */ 607 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 608 kick_kprobe_optimizer(); 609 } 610 611 /* Wait for completing optimization and unoptimization */ 612 void wait_for_kprobe_optimizer(void) 613 { 614 mutex_lock(&kprobe_mutex); 615 616 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 617 mutex_unlock(&kprobe_mutex); 618 619 /* this will also make optimizing_work execute immmediately */ 620 flush_delayed_work(&optimizing_work); 621 /* @optimizing_work might not have been queued yet, relax */ 622 cpu_relax(); 623 624 mutex_lock(&kprobe_mutex); 625 } 626 627 mutex_unlock(&kprobe_mutex); 628 } 629 630 /* Optimize kprobe if p is ready to be optimized */ 631 static void optimize_kprobe(struct kprobe *p) 632 { 633 struct optimized_kprobe *op; 634 635 /* Check if the kprobe is disabled or not ready for optimization. */ 636 if (!kprobe_optready(p) || !kprobes_allow_optimization || 637 (kprobe_disabled(p) || kprobes_all_disarmed)) 638 return; 639 640 /* Both of break_handler and post_handler are not supported. */ 641 if (p->break_handler || p->post_handler) 642 return; 643 644 op = container_of(p, struct optimized_kprobe, kp); 645 646 /* Check there is no other kprobes at the optimized instructions */ 647 if (arch_check_optimized_kprobe(op) < 0) 648 return; 649 650 /* Check if it is already optimized. */ 651 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) 652 return; 653 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 654 655 if (!list_empty(&op->list)) 656 /* This is under unoptimizing. Just dequeue the probe */ 657 list_del_init(&op->list); 658 else { 659 list_add(&op->list, &optimizing_list); 660 kick_kprobe_optimizer(); 661 } 662 } 663 664 /* Short cut to direct unoptimizing */ 665 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 666 { 667 lockdep_assert_cpus_held(); 668 arch_unoptimize_kprobe(op); 669 if (kprobe_disabled(&op->kp)) 670 arch_disarm_kprobe(&op->kp); 671 } 672 673 /* Unoptimize a kprobe if p is optimized */ 674 static void unoptimize_kprobe(struct kprobe *p, bool force) 675 { 676 struct optimized_kprobe *op; 677 678 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 679 return; /* This is not an optprobe nor optimized */ 680 681 op = container_of(p, struct optimized_kprobe, kp); 682 if (!kprobe_optimized(p)) { 683 /* Unoptimized or unoptimizing case */ 684 if (force && !list_empty(&op->list)) { 685 /* 686 * Only if this is unoptimizing kprobe and forced, 687 * forcibly unoptimize it. (No need to unoptimize 688 * unoptimized kprobe again :) 689 */ 690 list_del_init(&op->list); 691 force_unoptimize_kprobe(op); 692 } 693 return; 694 } 695 696 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 697 if (!list_empty(&op->list)) { 698 /* Dequeue from the optimization queue */ 699 list_del_init(&op->list); 700 return; 701 } 702 /* Optimized kprobe case */ 703 if (force) 704 /* Forcibly update the code: this is a special case */ 705 force_unoptimize_kprobe(op); 706 else { 707 list_add(&op->list, &unoptimizing_list); 708 kick_kprobe_optimizer(); 709 } 710 } 711 712 /* Cancel unoptimizing for reusing */ 713 static void reuse_unused_kprobe(struct kprobe *ap) 714 { 715 struct optimized_kprobe *op; 716 717 BUG_ON(!kprobe_unused(ap)); 718 /* 719 * Unused kprobe MUST be on the way of delayed unoptimizing (means 720 * there is still a relative jump) and disabled. 721 */ 722 op = container_of(ap, struct optimized_kprobe, kp); 723 if (unlikely(list_empty(&op->list))) 724 printk(KERN_WARNING "Warning: found a stray unused " 725 "aggrprobe@%p\n", ap->addr); 726 /* Enable the probe again */ 727 ap->flags &= ~KPROBE_FLAG_DISABLED; 728 /* Optimize it again (remove from op->list) */ 729 BUG_ON(!kprobe_optready(ap)); 730 optimize_kprobe(ap); 731 } 732 733 /* Remove optimized instructions */ 734 static void kill_optimized_kprobe(struct kprobe *p) 735 { 736 struct optimized_kprobe *op; 737 738 op = container_of(p, struct optimized_kprobe, kp); 739 if (!list_empty(&op->list)) 740 /* Dequeue from the (un)optimization queue */ 741 list_del_init(&op->list); 742 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 743 744 if (kprobe_unused(p)) { 745 /* Enqueue if it is unused */ 746 list_add(&op->list, &freeing_list); 747 /* 748 * Remove unused probes from the hash list. After waiting 749 * for synchronization, this probe is reclaimed. 750 * (reclaiming is done by do_free_cleaned_kprobes().) 751 */ 752 hlist_del_rcu(&op->kp.hlist); 753 } 754 755 /* Don't touch the code, because it is already freed. */ 756 arch_remove_optimized_kprobe(op); 757 } 758 759 static inline 760 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) 761 { 762 if (!kprobe_ftrace(p)) 763 arch_prepare_optimized_kprobe(op, p); 764 } 765 766 /* Try to prepare optimized instructions */ 767 static void prepare_optimized_kprobe(struct kprobe *p) 768 { 769 struct optimized_kprobe *op; 770 771 op = container_of(p, struct optimized_kprobe, kp); 772 __prepare_optimized_kprobe(op, p); 773 } 774 775 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 776 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 777 { 778 struct optimized_kprobe *op; 779 780 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 781 if (!op) 782 return NULL; 783 784 INIT_LIST_HEAD(&op->list); 785 op->kp.addr = p->addr; 786 __prepare_optimized_kprobe(op, p); 787 788 return &op->kp; 789 } 790 791 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 792 793 /* 794 * Prepare an optimized_kprobe and optimize it 795 * NOTE: p must be a normal registered kprobe 796 */ 797 static void try_to_optimize_kprobe(struct kprobe *p) 798 { 799 struct kprobe *ap; 800 struct optimized_kprobe *op; 801 802 /* Impossible to optimize ftrace-based kprobe */ 803 if (kprobe_ftrace(p)) 804 return; 805 806 /* For preparing optimization, jump_label_text_reserved() is called */ 807 cpus_read_lock(); 808 jump_label_lock(); 809 mutex_lock(&text_mutex); 810 811 ap = alloc_aggr_kprobe(p); 812 if (!ap) 813 goto out; 814 815 op = container_of(ap, struct optimized_kprobe, kp); 816 if (!arch_prepared_optinsn(&op->optinsn)) { 817 /* If failed to setup optimizing, fallback to kprobe */ 818 arch_remove_optimized_kprobe(op); 819 kfree(op); 820 goto out; 821 } 822 823 init_aggr_kprobe(ap, p); 824 optimize_kprobe(ap); /* This just kicks optimizer thread */ 825 826 out: 827 mutex_unlock(&text_mutex); 828 jump_label_unlock(); 829 cpus_read_unlock(); 830 } 831 832 #ifdef CONFIG_SYSCTL 833 static void optimize_all_kprobes(void) 834 { 835 struct hlist_head *head; 836 struct kprobe *p; 837 unsigned int i; 838 839 mutex_lock(&kprobe_mutex); 840 /* If optimization is already allowed, just return */ 841 if (kprobes_allow_optimization) 842 goto out; 843 844 cpus_read_lock(); 845 kprobes_allow_optimization = true; 846 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 847 head = &kprobe_table[i]; 848 hlist_for_each_entry_rcu(p, head, hlist) 849 if (!kprobe_disabled(p)) 850 optimize_kprobe(p); 851 } 852 cpus_read_unlock(); 853 printk(KERN_INFO "Kprobes globally optimized\n"); 854 out: 855 mutex_unlock(&kprobe_mutex); 856 } 857 858 static void unoptimize_all_kprobes(void) 859 { 860 struct hlist_head *head; 861 struct kprobe *p; 862 unsigned int i; 863 864 mutex_lock(&kprobe_mutex); 865 /* If optimization is already prohibited, just return */ 866 if (!kprobes_allow_optimization) { 867 mutex_unlock(&kprobe_mutex); 868 return; 869 } 870 871 