1 /* 2 * Kernel Probes (KProbes) 3 * kernel/kprobes.c 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * Copyright (C) IBM Corporation, 2002, 2004 20 * 21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 22 * Probes initial implementation (includes suggestions from 23 * Rusty Russell). 24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 25 * hlists and exceptions notifier as suggested by Andi Kleen. 26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 27 * interface to access function arguments. 28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 29 * exceptions notifier to be first on the priority list. 30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 32 * <prasanna@in.ibm.com> added function-return probes. 33 */ 34 #include <linux/kprobes.h> 35 #include <linux/hash.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/stddef.h> 39 #include <linux/export.h> 40 #include <linux/moduleloader.h> 41 #include <linux/kallsyms.h> 42 #include <linux/freezer.h> 43 #include <linux/seq_file.h> 44 #include <linux/debugfs.h> 45 #include <linux/sysctl.h> 46 #include <linux/kdebug.h> 47 #include <linux/memory.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 #include <linux/jump_label.h> 51 52 #include <asm-generic/sections.h> 53 #include <asm/cacheflush.h> 54 #include <asm/errno.h> 55 #include <asm/uaccess.h> 56 57 #define KPROBE_HASH_BITS 6 58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 59 60 61 /* 62 * Some oddball architectures like 64bit powerpc have function descriptors 63 * so this must be overridable. 64 */ 65 #ifndef kprobe_lookup_name 66 #define kprobe_lookup_name(name, addr) \ 67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name))) 68 #endif 69 70 static int kprobes_initialized; 71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 73 74 /* NOTE: change this value only with kprobe_mutex held */ 75 static bool kprobes_all_disarmed; 76 77 /* This protects kprobe_table and optimizing_list */ 78 static DEFINE_MUTEX(kprobe_mutex); 79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 80 static struct { 81 raw_spinlock_t lock ____cacheline_aligned_in_smp; 82 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 83 84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 85 { 86 return &(kretprobe_table_locks[hash].lock); 87 } 88 89 /* 90 * Normally, functions that we'd want to prohibit kprobes in, are marked 91 * __kprobes. But, there are cases where such functions already belong to 92 * a different section (__sched for preempt_schedule) 93 * 94 * For such cases, we now have a blacklist 95 */ 96 static struct kprobe_blackpoint kprobe_blacklist[] = { 97 {"preempt_schedule",}, 98 {"native_get_debugreg",}, 99 {"irq_entries_start",}, 100 {"common_interrupt",}, 101 {"mcount",}, /* mcount can be called from everywhere */ 102 {NULL} /* Terminator */ 103 }; 104 105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 106 /* 107 * kprobe->ainsn.insn points to the copy of the instruction to be 108 * single-stepped. x86_64, POWER4 and above have no-exec support and 109 * stepping on the instruction on a vmalloced/kmalloced/data page 110 * is a recipe for disaster 111 */ 112 struct kprobe_insn_page { 113 struct list_head list; 114 kprobe_opcode_t *insns; /* Page of instruction slots */ 115 int nused; 116 int ngarbage; 117 char slot_used[]; 118 }; 119 120 #define KPROBE_INSN_PAGE_SIZE(slots) \ 121 (offsetof(struct kprobe_insn_page, slot_used) + \ 122 (sizeof(char) * (slots))) 123 124 struct kprobe_insn_cache { 125 struct list_head pages; /* list of kprobe_insn_page */ 126 size_t insn_size; /* size of instruction slot */ 127 int nr_garbage; 128 }; 129 130 static int slots_per_page(struct kprobe_insn_cache *c) 131 { 132 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 133 } 134 135 enum kprobe_slot_state { 136 SLOT_CLEAN = 0, 137 SLOT_DIRTY = 1, 138 SLOT_USED = 2, 139 }; 140 141 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */ 142 static struct kprobe_insn_cache kprobe_insn_slots = { 143 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 144 .insn_size = MAX_INSN_SIZE, 145 .nr_garbage = 0, 146 }; 147 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c); 148 149 /** 150 * __get_insn_slot() - Find a slot on an executable page for an instruction. 151 * We allocate an executable page if there's no room on existing ones. 152 */ 153 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c) 154 { 155 struct kprobe_insn_page *kip; 156 157 retry: 158 list_for_each_entry(kip, &c->pages, list) { 159 if (kip->nused < slots_per_page(c)) { 160 int i; 161 for (i = 0; i < slots_per_page(c); i++) { 162 if (kip->slot_used[i] == SLOT_CLEAN) { 163 kip->slot_used[i] = SLOT_USED; 164 kip->nused++; 165 return kip->insns + (i * c->insn_size); 166 } 167 } 168 /* kip->nused is broken. Fix it. */ 169 kip->nused = slots_per_page(c); 170 WARN_ON(1); 171 } 172 } 173 174 /* If there are any garbage slots, collect it and try again. */ 175 if (c->nr_garbage && collect_garbage_slots(c) == 0) 176 goto retry; 177 178 /* All out of space. Need to allocate a new page. */ 179 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 180 if (!kip) 181 return NULL; 182 183 /* 184 * Use module_alloc so this page is within +/- 2GB of where the 185 * kernel image and loaded module images reside. This is required 186 * so x86_64 can correctly handle the %rip-relative fixups. 187 */ 188 kip->insns = module_alloc(PAGE_SIZE); 189 if (!kip->insns) { 190 kfree(kip); 191 return NULL; 192 } 193 INIT_LIST_HEAD(&kip->list); 194 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 195 kip->slot_used[0] = SLOT_USED; 196 kip->nused = 1; 197 kip->ngarbage = 0; 198 list_add(&kip->list, &c->pages); 199 return kip->insns; 200 } 201 202 203 kprobe_opcode_t __kprobes *get_insn_slot(void) 204 { 205 kprobe_opcode_t *ret = NULL; 206 207 mutex_lock(&kprobe_insn_mutex); 208 ret = __get_insn_slot(&kprobe_insn_slots); 209 mutex_unlock(&kprobe_insn_mutex); 210 211 return ret; 212 } 213 214 /* Return 1 if all garbages are collected, otherwise 0. */ 215 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx) 216 { 217 kip->slot_used[idx] = SLOT_CLEAN; 218 kip->nused--; 219 if (kip->nused == 0) { 220 /* 221 * Page is no longer in use. Free it unless 222 * it's the last one. We keep the last one 223 * so as not to have to set it up again the 224 * next time somebody inserts a probe. 