1 /* 2 * Kernel Probes (KProbes) 3 * kernel/kprobes.c 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * Copyright (C) IBM Corporation, 2002, 2004 20 * 21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 22 * Probes initial implementation (includes suggestions from 23 * Rusty Russell). 24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 25 * hlists and exceptions notifier as suggested by Andi Kleen. 26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 27 * interface to access function arguments. 28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 29 * exceptions notifier to be first on the priority list. 30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 32 * <prasanna@in.ibm.com> added function-return probes. 33 */ 34 #include <linux/kprobes.h> 35 #include <linux/hash.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/stddef.h> 39 #include <linux/export.h> 40 #include <linux/moduleloader.h> 41 #include <linux/kallsyms.h> 42 #include <linux/freezer.h> 43 #include <linux/seq_file.h> 44 #include <linux/debugfs.h> 45 #include <linux/sysctl.h> 46 #include <linux/kdebug.h> 47 #include <linux/memory.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 #include <linux/jump_label.h> 51 52 #include <asm-generic/sections.h> 53 #include <asm/cacheflush.h> 54 #include <asm/errno.h> 55 #include <asm/uaccess.h> 56 57 #define KPROBE_HASH_BITS 6 58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 59 60 61 /* 62 * Some oddball architectures like 64bit powerpc have function descriptors 63 * so this must be overridable. 64 */ 65 #ifndef kprobe_lookup_name 66 #define kprobe_lookup_name(name, addr) \ 67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name))) 68 #endif 69 70 static int kprobes_initialized; 71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 73 74 /* NOTE: change this value only with kprobe_mutex held */ 75 static bool kprobes_all_disarmed; 76 77 /* This protects kprobe_table and optimizing_list */ 78 static DEFINE_MUTEX(kprobe_mutex); 79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 80 static struct { 81 raw_spinlock_t lock ____cacheline_aligned_in_smp; 82 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 83 84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 85 { 86 return &(kretprobe_table_locks[hash].lock); 87 } 88 89 /* 90 * Normally, functions that we'd want to prohibit kprobes in, are marked 91 * __kprobes. But, there are cases where such functions already belong to 92 * a different section (__sched for preempt_schedule) 93 * 94 * For such cases, we now have a blacklist 95 */ 96 static struct kprobe_blackpoint kprobe_blacklist[] = { 97 {"preempt_schedule",}, 98 {"native_get_debugreg",}, 99 {"irq_entries_start",}, 100 {"common_interrupt",}, 101 {"mcount",}, /* mcount can be called from everywhere */ 102 {NULL} /* Terminator */ 103 }; 104 105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 106 /* 107 * kprobe->ainsn.insn points to the copy of the instruction to be 108 * single-stepped. x86_64, POWER4 and above have no-exec support and 109 * stepping on the instruction on a vmalloced/kmalloced/data page 110 * is a recipe for disaster 111 */ 112 struct kprobe_insn_page { 113 struct list_head list; 114 kprobe_opcode_t *insns; /* Page of instruction slots */ 115 int nused; 116 int ngarbage; 117 char slot_used[]; 118 }; 119 120 #define KPROBE_INSN_PAGE_SIZE(slots) \ 121 (offsetof(struct kprobe_insn_page, slot_used) + \ 122 (sizeof(char) * (slots))) 123 124 struct kprobe_insn_cache { 125 struct list_head pages; /* list of kprobe_insn_page */ 126 size_t insn_size; /* size of instruction slot */ 127 int nr_garbage; 128 }; 129 130 static int slots_per_page(struct kprobe_insn_cache *c) 131 { 132 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 133 } 134 135 enum kprobe_slot_state { 136 SLOT_CLEAN = 0, 137 SLOT_DIRTY = 1, 138 SLOT_USED = 2, 139 }; 140 141 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */ 142 static struct kprobe_insn_cache kprobe_insn_slots = { 143 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 144 .insn_size = MAX_INSN_SIZE, 145 .nr_garbage = 0, 146 }; 147 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c); 148 149 /** 150 * __get_insn_slot() - Find a slot on an executable page for an instruction. 151 * We allocate an executable page if there's no room on existing ones. 152 */ 153 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c) 154 { 155 struct kprobe_insn_page *kip; 156 157 retry: 158 list_for_each_entry(kip, &c->pages, list) { 159 if (kip->nused < slots_per_page(c)) { 160 int i; 161 for (i = 0; i < slots_per_page(c); i++) { 162 if (kip->slot_used[i] == SLOT_CLEAN) { 163 kip->slot_used[i] = SLOT_USED; 164 kip->nused++; 165 return kip->insns + (i * c->insn_size); 166 } 167 } 168 /* kip->nused is broken. Fix it. */ 169 kip->nused = slots_per_page(c); 170 WARN_ON(1); 171 } 172 } 173 174 /* If there are any garbage slots, collect it and try again. */ 175 if (c->nr_garbage && collect_garbage_slots(c) == 0) 176 goto retry; 177 178 /* All out of space. Need to allocate a new page. */ 179 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 180 if (!kip) 181 return NULL; 182 183 /* 184 * Use module_alloc so this page is within +/- 2GB of where the 185 * kernel image and loaded module images reside. This is required 186 * so x86_64 can correctly handle the %rip-relative fixups. 187 */ 188 kip->insns = module_alloc(PAGE_SIZE); 189 if (!kip->insns) { 190 kfree(kip); 191 return NULL; 192 } 193 INIT_LIST_HEAD(&kip->list); 194 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 195 kip->slot_used[0] = SLOT_USED; 196 kip->nused = 1; 197 kip->ngarbage = 0; 198 list_add(&kip->list, &c->pages); 199 return kip->insns; 200 } 201 202 203 kprobe_opcode_t __kprobes *get_insn_slot(void) 204 { 205 kprobe_opcode_t *ret = NULL; 206 207 mutex_lock(&kprobe_insn_mutex); 208 ret = __get_insn_slot(&kprobe_insn_slots); 209 mutex_unlock(&kprobe_insn_mutex); 210 211 return ret; 212 } 213 214 /* Return 1 if all garbages are collected, otherwise 0. */ 215 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx) 216 { 217 kip->slot_used[idx] = SLOT_CLEAN; 218 kip->nused--; 219 if (kip->nused == 0) { 220 /* 221 * Page is no longer in use. Free it unless 222 * it's the last one. We keep the last one 223 * so as not to have to set it up again the 224 * next time somebody inserts a probe. 225 */ 226 if (!list_is_singular(&kip->list)) { 227 list_del(&kip->list); 228 module_free(NULL, kip->insns); 229 kfree(kip); 230 } 231 return 1; 232 } 233 return 0; 234 } 235 236 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c) 237 { 238 struct kprobe_insn_page *kip, *next; 239 240 /* Ensure no-one is interrupted on the garbages */ 241 synchronize_sched(); 242 243 list_for_each_entry_safe(kip, next, &c->pages, list) { 244 int i; 245 if (kip->ngarbage == 0) 246 continue; 247 kip->ngarbage = 0; /* we will collect all garbages */ 248 for (i = 0; i < slots_per_page(c); i++) { 249 if (kip->slot_used[i] == SLOT_DIRTY && 250 collect_one_slot(kip, i)) 251 break; 252 } 253 } 254 c->nr_garbage = 0; 255 return 0; 256 } 257 258 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c, 259 kprobe_opcode_t *slot, int dirty) 260 { 261 struct kprobe_insn_page *kip; 262 263 list_for_each_entry(kip, &c->pages, list) { 264 long idx = ((long)slot - (long)kip->insns) / 265 (c->insn_size * sizeof(kprobe_opcode_t)); 266 if (idx >= 0 && idx < slots_per_page(c)) { 267 WARN_ON(kip->slot_used[idx] != SLOT_USED); 268 if (dirty) { 269 kip->slot_used[idx] = SLOT_DIRTY; 270 kip->ngarbage++; 271 if (++c->nr_garbage > slots_per_page(c)) 272 collect_garbage_slots(c); 273 } else 274 collect_one_slot(kip, idx); 275 return; 276 } 277 } 278 /* Could not free this slot. */ 279 WARN_ON(1); 280 } 281 282 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty) 283 { 284 mutex_lock(&kprobe_insn_mutex); 285 __free_insn_slot(&kprobe_insn_slots, slot, dirty); 286 mutex_unlock(&kprobe_insn_mutex); 287 } 288 #ifdef CONFIG_OPTPROBES 289 /* For optimized_kprobe buffer */ 290 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */ 291 static struct kprobe_insn_cache kprobe_optinsn_slots = { 292 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 293 /* .insn_size is initialized later */ 294 .nr_garbage = 0, 295 }; 296 /* Get a slot for optimized_kprobe buffer */ 297 