cpus_read_lock(); 872 kprobes_allow_optimization = false; 873 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 874 head = &kprobe_table[i]; 875 hlist_for_each_entry_rcu(p, head, hlist) { 876 if (!kprobe_disabled(p)) 877 unoptimize_kprobe(p, false); 878 } 879 } 880 cpus_read_unlock(); 881 mutex_unlock(&kprobe_mutex); 882 883 /* Wait for unoptimizing completion */ 884 wait_for_kprobe_optimizer(); 885 printk(KERN_INFO "Kprobes globally unoptimized\n"); 886 } 887 888 static DEFINE_MUTEX(kprobe_sysctl_mutex); 889 int sysctl_kprobes_optimization; 890 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 891 void __user *buffer, size_t *length, 892 loff_t *ppos) 893 { 894 int ret; 895 896 mutex_lock(&kprobe_sysctl_mutex); 897 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 898 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 899 900 if (sysctl_kprobes_optimization) 901 optimize_all_kprobes(); 902 else 903 unoptimize_all_kprobes(); 904 mutex_unlock(&kprobe_sysctl_mutex); 905 906 return ret; 907 } 908 #endif /* CONFIG_SYSCTL */ 909 910 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 911 static void __arm_kprobe(struct kprobe *p) 912 { 913 struct kprobe *_p; 914 915 /* Check collision with other optimized kprobes */ 916 _p = get_optimized_kprobe((unsigned long)p->addr); 917 if (unlikely(_p)) 918 /* Fallback to unoptimized kprobe */ 919 unoptimize_kprobe(_p, true); 920 921 arch_arm_kprobe(p); 922 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 923 } 924 925 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 926 static void __disarm_kprobe(struct kprobe *p, bool reopt) 927 { 928 struct kprobe *_p; 929 930 /* Try to unoptimize */ 931 unoptimize_kprobe(p, kprobes_all_disarmed); 932 933 if (!kprobe_queued(p)) { 934 arch_disarm_kprobe(p); 935 /* If another kprobe was blocked, optimize it. */ 936 _p = get_optimized_kprobe((unsigned long)p->addr); 937 if (unlikely(_p) && reopt) 938 optimize_kprobe(_p); 939 } 940 /* TODO: reoptimize others after unoptimized this probe */ 941 } 942 943 #else /* !CONFIG_OPTPROBES */ 944 945 #define optimize_kprobe(p) do {} while (0) 946 #define unoptimize_kprobe(p, f) do {} while (0) 947 #define kill_optimized_kprobe(p) do {} while (0) 948 #define prepare_optimized_kprobe(p) do {} while (0) 949 #define try_to_optimize_kprobe(p) do {} while (0) 950 #define __arm_kprobe(p) arch_arm_kprobe(p) 951 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 952 #define kprobe_disarmed(p) kprobe_disabled(p) 953 #define wait_for_kprobe_optimizer() do {} while (0) 954 955 /* There should be no unused kprobes can be reused without optimization */ 956 static void reuse_unused_kprobe(struct kprobe *ap) 957 { 958 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 959 BUG_ON(kprobe_unused(ap)); 960 } 961 962 static void free_aggr_kprobe(struct kprobe *p) 963 { 964 arch_remove_kprobe(p); 965 kfree(p); 966 } 967 968 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 969 { 970 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 971 } 972 #endif /* CONFIG_OPTPROBES */ 973 974 #ifdef CONFIG_KPROBES_ON_FTRACE 975 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 976 .func = kprobe_ftrace_handler, 977 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 978 }; 979 static int kprobe_ftrace_enabled; 980 981 /* Must ensure p->addr is really on ftrace */ 982 static int prepare_kprobe(struct kprobe *p) 983 { 984 if (!kprobe_ftrace(p)) 985 return arch_prepare_kprobe(p); 986 987 return arch_prepare_kprobe_ftrace(p); 988 } 989 990 /* Caller must lock kprobe_mutex */ 991 static void arm_kprobe_ftrace(struct kprobe *p) 992 { 993 int ret; 994 995 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 996 (unsigned long)p->addr, 0, 0); 997 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret); 998 kprobe_ftrace_enabled++; 999 if (kprobe_ftrace_enabled == 1) { 1000 ret = register_ftrace_function(&kprobe_ftrace_ops); 1001 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret); 1002 } 1003 } 1004 1005 /* Caller must lock kprobe_mutex */ 1006 static void disarm_kprobe_ftrace(struct kprobe *p) 1007 { 1008 int ret; 1009 1010 kprobe_ftrace_enabled--; 1011 if (kprobe_ftrace_enabled == 0) { 1012 ret = unregister_ftrace_function(&kprobe_ftrace_ops); 1013 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret); 1014 } 1015 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 1016 (unsigned long)p->addr, 1, 0); 1017 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret); 1018 } 1019 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1020 #define prepare_kprobe(p) arch_prepare_kprobe(p) 1021 #define arm_kprobe_ftrace(p) do {} while (0) 1022 #define disarm_kprobe_ftrace(p) do {} while (0) 1023 #endif 1024 1025 /* Arm a kprobe with text_mutex */ 1026 static void arm_kprobe(struct kprobe *kp) 1027 { 1028 if (unlikely(kprobe_ftrace(kp))) { 1029 arm_kprobe_ftrace(kp); 1030 return; 1031 } 1032 cpus_read_lock(); 1033 mutex_lock(&text_mutex); 1034 __arm_kprobe(kp); 1035 mutex_unlock(&text_mutex); 1036 cpus_read_unlock(); 1037 } 1038 1039 /* Disarm a kprobe with text_mutex */ 1040 static void disarm_kprobe(struct kprobe *kp, bool reopt) 1041 { 1042 if (unlikely(kprobe_ftrace(kp))) { 1043 disarm_kprobe_ftrace(kp); 1044 return; 1045 } 1046 1047 cpus_read_lock(); 1048 mutex_lock(&text_mutex); 1049 __disarm_kprobe(kp, reopt); 1050 mutex_unlock(&text_mutex); 1051 cpus_read_unlock(); 1052 } 1053 1054 /* 1055 * Aggregate handlers for multiple kprobes support - these handlers 1056 * take care of invoking the individual kprobe handlers on p->list 1057 */ 1058 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1059 { 1060 struct kprobe *kp; 1061 1062 list_for_each_entry_rcu(kp, &p->list, list) { 1063 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1064 set_kprobe_instance(kp); 1065 if (kp->pre_handler(kp, regs)) 1066 return 1; 1067 } 1068 reset_kprobe_instance(); 1069 } 1070 return 0; 1071 } 1072 NOKPROBE_SYMBOL(aggr_pre_handler); 1073 1074 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1075 unsigned long flags) 1076 { 1077 struct kprobe *kp; 1078 1079 list_for_each_entry_rcu(kp, &p->list, list) { 1080 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1081 set_kprobe_instance(kp); 1082 kp->post_handler(kp, regs, flags); 1083 reset_kprobe_instance(); 1084 } 1085 } 1086 } 1087 NOKPROBE_SYMBOL(aggr_post_handler); 1088 1089 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 1090 int trapnr) 1091 { 1092 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1093 1094 /* 1095 * if we faulted "during" the execution of a user specified 1096 * probe handler, invoke just that probe's fault handler 1097 */ 1098 if (cur && cur->fault_handler) { 1099 if (cur->fault_handler(cur, regs, trapnr)) 1100 return 1; 1101 } 1102 return 0; 1103 } 1104 NOKPROBE_SYMBOL(aggr_fault_handler); 1105 1106 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs) 1107 { 1108 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1109 int ret = 0; 1110 1111 if (cur && cur->break_handler) { 1112 if (cur->break_handler(cur, regs)) 1113 ret = 1; 1114 } 1115 reset_kprobe_instance(); 1116 return ret; 1117 } 1118 NOKPROBE_SYMBOL(aggr_break_handler); 1119 1120 /* Walks the list and increments nmissed count for multiprobe case */ 1121 void kprobes_inc_nmissed_count(struct kprobe *p) 1122 { 1123 struct kprobe *kp; 1124 if (!kprobe_aggrprobe(p)) { 1125 p->nmissed++; 1126 } else { 