225 */ 226 if (!list_is_singular(&kip->list)) { 227 list_del(&kip->list); 228 module_free(NULL, kip->insns); 229 kfree(kip); 230 } 231 return 1; 232 } 233 return 0; 234 } 235 236 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c) 237 { 238 struct kprobe_insn_page *kip, *next; 239 240 /* Ensure no-one is interrupted on the garbages */ 241 synchronize_sched(); 242 243 list_for_each_entry_safe(kip, next, &c->pages, list) { 244 int i; 245 if (kip->ngarbage == 0) 246 continue; 247 kip->ngarbage = 0; /* we will collect all garbages */ 248 for (i = 0; i < slots_per_page(c); i++) { 249 if (kip->slot_used[i] == SLOT_DIRTY && 250 collect_one_slot(kip, i)) 251 break; 252 } 253 } 254 c->nr_garbage = 0; 255 return 0; 256 } 257 258 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c, 259 kprobe_opcode_t *slot, int dirty) 260 { 261 struct kprobe_insn_page *kip; 262 263 list_for_each_entry(kip, &c->pages, list) { 264 long idx = ((long)slot - (long)kip->insns) / 265 (c->insn_size * sizeof(kprobe_opcode_t)); 266 if (idx >= 0 && idx < slots_per_page(c)) { 267 WARN_ON(kip->slot_used[idx] != SLOT_USED); 268 if (dirty) { 269 kip->slot_used[idx] = SLOT_DIRTY; 270 kip->ngarbage++; 271 if (++c->nr_garbage > slots_per_page(c)) 272 collect_garbage_slots(c); 273 } else 274 collect_one_slot(kip, idx); 275 return; 276 } 277 } 278 /* Could not free this slot. */ 279 WARN_ON(1); 280 } 281 282 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty) 283 { 284 mutex_lock(&kprobe_insn_mutex); 285 __free_insn_slot(&kprobe_insn_slots, slot, dirty); 286 mutex_unlock(&kprobe_insn_mutex); 287 } 288 #ifdef CONFIG_OPTPROBES 289 /* For optimized_kprobe buffer */ 290 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */ 291 static struct kprobe_insn_cache kprobe_optinsn_slots = { 292 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 293 /* .insn_size is initialized later */ 294 .nr_garbage = 0, 295 }; 296 /* Get a slot for optimized_kprobe buffer */ 297 kprobe_opcode_t __kprobes *get_optinsn_slot(void) 298 { 299 kprobe_opcode_t *ret = NULL; 300 301 mutex_lock(&kprobe_optinsn_mutex); 302 ret = __get_insn_slot(&kprobe_optinsn_slots); 303 mutex_unlock(&kprobe_optinsn_mutex); 304 305 return ret; 306 } 307 308 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty) 309 { 310 mutex_lock(&kprobe_optinsn_mutex); 311 __free_insn_slot(&kprobe_optinsn_slots, slot, dirty); 312 mutex_unlock(&kprobe_optinsn_mutex); 313 } 314 #endif 315 #endif 316 317 /* We have preemption disabled.. so it is safe to use __ versions */ 318 static inline void set_kprobe_instance(struct kprobe *kp) 319 { 320 __this_cpu_write(kprobe_instance, kp); 321 } 322 323 static inline void reset_kprobe_instance(void) 324 { 325 __this_cpu_write(kprobe_instance, NULL); 326 } 327 328 /* 329 * This routine is called either: 330 * - under the kprobe_mutex - during kprobe_[un]register() 331 * OR 332 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 333 */ 334 struct kprobe __kprobes *get_kprobe(void *addr) 335 { 336 struct hlist_head *head; 337 struct hlist_node *node; 338 struct kprobe *p; 339 340 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 341 hlist_for_each_entry_rcu(p, node, head, hlist) { 342 if (p->addr == addr) 343 return p; 344 } 345 346 return NULL; 347 } 348 349 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 350 351 /* Return true if the kprobe is an aggregator */ 352 static inline int kprobe_aggrprobe(struct kprobe *p) 353 { 354 return p->pre_handler == aggr_pre_handler; 355 } 356 357 /* Return true(!0) if the kprobe is unused */ 358 static inline int kprobe_unused(struct kprobe *p) 359 { 360 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 361 list_empty(&p->list); 362 } 363 364 /* 365 * Keep all fields in the kprobe consistent 366 */ 367 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 368 { 369 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 370 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 371 } 372 373 #ifdef CONFIG_OPTPROBES 374 /* NOTE: change this value only with kprobe_mutex held */ 375 static bool kprobes_allow_optimization; 376 377 /* 378 * Call all pre_handler on the list, but ignores its return value. 379 * This must be called from arch-dep optimized caller. 380 */ 381 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 382 { 383 struct kprobe *kp; 384 385 list_for_each_entry_rcu(kp, &p->list, list) { 386 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 387 set_kprobe_instance(kp); 388 kp->pre_handler(kp, regs); 389 } 390 reset_kprobe_instance(); 391 } 392 } 393 394 /* Free optimized instructions and optimized_kprobe */ 395 static __kprobes void free_aggr_kprobe(struct kprobe *p) 396 { 397 struct optimized_kprobe *op; 398 399 op = container_of(p, struct optimized_kprobe, kp); 400 arch_remove_optimized_kprobe(op); 401 arch_remove_kprobe(p); 402 kfree(op); 403 } 404 405 /* Return true(!0) if the kprobe is ready for optimization. */ 406 static inline int kprobe_optready(struct kprobe *p) 407 { 408 struct optimized_kprobe *op; 409 410 if (kprobe_aggrprobe(p)) { 411 op = container_of(p, struct optimized_kprobe, kp); 412 return arch_prepared_optinsn(&op->optinsn); 413 } 414 415 return 0; 416 } 417 418 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 419 static inline int kprobe_disarmed(struct kprobe *p) 420 { 421 struct optimized_kprobe *op; 422 423 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 424 if (!kprobe_aggrprobe(p)) 425 return kprobe_disabled(p); 426 427 op = container_of(p, struct optimized_kprobe, kp); 428 429 return kprobe_disabled(p) && list_empty(&op->list); 430 } 431 432 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 433 static int __kprobes kprobe_queued(struct kprobe *p) 434 { 435 struct optimized_kprobe *op; 436 437 if (kprobe_aggrprobe(p)) { 438 op = container_of(p, struct optimized_kprobe, kp); 439 if (!list_empty(&op->list)) 440 return 1; 441 } 442 return 0; 443 } 444 445 /* 446 * Return an optimized kprobe whose optimizing code replaces 447 * instructions including addr (exclude breakpoint). 