kprobe_opcode_t __kprobes *get_optinsn_slot(void) 298 { 299 kprobe_opcode_t *ret = NULL; 300 301 mutex_lock(&kprobe_optinsn_mutex); 302 ret = __get_insn_slot(&kprobe_optinsn_slots); 303 mutex_unlock(&kprobe_optinsn_mutex); 304 305 return ret; 306 } 307 308 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty) 309 { 310 mutex_lock(&kprobe_optinsn_mutex); 311 __free_insn_slot(&kprobe_optinsn_slots, slot, dirty); 312 mutex_unlock(&kprobe_optinsn_mutex); 313 } 314 #endif 315 #endif 316 317 /* We have preemption disabled.. so it is safe to use __ versions */ 318 static inline void set_kprobe_instance(struct kprobe *kp) 319 { 320 __this_cpu_write(kprobe_instance, kp); 321 } 322 323 static inline void reset_kprobe_instance(void) 324 { 325 __this_cpu_write(kprobe_instance, NULL); 326 } 327 328 /* 329 * This routine is called either: 330 * - under the kprobe_mutex - during kprobe_[un]register() 331 * OR 332 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 333 */ 334 struct kprobe __kprobes *get_kprobe(void *addr) 335 { 336 struct hlist_head *head; 337 struct hlist_node *node; 338 struct kprobe *p; 339 340 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 341 hlist_for_each_entry_rcu(p, node, head, hlist) { 342 if (p->addr == addr) 343 return p; 344 } 345 346 return NULL; 347 } 348 349 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 350 351 /* Return true if the kprobe is an aggregator */ 352 static inline int kprobe_aggrprobe(struct kprobe *p) 353 { 354 return p->pre_handler == aggr_pre_handler; 355 } 356 357 /* Return true(!0) if the kprobe is unused */ 358 static inline int kprobe_unused(struct kprobe *p) 359 { 360 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 361 list_empty(&p->list); 362 } 363 364 /* 365 * Keep all fields in the kprobe consistent 366 */ 367 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 368 { 369 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 370 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 371 } 372 373 #ifdef CONFIG_OPTPROBES 374 /* NOTE: change this value only with kprobe_mutex held */ 375 static bool kprobes_allow_optimization; 376 377 /* 378 * Call all pre_handler on the list, but ignores its return value. 379 * This must be called from arch-dep optimized caller. 380 */ 381 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 382 { 383 struct kprobe *kp; 384 385 list_for_each_entry_rcu(kp, &p->list, list) { 386 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 387 set_kprobe_instance(kp); 388 kp->pre_handler(kp, regs); 389 } 390 reset_kprobe_instance(); 391 } 392 } 393 394 /* Free optimized instructions and optimized_kprobe */ 395 static __kprobes void free_aggr_kprobe(struct kprobe *p) 396 { 397 struct optimized_kprobe *op; 398 399 op = container_of(p, struct optimized_kprobe, kp); 400 arch_remove_optimized_kprobe(op); 401 arch_remove_kprobe(p); 402 kfree(op); 403 } 404 405 /* Return true(!0) if the kprobe is ready for optimization. */ 406 static inline int kprobe_optready(struct kprobe *p) 407 { 408 struct optimized_kprobe *op; 409 410 if (kprobe_aggrprobe(p)) { 411 op = container_of(p, struct optimized_kprobe, kp); 412 return arch_prepared_optinsn(&op->optinsn); 413 } 414 415 return 0; 416 } 417 418 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 419 static inline int kprobe_disarmed(struct kprobe *p) 420 { 421 struct optimized_kprobe *op; 422 423 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 424 if (!kprobe_aggrprobe(p)) 425 return kprobe_disabled(p); 426 427 op = container_of(p, struct optimized_kprobe, kp); 428 429 return kprobe_disabled(p) && list_empty(&op->list); 430 } 431 432 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 433 static int __kprobes kprobe_queued(struct kprobe *p) 434 { 435 struct optimized_kprobe *op; 436 437 if (kprobe_aggrprobe(p)) { 438 op = container_of(p, struct optimized_kprobe, kp); 439 if (!list_empty(&op->list)) 440 return 1; 441 } 442 return 0; 443 } 444 445 /* 446 * Return an optimized kprobe whose optimizing code replaces 447 * instructions including addr (exclude breakpoint). 448 */ 449 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr) 450 { 451 int i; 452 struct kprobe *p = NULL; 453 struct optimized_kprobe *op; 454 455 /* Don't check i == 0, since that is a breakpoint case. */ 456 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 457 p = get_kprobe((void *)(addr - i)); 458 459 if (p && kprobe_optready(p)) { 460 op = container_of(p, struct optimized_kprobe, kp); 461 if (arch_within_optimized_kprobe(op, addr)) 462 return p; 463 } 464 465 return NULL; 466 } 467 468 /* Optimization staging list, protected by kprobe_mutex */ 469 static LIST_HEAD(optimizing_list); 470 static LIST_HEAD(unoptimizing_list); 471 472 static void kprobe_optimizer(struct work_struct *work); 473 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 474 #define OPTIMIZE_DELAY 5 475 476 /* 477 * Optimize (replace a breakpoint with a jump) kprobes listed on 478 * optimizing_list. 479 */ 480 static __kprobes void do_optimize_kprobes(void) 481 { 482 /* Optimization never be done when disarmed */ 483 if (kprobes_all_disarmed || !kprobes_allow_optimization || 484 list_empty(&optimizing_list)) 485 return; 486 487 /* 488 * The optimization/unoptimization refers online_cpus via 489 * stop_machine() and cpu-hotplug modifies online_cpus. 490 * And same time, text_mutex will be held in cpu-hotplug and here. 491 * This combination can cause a deadlock (cpu-hotplug try to lock 492 * text_mutex but stop_machine can not be done because online_cpus 493 * has been changed) 494 * To avoid this deadlock, we need to call get_online_cpus() 495 * for preventing cpu-hotplug outside of text_mutex locking. 496 */ 497 get_online_cpus(); 498 mutex_lock(&text_mutex); 499 arch_optimize_kprobes(&optimizing_list); 500 mutex_unlock(&text_mutex); 501 put_online_cpus(); 502 } 503 504 /* 505 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 506 * if need) kprobes listed on unoptimizing_list. 507 */ 508 static __kprobes void do_unoptimize_kprobes(struct list_head *free_list) 509 { 510 struct optimized_kprobe *op, *tmp; 511 512 /* Unoptimization must be done anytime */ 513 if (list_empty(&unoptimizing_list)) 514 return; 515 516 /* Ditto to do_optimize_kprobes */ 517 get_online_cpus(); 518 mutex_lock(&text_mutex); 519 arch_unoptimize_kprobes(&unoptimizing_list, free_list); 520 /* Loop free_list for disarming */ 521 list_for_each_entry_safe(op, tmp, free_list, list) { 522 /* Disarm probes if marked disabled */ 523 if (kprobe_disabled(&op->kp)) 524 arch_disarm_kprobe(&op->kp); 525 if (kprobe_unused(&op->kp)) { 526 /* 527 * Remove unused probes from hash list. After waiting 528 * for synchronization, these probes are reclaimed. 529 * (reclaiming is done by do_free_cleaned_kprobes.) 530 */ 531 hlist_del_rcu(&op->kp.hlist); 532 } else 533 list_del_init(&op->list); 534 } 535 mutex_unlock(&text_mutex); 536 put_online_cpus(); 537 } 538 539 /* Reclaim all kprobes on the free_list */ 540 static __kprobes void do_free_cleaned_kprobes(struct list_head *free_list) 541 { 542 struct optimized_kprobe *op, *tmp; 543 544 list_for_each_entry_safe(op, tmp, free_list, list) { 545 BUG_ON(!kprobe_unused(&op->kp)); 546 list_del_init(&op->list); 547 free_aggr_kprobe(&op->kp); 548 } 549 } 550 551 /* Start optimizer after OPTIMIZE_DELAY passed */ 552 static __kprobes void kick_kprobe_optimizer(void) 553 { 554 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 555 } 556 557 /* Kprobe jump optimizer */ 558 static __kprobes void kprobe_optimizer(struct work_struct *work) 559 { 560 LIST_HEAD(free_list); 561 562 mutex_lock(&kprobe_mutex); 563 /* Lock modules while optimizing kprobes */ 564 mutex_lock(&module_mutex); 565 566 /* 567 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 568 * kprobes before waiting for quiesence period. 