1127 list_for_each_entry_rcu(kp, &p->list, list) 1128 kp->nmissed++; 1129 } 1130 return; 1131 } 1132 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1133 1134 void recycle_rp_inst(struct kretprobe_instance *ri, 1135 struct hlist_head *head) 1136 { 1137 struct kretprobe *rp = ri->rp; 1138 1139 /* remove rp inst off the rprobe_inst_table */ 1140 hlist_del(&ri->hlist); 1141 INIT_HLIST_NODE(&ri->hlist); 1142 if (likely(rp)) { 1143 raw_spin_lock(&rp->lock); 1144 hlist_add_head(&ri->hlist, &rp->free_instances); 1145 raw_spin_unlock(&rp->lock); 1146 } else 1147 /* Unregistering */ 1148 hlist_add_head(&ri->hlist, head); 1149 } 1150 NOKPROBE_SYMBOL(recycle_rp_inst); 1151 1152 void kretprobe_hash_lock(struct task_struct *tsk, 1153 struct hlist_head **head, unsigned long *flags) 1154 __acquires(hlist_lock) 1155 { 1156 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1157 raw_spinlock_t *hlist_lock; 1158 1159 *head = &kretprobe_inst_table[hash]; 1160 hlist_lock = kretprobe_table_lock_ptr(hash); 1161 raw_spin_lock_irqsave(hlist_lock, *flags); 1162 } 1163 NOKPROBE_SYMBOL(kretprobe_hash_lock); 1164 1165 static void kretprobe_table_lock(unsigned long hash, 1166 unsigned long *flags) 1167 __acquires(hlist_lock) 1168 { 1169 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1170 raw_spin_lock_irqsave(hlist_lock, *flags); 1171 } 1172 NOKPROBE_SYMBOL(kretprobe_table_lock); 1173 1174 void kretprobe_hash_unlock(struct task_struct *tsk, 1175 unsigned long *flags) 1176 __releases(hlist_lock) 1177 { 1178 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1179 raw_spinlock_t *hlist_lock; 1180 1181 hlist_lock = kretprobe_table_lock_ptr(hash); 1182 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1183 } 1184 NOKPROBE_SYMBOL(kretprobe_hash_unlock); 1185 1186 static void kretprobe_table_unlock(unsigned long hash, 1187 unsigned long *flags) 1188 __releases(hlist_lock) 1189 { 1190 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1191 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1192 } 1193 NOKPROBE_SYMBOL(kretprobe_table_unlock); 1194 1195 /* 1196 * This function is called from finish_task_switch when task tk becomes dead, 1197 * so that we can recycle any function-return probe instances associated 1198 * with this task. These left over instances represent probed functions 1199 * that have been called but will never return. 1200 */ 1201 void kprobe_flush_task(struct task_struct *tk) 1202 { 1203 struct kretprobe_instance *ri; 1204 struct hlist_head *head, empty_rp; 1205 struct hlist_node *tmp; 1206 unsigned long hash, flags = 0; 1207 1208 if (unlikely(!kprobes_initialized)) 1209 /* Early boot. kretprobe_table_locks not yet initialized. */ 1210 return; 1211 1212 INIT_HLIST_HEAD(&empty_rp); 1213 hash = hash_ptr(tk, KPROBE_HASH_BITS); 1214 head = &kretprobe_inst_table[hash]; 1215 kretprobe_table_lock(hash, &flags); 1216 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 1217 if (ri->task == tk) 1218 recycle_rp_inst(ri, &empty_rp); 1219 } 1220 kretprobe_table_unlock(hash, &flags); 1221 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 1222 hlist_del(&ri->hlist); 1223 kfree(ri); 1224 } 1225 } 1226 NOKPROBE_SYMBOL(kprobe_flush_task); 1227 1228 static inline void free_rp_inst(struct kretprobe *rp) 1229 { 1230 struct kretprobe_instance *ri; 1231 struct hlist_node *next; 1232 1233 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) { 1234 hlist_del(&ri->hlist); 1235 kfree(ri); 1236 } 1237 } 1238 1239 static void cleanup_rp_inst(struct kretprobe *rp) 1240 { 1241 unsigned long flags, hash; 1242 struct kretprobe_instance *ri; 1243 struct hlist_node *next; 1244 struct hlist_head *head; 1245 1246 /* No race here */ 1247 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 1248 kretprobe_table_lock(hash, &flags); 1249 head = &kretprobe_inst_table[hash]; 1250 hlist_for_each_entry_safe(ri, next, head, hlist) { 1251 if (ri->rp == rp) 1252 ri->rp = NULL; 1253 } 1254 kretprobe_table_unlock(hash, &flags); 1255 } 1256 free_rp_inst(rp); 1257 } 1258 NOKPROBE_SYMBOL(cleanup_rp_inst); 1259 1260 /* 1261 * Add the new probe to ap->list. Fail if this is the 1262 * second jprobe at the address - two jprobes can't coexist 1263 */ 1264 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1265 { 1266 BUG_ON(kprobe_gone(ap) || kprobe_gone(p)); 1267 1268 if (p->break_handler || p->post_handler) 1269 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1270 1271 if (p->break_handler) { 1272 if (ap->break_handler) 1273 return -EEXIST; 1274 list_add_tail_rcu(&p->list, &ap->list); 1275 ap->break_handler = aggr_break_handler; 1276 } else 1277 list_add_rcu(&p->list, &ap->list); 1278 if (p->post_handler && !ap->post_handler) 1279 ap->post_handler = aggr_post_handler; 1280 1281 return 0; 1282 } 1283 1284 /* 1285 * Fill in the required fields of the "manager kprobe". Replace the 1286 * earlier kprobe in the hlist with the manager kprobe 1287 */ 1288 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1289 { 1290 /* Copy p's insn slot to ap */ 1291 copy_kprobe(p, ap); 1292 flush_insn_slot(ap); 1293 ap->addr = p->addr; 1294 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1295 ap->pre_handler = aggr_pre_handler; 1296 ap->fault_handler = aggr_fault_handler; 1297 /* We don't care the kprobe which has gone. */ 1298 if (p->post_handler && !kprobe_gone(p)) 1299 ap->post_handler = aggr_post_handler; 1300 if (p->break_handler && !kprobe_gone(p)) 1301 ap->break_handler = aggr_break_handler; 1302 1303 INIT_LIST_HEAD(&ap->list); 1304 INIT_HLIST_NODE(&ap->hlist); 1305 1306 list_add_rcu(&p->list, &ap->list); 1307 hlist_replace_rcu(&p->hlist, &ap->hlist); 1308 } 1309 1310 /* 1311 * This is the second or subsequent kprobe at the address - handle 1312 * the intricacies 1313 */ 1314 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1315 { 1316 int ret = 0; 1317 struct kprobe *ap = orig_p; 1318 1319 cpus_read_lock(); 1320 1321 /* For preparing optimization, jump_label_text_reserved() is called */ 1322 jump_label_lock(); 1323 mutex_lock(&text_mutex); 1324 1325 if (!kprobe_aggrprobe(orig_p)) { 1326 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1327 ap = alloc_aggr_kprobe(orig_p); 1328 if (!ap) { 1329 ret = -ENOMEM; 1330 goto out; 1331 } 1332 init_aggr_kprobe(ap, orig_p); 1333 } else if (kprobe_unused(ap)) 1334 /* This probe is going to die. Rescue it */ 1335 reuse_unused_kprobe(ap); 1336 1337 if (kprobe_gone(ap)) { 1338 /* 1339 * Attempting to insert new probe at the same location that 1340 * had a probe in the module vaddr area which already 1341 * freed. So, the instruction slot has already been 1342 * released. We need a new slot for the new probe. 1343 */ 1344 ret = arch_prepare_kprobe(ap); 1345 if (ret) 1346 /* 1347 * Even if fail to allocate new slot, don't need to 1348 * free aggr_probe. It will be used next time, or 1349 * freed by unregister_kprobe. 