448 */ 449 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr) 450 { 451 int i; 452 struct kprobe *p = NULL; 453 struct optimized_kprobe *op; 454 455 /* Don't check i == 0, since that is a breakpoint case. */ 456 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 457 p = get_kprobe((void *)(addr - i)); 458 459 if (p && kprobe_optready(p)) { 460 op = container_of(p, struct optimized_kprobe, kp); 461 if (arch_within_optimized_kprobe(op, addr)) 462 return p; 463 } 464 465 return NULL; 466 } 467 468 /* Optimization staging list, protected by kprobe_mutex */ 469 static LIST_HEAD(optimizing_list); 470 static LIST_HEAD(unoptimizing_list); 471 472 static void kprobe_optimizer(struct work_struct *work); 473 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 474 static DECLARE_COMPLETION(optimizer_comp); 475 #define OPTIMIZE_DELAY 5 476 477 /* 478 * Optimize (replace a breakpoint with a jump) kprobes listed on 479 * optimizing_list. 480 */ 481 static __kprobes void do_optimize_kprobes(void) 482 { 483 /* Optimization never be done when disarmed */ 484 if (kprobes_all_disarmed || !kprobes_allow_optimization || 485 list_empty(&optimizing_list)) 486 return; 487 488 /* 489 * The optimization/unoptimization refers online_cpus via 490 * stop_machine() and cpu-hotplug modifies online_cpus. 491 * And same time, text_mutex will be held in cpu-hotplug and here. 492 * This combination can cause a deadlock (cpu-hotplug try to lock 493 * text_mutex but stop_machine can not be done because online_cpus 494 * has been changed) 495 * To avoid this deadlock, we need to call get_online_cpus() 496 * for preventing cpu-hotplug outside of text_mutex locking. 497 */ 498 get_online_cpus(); 499 mutex_lock(&text_mutex); 500 arch_optimize_kprobes(&optimizing_list); 501 mutex_unlock(&text_mutex); 502 put_online_cpus(); 503 } 504 505 /* 506 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 507 * if need) kprobes listed on unoptimizing_list. 508 */ 509 static __kprobes void do_unoptimize_kprobes(struct list_head *free_list) 510 { 511 struct optimized_kprobe *op, *tmp; 512 513 /* Unoptimization must be done anytime */ 514 if (list_empty(&unoptimizing_list)) 515 return; 516 517 /* Ditto to do_optimize_kprobes */ 518 get_online_cpus(); 519 mutex_lock(&text_mutex); 520 arch_unoptimize_kprobes(&unoptimizing_list, free_list); 521 /* Loop free_list for disarming */ 522 list_for_each_entry_safe(op, tmp, free_list, list) { 523 /* Disarm probes if marked disabled */ 524 if (kprobe_disabled(&op->kp)) 525 arch_disarm_kprobe(&op->kp); 526 if (kprobe_unused(&op->kp)) { 527 /* 528 * Remove unused probes from hash list. After waiting 529 * for synchronization, these probes are reclaimed. 530 * (reclaiming is done by do_free_cleaned_kprobes.) 531 */ 532 hlist_del_rcu(&op->kp.hlist); 533 } else 534 list_del_init(&op->list); 535 } 536 mutex_unlock(&text_mutex); 537 put_online_cpus(); 538 } 539 540 /* Reclaim all kprobes on the free_list */ 541 static __kprobes void do_free_cleaned_kprobes(struct list_head *free_list) 542 { 543 struct optimized_kprobe *op, *tmp; 544 545 list_for_each_entry_safe(op, tmp, free_list, list) { 546 BUG_ON(!kprobe_unused(&op->kp)); 547 list_del_init(&op->list); 548 free_aggr_kprobe(&op->kp); 549 } 550 } 551 552 /* Start optimizer after OPTIMIZE_DELAY passed */ 553 static __kprobes void kick_kprobe_optimizer(void) 554 { 555 if (!delayed_work_pending(&optimizing_work)) 556 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 557 } 558 559 /* Kprobe jump optimizer */ 560 static __kprobes void kprobe_optimizer(struct work_struct *work) 561 { 562 LIST_HEAD(free_list); 563 564 /* Lock modules while optimizing kprobes */ 565 mutex_lock(&module_mutex); 566 mutex_lock(&kprobe_mutex); 567 568 /* 569 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 570 * kprobes before waiting for quiesence period. 571 */ 572 do_unoptimize_kprobes(&free_list); 573 574 /* 575 * Step 2: Wait for quiesence period to ensure all running interrupts 576 * are done. Because optprobe may modify multiple instructions 577 * there is a chance that Nth instruction is interrupted. In that 578 * case, running interrupt can return to 2nd-Nth byte of jump 579 * instruction. This wait is for avoiding it. 580 */ 581 synchronize_sched(); 582 583 /* Step 3: Optimize kprobes after quiesence period */ 584 do_optimize_kprobes(); 585 586 /* Step 4: Free cleaned kprobes after quiesence period */ 587 do_free_cleaned_kprobes(&free_list); 588 589 mutex_unlock(&kprobe_mutex); 590 mutex_unlock(&module_mutex); 591 592 /* Step 5: Kick optimizer again if needed */ 593 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 594 kick_kprobe_optimizer(); 595 else 596 /* Wake up all waiters */ 597 complete_all(&optimizer_comp); 598 } 599 600 /* Wait for completing optimization and unoptimization */ 601 static __kprobes void wait_for_kprobe_optimizer(void) 602 { 603 if (delayed_work_pending(&optimizing_work)) 604 wait_for_completion(&optimizer_comp); 605 } 606 607 /* Optimize kprobe if p is ready to be optimized */ 608 static __kprobes void optimize_kprobe(struct kprobe *p) 609 { 610 struct optimized_kprobe *op; 611 612 /* Check if the kprobe is disabled or not ready for optimization. */ 613 if (!kprobe_optready(p) || !kprobes_allow_optimization || 614 (kprobe_disabled(p) || kprobes_all_disarmed)) 615 return; 616 617 /* Both of break_handler and post_handler are not supported. */ 618 if (p->break_handler || p->post_handler) 619 return; 620 621 op = container_of(p, struct optimized_kprobe, kp); 622 623 /* Check there is no other kprobes at the optimized instructions */ 624 if (arch_check_optimized_kprobe(op) < 0) 625 return; 626 627 /* Check if it is already optimized. */ 628 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) 629 return; 630 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 631 632 if (!list_empty(&op->list)) 633 /* This is under unoptimizing. Just dequeue the probe */ 634 list_del_init(&op->list); 635 else { 636 list_add(&op->list, &optimizing_list); 637 kick_kprobe_optimizer(); 638 } 639 } 640 641 /* Short cut to direct unoptimizing */ 642 static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op) 643 { 644 get_online_cpus(); 645 arch_unoptimize_kprobe(op); 646 put_online_cpus(); 647 if (kprobe_disabled(&op->kp)) 648 arch_disarm_kprobe(&op->kp); 649 } 650 651 /* Unoptimize a kprobe if p is optimized */ 652 static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force) 653 { 654 struct optimized_kprobe *op; 655 656 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 657 return; /* This is not an optprobe nor optimized */ 658 659 op = container_of(p, struct optimized_kprobe, kp); 660 if (!kprobe_optimized(p)) { 661 /* Unoptimized or unoptimizing case */ 662 if (force && !list_empty(&op->list)) { 663 /* 664 * Only if this is unoptimizing kprobe and forced, 665 * forcibly unoptimize it. (No need to unoptimize 666 * unoptimized kprobe again :) 667 */ 668 list_del_init(&op->list); 669 force_unoptimize_kprobe(op); 670 } 671 return; 672 } 673 674 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 675 if (!list_empty(&op->list)) { 676 /* Dequeue from the optimization queue */ 677 list_del_init(&op->list); 678 return; 679 } 680 /* Optimized kprobe case */ 681 if (force) 682 /* Forcibly update the code: this is a special case */ 683 force_unoptimize_kprobe(op); 684 else { 685 list_add(&op->list, &unoptimizing_list); 686 kick_kprobe_optimizer(); 687 } 688 } 689 690 /* Cancel unoptimizing for reusing */ 691 static void reuse_unused_kprobe(struct kprobe *ap) 692 { 693 struct optimized_kprobe *op; 694 695 BUG_ON(!kprobe_unused(ap)); 696 /* 697 * Unused kprobe MUST be on the way of delayed unoptimizing (means 698 * there is still a relative jump) and disabled. 