569 */ 570 do_unoptimize_kprobes(&free_list); 571 572 /* 573 * Step 2: Wait for quiesence period to ensure all running interrupts 574 * are done. Because optprobe may modify multiple instructions 575 * there is a chance that Nth instruction is interrupted. In that 576 * case, running interrupt can return to 2nd-Nth byte of jump 577 * instruction. This wait is for avoiding it. 578 */ 579 synchronize_sched(); 580 581 /* Step 3: Optimize kprobes after quiesence period */ 582 do_optimize_kprobes(); 583 584 /* Step 4: Free cleaned kprobes after quiesence period */ 585 do_free_cleaned_kprobes(&free_list); 586 587 mutex_unlock(&module_mutex); 588 mutex_unlock(&kprobe_mutex); 589 590 /* Step 5: Kick optimizer again if needed */ 591 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 592 kick_kprobe_optimizer(); 593 } 594 595 /* Wait for completing optimization and unoptimization */ 596 static __kprobes void wait_for_kprobe_optimizer(void) 597 { 598 mutex_lock(&kprobe_mutex); 599 600 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 601 mutex_unlock(&kprobe_mutex); 602 603 /* this will also make optimizing_work execute immmediately */ 604 flush_delayed_work(&optimizing_work); 605 /* @optimizing_work might not have been queued yet, relax */ 606 cpu_relax(); 607 608 mutex_lock(&kprobe_mutex); 609 } 610 611 mutex_unlock(&kprobe_mutex); 612 } 613 614 /* Optimize kprobe if p is ready to be optimized */ 615 static __kprobes void optimize_kprobe(struct kprobe *p) 616 { 617 struct optimized_kprobe *op; 618 619 /* Check if the kprobe is disabled or not ready for optimization. */ 620 if (!kprobe_optready(p) || !kprobes_allow_optimization || 621 (kprobe_disabled(p) || kprobes_all_disarmed)) 622 return; 623 624 /* Both of break_handler and post_handler are not supported. */ 625 if (p->break_handler || p->post_handler) 626 return; 627 628 op = container_of(p, struct optimized_kprobe, kp); 629 630 /* Check there is no other kprobes at the optimized instructions */ 631 if (arch_check_optimized_kprobe(op) < 0) 632 return; 633 634 /* Check if it is already optimized. */ 635 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) 636 return; 637 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 638 639 if (!list_empty(&op->list)) 640 /* This is under unoptimizing. Just dequeue the probe */ 641 list_del_init(&op->list); 642 else { 643 list_add(&op->list, &optimizing_list); 644 kick_kprobe_optimizer(); 645 } 646 } 647 648 /* Short cut to direct unoptimizing */ 649 static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op) 650 { 651 get_online_cpus(); 652 arch_unoptimize_kprobe(op); 653 put_online_cpus(); 654 if (kprobe_disabled(&op->kp)) 655 arch_disarm_kprobe(&op->kp); 656 } 657 658 /* Unoptimize a kprobe if p is optimized */ 659 static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force) 660 { 661 struct optimized_kprobe *op; 662 663 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 664 return; /* This is not an optprobe nor optimized */ 665 666 op = container_of(p, struct optimized_kprobe, kp); 667 if (!kprobe_optimized(p)) { 668 /* Unoptimized or unoptimizing case */ 669 if (force && !list_empty(&op->list)) { 670 /* 671 * Only if this is unoptimizing kprobe and forced, 672 * forcibly unoptimize it. (No need to unoptimize 673 * unoptimized kprobe again :) 674 */ 675 list_del_init(&op->list); 676 force_unoptimize_kprobe(op); 677 } 678 return; 679 } 680 681 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 682 if (!list_empty(&op->list)) { 683 /* Dequeue from the optimization queue */ 684 list_del_init(&op->list); 685 return; 686 } 687 /* Optimized kprobe case */ 688 if (force) 689 /* Forcibly update the code: this is a special case */ 690 force_unoptimize_kprobe(op); 691 else { 692 list_add(&op->list, &unoptimizing_list); 693 kick_kprobe_optimizer(); 694 } 695 } 696 697 /* Cancel unoptimizing for reusing */ 698 static void reuse_unused_kprobe(struct kprobe *ap) 699 { 700 struct optimized_kprobe *op; 701 702 BUG_ON(!kprobe_unused(ap)); 703 /* 704 * Unused kprobe MUST be on the way of delayed unoptimizing (means 705 * there is still a relative jump) and disabled. 706 */ 707 op = container_of(ap, struct optimized_kprobe, kp); 708 if (unlikely(list_empty(&op->list))) 709 printk(KERN_WARNING "Warning: found a stray unused " 710 "aggrprobe@%p\n", ap->addr); 711 /* Enable the probe again */ 712 ap->flags &= ~KPROBE_FLAG_DISABLED; 713 /* Optimize it again (remove from op->list) */ 714 BUG_ON(!kprobe_optready(ap)); 715 optimize_kprobe(ap); 716 } 717 718 /* Remove optimized instructions */ 719 static void __kprobes kill_optimized_kprobe(struct kprobe *p) 720 { 721 struct optimized_kprobe *op; 722 723 op = container_of(p, struct optimized_kprobe, kp); 724 if (!list_empty(&op->list)) 725 /* Dequeue from the (un)optimization queue */ 726 list_del_init(&op->list); 727 728 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 729 /* Don't touch the code, because it is already freed. */ 730 arch_remove_optimized_kprobe(op); 731 } 732 733 /* Try to prepare optimized instructions */ 734 static __kprobes void prepare_optimized_kprobe(struct kprobe *p) 735 { 736 struct optimized_kprobe *op; 737 738 op = container_of(p, struct optimized_kprobe, kp); 739 arch_prepare_optimized_kprobe(op); 740 } 741 742 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 743 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 744 { 745 struct optimized_kprobe *op; 746 747 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 748 if (!op) 749 return NULL; 750 751 INIT_LIST_HEAD(&op->list); 752 op->kp.addr = p->addr; 753 arch_prepare_optimized_kprobe(op); 754 755 return &op->kp; 756 } 757 758 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 759 760 /* 761 * Prepare an optimized_kprobe and optimize it 762 * NOTE: p must be a normal registered kprobe 763 */ 764 static __kprobes void try_to_optimize_kprobe(struct kprobe *p) 765 { 766 struct kprobe *ap; 767 struct optimized_kprobe *op; 768 769 /* Impossible to optimize ftrace-based kprobe */ 770 if (kprobe_ftrace(p)) 771 return; 772 773 /* For preparing optimization, jump_label_text_reserved() is called */ 774 jump_label_lock(); 775 mutex_lock(&text_mutex); 776 777 ap = alloc_aggr_kprobe(p); 778 if (!ap) 779 goto out; 780 781 op = container_of(ap, struct optimized_kprobe, kp); 782 if (!arch_prepared_optinsn(&op->optinsn)) { 783 /* If failed to setup optimizing, fallback to kprobe */ 784 arch_remove_optimized_kprobe(op); 785 kfree(op); 786 goto out; 787 } 788 789 init_aggr_kprobe(ap, p); 790 optimize_kprobe(ap); /* This just kicks optimizer thread */ 791 792 out: 793 mutex_unlock(&text_mutex); 794 jump_label_unlock(); 795 } 796 797 #ifdef CONFIG_SYSCTL 798 /* This should be called with kprobe_mutex locked */ 799 static void __kprobes optimize_all_kprobes(void) 800 { 801 struct hlist_head *head; 802 struct hlist_node *node; 803 struct kprobe *p; 804 unsigned int i; 805 806 /* If optimization is already allowed, just return */ 807 if (kprobes_allow_optimization) 808 return; 809 810 kprobes_allow_optimization = true; 811 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 812 head = &kprobe_table[i]; 813 hlist_for_each_entry_rcu(p, node, head, hlist) 814 if (!kprobe_disabled(p)) 815 optimize_kprobe(p); 816 } 817 printk(KERN_INFO "Kprobes globally optimized\n"); 818 } 819 820 /* This should be called with kprobe_mutex locked */ 821 static void __kprobes unoptimize_all_kprobes(void) 822 { 823 struct hlist_head *head; 824 struct hlist_node *node; 825 struct kprobe *p; 826 unsigned int i; 827 828 /* If optimization is already prohibited, just return */ 829 if (!kprobes_allow_optimization) 830 return; 831 832 kprobes_allow_optimization = false; 833 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 834 head = &kprobe_table[i]; 835 hlist_for_each_entry_rcu(p, node, head, hlist) { 836 if (!kprobe_disabled(p)) 837 unoptimize_kprobe(p, false); 838 } 839 } 840 /* Wait for unoptimizing completion */ 841 wait_for_kprobe_optimizer(); 842 printk(KERN_INFO "Kprobes globally unoptimized\n"); 843 } 844 845 int sysctl_kprobes_optimization; 846 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 847 void __user *buffer, size_t *length, 848 loff_t *ppos) 849 { 850 int ret; 851 852 mutex_lock(&kprobe_mutex); 853 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 854 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 855 856 if (sysctl_kprobes_optimization) 857 optimize_all_kprobes(); 858 else 859 unoptimize_all_kprobes(); 860 mutex_unlock(&kprobe_mutex); 861 862 return ret; 863 } 864 #endif /* CONFIG_SYSCTL */ 865 866 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 867 static void __kprobes __arm_kprobe(struct kprobe *p) 868 { 869 struct kprobe *_p; 870 871 /* Check collision with other optimized kprobes */ 872 _p = get_optimized_kprobe((unsigned long)p->addr); 