1350 */ 1351 goto out; 1352 1353 /* Prepare optimized instructions if possible. */ 1354 prepare_optimized_kprobe(ap); 1355 1356 /* 1357 * Clear gone flag to prevent allocating new slot again, and 1358 * set disabled flag because it is not armed yet. 1359 */ 1360 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1361 | KPROBE_FLAG_DISABLED; 1362 } 1363 1364 /* Copy ap's insn slot to p */ 1365 copy_kprobe(ap, p); 1366 ret = add_new_kprobe(ap, p); 1367 1368 out: 1369 mutex_unlock(&text_mutex); 1370 jump_label_unlock(); 1371 cpus_read_unlock(); 1372 1373 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1374 ap->flags &= ~KPROBE_FLAG_DISABLED; 1375 if (!kprobes_all_disarmed) 1376 /* Arm the breakpoint again. */ 1377 arm_kprobe(ap); 1378 } 1379 return ret; 1380 } 1381 1382 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1383 { 1384 /* The __kprobes marked functions and entry code must not be probed */ 1385 return addr >= (unsigned long)__kprobes_text_start && 1386 addr < (unsigned long)__kprobes_text_end; 1387 } 1388 1389 bool within_kprobe_blacklist(unsigned long addr) 1390 { 1391 struct kprobe_blacklist_entry *ent; 1392 1393 if (arch_within_kprobe_blacklist(addr)) 1394 return true; 1395 /* 1396 * If there exists a kprobe_blacklist, verify and 1397 * fail any probe registration in the prohibited area 1398 */ 1399 list_for_each_entry(ent, &kprobe_blacklist, list) { 1400 if (addr >= ent->start_addr && addr < ent->end_addr) 1401 return true; 1402 } 1403 1404 return false; 1405 } 1406 1407 bool within_kprobe_error_injection_list(unsigned long addr) 1408 { 1409 struct kprobe_ei_entry *ent; 1410 1411 list_for_each_entry(ent, &kprobe_error_injection_list, list) { 1412 if (addr >= ent->start_addr && addr < ent->end_addr) 1413 return true; 1414 } 1415 return false; 1416 } 1417 1418 /* 1419 * If we have a symbol_name argument, look it up and add the offset field 1420 * to it. This way, we can specify a relative address to a symbol. 1421 * This returns encoded errors if it fails to look up symbol or invalid 1422 * combination of parameters. 1423 */ 1424 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr, 1425 const char *symbol_name, unsigned int offset) 1426 { 1427 if ((symbol_name && addr) || (!symbol_name && !addr)) 1428 goto invalid; 1429 1430 if (symbol_name) { 1431 addr = kprobe_lookup_name(symbol_name, offset); 1432 if (!addr) 1433 return ERR_PTR(-ENOENT); 1434 } 1435 1436 addr = (kprobe_opcode_t *)(((char *)addr) + offset); 1437 if (addr) 1438 return addr; 1439 1440 invalid: 1441 return ERR_PTR(-EINVAL); 1442 } 1443 1444 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1445 { 1446 return _kprobe_addr(p->addr, p->symbol_name, p->offset); 1447 } 1448 1449 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1450 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1451 { 1452 struct kprobe *ap, *list_p; 1453 1454 ap = get_kprobe(p->addr); 1455 if (unlikely(!ap)) 1456 return NULL; 1457 1458 if (p != ap) { 1459 list_for_each_entry_rcu(list_p, &ap->list, list) 1460 if (list_p == p) 1461 /* kprobe p is a valid probe */ 1462 goto valid; 1463 return NULL; 1464 } 1465 valid: 1466 return ap; 1467 } 1468 1469 /* Return error if the kprobe is being re-registered */ 1470 static inline int check_kprobe_rereg(struct kprobe *p) 1471 { 1472 int ret = 0; 1473 1474 mutex_lock(&kprobe_mutex); 1475 if (__get_valid_kprobe(p)) 1476 ret = -EINVAL; 1477 mutex_unlock(&kprobe_mutex); 1478 1479 return ret; 1480 } 1481 1482 int __weak arch_check_ftrace_location(struct kprobe *p) 1483 { 1484 unsigned long ftrace_addr; 1485 1486 ftrace_addr = ftrace_location((unsigned long)p->addr); 1487 if (ftrace_addr) { 1488 #ifdef CONFIG_KPROBES_ON_FTRACE 1489 /* Given address is not on the instruction boundary */ 1490 if ((unsigned long)p->addr != ftrace_addr) 1491 return -EILSEQ; 1492 p->flags |= KPROBE_FLAG_FTRACE; 1493 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1494 return -EINVAL; 1495 #endif 1496 } 1497 return 0; 1498 } 1499 1500 static int check_kprobe_address_safe(struct kprobe *p, 1501 struct module **probed_mod) 1502 { 1503 int ret; 1504 1505 ret = arch_check_ftrace_location(p); 1506 if (ret) 1507 return ret; 1508 jump_label_lock(); 1509 preempt_disable(); 1510 1511 /* Ensure it is not in reserved area nor out of text */ 1512 if (!kernel_text_address((unsigned long) p->addr) || 1513 within_kprobe_blacklist((unsigned long) p->addr) || 1514 jump_label_text_reserved(p->addr, p->addr)) { 1515 ret = -EINVAL; 1516 goto out; 1517 } 1518 1519 /* Check if are we probing a module */ 1520 *probed_mod = __module_text_address((unsigned long) p->addr); 1521 if (*probed_mod) { 1522 /* 1523 * We must hold a refcount of the probed module while updating 1524 * its code to prohibit unexpected unloading. 1525 */ 1526 if (unlikely(!try_module_get(*probed_mod))) { 1527 ret = -ENOENT; 1528 goto out; 1529 } 1530 1531 /* 1532 * If the module freed .init.text, we couldn't insert 1533 * kprobes in there. 1534 */ 1535 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1536 (*probed_mod)->state != MODULE_STATE_COMING) { 1537 module_put(*probed_mod); 1538 *probed_mod = NULL; 1539 ret = -ENOENT; 1540 } 1541 } 1542 out: 1543 preempt_enable(); 1544 jump_label_unlock(); 1545 1546 return ret; 1547 } 1548 1549 int register_kprobe(struct kprobe *p) 1550 { 1551 int ret; 1552 struct kprobe *old_p; 1553 struct module *probed_mod; 1554 kprobe_opcode_t *addr; 1555 1556 /* Adjust probe address from symbol */ 1557 addr = kprobe_addr(p); 1558 if (IS_ERR(addr)) 1559 return PTR_ERR(addr); 1560 p->addr = addr; 1561 1562 ret = check_kprobe_rereg(p); 1563 if (ret) 1564 return ret; 1565 1566 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1567 p->flags &= KPROBE_FLAG_DISABLED; 1568 p->nmissed = 0; 1569 INIT_LIST_HEAD(&p->list); 1570 1571 ret = check_kprobe_address_safe(p, &probed_mod); 1572 if (ret) 1573 return ret; 1574 1575 mutex_lock(&kprobe_mutex); 1576 1577 old_p = get_kprobe(p->addr); 1578 if (old_p) { 1579 /* Since this may unoptimize old_p, locking text_mutex. */ 1580 ret = register_aggr_kprobe(old_p, p); 1581 goto out; 1582 } 1583 1584 cpus_read_lock(); 1585 /* Prevent text modification */ 1586 mutex_lock(&text_mutex); 1587 ret = prepare_kprobe(p); 1588 mutex_unlock(&text_mutex); 1589 cpus_read_unlock(); 1590 if (ret) 1591 goto out; 1592 1593 INIT_HLIST_NODE(&p->hlist); 1594 hlist_add_head_rcu(&p->hlist, 1595 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1596 1597 if (!kprobes_all_disarmed && !kprobe_disabled(p)) 1598 arm_kprobe(p); 1599 1600 /* Try to optimize kprobe */ 1601 try_to_optimize_kprobe(p); 1602 out: 1603 mutex_unlock(&kprobe_mutex); 1604 1605 if (probed_mod) 1606 module_put(probed_mod); 1607 1608 return ret; 1609 } 1610 EXPORT_SYMBOL_GPL(register_kprobe); 1611 1612 /* Check if all probes on the aggrprobe are disabled */ 1613 static int aggr_kprobe_disabled(struct kprobe *ap) 1614 { 1615 struct kprobe *kp; 1616 1617 list_for_each_entry_rcu(kp, &ap->list, list) 1618 if (!kprobe_disabled(kp)) 1619 /* 1620 * There is an active probe on the list. 1621 * We can't disable this ap. 1622 */ 1623 return 0; 1624 1625 return 1; 1626 } 1627 1628 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1629 static struct kprobe *__disable_kprobe(struct kprobe *p) 1630 { 1631 struct kprobe *orig_p; 1632 1633 /* Get an original kprobe for return */ 1634 orig_p = __get_valid_kprobe(p); 1635 if (unlikely(orig_p == NULL)) 1636 return NULL; 1637 1638 if (!kprobe_disabled(p)) { 1639 /* Disable probe if it is a child probe */ 1640 if (p != orig_p) 1641 p->flags |= KPROBE_FLAG_DISABLED; 1642 1643 /* Try to disarm and disable this/parent probe */ 1644 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1645 /* 1646 * If kprobes_all_disarmed is set, orig_p 1647 * should have already been disarmed, so 1648 * skip unneed disarming process. 