699 */ 700 op = container_of(ap, struct optimized_kprobe, kp); 701 if (unlikely(list_empty(&op->list))) 702 printk(KERN_WARNING "Warning: found a stray unused " 703 "aggrprobe@%p\n", ap->addr); 704 /* Enable the probe again */ 705 ap->flags &= ~KPROBE_FLAG_DISABLED; 706 /* Optimize it again (remove from op->list) */ 707 BUG_ON(!kprobe_optready(ap)); 708 optimize_kprobe(ap); 709 } 710 711 /* Remove optimized instructions */ 712 static void __kprobes kill_optimized_kprobe(struct kprobe *p) 713 { 714 struct optimized_kprobe *op; 715 716 op = container_of(p, struct optimized_kprobe, kp); 717 if (!list_empty(&op->list)) 718 /* Dequeue from the (un)optimization queue */ 719 list_del_init(&op->list); 720 721 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 722 /* Don't touch the code, because it is already freed. */ 723 arch_remove_optimized_kprobe(op); 724 } 725 726 /* Try to prepare optimized instructions */ 727 static __kprobes void prepare_optimized_kprobe(struct kprobe *p) 728 { 729 struct optimized_kprobe *op; 730 731 op = container_of(p, struct optimized_kprobe, kp); 732 arch_prepare_optimized_kprobe(op); 733 } 734 735 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 736 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 737 { 738 struct optimized_kprobe *op; 739 740 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 741 if (!op) 742 return NULL; 743 744 INIT_LIST_HEAD(&op->list); 745 op->kp.addr = p->addr; 746 arch_prepare_optimized_kprobe(op); 747 748 return &op->kp; 749 } 750 751 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 752 753 /* 754 * Prepare an optimized_kprobe and optimize it 755 * NOTE: p must be a normal registered kprobe 756 */ 757 static __kprobes void try_to_optimize_kprobe(struct kprobe *p) 758 { 759 struct kprobe *ap; 760 struct optimized_kprobe *op; 761 762 ap = alloc_aggr_kprobe(p); 763 if (!ap) 764 return; 765 766 op = container_of(ap, struct optimized_kprobe, kp); 767 if (!arch_prepared_optinsn(&op->optinsn)) { 768 /* If failed to setup optimizing, fallback to kprobe */ 769 arch_remove_optimized_kprobe(op); 770 kfree(op); 771 return; 772 } 773 774 init_aggr_kprobe(ap, p); 775 optimize_kprobe(ap); 776 } 777 778 #ifdef CONFIG_SYSCTL 779 /* This should be called with kprobe_mutex locked */ 780 static void __kprobes optimize_all_kprobes(void) 781 { 782 struct hlist_head *head; 783 struct hlist_node *node; 784 struct kprobe *p; 785 unsigned int i; 786 787 /* If optimization is already allowed, just return */ 788 if (kprobes_allow_optimization) 789 return; 790 791 kprobes_allow_optimization = true; 792 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 793 head = &kprobe_table[i]; 794 hlist_for_each_entry_rcu(p, node, head, hlist) 795 if (!kprobe_disabled(p)) 796 optimize_kprobe(p); 797 } 798 printk(KERN_INFO "Kprobes globally optimized\n"); 799 } 800 801 /* This should be called with kprobe_mutex locked */ 802 static void __kprobes unoptimize_all_kprobes(void) 803 { 804 struct hlist_head *head; 805 struct hlist_node *node; 806 struct kprobe *p; 807 unsigned int i; 808 809 /* If optimization is already prohibited, just return */ 810 if (!kprobes_allow_optimization) 811 return; 812 813 kprobes_allow_optimization = false; 814 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 815 head = &kprobe_table[i]; 816 hlist_for_each_entry_rcu(p, node, head, hlist) { 817 if (!kprobe_disabled(p)) 818 unoptimize_kprobe(p, false); 819 } 820 } 821 /* Wait for unoptimizing completion */ 822 wait_for_kprobe_optimizer(); 823 printk(KERN_INFO "Kprobes globally unoptimized\n"); 824 } 825 826 int sysctl_kprobes_optimization; 827 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 828 void __user *buffer, size_t *length, 829 loff_t *ppos) 830 { 831 int ret; 832 833 mutex_lock(&kprobe_mutex); 834 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 835 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 836 837 if (sysctl_kprobes_optimization) 838 optimize_all_kprobes(); 839 else 840 unoptimize_all_kprobes(); 841 mutex_unlock(&kprobe_mutex); 842 843 return ret; 844 } 845 #endif /* CONFIG_SYSCTL */ 846 847 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 848 static void __kprobes __arm_kprobe(struct kprobe *p) 849 { 850 struct kprobe *_p; 851 852 /* Check collision with other optimized kprobes */ 853 _p = get_optimized_kprobe((unsigned long)p->addr); 854 if (unlikely(_p)) 855 /* Fallback to unoptimized kprobe */ 856 unoptimize_kprobe(_p, true); 857 858 arch_arm_kprobe(p); 859 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 860 } 861 862 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 863 static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt) 864 { 865 struct kprobe *_p; 866 867 unoptimize_kprobe(p, false); /* Try to unoptimize */ 868 869 if (!kprobe_queued(p)) { 870 arch_disarm_kprobe(p); 871 /* If another kprobe was blocked, optimize it. */ 872 _p = get_optimized_kprobe((unsigned long)p->addr); 873 if (unlikely(_p) && reopt) 874 optimize_kprobe(_p); 875 } 876 /* TODO: reoptimize others after unoptimized this probe */ 877 } 878 879 #else /* !CONFIG_OPTPROBES */ 880 881 #define optimize_kprobe(p) do {} while (0) 882 #define unoptimize_kprobe(p, f) do {} while (0) 883 #define kill_optimized_kprobe(p) do {} while (0) 884 #define prepare_optimized_kprobe(p) do {} while (0) 885 #define try_to_optimize_kprobe(p) do {} while (0) 886 #define __arm_kprobe(p) arch_arm_kprobe(p) 887 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 888 #define kprobe_disarmed(p) kprobe_disabled(p) 889 #define wait_for_kprobe_optimizer() do {} while (0) 890 891 /* There should be no unused kprobes can be reused without optimization */ 892 static void reuse_unused_kprobe(struct kprobe *ap) 893 { 894 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 895 BUG_ON(kprobe_unused(ap)); 896 } 897 898 static __kprobes void free_aggr_kprobe(struct kprobe *p) 899 { 900 arch_remove_kprobe(p); 901 kfree(p); 902 } 903 904 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 905 { 906 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 907 } 908 #endif /* CONFIG_OPTPROBES */ 909 910 /* Arm a kprobe with text_mutex */ 911 static void __kprobes arm_kprobe(struct kprobe *kp) 912 { 913 /* 914 * Here, since __arm_kprobe() doesn't use stop_machine(), 915 * this doesn't cause deadlock on text_mutex. So, we don't 916 * need get_online_cpus(). 