873 if (unlikely(_p)) 874 /* Fallback to unoptimized kprobe */ 875 unoptimize_kprobe(_p, true); 876 877 arch_arm_kprobe(p); 878 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 879 } 880 881 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 882 static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt) 883 { 884 struct kprobe *_p; 885 886 unoptimize_kprobe(p, false); /* Try to unoptimize */ 887 888 if (!kprobe_queued(p)) { 889 arch_disarm_kprobe(p); 890 /* If another kprobe was blocked, optimize it. */ 891 _p = get_optimized_kprobe((unsigned long)p->addr); 892 if (unlikely(_p) && reopt) 893 optimize_kprobe(_p); 894 } 895 /* TODO: reoptimize others after unoptimized this probe */ 896 } 897 898 #else /* !CONFIG_OPTPROBES */ 899 900 #define optimize_kprobe(p) do {} while (0) 901 #define unoptimize_kprobe(p, f) do {} while (0) 902 #define kill_optimized_kprobe(p) do {} while (0) 903 #define prepare_optimized_kprobe(p) do {} while (0) 904 #define try_to_optimize_kprobe(p) do {} while (0) 905 #define __arm_kprobe(p) arch_arm_kprobe(p) 906 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 907 #define kprobe_disarmed(p) kprobe_disabled(p) 908 #define wait_for_kprobe_optimizer() do {} while (0) 909 910 /* There should be no unused kprobes can be reused without optimization */ 911 static void reuse_unused_kprobe(struct kprobe *ap) 912 { 913 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 914 BUG_ON(kprobe_unused(ap)); 915 } 916 917 static __kprobes void free_aggr_kprobe(struct kprobe *p) 918 { 919 arch_remove_kprobe(p); 920 kfree(p); 921 } 922 923 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 924 { 925 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 926 } 927 #endif /* CONFIG_OPTPROBES */ 928 929 #ifdef CONFIG_KPROBES_ON_FTRACE 930 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 931 .func = kprobe_ftrace_handler, 932 .flags = FTRACE_OPS_FL_SAVE_REGS, 933 }; 934 static int kprobe_ftrace_enabled; 935 936 /* Must ensure p->addr is really on ftrace */ 937 static int __kprobes prepare_kprobe(struct kprobe *p) 938 { 939 if (!kprobe_ftrace(p)) 940 return arch_prepare_kprobe(p); 941 942 return arch_prepare_kprobe_ftrace(p); 943 } 944 945 /* Caller must lock kprobe_mutex */ 946 static void __kprobes arm_kprobe_ftrace(struct kprobe *p) 947 { 948 int ret; 949 950 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 951 (unsigned long)p->addr, 0, 0); 952 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret); 953 kprobe_ftrace_enabled++; 954 if (kprobe_ftrace_enabled == 1) { 955 ret = register_ftrace_function(&kprobe_ftrace_ops); 956 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret); 957 } 958 } 959 960 /* Caller must lock kprobe_mutex */ 961 static void __kprobes disarm_kprobe_ftrace(struct kprobe *p) 962 { 963 int ret; 964 965 kprobe_ftrace_enabled--; 966 if (kprobe_ftrace_enabled == 0) { 967 ret = unregister_ftrace_function(&kprobe_ftrace_ops); 968 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret); 969 } 970 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 971 (unsigned long)p->addr, 1, 0); 972 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret); 973 } 974 #else /* !CONFIG_KPROBES_ON_FTRACE */ 975 #define prepare_kprobe(p) arch_prepare_kprobe(p) 976 #define arm_kprobe_ftrace(p) do {} while (0) 977 #define disarm_kprobe_ftrace(p) do {} while (0) 978 #endif 979 980 /* Arm a kprobe with text_mutex */ 981 static void __kprobes arm_kprobe(struct kprobe *kp) 982 { 983 if (unlikely(kprobe_ftrace(kp))) { 984 arm_kprobe_ftrace(kp); 985 return; 986 } 987 /* 988 * Here, since __arm_kprobe() doesn't use stop_machine(), 989 * this doesn't cause deadlock on text_mutex. So, we don't 990 * need get_online_cpus(). 991 */ 992 mutex_lock(&text_mutex); 993 __arm_kprobe(kp); 994 mutex_unlock(&text_mutex); 995 } 996 997 /* Disarm a kprobe with text_mutex */ 998 static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt) 999 { 1000 if (unlikely(kprobe_ftrace(kp))) { 1001 disarm_kprobe_ftrace(kp); 1002 return; 1003 } 1004 /* Ditto */ 1005 mutex_lock(&text_mutex); 1006 __disarm_kprobe(kp, reopt); 1007 mutex_unlock(&text_mutex); 1008 } 1009 1010 /* 1011 * Aggregate handlers for multiple kprobes support - these handlers 1012 * take care of invoking the individual kprobe handlers on p->list 1013 */ 1014 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1015 { 1016 struct kprobe *kp; 1017 1018 list_for_each_entry_rcu(kp, &p->list, list) { 1019 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1020 set_kprobe_instance(kp); 1021 if (kp->pre_handler(kp, regs)) 1022 return 1; 1023 } 1024 reset_kprobe_instance(); 1025 } 1026 return 0; 1027 } 1028 1029 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1030 unsigned long flags) 1031 { 1032 struct kprobe *kp; 1033 1034 list_for_each_entry_rcu(kp, &p->list, list) { 1035 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1036 set_kprobe_instance(kp); 1037 kp->post_handler(kp, regs, flags); 1038 reset_kprobe_instance(); 1039 } 1040 } 1041 } 1042 1043 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 1044 int trapnr) 1045 { 1046 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1047 1048 /* 1049 * if we faulted "during" the execution of a user specified 1050 * probe handler, invoke just that probe's fault handler 1051 */ 1052 if (cur && cur->fault_handler) { 1053 if (cur->fault_handler(cur, regs, trapnr)) 1054 return 1; 1055 } 1056 return 0; 1057 } 1058 1059 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs) 1060 { 1061 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1062 int ret = 0; 1063 1064 if (cur && cur->break_handler) { 1065 if (cur->break_handler(cur, regs)) 1066 ret = 1; 1067 } 1068 reset_kprobe_instance(); 1069 return ret; 1070 } 1071 1072 /* Walks the list and increments nmissed count for multiprobe case */ 1073 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p) 1074 { 1075 struct kprobe *kp; 1076 if (!kprobe_aggrprobe(p)) { 1077 p->nmissed++; 1078 } else { 1079 list_for_each_entry_rcu(kp, &p->list, list) 1080 kp->nmissed++; 1081 } 1082 return; 1083 } 1084 1085 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri, 1086 struct hlist_head *head) 1087 { 1088 struct kretprobe *rp = ri->rp; 1089 1090 /* remove rp inst off the rprobe_inst_table */ 1091 hlist_del(&ri->hlist); 1092 INIT_HLIST_NODE(&ri->hlist); 1093 if (likely(rp)) { 1094 raw_spin_lock(&rp->lock); 1095 hlist_add_head(&ri->hlist, &rp->free_instances); 1096 raw_spin_unlock(&rp->lock); 1097 } else 1098 /* Unregistering */ 1099 hlist_add_head(&ri->hlist, head); 1100 } 1101 1102 void __kprobes kretprobe_hash_lock(struct task_struct *tsk, 1103 struct hlist_head **head, unsigned long *flags) 1104 __acquires(hlist_lock) 1105 { 1106 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1107 raw_spinlock_t *hlist_lock; 1108 1109 *head = &kretprobe_inst_table[hash]; 1110 hlist_lock = kretprobe_table_lock_ptr(hash); 1111 raw_spin_lock_irqsave(hlist_lock, *flags); 1112 } 1113 1114 static void __kprobes kretprobe_table_lock(unsigned long hash, 1115 unsigned long *flags) 1116 __acquires(hlist_lock) 1117 { 1118 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1119 raw_spin_lock_irqsave(hlist_lock, *flags); 1120 } 1121 1122 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk, 1123 unsigned long *flags) 1124 __releases(hlist_lock) 1125 { 1126 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1127 raw_spinlock_t *hlist_lock; 1128 1129 hlist_lock = kretprobe_table_lock_ptr(hash); 1130 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1131 } 1132 1133 static void __kprobes kretprobe_table_unlock(unsigned long hash, 1134 unsigned long *flags) 1135 __releases(hlist_lock) 1136 { 1137 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1138 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1139 } 1140 1141 /* 1142 * This function is called from finish_task_switch when task tk becomes dead, 1143 * so that we can recycle any function-return probe instances associated 1144 * with this task. These left over instances represent probed functions 1145 * that have been called but will never return. 