1649 */ 1650 if (!kprobes_all_disarmed) 1651 disarm_kprobe(orig_p, true); 1652 orig_p->flags |= KPROBE_FLAG_DISABLED; 1653 } 1654 } 1655 1656 return orig_p; 1657 } 1658 1659 /* 1660 * Unregister a kprobe without a scheduler synchronization. 1661 */ 1662 static int __unregister_kprobe_top(struct kprobe *p) 1663 { 1664 struct kprobe *ap, *list_p; 1665 1666 /* Disable kprobe. This will disarm it if needed. */ 1667 ap = __disable_kprobe(p); 1668 if (ap == NULL) 1669 return -EINVAL; 1670 1671 if (ap == p) 1672 /* 1673 * This probe is an independent(and non-optimized) kprobe 1674 * (not an aggrprobe). Remove from the hash list. 1675 */ 1676 goto disarmed; 1677 1678 /* Following process expects this probe is an aggrprobe */ 1679 WARN_ON(!kprobe_aggrprobe(ap)); 1680 1681 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1682 /* 1683 * !disarmed could be happen if the probe is under delayed 1684 * unoptimizing. 1685 */ 1686 goto disarmed; 1687 else { 1688 /* If disabling probe has special handlers, update aggrprobe */ 1689 if (p->break_handler && !kprobe_gone(p)) 1690 ap->break_handler = NULL; 1691 if (p->post_handler && !kprobe_gone(p)) { 1692 list_for_each_entry_rcu(list_p, &ap->list, list) { 1693 if ((list_p != p) && (list_p->post_handler)) 1694 goto noclean; 1695 } 1696 ap->post_handler = NULL; 1697 } 1698 noclean: 1699 /* 1700 * Remove from the aggrprobe: this path will do nothing in 1701 * __unregister_kprobe_bottom(). 1702 */ 1703 list_del_rcu(&p->list); 1704 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1705 /* 1706 * Try to optimize this probe again, because post 1707 * handler may have been changed. 1708 */ 1709 optimize_kprobe(ap); 1710 } 1711 return 0; 1712 1713 disarmed: 1714 BUG_ON(!kprobe_disarmed(ap)); 1715 hlist_del_rcu(&ap->hlist); 1716 return 0; 1717 } 1718 1719 static void __unregister_kprobe_bottom(struct kprobe *p) 1720 { 1721 struct kprobe *ap; 1722 1723 if (list_empty(&p->list)) 1724 /* This is an independent kprobe */ 1725 arch_remove_kprobe(p); 1726 else if (list_is_singular(&p->list)) { 1727 /* This is the last child of an aggrprobe */ 1728 ap = list_entry(p->list.next, struct kprobe, list); 1729 list_del(&p->list); 1730 free_aggr_kprobe(ap); 1731 } 1732 /* Otherwise, do nothing. */ 1733 } 1734 1735 int register_kprobes(struct kprobe **kps, int num) 1736 { 1737 int i, ret = 0; 1738 1739 if (num <= 0) 1740 return -EINVAL; 1741 for (i = 0; i < num; i++) { 1742 ret = register_kprobe(kps[i]); 1743 if (ret < 0) { 1744 if (i > 0) 1745 unregister_kprobes(kps, i); 1746 break; 1747 } 1748 } 1749 return ret; 1750 } 1751 EXPORT_SYMBOL_GPL(register_kprobes); 1752 1753 void unregister_kprobe(struct kprobe *p) 1754 { 1755 unregister_kprobes(&p, 1); 1756 } 1757 EXPORT_SYMBOL_GPL(unregister_kprobe); 1758 1759 void unregister_kprobes(struct kprobe **kps, int num) 1760 { 1761 int i; 1762 1763 if (num <= 0) 1764 return; 1765 mutex_lock(&kprobe_mutex); 1766 for (i = 0; i < num; i++) 1767 if (__unregister_kprobe_top(kps[i]) < 0) 1768 kps[i]->addr = NULL; 1769 mutex_unlock(&kprobe_mutex); 1770 1771 synchronize_sched(); 1772 for (i = 0; i < num; i++) 1773 if (kps[i]->addr) 1774 __unregister_kprobe_bottom(kps[i]); 1775 } 1776 EXPORT_SYMBOL_GPL(unregister_kprobes); 1777 1778 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1779 unsigned long val, void *data) 1780 { 1781 return NOTIFY_DONE; 1782 } 1783 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1784 1785 static struct notifier_block kprobe_exceptions_nb = { 1786 .notifier_call = kprobe_exceptions_notify, 1787 .priority = 0x7fffffff /* we need to be notified first */ 1788 }; 1789 1790 unsigned long __weak arch_deref_entry_point(void *entry) 1791 { 1792 return (unsigned long)entry; 1793 } 1794 1795 #if 0 1796 int register_jprobes(struct jprobe **jps, int num) 1797 { 1798 int ret = 0, i; 1799 1800 if (num <= 0) 1801 return -EINVAL; 1802 1803 for (i = 0; i < num; i++) { 1804 ret = register_jprobe(jps[i]); 1805 1806 if (ret < 0) { 1807 if (i > 0) 1808 unregister_jprobes(jps, i); 1809 break; 1810 } 1811 } 1812 1813 return ret; 1814 } 1815 EXPORT_SYMBOL_GPL(register_jprobes); 1816 1817 int register_jprobe(struct jprobe *jp) 1818 { 1819 unsigned long addr, offset; 1820 struct kprobe *kp = &jp->kp; 1821 1822 /* 1823 * Verify probepoint as well as the jprobe handler are 1824 * valid function entry points. 1825 */ 1826 addr = arch_deref_entry_point(jp->entry); 1827 1828 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0 && 1829 kprobe_on_func_entry(kp->addr, kp->symbol_name, kp->offset)) { 1830 kp->pre_handler = setjmp_pre_handler; 1831 kp->break_handler = longjmp_break_handler; 1832 return register_kprobe(kp); 1833 } 1834 1835 return -EINVAL; 1836 } 1837 EXPORT_SYMBOL_GPL(register_jprobe); 1838 1839 void unregister_jprobe(struct jprobe *jp) 1840 { 1841 unregister_jprobes(&jp, 1); 1842 } 1843 EXPORT_SYMBOL_GPL(unregister_jprobe); 1844 1845 void unregister_jprobes(struct jprobe **jps, int num) 1846 { 1847 int i; 1848 1849 if (num <= 0) 1850 return; 1851 mutex_lock(&kprobe_mutex); 1852 for (i = 0; i < num; i++) 1853 if (__unregister_kprobe_top(&jps[i]->kp) < 0) 1854 jps[i]->kp.addr = NULL; 1855 mutex_unlock(&kprobe_mutex); 1856 1857 synchronize_sched(); 1858 for (i = 0; i < num; i++) { 1859 if (jps[i]->kp.addr) 1860 __unregister_kprobe_bottom(&jps[i]->kp); 1861 } 1862 } 1863 EXPORT_SYMBOL_GPL(unregister_jprobes); 1864 #endif 1865 1866 #ifdef CONFIG_KRETPROBES 1867 /* 1868 * This kprobe pre_handler is registered with every kretprobe. When probe 1869 * hits it will set up the return probe. 1870 */ 1871 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 1872 { 1873 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1874 unsigned long hash, flags = 0; 1875 struct kretprobe_instance *ri; 1876 1877 /* 1878 * To avoid deadlocks, prohibit return probing in NMI contexts, 1879 * just skip the probe and increase the (inexact) 'nmissed' 1880 * statistical counter, so that the user is informed that 1881 * something happened: 1882 */ 1883 if (unlikely(in_nmi())) { 1884 rp->nmissed++; 1885 return 0; 1886 } 1887 1888 /* TODO: consider to only swap the RA after the last pre_handler fired */ 1889 hash = hash_ptr(current, KPROBE_HASH_BITS); 1890 raw_spin_lock_irqsave(&rp->lock, flags); 1891 if (!hlist_empty(&rp->free_instances)) { 1892 ri = hlist_entry(rp->free_instances.first, 1893 struct kretprobe_instance, hlist); 1894 hlist_del(&ri->hlist); 1895 raw_spin_unlock_irqrestore(&rp->lock, flags); 1896 1897 ri->rp = rp; 1898 ri->task = current; 1899 1900 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 1901 raw_spin_lock_irqsave(&rp->lock, flags); 1902 hlist_add_head(&ri->hlist, &rp->free_instances); 1903 raw_spin_unlock_irqrestore(&rp->lock, flags); 1904 return 0; 1905 } 1906 1907 arch_prepare_kretprobe(ri, regs); 1908 1909 /* XXX(hch): why is there no hlist_move_head? */ 1910 INIT_HLIST_NODE(&ri->hlist); 1911 kretprobe_table_lock(hash, &flags); 1912 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 1913 kretprobe_table_unlock(hash, &flags); 1914 } else { 1915 rp->nmissed++; 1916 raw_spin_unlock_irqrestore(&rp->lock, flags); 1917 } 1918 return 0; 1919 } 1920 NOKPROBE_SYMBOL(pre_handler_kretprobe); 1921 1922 bool __weak arch_kprobe_on_func_entry(unsigned long offset) 1923 { 1924 return !offset; 1925 } 1926 1927 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 1928 { 1929 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset); 1930 1931 if (IS_ERR(kp_addr)) 1932 return false; 1933 1934 