917 */ 918 mutex_lock(&text_mutex); 919 __arm_kprobe(kp); 920 mutex_unlock(&text_mutex); 921 } 922 923 /* Disarm a kprobe with text_mutex */ 924 static void __kprobes disarm_kprobe(struct kprobe *kp) 925 { 926 /* Ditto */ 927 mutex_lock(&text_mutex); 928 __disarm_kprobe(kp, true); 929 mutex_unlock(&text_mutex); 930 } 931 932 /* 933 * Aggregate handlers for multiple kprobes support - these handlers 934 * take care of invoking the individual kprobe handlers on p->list 935 */ 936 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 937 { 938 struct kprobe *kp; 939 940 list_for_each_entry_rcu(kp, &p->list, list) { 941 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 942 set_kprobe_instance(kp); 943 if (kp->pre_handler(kp, regs)) 944 return 1; 945 } 946 reset_kprobe_instance(); 947 } 948 return 0; 949 } 950 951 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 952 unsigned long flags) 953 { 954 struct kprobe *kp; 955 956 list_for_each_entry_rcu(kp, &p->list, list) { 957 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 958 set_kprobe_instance(kp); 959 kp->post_handler(kp, regs, flags); 960 reset_kprobe_instance(); 961 } 962 } 963 } 964 965 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 966 int trapnr) 967 { 968 struct kprobe *cur = __this_cpu_read(kprobe_instance); 969 970 /* 971 * if we faulted "during" the execution of a user specified 972 * probe handler, invoke just that probe's fault handler 973 */ 974 if (cur && cur->fault_handler) { 975 if (cur->fault_handler(cur, regs, trapnr)) 976 return 1; 977 } 978 return 0; 979 } 980 981 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs) 982 { 983 struct kprobe *cur = __this_cpu_read(kprobe_instance); 984 int ret = 0; 985 986 if (cur && cur->break_handler) { 987 if (cur->break_handler(cur, regs)) 988 ret = 1; 989 } 990 reset_kprobe_instance(); 991 return ret; 992 } 993 994 /* Walks the list and increments nmissed count for multiprobe case */ 995 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p) 996 { 997 struct kprobe *kp; 998 if (!kprobe_aggrprobe(p)) { 999 p->nmissed++; 1000 } else { 1001 list_for_each_entry_rcu(kp, &p->list, list) 1002 kp->nmissed++; 1003 } 1004 return; 1005 } 1006 1007 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri, 1008 struct hlist_head *head) 1009 { 1010 struct kretprobe *rp = ri->rp; 1011 1012 /* remove rp inst off the rprobe_inst_table */ 1013 hlist_del(&ri->hlist); 1014 INIT_HLIST_NODE(&ri->hlist); 1015 if (likely(rp)) { 1016 raw_spin_lock(&rp->lock); 1017 hlist_add_head(&ri->hlist, &rp->free_instances); 1018 raw_spin_unlock(&rp->lock); 1019 } else 1020 /* Unregistering */ 1021 hlist_add_head(&ri->hlist, head); 1022 } 1023 1024 void __kprobes kretprobe_hash_lock(struct task_struct *tsk, 1025 struct hlist_head **head, unsigned long *flags) 1026 __acquires(hlist_lock) 1027 { 1028 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1029 raw_spinlock_t *hlist_lock; 1030 1031 *head = &kretprobe_inst_table[hash]; 1032 hlist_lock = kretprobe_table_lock_ptr(hash); 1033 raw_spin_lock_irqsave(hlist_lock, *flags); 1034 } 1035 1036 static void __kprobes kretprobe_table_lock(unsigned long hash, 1037 unsigned long *flags) 1038 __acquires(hlist_lock) 1039 { 1040 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1041 raw_spin_lock_irqsave(hlist_lock, *flags); 1042 } 1043 1044 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk, 1045 unsigned long *flags) 1046 __releases(hlist_lock) 1047 { 1048 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1049 raw_spinlock_t *hlist_lock; 1050 1051 hlist_lock = kretprobe_table_lock_ptr(hash); 1052 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1053 } 1054 1055 static void __kprobes kretprobe_table_unlock(unsigned long hash, 1056 unsigned long *flags) 1057 __releases(hlist_lock) 1058 { 1059 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1060 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1061 } 1062 1063 /* 1064 * This function is called from finish_task_switch when task tk becomes dead, 1065 * so that we can recycle any function-return probe instances associated 1066 * with this task. These left over instances represent probed functions 1067 * that have been called but will never return. 1068 */ 1069 void __kprobes kprobe_flush_task(struct task_struct *tk) 1070 { 1071 struct kretprobe_instance *ri; 1072 struct hlist_head *head, empty_rp; 1073 struct hlist_node *node, *tmp; 1074 unsigned long hash, flags = 0; 1075 1076 if (unlikely(!kprobes_initialized)) 1077 /* Early boot. kretprobe_table_locks not yet initialized. */ 1078 return; 1079 1080 INIT_HLIST_HEAD(&empty_rp); 1081 hash = hash_ptr(tk, KPROBE_HASH_BITS); 1082 head = &kretprobe_inst_table[hash]; 1083 kretprobe_table_lock(hash, &flags); 1084 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 1085 if (ri->task == tk) 1086 recycle_rp_inst(ri, &empty_rp); 1087 } 1088 kretprobe_table_unlock(hash, &flags); 1089 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { 1090 hlist_del(&ri->hlist); 1091 kfree(ri); 1092 } 1093 } 1094 1095 static inline void free_rp_inst(struct kretprobe *rp) 1096 { 1097 struct kretprobe_instance *ri; 1098 struct hlist_node *pos, *next; 1099 1100 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) { 1101 hlist_del(&ri->hlist); 1102 kfree(ri); 1103 } 1104 } 1105 1106 static void __kprobes cleanup_rp_inst(struct kretprobe *rp) 1107 { 1108 unsigned long flags, hash; 1109 struct kretprobe_instance *ri; 1110 struct hlist_node *pos, *next; 1111 struct hlist_head *head; 1112 1113 /* No race here */ 1114 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 1115 kretprobe_table_lock(hash, &flags); 1116 head = &kretprobe_inst_table[hash]; 1117 hlist_for_each_entry_safe(ri, pos, next, head, hlist) { 1118 if (ri->rp == rp) 1119 ri->rp = NULL; 1120 } 1121 kretprobe_table_unlock(hash, &flags); 1122 } 1123 free_rp_inst(rp); 1124 } 1125 1126 /* 1127 * Add the new probe to ap->list. Fail if this is the 1128 * second jprobe at the address - two jprobes can't coexist 1129 */ 1130 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1131 { 1132 BUG_ON(kprobe_gone(ap) || kprobe_gone(p)); 1133 1134 if (p->break_handler || p->post_handler) 1135 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1136 1137 if (p->break_handler) { 1138 if (ap->break_handler) 1139 return -EEXIST; 1140 list_add_tail_rcu(&p->list, &ap->list); 1141 ap->break_handler = aggr_break_handler; 1142 } else 1143 