1146 */ 1147 void __kprobes kprobe_flush_task(struct task_struct *tk) 1148 { 1149 struct kretprobe_instance *ri; 1150 struct hlist_head *head, empty_rp; 1151 struct hlist_node *node, *tmp; 1152 unsigned long hash, flags = 0; 1153 1154 if (unlikely(!kprobes_initialized)) 1155 /* Early boot. kretprobe_table_locks not yet initialized. */ 1156 return; 1157 1158 INIT_HLIST_HEAD(&empty_rp); 1159 hash = hash_ptr(tk, KPROBE_HASH_BITS); 1160 head = &kretprobe_inst_table[hash]; 1161 kretprobe_table_lock(hash, &flags); 1162 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 1163 if (ri->task == tk) 1164 recycle_rp_inst(ri, &empty_rp); 1165 } 1166 kretprobe_table_unlock(hash, &flags); 1167 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { 1168 hlist_del(&ri->hlist); 1169 kfree(ri); 1170 } 1171 } 1172 1173 static inline void free_rp_inst(struct kretprobe *rp) 1174 { 1175 struct kretprobe_instance *ri; 1176 struct hlist_node *pos, *next; 1177 1178 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) { 1179 hlist_del(&ri->hlist); 1180 kfree(ri); 1181 } 1182 } 1183 1184 static void __kprobes cleanup_rp_inst(struct kretprobe *rp) 1185 { 1186 unsigned long flags, hash; 1187 struct kretprobe_instance *ri; 1188 struct hlist_node *pos, *next; 1189 struct hlist_head *head; 1190 1191 /* No race here */ 1192 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 1193 kretprobe_table_lock(hash, &flags); 1194 head = &kretprobe_inst_table[hash]; 1195 hlist_for_each_entry_safe(ri, pos, next, head, hlist) { 1196 if (ri->rp == rp) 1197 ri->rp = NULL; 1198 } 1199 kretprobe_table_unlock(hash, &flags); 1200 } 1201 free_rp_inst(rp); 1202 } 1203 1204 /* 1205 * Add the new probe to ap->list. Fail if this is the 1206 * second jprobe at the address - two jprobes can't coexist 1207 */ 1208 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1209 { 1210 BUG_ON(kprobe_gone(ap) || kprobe_gone(p)); 1211 1212 if (p->break_handler || p->post_handler) 1213 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1214 1215 if (p->break_handler) { 1216 if (ap->break_handler) 1217 return -EEXIST; 1218 list_add_tail_rcu(&p->list, &ap->list); 1219 ap->break_handler = aggr_break_handler; 1220 } else 1221 list_add_rcu(&p->list, &ap->list); 1222 if (p->post_handler && !ap->post_handler) 1223 ap->post_handler = aggr_post_handler; 1224 1225 return 0; 1226 } 1227 1228 /* 1229 * Fill in the required fields of the "manager kprobe". Replace the 1230 * earlier kprobe in the hlist with the manager kprobe 1231 */ 1232 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1233 { 1234 /* Copy p's insn slot to ap */ 1235 copy_kprobe(p, ap); 1236 flush_insn_slot(ap); 1237 ap->addr = p->addr; 1238 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1239 ap->pre_handler = aggr_pre_handler; 1240 ap->fault_handler = aggr_fault_handler; 1241 /* We don't care the kprobe which has gone. */ 1242 if (p->post_handler && !kprobe_gone(p)) 1243 ap->post_handler = aggr_post_handler; 1244 if (p->break_handler && !kprobe_gone(p)) 1245 ap->break_handler = aggr_break_handler; 1246 1247 INIT_LIST_HEAD(&ap->list); 1248 INIT_HLIST_NODE(&ap->hlist); 1249 1250 list_add_rcu(&p->list, &ap->list); 1251 hlist_replace_rcu(&p->hlist, &ap->hlist); 1252 } 1253 1254 /* 1255 * This is the second or subsequent kprobe at the address - handle 1256 * the intricacies 1257 */ 1258 static int __kprobes register_aggr_kprobe(struct kprobe *orig_p, 1259 struct kprobe *p) 1260 { 1261 int ret = 0; 1262 struct kprobe *ap = orig_p; 1263 1264 /* For preparing optimization, jump_label_text_reserved() is called */ 1265 jump_label_lock(); 1266 /* 1267 * Get online CPUs to avoid text_mutex deadlock.with stop machine, 1268 * which is invoked by unoptimize_kprobe() in add_new_kprobe() 1269 */ 1270 get_online_cpus(); 1271 mutex_lock(&text_mutex); 1272 1273 if (!kprobe_aggrprobe(orig_p)) { 1274 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1275 ap = alloc_aggr_kprobe(orig_p); 1276 if (!ap) { 1277 ret = -ENOMEM; 1278 goto out; 1279 } 1280 init_aggr_kprobe(ap, orig_p); 1281 } else if (kprobe_unused(ap)) 1282 /* This probe is going to die. Rescue it */ 1283 reuse_unused_kprobe(ap); 1284 1285 if (kprobe_gone(ap)) { 1286 /* 1287 * Attempting to insert new probe at the same location that 1288 * had a probe in the module vaddr area which already 1289 * freed. So, the instruction slot has already been 1290 * released. We need a new slot for the new probe. 1291 */ 1292 ret = arch_prepare_kprobe(ap); 1293 if (ret) 1294 /* 1295 * Even if fail to allocate new slot, don't need to 1296 * free aggr_probe. It will be used next time, or 1297 * freed by unregister_kprobe. 1298 */ 1299 goto out; 1300 1301 /* Prepare optimized instructions if possible. */ 1302 prepare_optimized_kprobe(ap); 1303 1304 /* 1305 * Clear gone flag to prevent allocating new slot again, and 1306 * set disabled flag because it is not armed yet. 1307 */ 1308 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1309 | KPROBE_FLAG_DISABLED; 1310 } 1311 1312 /* Copy ap's insn slot to p */ 1313 copy_kprobe(ap, p); 1314 ret = add_new_kprobe(ap, p); 1315 1316 out: 1317 mutex_unlock(&text_mutex); 1318 put_online_cpus(); 1319 jump_label_unlock(); 1320 1321 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1322 ap->flags &= ~KPROBE_FLAG_DISABLED; 1323 if (!kprobes_all_disarmed) 1324 /* Arm the breakpoint again. */ 1325 arm_kprobe(ap); 1326 } 1327 return ret; 1328 } 1329 1330 static int __kprobes in_kprobes_functions(unsigned long addr) 1331 { 1332 struct kprobe_blackpoint *kb; 1333 1334 if (addr >= (unsigned long)__kprobes_text_start && 1335 addr < (unsigned long)__kprobes_text_end) 1336 return -EINVAL; 1337 /* 1338 * If there exists a kprobe_blacklist, verify and 1339 * fail any probe registration in the prohibited area 1340 */ 1341 for (kb = kprobe_blacklist; kb->name != NULL; kb++) { 1342 if (kb->start_addr) { 1343 if (addr >= kb->start_addr && 1344 addr < (kb->start_addr + kb->range)) 1345 return -EINVAL; 1346 } 1347 } 1348 return 0; 1349 } 1350 1351 /* 1352 * If we have a symbol_name argument, look it up and add the offset field 1353 * to it. This way, we can specify a relative address to a symbol. 1354 * This returns encoded errors if it fails to look up symbol or invalid 1355 * combination of parameters. 1356 */ 1357 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p) 1358 { 1359 kprobe_opcode_t *addr = p->addr; 1360 1361 if ((p->symbol_name && p->addr) || 1362 (!p->symbol_name && !p->addr)) 1363 goto invalid; 1364 1365 if (p->symbol_name) { 1366 kprobe_lookup_name(p->symbol_name, addr); 1367 if (!addr) 1368 return ERR_PTR(-ENOENT); 1369 } 1370 1371 addr = (kprobe_opcode_t *)(((char *)addr) + p->offset); 1372 if (addr) 1373 return addr; 1374 1375 invalid: 1376 return ERR_PTR(-EINVAL); 1377 } 1378 1379 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1380 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p) 1381 { 1382 struct kprobe *ap, *list_p; 1383 1384 ap = get_kprobe(p->addr); 1385 if (unlikely(!ap)) 1386 return NULL; 1387 1388 if (p != ap) { 1389 list_for_each_entry_rcu(list_p, &ap->list, list) 1390 if (list_p == p) 1391 /* kprobe p is a valid probe */ 1392 goto valid; 1393 return NULL; 1394 } 1395 valid: 1396 return ap; 1397 } 1398 1399 /* Return error if the kprobe is being re-registered */ 1400 static inline int check_kprobe_rereg(struct kprobe *p) 1401 { 1402 int ret = 0; 1403 1404 mutex_lock(&kprobe_mutex); 1405 if (__get_valid_kprobe(p)) 1406 ret = -EINVAL; 1407 mutex_unlock(&kprobe_mutex); 1408 1409 return ret; 1410 } 1411 1412 static __kprobes int check_kprobe_address_safe(struct kprobe *p, 1413 struct module **probed_mod) 1414 { 1415 int ret = 0; 1416 unsigned long ftrace_addr; 1417 1418 /* 1419 * If the address is located on a ftrace nop, set the 1420 * breakpoint to the following instruction. 1421 */ 1422 ftrace_addr = ftrace_location((unsigned long)p->addr); 1423 if (ftrace_addr) { 1424 #ifdef CONFIG_KPROBES_ON_FTRACE 1425 /* Given address is not on the instruction boundary */ 1426 if ((unsigned long)p->addr != ftrace_addr) 1427 return -EILSEQ; 1428 p->flags |= KPROBE_FLAG_FTRACE; 1429 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1430 return -EINVAL; 1431 #endif 1432 } 1433 1434 jump_label_lock(); 1435 preempt_disable(); 1436 1437 /* Ensure it is not in reserved area nor out of text */ 1438 if (!kernel_text_address((unsigned long) p->addr) || 1439 in_kprobes_functions((unsigned long) p->addr) || 1440 jump_label_text_reserved(p->addr, p->addr)) { 1441 ret = -EINVAL; 1442 goto out; 1443 } 1444 1445 /* Check if are we probing a module */ 1446 *probed_mod = __module_text_address((unsigned long) p->addr); 1447 if (*probed_mod) { 1448 /* 1449 * We must hold a refcount of the probed module while updating 1450 * its code to prohibit unexpected unloading. 