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) || 1935 !arch_kprobe_on_func_entry(offset)) 1936 return false; 1937 1938 return true; 1939 } 1940 1941 int register_kretprobe(struct kretprobe *rp) 1942 { 1943 int ret = 0; 1944 struct kretprobe_instance *inst; 1945 int i; 1946 void *addr; 1947 1948 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset)) 1949 return -EINVAL; 1950 1951 if (kretprobe_blacklist_size) { 1952 addr = kprobe_addr(&rp->kp); 1953 if (IS_ERR(addr)) 1954 return PTR_ERR(addr); 1955 1956 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1957 if (kretprobe_blacklist[i].addr == addr) 1958 return -EINVAL; 1959 } 1960 } 1961 1962 rp->kp.pre_handler = pre_handler_kretprobe; 1963 rp->kp.post_handler = NULL; 1964 rp->kp.fault_handler = NULL; 1965 rp->kp.break_handler = NULL; 1966 1967 /* Pre-allocate memory for max kretprobe instances */ 1968 if (rp->maxactive <= 0) { 1969 #ifdef CONFIG_PREEMPT 1970 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 1971 #else 1972 rp->maxactive = num_possible_cpus(); 1973 #endif 1974 } 1975 raw_spin_lock_init(&rp->lock); 1976 INIT_HLIST_HEAD(&rp->free_instances); 1977 for (i = 0; i < rp->maxactive; i++) { 1978 inst = kmalloc(sizeof(struct kretprobe_instance) + 1979 rp->data_size, GFP_KERNEL); 1980 if (inst == NULL) { 1981 free_rp_inst(rp); 1982 return -ENOMEM; 1983 } 1984 INIT_HLIST_NODE(&inst->hlist); 1985 hlist_add_head(&inst->hlist, &rp->free_instances); 1986 } 1987 1988 rp->nmissed = 0; 1989 /* Establish function entry probe point */ 1990 ret = register_kprobe(&rp->kp); 1991 if (ret != 0) 1992 free_rp_inst(rp); 1993 return ret; 1994 } 1995 EXPORT_SYMBOL_GPL(register_kretprobe); 1996 1997 int register_kretprobes(struct kretprobe **rps, int num) 1998 { 1999 int ret = 0, i; 2000 2001 if (num <= 0) 2002 return -EINVAL; 2003 for (i = 0; i < num; i++) { 2004 ret = register_kretprobe(rps[i]); 2005 if (ret < 0) { 2006 if (i > 0) 2007 unregister_kretprobes(rps, i); 2008 break; 2009 } 2010 } 2011 return ret; 2012 } 2013 EXPORT_SYMBOL_GPL(register_kretprobes); 2014 2015 void unregister_kretprobe(struct kretprobe *rp) 2016 { 2017 unregister_kretprobes(&rp, 1); 2018 } 2019 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2020 2021 void unregister_kretprobes(struct kretprobe **rps, int num) 2022 { 2023 int i; 2024 2025 if (num <= 0) 2026 return; 2027 mutex_lock(&kprobe_mutex); 2028 for (i = 0; i < num; i++) 2029 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 2030 rps[i]->kp.addr = NULL; 2031 mutex_unlock(&kprobe_mutex); 2032 2033 synchronize_sched(); 2034 for (i = 0; i < num; i++) { 2035 if (rps[i]->kp.addr) { 2036 __unregister_kprobe_bottom(&rps[i]->kp); 2037 cleanup_rp_inst(rps[i]); 2038 } 2039 } 2040 } 2041 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2042 2043 #else /* CONFIG_KRETPROBES */ 2044 int register_kretprobe(struct kretprobe *rp) 2045 { 2046 return -ENOSYS; 2047 } 2048 EXPORT_SYMBOL_GPL(register_kretprobe); 2049 2050 int register_kretprobes(struct kretprobe **rps, int num) 2051 { 2052 return -ENOSYS; 2053 } 2054 EXPORT_SYMBOL_GPL(register_kretprobes); 2055 2056 void unregister_kretprobe(struct kretprobe *rp) 2057 { 2058 } 2059 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2060 2061 void unregister_kretprobes(struct kretprobe **rps, int num) 2062 { 2063 } 2064 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2065 2066 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2067 { 2068 return 0; 2069 } 2070 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2071 2072 #endif /* CONFIG_KRETPROBES */ 2073 2074 /* Set the kprobe gone and remove its instruction buffer. */ 2075 static void kill_kprobe(struct kprobe *p) 2076 { 2077 struct kprobe *kp; 2078 2079 p->flags |= KPROBE_FLAG_GONE; 2080 if (kprobe_aggrprobe(p)) { 2081 /* 2082 * If this is an aggr_kprobe, we have to list all the 2083 * chained probes and mark them GONE. 2084 */ 2085 list_for_each_entry_rcu(kp, &p->list, list) 2086 kp->flags |= KPROBE_FLAG_GONE; 2087 p->post_handler = NULL; 2088 p->break_handler = NULL; 2089 kill_optimized_kprobe(p); 2090 } 2091 /* 2092 * Here, we can remove insn_slot safely, because no thread calls 2093 * the original probed function (which will be freed soon) any more. 2094 */ 2095 arch_remove_kprobe(p); 2096 } 2097 2098 /* Disable one kprobe */ 2099 int disable_kprobe(struct kprobe *kp) 2100 { 2101 int ret = 0; 2102 2103 mutex_lock(&kprobe_mutex); 2104 2105 /* Disable this kprobe */ 2106 if (__disable_kprobe(kp) == NULL) 2107 ret = -EINVAL; 2108 2109 mutex_unlock(&kprobe_mutex); 2110 return ret; 2111 } 2112 EXPORT_SYMBOL_GPL(disable_kprobe); 2113 2114 /* Enable one kprobe */ 2115 int enable_kprobe(struct kprobe *kp) 2116 { 2117 int ret = 0; 2118 struct kprobe *p; 2119 2120 mutex_lock(&kprobe_mutex); 2121 2122 /* Check whether specified probe is valid. */ 2123 p = __get_valid_kprobe(kp); 2124 if (unlikely(p == NULL)) { 2125 ret = -EINVAL; 2126 goto out; 2127 } 2128 2129 if (kprobe_gone(kp)) { 2130 /* This kprobe has gone, we couldn't enable it. */ 2131 ret = -EINVAL; 2132 goto out; 2133 } 2134 2135 if (p != kp) 2136 kp->flags &= ~KPROBE_FLAG_DISABLED; 2137 2138 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2139 p->flags &= ~KPROBE_FLAG_DISABLED; 2140 arm_kprobe(p); 2141 } 2142 out: 2143 mutex_unlock(&kprobe_mutex); 2144 return ret; 2145 } 2146 EXPORT_SYMBOL_GPL(enable_kprobe); 2147 2148 void dump_kprobe(struct kprobe *kp) 2149 { 2150 printk(KERN_WARNING "Dumping kprobe:\n"); 2151 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n", 2152 kp->symbol_name, kp->addr, kp->offset); 2153 } 2154 NOKPROBE_SYMBOL(dump_kprobe); 2155 2156 /* 2157 * Lookup and populate the kprobe_blacklist. 2158 * 2159 * Unlike the kretprobe blacklist, we'll need to determine 2160 * the range of addresses that belong to the said functions, 2161 * since a kprobe need not necessarily be at the beginning 2162 * of a function. 2163 */ 2164 static int __init populate_kprobe_blacklist(unsigned long *start, 2165 unsigned long *end) 2166 { 2167 unsigned long *iter; 2168 struct kprobe_blacklist_entry *ent; 2169 unsigned long entry, offset = 0, size = 0; 2170 2171 for (iter = start; iter < end; iter++) { 2172 entry = arch_deref_entry_point((void *)*iter); 2173 2174 if (!kernel_text_address(entry) || 2175 !kallsyms_lookup_size_offset(entry, &size, &offset)) { 2176 pr_err("Failed to find blacklist at %p\n", 2177 (void *)entry); 2178 continue; 2179 } 2180 2181 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2182 if (!ent) 2183 return -ENOMEM; 2184 ent->start_addr = entry; 2185 ent->end_addr = entry + size; 2186 INIT_LIST_HEAD(&ent->list); 2187 list_add_tail(&ent->list, &kprobe_blacklist); 2188 } 2189 return 0; 2190 } 2191 2192 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 2193 /* Markers of the _kprobe_error_inject_list section */ 2194 extern unsigned long __start_kprobe_error_inject_list[]; 2195 extern unsigned long __stop_kprobe_error_inject_list[]; 2196 2197 /* 2198 * Lookup and populate the kprobe_error_injection_list. 2199 * 2200 * For safety reasons we only allow certain functions to be overriden with 2201 * bpf_error_injection, so we need to populate the list of the symbols that have 2202 * been marked as safe for overriding. 