list_add_rcu(&p->list, &ap->list); 1144 if (p->post_handler && !ap->post_handler) 1145 ap->post_handler = aggr_post_handler; 1146 1147 if (kprobe_disabled(ap) && !kprobe_disabled(p)) { 1148 ap->flags &= ~KPROBE_FLAG_DISABLED; 1149 if (!kprobes_all_disarmed) 1150 /* Arm the breakpoint again. */ 1151 __arm_kprobe(ap); 1152 } 1153 return 0; 1154 } 1155 1156 /* 1157 * Fill in the required fields of the "manager kprobe". Replace the 1158 * earlier kprobe in the hlist with the manager kprobe 1159 */ 1160 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1161 { 1162 /* Copy p's insn slot to ap */ 1163 copy_kprobe(p, ap); 1164 flush_insn_slot(ap); 1165 ap->addr = p->addr; 1166 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1167 ap->pre_handler = aggr_pre_handler; 1168 ap->fault_handler = aggr_fault_handler; 1169 /* We don't care the kprobe which has gone. */ 1170 if (p->post_handler && !kprobe_gone(p)) 1171 ap->post_handler = aggr_post_handler; 1172 if (p->break_handler && !kprobe_gone(p)) 1173 ap->break_handler = aggr_break_handler; 1174 1175 INIT_LIST_HEAD(&ap->list); 1176 INIT_HLIST_NODE(&ap->hlist); 1177 1178 list_add_rcu(&p->list, &ap->list); 1179 hlist_replace_rcu(&p->hlist, &ap->hlist); 1180 } 1181 1182 /* 1183 * This is the second or subsequent kprobe at the address - handle 1184 * the intricacies 1185 */ 1186 static int __kprobes register_aggr_kprobe(struct kprobe *orig_p, 1187 struct kprobe *p) 1188 { 1189 int ret = 0; 1190 struct kprobe *ap = orig_p; 1191 1192 if (!kprobe_aggrprobe(orig_p)) { 1193 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1194 ap = alloc_aggr_kprobe(orig_p); 1195 if (!ap) 1196 return -ENOMEM; 1197 init_aggr_kprobe(ap, orig_p); 1198 } else if (kprobe_unused(ap)) 1199 /* This probe is going to die. Rescue it */ 1200 reuse_unused_kprobe(ap); 1201 1202 if (kprobe_gone(ap)) { 1203 /* 1204 * Attempting to insert new probe at the same location that 1205 * had a probe in the module vaddr area which already 1206 * freed. So, the instruction slot has already been 1207 * released. We need a new slot for the new probe. 1208 */ 1209 ret = arch_prepare_kprobe(ap); 1210 if (ret) 1211 /* 1212 * Even if fail to allocate new slot, don't need to 1213 * free aggr_probe. It will be used next time, or 1214 * freed by unregister_kprobe. 1215 */ 1216 return ret; 1217 1218 /* Prepare optimized instructions if possible. */ 1219 prepare_optimized_kprobe(ap); 1220 1221 /* 1222 * Clear gone flag to prevent allocating new slot again, and 1223 * set disabled flag because it is not armed yet. 1224 */ 1225 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1226 | KPROBE_FLAG_DISABLED; 1227 } 1228 1229 /* Copy ap's insn slot to p */ 1230 copy_kprobe(ap, p); 1231 return add_new_kprobe(ap, p); 1232 } 1233 1234 static int __kprobes in_kprobes_functions(unsigned long addr) 1235 { 1236 struct kprobe_blackpoint *kb; 1237 1238 if (addr >= (unsigned long)__kprobes_text_start && 1239 addr < (unsigned long)__kprobes_text_end) 1240 return -EINVAL; 1241 /* 1242 * If there exists a kprobe_blacklist, verify and 1243 * fail any probe registration in the prohibited area 1244 */ 1245 for (kb = kprobe_blacklist; kb->name != NULL; kb++) { 1246 if (kb->start_addr) { 1247 if (addr >= kb->start_addr && 1248 addr < (kb->start_addr + kb->range)) 1249 return -EINVAL; 1250 } 1251 } 1252 return 0; 1253 } 1254 1255 /* 1256 * If we have a symbol_name argument, look it up and add the offset field 1257 * to it. This way, we can specify a relative address to a symbol. 1258 * This returns encoded errors if it fails to look up symbol or invalid 1259 * combination of parameters. 1260 */ 1261 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p) 1262 { 1263 kprobe_opcode_t *addr = p->addr; 1264 1265 if ((p->symbol_name && p->addr) || 1266 (!p->symbol_name && !p->addr)) 1267 goto invalid; 1268 1269 if (p->symbol_name) { 1270 kprobe_lookup_name(p->symbol_name, addr); 1271 if (!addr) 1272 return ERR_PTR(-ENOENT); 1273 } 1274 1275 addr = (kprobe_opcode_t *)(((char *)addr) + p->offset); 1276 if (addr) 1277 return addr; 1278 1279 invalid: 1280 return ERR_PTR(-EINVAL); 1281 } 1282 1283 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1284 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p) 1285 { 1286 struct kprobe *ap, *list_p; 1287 1288 ap = get_kprobe(p->addr); 1289 if (unlikely(!ap)) 1290 return NULL; 1291 1292 if (p != ap) { 1293 list_for_each_entry_rcu(list_p, &ap->list, list) 1294 if (list_p == p) 1295 /* kprobe p is a valid probe */ 1296 goto valid; 1297 return NULL; 1298 } 1299 valid: 1300 return ap; 1301 } 1302 1303 /* Return error if the kprobe is being re-registered */ 1304 static inline int check_kprobe_rereg(struct kprobe *p) 1305 { 1306 int ret = 0; 1307 1308 mutex_lock(&kprobe_mutex); 1309 if (__get_valid_kprobe(p)) 1310 ret = -EINVAL; 1311 mutex_unlock(&kprobe_mutex); 1312 1313 return ret; 1314 } 1315 1316 int __kprobes register_kprobe(struct kprobe *p) 1317 { 1318 int ret = 0; 1319 struct kprobe *old_p; 1320 struct module *probed_mod; 1321 kprobe_opcode_t *addr; 1322 1323 addr = kprobe_addr(p); 1324 if (IS_ERR(addr)) 1325 return PTR_ERR(addr); 1326 p->addr = addr; 1327 1328 ret = check_kprobe_rereg(p); 1329 if (ret) 1330 return ret; 1331 1332 jump_label_lock(); 1333 preempt_disable(); 1334 if (!kernel_text_address((unsigned long) p->addr) || 1335 in_kprobes_functions((unsigned long) p->addr) || 1336 ftrace_text_reserved(p->addr, p->addr) || 1337 jump_label_text_reserved(p->addr, p->addr)) { 1338 ret = -EINVAL; 1339 goto cannot_probe; 1340 } 1341 1342 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1343 p->flags &= KPROBE_FLAG_DISABLED; 1344 1345 /* 1346 * Check if are we probing a module. 1347 */ 1348 probed_mod = __module_text_address((unsigned long) p->addr); 1349 if (probed_mod) { 1350 /* Return -ENOENT if fail. */ 1351 ret = -ENOENT; 1352 /* 1353 * We must hold a refcount of the probed module while updating 1354 * its code to prohibit unexpected unloading. 1355 */ 1356 if (unlikely(!try_module_get(probed_mod))) 1357 goto cannot_probe; 1358 1359 /* 1360 * If the module freed .init.text, we couldn't insert 1361 * kprobes in there. 