1451 */ 1452 if (unlikely(!try_module_get(*probed_mod))) { 1453 ret = -ENOENT; 1454 goto out; 1455 } 1456 1457 /* 1458 * If the module freed .init.text, we couldn't insert 1459 * kprobes in there. 1460 */ 1461 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1462 (*probed_mod)->state != MODULE_STATE_COMING) { 1463 module_put(*probed_mod); 1464 *probed_mod = NULL; 1465 ret = -ENOENT; 1466 } 1467 } 1468 out: 1469 preempt_enable(); 1470 jump_label_unlock(); 1471 1472 return ret; 1473 } 1474 1475 int __kprobes register_kprobe(struct kprobe *p) 1476 { 1477 int ret; 1478 struct kprobe *old_p; 1479 struct module *probed_mod; 1480 kprobe_opcode_t *addr; 1481 1482 /* Adjust probe address from symbol */ 1483 addr = kprobe_addr(p); 1484 if (IS_ERR(addr)) 1485 return PTR_ERR(addr); 1486 p->addr = addr; 1487 1488 ret = check_kprobe_rereg(p); 1489 if (ret) 1490 return ret; 1491 1492 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1493 p->flags &= KPROBE_FLAG_DISABLED; 1494 p->nmissed = 0; 1495 INIT_LIST_HEAD(&p->list); 1496 1497 ret = check_kprobe_address_safe(p, &probed_mod); 1498 if (ret) 1499 return ret; 1500 1501 mutex_lock(&kprobe_mutex); 1502 1503 old_p = get_kprobe(p->addr); 1504 if (old_p) { 1505 /* Since this may unoptimize old_p, locking text_mutex. */ 1506 ret = register_aggr_kprobe(old_p, p); 1507 goto out; 1508 } 1509 1510 mutex_lock(&text_mutex); /* Avoiding text modification */ 1511 ret = prepare_kprobe(p); 1512 mutex_unlock(&text_mutex); 1513 if (ret) 1514 goto out; 1515 1516 INIT_HLIST_NODE(&p->hlist); 1517 hlist_add_head_rcu(&p->hlist, 1518 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1519 1520 if (!kprobes_all_disarmed && !kprobe_disabled(p)) 1521 arm_kprobe(p); 1522 1523 /* Try to optimize kprobe */ 1524 try_to_optimize_kprobe(p); 1525 1526 out: 1527 mutex_unlock(&kprobe_mutex); 1528 1529 if (probed_mod) 1530 module_put(probed_mod); 1531 1532 return ret; 1533 } 1534 EXPORT_SYMBOL_GPL(register_kprobe); 1535 1536 /* Check if all probes on the aggrprobe are disabled */ 1537 static int __kprobes aggr_kprobe_disabled(struct kprobe *ap) 1538 { 1539 struct kprobe *kp; 1540 1541 list_for_each_entry_rcu(kp, &ap->list, list) 1542 if (!kprobe_disabled(kp)) 1543 /* 1544 * There is an active probe on the list. 1545 * We can't disable this ap. 1546 */ 1547 return 0; 1548 1549 return 1; 1550 } 1551 1552 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1553 static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p) 1554 { 1555 struct kprobe *orig_p; 1556 1557 /* Get an original kprobe for return */ 1558 orig_p = __get_valid_kprobe(p); 1559 if (unlikely(orig_p == NULL)) 1560 return NULL; 1561 1562 if (!kprobe_disabled(p)) { 1563 /* Disable probe if it is a child probe */ 1564 if (p != orig_p) 1565 p->flags |= KPROBE_FLAG_DISABLED; 1566 1567 /* Try to disarm and disable this/parent probe */ 1568 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1569 disarm_kprobe(orig_p, true); 1570 orig_p->flags |= KPROBE_FLAG_DISABLED; 1571 } 1572 } 1573 1574 return orig_p; 1575 } 1576 1577 /* 1578 * Unregister a kprobe without a scheduler synchronization. 1579 */ 1580 static int __kprobes __unregister_kprobe_top(struct kprobe *p) 1581 { 1582 struct kprobe *ap, *list_p; 1583 1584 /* Disable kprobe. This will disarm it if needed. */ 1585 ap = __disable_kprobe(p); 1586 if (ap == NULL) 1587 return -EINVAL; 1588 1589 if (ap == p) 1590 /* 1591 * This probe is an independent(and non-optimized) kprobe 1592 * (not an aggrprobe). Remove from the hash list. 1593 */ 1594 goto disarmed; 1595 1596 /* Following process expects this probe is an aggrprobe */ 1597 WARN_ON(!kprobe_aggrprobe(ap)); 1598 1599 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1600 /* 1601 * !disarmed could be happen if the probe is under delayed 1602 * unoptimizing. 1603 */ 1604 goto disarmed; 1605 else { 1606 /* If disabling probe has special handlers, update aggrprobe */ 1607 if (p->break_handler && !kprobe_gone(p)) 1608 ap->break_handler = NULL; 1609 if (p->post_handler && !kprobe_gone(p)) { 1610 list_for_each_entry_rcu(list_p, &ap->list, list) { 1611 if ((list_p != p) && (list_p->post_handler)) 1612 goto noclean; 1613 } 1614 ap->post_handler = NULL; 1615 } 1616 noclean: 1617 /* 1618 * Remove from the aggrprobe: this path will do nothing in 1619 * __unregister_kprobe_bottom(). 1620 */ 1621 list_del_rcu(&p->list); 1622 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1623 /* 1624 * Try to optimize this probe again, because post 1625 * handler may have been changed. 1626 */ 1627 optimize_kprobe(ap); 1628 } 1629 return 0; 1630 1631 disarmed: 1632 BUG_ON(!kprobe_disarmed(ap)); 1633 hlist_del_rcu(&ap->hlist); 1634 return 0; 1635 } 1636 1637 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p) 1638 { 1639 struct kprobe *ap; 1640 1641 if (list_empty(&p->list)) 1642 /* This is an independent kprobe */ 1643 arch_remove_kprobe(p); 1644 else if (list_is_singular(&p->list)) { 1645 /* This is the last child of an aggrprobe */ 1646 ap = list_entry(p->list.next, struct kprobe, list); 1647 list_del(&p->list); 1648 free_aggr_kprobe(ap); 1649 } 1650 /* Otherwise, do nothing. */ 1651 } 1652 1653 int __kprobes register_kprobes(struct kprobe **kps, int num) 1654 { 1655 int i, ret = 0; 1656 1657 if (num <= 0) 1658 return -EINVAL; 1659 for (i = 0; i < num; i++) { 1660 ret = register_kprobe(kps[i]); 1661 if (ret < 0) { 1662 if (i > 0) 1663 unregister_kprobes(kps, i); 1664 break; 1665 } 1666 } 1667 return ret; 1668 } 1669 EXPORT_SYMBOL_GPL(register_kprobes); 1670 1671 void __kprobes unregister_kprobe(struct kprobe *p) 1672 { 1673 unregister_kprobes(&p, 1); 1674 } 1675 EXPORT_SYMBOL_GPL(unregister_kprobe); 1676 1677 void __kprobes unregister_kprobes(struct kprobe **kps, int num) 1678 { 1679 int i; 1680 1681 if (num <= 0) 1682 return; 1683 mutex_lock(&kprobe_mutex); 1684 for (i = 0; i < num; i++) 1685 if (__unregister_kprobe_top(kps[i]) < 0) 1686 kps[i]->addr = NULL; 1687 mutex_unlock(&kprobe_mutex); 1688 1689 synchronize_sched(); 1690 for (i = 0; i < num; i++) 1691 if (kps[i]->addr) 1692 __unregister_kprobe_bottom(kps[i]); 1693 } 1694 EXPORT_SYMBOL_GPL(unregister_kprobes); 1695 1696 static struct notifier_block kprobe_exceptions_nb = { 1697 .notifier_call = kprobe_exceptions_notify, 1698 .priority = 0x7fffffff /* we need to be notified first */ 1699 }; 1700 1701 unsigned long __weak arch_deref_entry_point(void *entry) 1702 { 1703 return (unsigned long)entry; 1704 } 1705 1706 int __kprobes register_jprobes(struct jprobe **jps, int num) 1707 { 1708 struct jprobe *jp; 1709 int ret = 0, i; 1710 1711 if (num <= 0) 1712 return -EINVAL; 1713 for (i = 0; i < num; i++) { 1714 unsigned long addr, offset; 1715 jp = jps[i]; 1716 addr = arch_deref_entry_point(jp->entry); 1717 1718 /* Verify probepoint is a function entry point */ 1719 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && 1720 offset == 0) { 1721 jp->kp.pre_handler = setjmp_pre_handler; 1722 jp->kp.break_handler = longjmp_break_handler; 1723 ret = register_kprobe(&jp->kp); 1724 } else 1725 ret = -EINVAL; 1726 1727 if (ret < 0) { 1728 if (i > 0) 1729 unregister_jprobes(jps, i); 1730 break; 1731 } 1732 } 1733 return ret; 1734 } 1735 EXPORT_SYMBOL_GPL(register_jprobes); 1736 1737 int __kprobes register_jprobe(struct jprobe *jp) 1738 { 1739 return register_jprobes(&jp, 1); 1740 } 1741 EXPORT_SYMBOL_GPL(register_jprobe); 1742 1743 void __kprobes unregister_jprobe(struct jprobe *jp) 1744 { 1745 unregister_jprobes(&jp, 1); 1746 } 1747 EXPORT_SYMBOL_GPL(unregister_jprobe); 1748 1749 void __kprobes unregister_jprobes(struct jprobe **jps, int num) 1750 { 1751 int i; 1752 1753 if (num <= 0) 1754 return; 1755 mutex_lock(&kprobe_mutex); 1756 for (i = 0; i < num; i++) 1757 if (__unregister_kprobe_top(&jps[i]->kp) < 0) 1758 jps[i]->kp.addr = NULL; 1759 mutex_unlock(&kprobe_mutex); 1760 1761 synchronize_sched(); 1762 for (i = 0; i < num; i++) { 1763 if (jps[i]->kp.addr) 1764 __unregister_kprobe_bottom(&jps[i]->kp); 1765 } 1766 } 1767 EXPORT_SYMBOL_GPL(unregister_jprobes); 1768 1769 #ifdef CONFIG_KRETPROBES 1770 /* 1771 * This kprobe pre_handler is registered with every kretprobe. When probe 1772 * hits it will set up the return probe. 