2203 */ 2204 static void populate_kprobe_error_injection_list(unsigned long *start, 2205 unsigned long *end, 2206 void *priv) 2207 { 2208 unsigned long *iter; 2209 struct kprobe_ei_entry *ent; 2210 unsigned long entry, offset = 0, size = 0; 2211 2212 mutex_lock(&kprobe_ei_mutex); 2213 for (iter = start; iter < end; iter++) { 2214 entry = arch_deref_entry_point((void *)*iter); 2215 2216 if (!kernel_text_address(entry) || 2217 !kallsyms_lookup_size_offset(entry, &size, &offset)) { 2218 pr_err("Failed to find error inject entry at %p\n", 2219 (void *)entry); 2220 continue; 2221 } 2222 2223 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2224 if (!ent) 2225 break; 2226 ent->start_addr = entry; 2227 ent->end_addr = entry + size; 2228 ent->priv = priv; 2229 INIT_LIST_HEAD(&ent->list); 2230 list_add_tail(&ent->list, &kprobe_error_injection_list); 2231 } 2232 mutex_unlock(&kprobe_ei_mutex); 2233 } 2234 2235 static void __init populate_kernel_kprobe_ei_list(void) 2236 { 2237 populate_kprobe_error_injection_list(__start_kprobe_error_inject_list, 2238 __stop_kprobe_error_inject_list, 2239 NULL); 2240 } 2241 2242 static void module_load_kprobe_ei_list(struct module *mod) 2243 { 2244 if (!mod->num_kprobe_ei_funcs) 2245 return; 2246 populate_kprobe_error_injection_list(mod->kprobe_ei_funcs, 2247 mod->kprobe_ei_funcs + 2248 mod->num_kprobe_ei_funcs, mod); 2249 } 2250 2251 static void module_unload_kprobe_ei_list(struct module *mod) 2252 { 2253 struct kprobe_ei_entry *ent, *n; 2254 if (!mod->num_kprobe_ei_funcs) 2255 return; 2256 2257 mutex_lock(&kprobe_ei_mutex); 2258 list_for_each_entry_safe(ent, n, &kprobe_error_injection_list, list) { 2259 if (ent->priv == mod) { 2260 list_del_init(&ent->list); 2261 kfree(ent); 2262 } 2263 } 2264 mutex_unlock(&kprobe_ei_mutex); 2265 } 2266 #else 2267 static inline void __init populate_kernel_kprobe_ei_list(void) {} 2268 static inline void module_load_kprobe_ei_list(struct module *m) {} 2269 static inline void module_unload_kprobe_ei_list(struct module *m) {} 2270 #endif 2271 2272 /* Module notifier call back, checking kprobes on the module */ 2273 static int kprobes_module_callback(struct notifier_block *nb, 2274 unsigned long val, void *data) 2275 { 2276 struct module *mod = data; 2277 struct hlist_head *head; 2278 struct kprobe *p; 2279 unsigned int i; 2280 int checkcore = (val == MODULE_STATE_GOING); 2281 2282 if (val == MODULE_STATE_COMING) 2283 module_load_kprobe_ei_list(mod); 2284 else if (val == MODULE_STATE_GOING) 2285 module_unload_kprobe_ei_list(mod); 2286 2287 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2288 return NOTIFY_DONE; 2289 2290 /* 2291 * When MODULE_STATE_GOING was notified, both of module .text and 2292 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2293 * notified, only .init.text section would be freed. We need to 2294 * disable kprobes which have been inserted in the sections. 2295 */ 2296 mutex_lock(&kprobe_mutex); 2297 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2298 head = &kprobe_table[i]; 2299 hlist_for_each_entry_rcu(p, head, hlist) 2300 if (within_module_init((unsigned long)p->addr, mod) || 2301 (checkcore && 2302 within_module_core((unsigned long)p->addr, mod))) { 2303 /* 2304 * The vaddr this probe is installed will soon 2305 * be vfreed buy not synced to disk. Hence, 2306 * disarming the breakpoint isn't needed. 2307 * 2308 * Note, this will also move any optimized probes 2309 * that are pending to be removed from their 2310 * corresponding lists to the freeing_list and 2311 * will not be touched by the delayed 2312 * kprobe_optimizer work handler. 2313 */ 2314 kill_kprobe(p); 2315 } 2316 } 2317 mutex_unlock(&kprobe_mutex); 2318 return NOTIFY_DONE; 2319 } 2320 2321 static struct notifier_block kprobe_module_nb = { 2322 .notifier_call = kprobes_module_callback, 2323 .priority = 0 2324 }; 2325 2326 /* Markers of _kprobe_blacklist section */ 2327 extern unsigned long __start_kprobe_blacklist[]; 2328 extern unsigned long __stop_kprobe_blacklist[]; 2329 2330 static int __init init_kprobes(void) 2331 { 2332 int i, err = 0; 2333 2334 /* FIXME allocate the probe table, currently defined statically */ 2335 /* initialize all list heads */ 2336 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2337 INIT_HLIST_HEAD(&kprobe_table[i]); 2338 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 2339 raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); 2340 } 2341 2342 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2343 __stop_kprobe_blacklist); 2344 if (err) { 2345 pr_err("kprobes: failed to populate blacklist: %d\n", err); 2346 pr_err("Please take care of using kprobes.\n"); 2347 } 2348 2349 populate_kernel_kprobe_ei_list(); 2350 2351 if (kretprobe_blacklist_size) { 2352 /* lookup the function address from its name */ 2353 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2354 kretprobe_blacklist[i].addr = 2355 kprobe_lookup_name(kretprobe_blacklist[i].name, 0); 2356 if (!kretprobe_blacklist[i].addr) 2357 printk("kretprobe: lookup failed: %s\n", 2358 kretprobe_blacklist[i].name); 2359 } 2360 } 2361 2362 #if defined(CONFIG_OPTPROBES) 2363 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2364 /* Init kprobe_optinsn_slots */ 2365 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2366 #endif 2367 /* By default, kprobes can be optimized */ 2368 kprobes_allow_optimization = true; 2369 #endif 2370 2371 /* By default, kprobes are armed */ 2372 kprobes_all_disarmed = false; 2373 2374 err = arch_init_kprobes(); 2375 if (!err) 2376 err = register_die_notifier(&kprobe_exceptions_nb); 2377 if (!err) 2378 err = register_module_notifier(&kprobe_module_nb); 2379 2380 kprobes_initialized = (err == 0); 2381 2382 if (!err) 2383 init_test_probes(); 2384 return err; 2385 } 2386 2387 #ifdef CONFIG_DEBUG_FS 2388 static void report_probe(struct seq_file *pi, struct kprobe *p, 2389 const char *sym, int offset, char *modname, struct kprobe *pp) 2390 { 2391 char *kprobe_type; 2392 2393 if (p->pre_handler == pre_handler_kretprobe) 2394 kprobe_type = "r"; 2395 else if (p->pre_handler == setjmp_pre_handler) 2396 kprobe_type = "j"; 2397 else 2398 kprobe_type = "k"; 2399 2400 if (sym) 2401 seq_printf(pi, "%p %s %s+0x%x %s ", 2402 p->addr, kprobe_type, sym, offset, 2403 (modname ? modname : " ")); 2404 else 2405 seq_printf(pi, "%p %s %p ", 2406 p->addr, kprobe_type, p->addr); 2407 2408 if (!pp) 2409 pp = p; 2410 seq_printf(pi, "%s%s%s%s\n", 2411 (kprobe_gone(p) ? "[GONE]" : ""), 2412 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2413 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2414 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2415 } 2416 2417 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2418 { 2419 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2420 } 2421 2422 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2423 { 2424 (*pos)++; 2425 if (*pos >= KPROBE_TABLE_SIZE) 2426 return NULL; 2427 return pos; 2428 } 2429 2430 static void kprobe_seq_stop(struct seq_file *f, void *v) 2431 { 2432 /* Nothing to do */ 2433 } 2434 2435 static int show_kprobe_addr(struct seq_file *pi, void *v) 2436 { 2437 struct hlist_head *head; 2438 struct kprobe *p, *kp; 2439 const char *sym = NULL; 2440 unsigned int i = *(loff_t *) v; 2441 unsigned long offset = 0; 2442 char *modname, namebuf[KSYM_NAME_LEN]; 2443 2444 head = &kprobe_table[i]; 2445 preempt_disable(); 2446 hlist_for_each_entry_rcu(p, head, hlist) { 2447 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2448 &offset, &modname, namebuf); 2449 if (kprobe_aggrprobe(p)) { 