1362 */ 1363 if (within_module_init((unsigned long)p->addr, probed_mod) && 1364 probed_mod->state != MODULE_STATE_COMING) { 1365 module_put(probed_mod); 1366 goto cannot_probe; 1367 } 1368 /* ret will be updated by following code */ 1369 } 1370 preempt_enable(); 1371 jump_label_unlock(); 1372 1373 p->nmissed = 0; 1374 INIT_LIST_HEAD(&p->list); 1375 mutex_lock(&kprobe_mutex); 1376 1377 jump_label_lock(); /* needed to call jump_label_text_reserved() */ 1378 1379 get_online_cpus(); /* For avoiding text_mutex deadlock. */ 1380 mutex_lock(&text_mutex); 1381 1382 old_p = get_kprobe(p->addr); 1383 if (old_p) { 1384 /* Since this may unoptimize old_p, locking text_mutex. */ 1385 ret = register_aggr_kprobe(old_p, p); 1386 goto out; 1387 } 1388 1389 ret = arch_prepare_kprobe(p); 1390 if (ret) 1391 goto out; 1392 1393 INIT_HLIST_NODE(&p->hlist); 1394 hlist_add_head_rcu(&p->hlist, 1395 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1396 1397 if (!kprobes_all_disarmed && !kprobe_disabled(p)) 1398 __arm_kprobe(p); 1399 1400 /* Try to optimize kprobe */ 1401 try_to_optimize_kprobe(p); 1402 1403 out: 1404 mutex_unlock(&text_mutex); 1405 put_online_cpus(); 1406 jump_label_unlock(); 1407 mutex_unlock(&kprobe_mutex); 1408 1409 if (probed_mod) 1410 module_put(probed_mod); 1411 1412 return ret; 1413 1414 cannot_probe: 1415 preempt_enable(); 1416 jump_label_unlock(); 1417 return ret; 1418 } 1419 EXPORT_SYMBOL_GPL(register_kprobe); 1420 1421 /* Check if all probes on the aggrprobe are disabled */ 1422 static int __kprobes aggr_kprobe_disabled(struct kprobe *ap) 1423 { 1424 struct kprobe *kp; 1425 1426 list_for_each_entry_rcu(kp, &ap->list, list) 1427 if (!kprobe_disabled(kp)) 1428 /* 1429 * There is an active probe on the list. 1430 * We can't disable this ap. 1431 */ 1432 return 0; 1433 1434 return 1; 1435 } 1436 1437 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1438 static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p) 1439 { 1440 struct kprobe *orig_p; 1441 1442 /* Get an original kprobe for return */ 1443 orig_p = __get_valid_kprobe(p); 1444 if (unlikely(orig_p == NULL)) 1445 return NULL; 1446 1447 if (!kprobe_disabled(p)) { 1448 /* Disable probe if it is a child probe */ 1449 if (p != orig_p) 1450 p->flags |= KPROBE_FLAG_DISABLED; 1451 1452 /* Try to disarm and disable this/parent probe */ 1453 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1454 disarm_kprobe(orig_p); 1455 orig_p->flags |= KPROBE_FLAG_DISABLED; 1456 } 1457 } 1458 1459 return orig_p; 1460 } 1461 1462 /* 1463 * Unregister a kprobe without a scheduler synchronization. 1464 */ 1465 static int __kprobes __unregister_kprobe_top(struct kprobe *p) 1466 { 1467 struct kprobe *ap, *list_p; 1468 1469 /* Disable kprobe. This will disarm it if needed. */ 1470 ap = __disable_kprobe(p); 1471 if (ap == NULL) 1472 return -EINVAL; 1473 1474 if (ap == p) 1475 /* 1476 * This probe is an independent(and non-optimized) kprobe 1477 * (not an aggrprobe). Remove from the hash list. 1478 */ 1479 goto disarmed; 1480 1481 /* Following process expects this probe is an aggrprobe */ 1482 WARN_ON(!kprobe_aggrprobe(ap)); 1483 1484 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1485 /* 1486 * !disarmed could be happen if the probe is under delayed 1487 * unoptimizing. 1488 */ 1489 goto disarmed; 1490 else { 1491 /* If disabling probe has special handlers, update aggrprobe */ 1492 if (p->break_handler && !kprobe_gone(p)) 1493 ap->break_handler = NULL; 1494 if (p->post_handler && !kprobe_gone(p)) { 1495 list_for_each_entry_rcu(list_p, &ap->list, list) { 1496 if ((list_p != p) && (list_p->post_handler)) 1497 goto noclean; 1498 } 1499 ap->post_handler = NULL; 1500 } 1501 noclean: 1502 /* 1503 * Remove from the aggrprobe: this path will do nothing in 1504 * __unregister_kprobe_bottom(). 1505 */ 1506 list_del_rcu(&p->list); 1507 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1508 /* 1509 * Try to optimize this probe again, because post 1510 * handler may have been changed. 1511 */ 1512 optimize_kprobe(ap); 1513 } 1514 return 0; 1515 1516 disarmed: 1517 BUG_ON(!kprobe_disarmed(ap)); 1518 hlist_del_rcu(&ap->hlist); 1519 return 0; 1520 } 1521 1522 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p) 1523 { 1524 struct kprobe *ap; 1525 1526 if (list_empty(&p->list)) 1527 /* This is an independent kprobe */ 1528 arch_remove_kprobe(p); 1529 else if (list_is_singular(&p->list)) { 1530 /* This is the last child of an aggrprobe */ 1531 ap = list_entry(p->list.next, struct kprobe, list); 1532 list_del(&p->list); 1533 free_aggr_kprobe(ap); 1534 } 1535 /* Otherwise, do nothing. */ 1536 } 1537 1538 int __kprobes register_kprobes(struct kprobe **kps, int num) 1539 { 1540 int i, ret = 0; 1541 1542 if (num <= 0) 1543 return -EINVAL; 1544 for (i = 0; i < num; i++) { 1545 ret = register_kprobe(kps[i]); 1546 if (ret < 0) { 1547 if (i > 0) 1548 unregister_kprobes(kps, i); 1549 break; 1550 } 1551 } 1552 return ret; 1553 } 1554 EXPORT_SYMBOL_GPL(register_kprobes); 1555 1556 void __kprobes unregister_kprobe(struct kprobe *p) 1557 { 1558 unregister_kprobes(&p, 1); 1559 } 1560 EXPORT_SYMBOL_GPL(unregister_kprobe); 1561 1562 void __kprobes unregister_kprobes(struct kprobe **kps, int num) 1563 { 1564 int i; 1565 1566 if (num <= 0) 1567 return; 1568 mutex_lock(&kprobe_mutex); 1569 for (i = 0; i < num; i++) 1570 if (__unregister_kprobe_top(kps[i]) < 0) 1571 kps[i]->addr = NULL; 1572 mutex_unlock(&kprobe_mutex); 1573 1574 synchronize_sched(); 1575 for (i = 0; i < num; i++) 1576 if (kps[i]->addr) 1577 __unregister_kprobe_bottom(kps[i]); 1578 } 1579 EXPORT_SYMBOL_GPL(unregister_kprobes); 1580 1581 static struct notifier_block kprobe_exceptions_nb = { 1582 .notifier_call = kprobe_exceptions_notify, 1583 .priority = 0x7fffffff /* we need to be notified first */ 1584 }; 1585 1586 unsigned long __weak arch_deref_entry_point(void *entry) 1587 { 1588 return (unsigned long)entry; 1589 } 1590 1591 int __kprobes register_jprobes(struct jprobe **jps, int num) 1592 { 1593 struct jprobe *jp; 1594 int ret = 0, i; 1595 1596 if (num <= 0) 1597 return -EINVAL; 1598 for (i = 0; i < num; i++) { 1599 unsigned long addr, offset; 1600 jp = jps[i]; 1601 addr = arch_deref_entry_point(jp->entry); 1602 1603 /* Verify probepoint is a function entry point */ 1604 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && 1605 offset == 0) { 1606 jp->kp.pre_handler = setjmp_pre_handler; 1607 jp->kp.break_handler = longjmp_break_handler; 1608 ret = register_kprobe(&jp->kp); 1609 } else 1610 ret = -EINVAL; 1611 1612 if (ret < 0) { 1613 if (i > 0) 1614 unregister_jprobes(jps, i); 1615 break; 1616 } 1617 } 1618 return ret; 1619 } 1620 EXPORT_SYMBOL_GPL(register_jprobes); 1621 1622 int __kprobes register_jprobe(struct jprobe *jp) 1623 { 1624 return register_jprobes(&jp, 1); 1625 } 1626 EXPORT_SYMBOL_GPL(register_jprobe); 1627 1628 void __kprobes unregister_jprobe(struct jprobe *jp) 1629 { 1630 unregister_jprobes(&jp, 1); 1631 } 1632 EXPORT_SYMBOL_GPL(unregister_jprobe); 1633 1634 void __kprobes unregister_jprobes(struct jprobe **jps, int num) 1635 { 1636 int i; 1637 1638 if (num <= 0) 1639 return; 1640 mutex_lock(&kprobe_mutex); 1641 for (i = 0; i < num; i++) 1642 if (__unregister_kprobe_top(&jps[i]->kp) < 0) 1643 jps[i]->kp.addr = NULL; 1644 mutex_unlock(&kprobe_mutex); 1645 1646 synchronize_sched(); 1647 for (i = 0; i < num; i++) { 1648 if (jps[i]->kp.addr) 1649 __unregister_kprobe_bottom(&jps[i]->kp); 1650 } 1651 } 1652 EXPORT_SYMBOL_GPL(unregister_jprobes); 1653 1654 #ifdef CONFIG_KRETPROBES 1655 /* 1656 * This kprobe pre_handler is registered with every kretprobe. When probe 1657 * hits it will set up the return probe. 