1773 */ 1774 static int __kprobes pre_handler_kretprobe(struct kprobe *p, 1775 struct pt_regs *regs) 1776 { 1777 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1778 unsigned long hash, flags = 0; 1779 struct kretprobe_instance *ri; 1780 1781 /*TODO: consider to only swap the RA after the last pre_handler fired */ 1782 hash = hash_ptr(current, KPROBE_HASH_BITS); 1783 raw_spin_lock_irqsave(&rp->lock, flags); 1784 if (!hlist_empty(&rp->free_instances)) { 1785 ri = hlist_entry(rp->free_instances.first, 1786 struct kretprobe_instance, hlist); 1787 hlist_del(&ri->hlist); 1788 raw_spin_unlock_irqrestore(&rp->lock, flags); 1789 1790 ri->rp = rp; 1791 ri->task = current; 1792 1793 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 1794 raw_spin_lock_irqsave(&rp->lock, flags); 1795 hlist_add_head(&ri->hlist, &rp->free_instances); 1796 raw_spin_unlock_irqrestore(&rp->lock, flags); 1797 return 0; 1798 } 1799 1800 arch_prepare_kretprobe(ri, regs); 1801 1802 /* XXX(hch): why is there no hlist_move_head? */ 1803 INIT_HLIST_NODE(&ri->hlist); 1804 kretprobe_table_lock(hash, &flags); 1805 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 1806 kretprobe_table_unlock(hash, &flags); 1807 } else { 1808 rp->nmissed++; 1809 raw_spin_unlock_irqrestore(&rp->lock, flags); 1810 } 1811 return 0; 1812 } 1813 1814 int __kprobes register_kretprobe(struct kretprobe *rp) 1815 { 1816 int ret = 0; 1817 struct kretprobe_instance *inst; 1818 int i; 1819 void *addr; 1820 1821 if (kretprobe_blacklist_size) { 1822 addr = kprobe_addr(&rp->kp); 1823 if (IS_ERR(addr)) 1824 return PTR_ERR(addr); 1825 1826 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1827 if (kretprobe_blacklist[i].addr == addr) 1828 return -EINVAL; 1829 } 1830 } 1831 1832 rp->kp.pre_handler = pre_handler_kretprobe; 1833 rp->kp.post_handler = NULL; 1834 rp->kp.fault_handler = NULL; 1835 rp->kp.break_handler = NULL; 1836 1837 /* Pre-allocate memory for max kretprobe instances */ 1838 if (rp->maxactive <= 0) { 1839 #ifdef CONFIG_PREEMPT 1840 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 1841 #else 1842 rp->maxactive = num_possible_cpus(); 1843 #endif 1844 } 1845 raw_spin_lock_init(&rp->lock); 1846 INIT_HLIST_HEAD(&rp->free_instances); 1847 for (i = 0; i < rp->maxactive; i++) { 1848 inst = kmalloc(sizeof(struct kretprobe_instance) + 1849 rp->data_size, GFP_KERNEL); 1850 if (inst == NULL) { 1851 free_rp_inst(rp); 1852 return -ENOMEM; 1853 } 1854 INIT_HLIST_NODE(&inst->hlist); 1855 hlist_add_head(&inst->hlist, &rp->free_instances); 1856 } 1857 1858 rp->nmissed = 0; 1859 /* Establish function entry probe point */ 1860 ret = register_kprobe(&rp->kp); 1861 if (ret != 0) 1862 free_rp_inst(rp); 1863 return ret; 1864 } 1865 EXPORT_SYMBOL_GPL(register_kretprobe); 1866 1867 int __kprobes register_kretprobes(struct kretprobe **rps, int num) 1868 { 1869 int ret = 0, i; 1870 1871 if (num <= 0) 1872 return -EINVAL; 1873 for (i = 0; i < num; i++) { 1874 ret = register_kretprobe(rps[i]); 1875 if (ret < 0) { 1876 if (i > 0) 1877 unregister_kretprobes(rps, i); 1878 break; 1879 } 1880 } 1881 return ret; 1882 } 1883 EXPORT_SYMBOL_GPL(register_kretprobes); 1884 1885 void __kprobes unregister_kretprobe(struct kretprobe *rp) 1886 { 1887 unregister_kretprobes(&rp, 1); 1888 } 1889 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1890 1891 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) 1892 { 1893 int i; 1894 1895 if (num <= 0) 1896 return; 1897 mutex_lock(&kprobe_mutex); 1898 for (i = 0; i < num; i++) 1899 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 1900 rps[i]->kp.addr = NULL; 1901 mutex_unlock(&kprobe_mutex); 1902 1903 synchronize_sched(); 1904 for (i = 0; i < num; i++) { 1905 if (rps[i]->kp.addr) { 1906 __unregister_kprobe_bottom(&rps[i]->kp); 1907 cleanup_rp_inst(rps[i]); 1908 } 1909 } 1910 } 1911 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1912 1913 #else /* CONFIG_KRETPROBES */ 1914 int __kprobes register_kretprobe(struct kretprobe *rp) 1915 { 1916 return -ENOSYS; 1917 } 1918 EXPORT_SYMBOL_GPL(register_kretprobe); 1919 1920 int __kprobes register_kretprobes(struct kretprobe **rps, int num) 1921 { 1922 return -ENOSYS; 1923 } 1924 EXPORT_SYMBOL_GPL(register_kretprobes); 1925 1926 void __kprobes unregister_kretprobe(struct kretprobe *rp) 1927 { 1928 } 1929 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1930 1931 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) 1932 { 1933 } 1934 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1935 1936 static int __kprobes pre_handler_kretprobe(struct kprobe *p, 1937 struct pt_regs *regs) 1938 { 1939 return 0; 1940 } 1941 1942 #endif /* CONFIG_KRETPROBES */ 1943 1944 /* Set the kprobe gone and remove its instruction buffer. */ 1945 static void __kprobes kill_kprobe(struct kprobe *p) 1946 { 1947 struct kprobe *kp; 1948 1949 p->flags |= KPROBE_FLAG_GONE; 1950 if (kprobe_aggrprobe(p)) { 1951 /* 1952 * If this is an aggr_kprobe, we have to list all the 1953 * chained probes and mark them GONE. 1954 */ 1955 list_for_each_entry_rcu(kp, &p->list, list) 1956 kp->flags |= KPROBE_FLAG_GONE; 1957 p->post_handler = NULL; 1958 p->break_handler = NULL; 1959 kill_optimized_kprobe(p); 1960 } 1961 /* 1962 * Here, we can remove insn_slot safely, because no thread calls 1963 * the original probed function (which will be freed soon) any more. 1964 */ 1965 arch_remove_kprobe(p); 1966 } 1967 1968 /* Disable one kprobe */ 1969 int __kprobes disable_kprobe(struct kprobe *kp) 1970 { 1971 int ret = 0; 1972 1973 mutex_lock(&kprobe_mutex); 1974 1975 /* Disable this kprobe */ 1976 if (__disable_kprobe(kp) == NULL) 1977 ret = -EINVAL; 1978 1979 mutex_unlock(&kprobe_mutex); 1980 return ret; 1981 } 1982 EXPORT_SYMBOL_GPL(disable_kprobe); 1983 1984 /* Enable one kprobe */ 1985 int __kprobes enable_kprobe(struct kprobe *kp) 1986 { 1987 int ret = 0; 1988 struct kprobe *p; 1989 1990 mutex_lock(&kprobe_mutex); 1991 1992 /* Check whether specified probe is valid. */ 1993 p = __get_valid_kprobe(kp); 1994 if (unlikely(p == NULL)) { 1995 ret = -EINVAL; 1996 goto out; 1997 } 1998 1999 if (kprobe_gone(kp)) { 2000 /* This kprobe has gone, we couldn't enable it. */ 2001 ret = -EINVAL; 2002 goto out; 2003 } 2004 2005 if (p != kp) 2006 kp->flags &= ~KPROBE_FLAG_DISABLED; 2007 2008 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2009 p->flags &= ~KPROBE_FLAG_DISABLED; 2010 arm_kprobe(p); 2011 } 2012 out: 2013 mutex_unlock(&kprobe_mutex); 2014 return ret; 2015 } 2016 EXPORT_SYMBOL_GPL(enable_kprobe); 2017 2018 void __kprobes dump_kprobe(struct kprobe *kp) 2019 { 2020 printk(KERN_WARNING "Dumping kprobe:\n"); 2021 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n", 2022 kp->symbol_name, kp->addr, kp->offset); 2023 } 2024 2025 /* Module notifier call back, checking kprobes on the module */ 2026 static int __kprobes kprobes_module_callback(struct notifier_block *nb, 2027 unsigned long val, void *data) 2028 { 2029 struct module *mod = data; 2030 struct hlist_head *head; 2031 struct hlist_node *node; 2032 struct kprobe *p; 2033 unsigned int i; 2034 int checkcore = (val == MODULE_STATE_GOING); 2035 2036 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2037 return NOTIFY_DONE; 2038 2039 /* 2040 * When MODULE_STATE_GOING was notified, both of module .text and 2041 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2042 * notified, only .init.text section would be freed. We need to 2043 * disable kprobes which have been inserted in the sections. 2044 */ 2045 mutex_lock(&kprobe_mutex); 2046 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2047 head = &kprobe_table[i]; 2048 hlist_for_each_entry_rcu(p, node, head, hlist) 2049 if (within_module_init((unsigned long)p->addr, mod) || 2050 (checkcore && 2051 within_module_core((unsigned long)p->addr, mod))) { 2052 /* 2053 * The vaddr this probe is installed will soon 2054 * be vfreed buy not synced to disk. Hence, 2055 * disarming the breakpoint isn't needed. 