2450 list_for_each_entry_rcu(kp, &p->list, list) 2451 report_probe(pi, kp, sym, offset, modname, p); 2452 } else 2453 report_probe(pi, p, sym, offset, modname, NULL); 2454 } 2455 preempt_enable(); 2456 return 0; 2457 } 2458 2459 static const struct seq_operations kprobes_seq_ops = { 2460 .start = kprobe_seq_start, 2461 .next = kprobe_seq_next, 2462 .stop = kprobe_seq_stop, 2463 .show = show_kprobe_addr 2464 }; 2465 2466 static int kprobes_open(struct inode *inode, struct file *filp) 2467 { 2468 return seq_open(filp, &kprobes_seq_ops); 2469 } 2470 2471 static const struct file_operations debugfs_kprobes_operations = { 2472 .open = kprobes_open, 2473 .read = seq_read, 2474 .llseek = seq_lseek, 2475 .release = seq_release, 2476 }; 2477 2478 /* kprobes/blacklist -- shows which functions can not be probed */ 2479 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2480 { 2481 return seq_list_start(&kprobe_blacklist, *pos); 2482 } 2483 2484 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2485 { 2486 return seq_list_next(v, &kprobe_blacklist, pos); 2487 } 2488 2489 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2490 { 2491 struct kprobe_blacklist_entry *ent = 2492 list_entry(v, struct kprobe_blacklist_entry, list); 2493 2494 seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr, 2495 (void *)ent->end_addr, (void *)ent->start_addr); 2496 return 0; 2497 } 2498 2499 static const struct seq_operations kprobe_blacklist_seq_ops = { 2500 .start = kprobe_blacklist_seq_start, 2501 .next = kprobe_blacklist_seq_next, 2502 .stop = kprobe_seq_stop, /* Reuse void function */ 2503 .show = kprobe_blacklist_seq_show, 2504 }; 2505 2506 static int kprobe_blacklist_open(struct inode *inode, struct file *filp) 2507 { 2508 return seq_open(filp, &kprobe_blacklist_seq_ops); 2509 } 2510 2511 static const struct file_operations debugfs_kprobe_blacklist_ops = { 2512 .open = kprobe_blacklist_open, 2513 .read = seq_read, 2514 .llseek = seq_lseek, 2515 .release = seq_release, 2516 }; 2517 2518 /* 2519 * kprobes/error_injection_list -- shows which functions can be overriden for 2520 * error injection. 2521 * */ 2522 static void *kprobe_ei_seq_start(struct seq_file *m, loff_t *pos) 2523 { 2524 mutex_lock(&kprobe_ei_mutex); 2525 return seq_list_start(&kprobe_error_injection_list, *pos); 2526 } 2527 2528 static void kprobe_ei_seq_stop(struct seq_file *m, void *v) 2529 { 2530 mutex_unlock(&kprobe_ei_mutex); 2531 } 2532 2533 static void *kprobe_ei_seq_next(struct seq_file *m, void *v, loff_t *pos) 2534 { 2535 return seq_list_next(v, &kprobe_error_injection_list, pos); 2536 } 2537 2538 static int kprobe_ei_seq_show(struct seq_file *m, void *v) 2539 { 2540 char buffer[KSYM_SYMBOL_LEN]; 2541 struct kprobe_ei_entry *ent = 2542 list_entry(v, struct kprobe_ei_entry, list); 2543 2544 sprint_symbol(buffer, ent->start_addr); 2545 seq_printf(m, "%s\n", buffer); 2546 return 0; 2547 } 2548 2549 static const struct seq_operations kprobe_ei_seq_ops = { 2550 .start = kprobe_ei_seq_start, 2551 .next = kprobe_ei_seq_next, 2552 .stop = kprobe_ei_seq_stop, 2553 .show = kprobe_ei_seq_show, 2554 }; 2555 2556 static int kprobe_ei_open(struct inode *inode, struct file *filp) 2557 { 2558 return seq_open(filp, &kprobe_ei_seq_ops); 2559 } 2560 2561 static const struct file_operations debugfs_kprobe_ei_ops = { 2562 .open = kprobe_ei_open, 2563 .read = seq_read, 2564 .llseek = seq_lseek, 2565 .release = seq_release, 2566 }; 2567 2568 static void arm_all_kprobes(void) 2569 { 2570 struct hlist_head *head; 2571 struct kprobe *p; 2572 unsigned int i; 2573 2574 mutex_lock(&kprobe_mutex); 2575 2576 /* If kprobes are armed, just return */ 2577 if (!kprobes_all_disarmed) 2578 goto already_enabled; 2579 2580 /* 2581 * optimize_kprobe() called by arm_kprobe() checks 2582 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2583 * arm_kprobe. 2584 */ 2585 kprobes_all_disarmed = false; 2586 /* Arming kprobes doesn't optimize kprobe itself */ 2587 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2588 head = &kprobe_table[i]; 2589 hlist_for_each_entry_rcu(p, head, hlist) 2590 if (!kprobe_disabled(p)) 2591 arm_kprobe(p); 2592 } 2593 2594 printk(KERN_INFO "Kprobes globally enabled\n"); 2595 2596 already_enabled: 2597 mutex_unlock(&kprobe_mutex); 2598 return; 2599 } 2600 2601 static void disarm_all_kprobes(void) 2602 { 2603 struct hlist_head *head; 2604 struct kprobe *p; 2605 unsigned int i; 2606 2607 mutex_lock(&kprobe_mutex); 2608 2609 /* If kprobes are already disarmed, just return */ 2610 if (kprobes_all_disarmed) { 2611 mutex_unlock(&kprobe_mutex); 2612 return; 2613 } 2614 2615 kprobes_all_disarmed = true; 2616 printk(KERN_INFO "Kprobes globally disabled\n"); 2617 2618 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2619 head = &kprobe_table[i]; 2620 hlist_for_each_entry_rcu(p, head, hlist) { 2621 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) 2622 disarm_kprobe(p, false); 2623 } 2624 } 2625 mutex_unlock(&kprobe_mutex); 2626 2627 /* Wait for disarming all kprobes by optimizer */ 2628 wait_for_kprobe_optimizer(); 2629 } 2630 2631 /* 2632 * XXX: The debugfs bool file interface doesn't allow for callbacks 2633 * when the bool state is switched. We can reuse that facility when 2634 * available 2635 */ 2636 static ssize_t read_enabled_file_bool(struct file *file, 2637 char __user *user_buf, size_t count, loff_t *ppos) 2638 { 2639 char buf[3]; 2640 2641 if (!kprobes_all_disarmed) 2642 buf[0] = '1'; 2643 else 2644 buf[0] = '0'; 2645 buf[1] = '\n'; 2646 buf[2] = 0x00; 2647 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2648 } 2649 2650 static ssize_t write_enabled_file_bool(struct file *file, 2651 const char __user *user_buf, size_t count, loff_t *ppos) 2652 { 2653 char buf[32]; 2654 size_t buf_size; 2655 2656 buf_size = min(count, (sizeof(buf)-1)); 2657 if (copy_from_user(buf, user_buf, buf_size)) 2658 return -EFAULT; 2659 2660 buf[buf_size] = '\0'; 2661 switch (buf[0]) { 2662 case 'y': 2663 case 'Y': 2664 case '1': 2665 arm_all_kprobes(); 2666 break; 2667 case 'n': 2668 case 'N': 2669 case '0': 2670 disarm_all_kprobes(); 2671 break; 2672 default: 2673 return -EINVAL; 2674 } 2675 2676 return count; 2677 } 2678 2679 static const struct file_operations fops_kp = { 2680 .read = read_enabled_file_bool, 2681 .write = write_enabled_file_bool, 2682 .llseek = default_llseek, 2683 }; 2684 2685 static int __init debugfs_kprobe_init(void) 2686 { 2687 struct dentry *dir, *file; 2688 unsigned int value = 1; 2689 2690 dir = debugfs_create_dir("kprobes", NULL); 2691 if (!dir) 2692 return -ENOMEM; 2693 2694 file = debugfs_create_file("list", 0444, dir, NULL, 2695 &debugfs_kprobes_operations); 2696 if (!file) 2697 goto error; 2698 2699 file = debugfs_create_file("enabled", 0600, dir, 2700 &value, &fops_kp); 2701 if (!file) 2702 goto error; 2703 2704 file = debugfs_create_file("blacklist", 0444, dir, NULL, 2705 &debugfs_kprobe_blacklist_ops); 2706 if (!file) 2707 goto error; 2708 2709 file = debugfs_create_file("error_injection_list", 0444, dir, NULL, 2710 &debugfs_kprobe_ei_ops); 2711 if (!file) 2712 goto error; 2713 2714 return 0; 2715 2716 error: 2717 debugfs_remove(dir); 2718 return -ENOMEM; 2719 } 2720 2721 late_initcall(debugfs_kprobe_init); 2722 #endif /* CONFIG_DEBUG_FS */ 2723 2724 module_init(init_kprobes); 2725 2726 /* defined in arch/.../kernel/kprobes.c */ 2727 EXPORT_SYMBOL_GPL(jprobe_return); 2728