2056 */ 2057 kill_kprobe(p); 2058 } 2059 } 2060 mutex_unlock(&kprobe_mutex); 2061 return NOTIFY_DONE; 2062 } 2063 2064 static struct notifier_block kprobe_module_nb = { 2065 .notifier_call = kprobes_module_callback, 2066 .priority = 0 2067 }; 2068 2069 static int __init init_kprobes(void) 2070 { 2071 int i, err = 0; 2072 unsigned long offset = 0, size = 0; 2073 char *modname, namebuf[128]; 2074 const char *symbol_name; 2075 void *addr; 2076 struct kprobe_blackpoint *kb; 2077 2078 /* FIXME allocate the probe table, currently defined statically */ 2079 /* initialize all list heads */ 2080 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2081 INIT_HLIST_HEAD(&kprobe_table[i]); 2082 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 2083 raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); 2084 } 2085 2086 /* 2087 * Lookup and populate the kprobe_blacklist. 2088 * 2089 * Unlike the kretprobe blacklist, we'll need to determine 2090 * the range of addresses that belong to the said functions, 2091 * since a kprobe need not necessarily be at the beginning 2092 * of a function. 2093 */ 2094 for (kb = kprobe_blacklist; kb->name != NULL; kb++) { 2095 kprobe_lookup_name(kb->name, addr); 2096 if (!addr) 2097 continue; 2098 2099 kb->start_addr = (unsigned long)addr; 2100 symbol_name = kallsyms_lookup(kb->start_addr, 2101 &size, &offset, &modname, namebuf); 2102 if (!symbol_name) 2103 kb->range = 0; 2104 else 2105 kb->range = size; 2106 } 2107 2108 if (kretprobe_blacklist_size) { 2109 /* lookup the function address from its name */ 2110 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2111 kprobe_lookup_name(kretprobe_blacklist[i].name, 2112 kretprobe_blacklist[i].addr); 2113 if (!kretprobe_blacklist[i].addr) 2114 printk("kretprobe: lookup failed: %s\n", 2115 kretprobe_blacklist[i].name); 2116 } 2117 } 2118 2119 #if defined(CONFIG_OPTPROBES) 2120 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2121 /* Init kprobe_optinsn_slots */ 2122 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2123 #endif 2124 /* By default, kprobes can be optimized */ 2125 kprobes_allow_optimization = true; 2126 #endif 2127 2128 /* By default, kprobes are armed */ 2129 kprobes_all_disarmed = false; 2130 2131 err = arch_init_kprobes(); 2132 if (!err) 2133 err = register_die_notifier(&kprobe_exceptions_nb); 2134 if (!err) 2135 err = register_module_notifier(&kprobe_module_nb); 2136 2137 kprobes_initialized = (err == 0); 2138 2139 if (!err) 2140 init_test_probes(); 2141 return err; 2142 } 2143 2144 #ifdef CONFIG_DEBUG_FS 2145 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p, 2146 const char *sym, int offset, char *modname, struct kprobe *pp) 2147 { 2148 char *kprobe_type; 2149 2150 if (p->pre_handler == pre_handler_kretprobe) 2151 kprobe_type = "r"; 2152 else if (p->pre_handler == setjmp_pre_handler) 2153 kprobe_type = "j"; 2154 else 2155 kprobe_type = "k"; 2156 2157 if (sym) 2158 seq_printf(pi, "%p %s %s+0x%x %s ", 2159 p->addr, kprobe_type, sym, offset, 2160 (modname ? modname : " ")); 2161 else 2162 seq_printf(pi, "%p %s %p ", 2163 p->addr, kprobe_type, p->addr); 2164 2165 if (!pp) 2166 pp = p; 2167 seq_printf(pi, "%s%s%s%s\n", 2168 (kprobe_gone(p) ? "[GONE]" : ""), 2169 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2170 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2171 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2172 } 2173 2174 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2175 { 2176 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2177 } 2178 2179 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2180 { 2181 (*pos)++; 2182 if (*pos >= KPROBE_TABLE_SIZE) 2183 return NULL; 2184 return pos; 2185 } 2186 2187 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v) 2188 { 2189 /* Nothing to do */ 2190 } 2191 2192 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v) 2193 { 2194 struct hlist_head *head; 2195 struct hlist_node *node; 2196 struct kprobe *p, *kp; 2197 const char *sym = NULL; 2198 unsigned int i = *(loff_t *) v; 2199 unsigned long offset = 0; 2200 char *modname, namebuf[128]; 2201 2202 head = &kprobe_table[i]; 2203 preempt_disable(); 2204 hlist_for_each_entry_rcu(p, node, head, hlist) { 2205 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2206 &offset, &modname, namebuf); 2207 if (kprobe_aggrprobe(p)) { 2208 list_for_each_entry_rcu(kp, &p->list, list) 2209 report_probe(pi, kp, sym, offset, modname, p); 2210 } else 2211 report_probe(pi, p, sym, offset, modname, NULL); 2212 } 2213 preempt_enable(); 2214 return 0; 2215 } 2216 2217 static const struct seq_operations kprobes_seq_ops = { 2218 .start = kprobe_seq_start, 2219 .next = kprobe_seq_next, 2220 .stop = kprobe_seq_stop, 2221 .show = show_kprobe_addr 2222 }; 2223 2224 static int __kprobes kprobes_open(struct inode *inode, struct file *filp) 2225 { 2226 return seq_open(filp, &kprobes_seq_ops); 2227 } 2228 2229 static const struct file_operations debugfs_kprobes_operations = { 2230 .open = kprobes_open, 2231 .read = seq_read, 2232 .llseek = seq_lseek, 2233 .release = seq_release, 2234 }; 2235 2236 static void __kprobes arm_all_kprobes(void) 2237 { 2238 struct hlist_head *head; 2239 struct hlist_node *node; 2240 struct kprobe *p; 2241 unsigned int i; 2242 2243 mutex_lock(&kprobe_mutex); 2244 2245 /* If kprobes are armed, just return */ 2246 if (!kprobes_all_disarmed) 2247 goto already_enabled; 2248 2249 /* Arming kprobes doesn't optimize kprobe itself */ 2250 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2251 head = &kprobe_table[i]; 2252 hlist_for_each_entry_rcu(p, node, head, hlist) 2253 if (!kprobe_disabled(p)) 2254 arm_kprobe(p); 2255 } 2256 2257 kprobes_all_disarmed = false; 2258 printk(KERN_INFO "Kprobes globally enabled\n"); 2259 2260 already_enabled: 2261 mutex_unlock(&kprobe_mutex); 2262 return; 2263 } 2264 2265 static void __kprobes disarm_all_kprobes(void) 2266 { 2267 struct hlist_head *head; 2268 struct hlist_node *node; 2269 struct kprobe *p; 2270 unsigned int i; 2271 2272 mutex_lock(&kprobe_mutex); 2273 2274 /* If kprobes are already disarmed, just return */ 2275 if (kprobes_all_disarmed) { 2276 mutex_unlock(&kprobe_mutex); 2277 return; 2278 } 2279 2280 kprobes_all_disarmed = true; 2281 printk(KERN_INFO "Kprobes globally disabled\n"); 2282 2283 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2284 head = &kprobe_table[i]; 2285 hlist_for_each_entry_rcu(p, node, head, hlist) { 2286 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) 2287 disarm_kprobe(p, false); 2288 } 2289 } 2290 mutex_unlock(&kprobe_mutex); 2291 2292 /* Wait for disarming all kprobes by optimizer */ 2293 wait_for_kprobe_optimizer(); 2294 } 2295 2296 /* 2297 * XXX: The debugfs bool file interface doesn't allow for callbacks 2298 * when the bool state is switched. We can reuse that facility when 2299 * available 2300 */ 2301 static ssize_t read_enabled_file_bool(struct file *file, 2302 char __user *user_buf, size_t count, loff_t *ppos) 2303 { 2304 char buf[3]; 2305 2306 if (!kprobes_all_disarmed) 2307 buf[0] = '1'; 2308 else 2309 buf[0] = '0'; 2310 buf[1] = '\n'; 2311 buf[2] = 0x00; 2312 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2313 } 2314 2315 static ssize_t write_enabled_file_bool(struct file *file, 2316 const char __user *user_buf, size_t count, loff_t *ppos) 2317 { 2318 char buf[32]; 2319 size_t buf_size; 2320 2321 buf_size = min(count, (sizeof(buf)-1)); 2322 if (copy_from_user(buf, user_buf, buf_size)) 2323 return -EFAULT; 2324 2325 switch (buf[0]) { 2326 case 'y': 2327 case 'Y': 2328 case '1': 2329 arm_all_kprobes(); 2330 break; 2331 case 'n': 2332 case 'N': 2333 case '0': 2334 disarm_all_kprobes(); 2335 break; 2336 } 2337 2338 return count; 2339 } 2340 2341 static const struct file_operations fops_kp = { 2342 .read = read_enabled_file_bool, 2343 .write = write_enabled_file_bool, 2344 .llseek = default_llseek, 2345 }; 2346 2347 static int __kprobes debugfs_kprobe_init(void) 2348 { 2349 struct dentry *dir, *file; 2350 unsigned int value = 1; 2351 2352 dir = debugfs_create_dir("kprobes", NULL); 2353 if (!dir) 2354 return -ENOMEM; 2355 2356 file = debugfs_create_file("list", 0444, dir, NULL, 2357 &debugfs_kprobes_operations); 2358 if (!file) { 2359 debugfs_remove(dir); 2360 return -ENOMEM; 2361 } 2362 2363 file = debugfs_create_file("enabled", 0600, dir, 2364 &value, &fops_kp); 2365 if (!file) { 2366 debugfs_remove(dir); 2367 return -ENOMEM; 2368 } 2369 2370 return 0; 2371 } 2372 2373 late_initcall(debugfs_kprobe_init); 2374 #endif /* CONFIG_DEBUG_FS */ 2375 2376 module_init(init_kprobes); 2377 2378 /* defined in arch/.../kernel/kprobes.c */ 2379 EXPORT_SYMBOL_GPL(jprobe_return); 2380