1658 */ 1659 static int __kprobes pre_handler_kretprobe(struct kprobe *p, 1660 struct pt_regs *regs) 1661 { 1662 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1663 unsigned long hash, flags = 0; 1664 struct kretprobe_instance *ri; 1665 1666 /*TODO: consider to only swap the RA after the last pre_handler fired */ 1667 hash = hash_ptr(current, KPROBE_HASH_BITS); 1668 raw_spin_lock_irqsave(&rp->lock, flags); 1669 if (!hlist_empty(&rp->free_instances)) { 1670 ri = hlist_entry(rp->free_instances.first, 1671 struct kretprobe_instance, hlist); 1672 hlist_del(&ri->hlist); 1673 raw_spin_unlock_irqrestore(&rp->lock, flags); 1674 1675 ri->rp = rp; 1676 ri->task = current; 1677 1678 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 1679 raw_spin_lock_irqsave(&rp->lock, flags); 1680 hlist_add_head(&ri->hlist, &rp->free_instances); 1681 raw_spin_unlock_irqrestore(&rp->lock, flags); 1682 return 0; 1683 } 1684 1685 arch_prepare_kretprobe(ri, regs); 1686 1687 /* XXX(hch): why is there no hlist_move_head? */ 1688 INIT_HLIST_NODE(&ri->hlist); 1689 kretprobe_table_lock(hash, &flags); 1690 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 1691 kretprobe_table_unlock(hash, &flags); 1692 } else { 1693 rp->nmissed++; 1694 raw_spin_unlock_irqrestore(&rp->lock, flags); 1695 } 1696 return 0; 1697 } 1698 1699 int __kprobes register_kretprobe(struct kretprobe *rp) 1700 { 1701 int ret = 0; 1702 struct kretprobe_instance *inst; 1703 int i; 1704 void *addr; 1705 1706 if (kretprobe_blacklist_size) { 1707 addr = kprobe_addr(&rp->kp); 1708 if (IS_ERR(addr)) 1709 return PTR_ERR(addr); 1710 1711 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1712 if (kretprobe_blacklist[i].addr == addr) 1713 return -EINVAL; 1714 } 1715 } 1716 1717 rp->kp.pre_handler = pre_handler_kretprobe; 1718 rp->kp.post_handler = NULL; 1719 rp->kp.fault_handler = NULL; 1720 rp->kp.break_handler = NULL; 1721 1722 /* Pre-allocate memory for max kretprobe instances */ 1723 if (rp->maxactive <= 0) { 1724 #ifdef CONFIG_PREEMPT 1725 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 1726 #else 1727 rp->maxactive = num_possible_cpus(); 1728 #endif 1729 } 1730 raw_spin_lock_init(&rp->lock); 1731 INIT_HLIST_HEAD(&rp->free_instances); 1732 for (i = 0; i < rp->maxactive; i++) { 1733 inst = kmalloc(sizeof(struct kretprobe_instance) + 1734 rp->data_size, GFP_KERNEL); 1735 if (inst == NULL) { 1736 free_rp_inst(rp); 1737 return -ENOMEM; 1738 } 1739 INIT_HLIST_NODE(&inst->hlist); 1740 hlist_add_head(&inst->hlist, &rp->free_instances); 1741 } 1742 1743 rp->nmissed = 0; 1744 /* Establish function entry probe point */ 1745 ret = register_kprobe(&rp->kp); 1746 if (ret != 0) 1747 free_rp_inst(rp); 1748 return ret; 1749 } 1750 EXPORT_SYMBOL_GPL(register_kretprobe); 1751 1752 int __kprobes register_kretprobes(struct kretprobe **rps, int num) 1753 { 1754 int ret = 0, i; 1755 1756 if (num <= 0) 1757 return -EINVAL; 1758 for (i = 0; i < num; i++) { 1759 ret = register_kretprobe(rps[i]); 1760 if (ret < 0) { 1761 if (i > 0) 1762 unregister_kretprobes(rps, i); 1763 break; 1764 } 1765 } 1766 return ret; 1767 } 1768 EXPORT_SYMBOL_GPL(register_kretprobes); 1769 1770 void __kprobes unregister_kretprobe(struct kretprobe *rp) 1771 { 1772 unregister_kretprobes(&rp, 1); 1773 } 1774 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1775 1776 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) 1777 { 1778 int i; 1779 1780 if (num <= 0) 1781 return; 1782 mutex_lock(&kprobe_mutex); 1783 for (i = 0; i < num; i++) 1784 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 1785 rps[i]->kp.addr = NULL; 1786 mutex_unlock(&kprobe_mutex); 1787 1788 synchronize_sched(); 1789 for (i = 0; i < num; i++) { 1790 if (rps[i]->kp.addr) { 1791 __unregister_kprobe_bottom(&rps[i]->kp); 1792 cleanup_rp_inst(rps[i]); 1793 } 1794 } 1795 } 1796 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1797 1798 #else /* CONFIG_KRETPROBES */ 1799 int __kprobes register_kretprobe(struct kretprobe *rp) 1800 { 1801 return -ENOSYS; 1802 } 1803 EXPORT_SYMBOL_GPL(register_kretprobe); 1804 1805 int __kprobes register_kretprobes(struct kretprobe **rps, int num) 1806 { 1807 return -ENOSYS; 1808 } 1809 EXPORT_SYMBOL_GPL(register_kretprobes); 1810 1811 void __kprobes unregister_kretprobe(struct kretprobe *rp) 1812 { 1813 } 1814 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1815 1816 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) 1817 { 1818 } 1819 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1820 1821 static int __kprobes pre_handler_kretprobe(struct kprobe *p, 1822 struct pt_regs *regs) 1823 { 1824 return 0; 1825 } 1826 1827 #endif /* CONFIG_KRETPROBES */ 1828 1829 /* Set the kprobe gone and remove its instruction buffer. */ 1830 static void __kprobes kill_kprobe(struct kprobe *p) 1831 { 1832 struct kprobe *kp; 1833 1834 p->flags |= KPROBE_FLAG_GONE; 1835 if (kprobe_aggrprobe(p)) { 1836 /* 1837 * If this is an aggr_kprobe, we have to list all the 1838 * chained probes and mark them GONE. 1839 */ 1840 list_for_each_entry_rcu(kp, &p->list, list) 1841 kp->flags |= KPROBE_FLAG_GONE; 1842 p->post_handler = NULL; 1843 p->break_handler = NULL; 1844 kill_optimized_kprobe(p); 1845 } 1846 /* 1847 * Here, we can remove insn_slot safely, because no thread calls 1848 * the original probed function (which will be freed soon) any more. 1849 */ 1850 arch_remove_kprobe(p); 1851 } 1852 1853 /* Disable one kprobe */ 1854 int __kprobes disable_kprobe(struct kprobe *kp) 1855 { 1856 int ret = 0; 1857 1858 mutex_lock(&kprobe_mutex); 1859 1860 /* Disable this kprobe */ 1861 if (__disable_kprobe(kp) == NULL) 1862 ret = -EINVAL; 1863 1864 mutex_unlock(&kprobe_mutex); 1865 return ret; 1866 } 1867 EXPORT_SYMBOL_GPL(disable_kprobe); 1868 1869 /* Enable one kprobe */ 1870 int __kprobes enable_kprobe(struct kprobe *kp) 1871 { 1872 int ret = 0; 1873 struct kprobe *p; 1874 1875 mutex_lock(&kprobe_mutex); 1876 1877 /* Check whether specified probe is valid. */ 1878 p = __get_valid_kprobe(kp); 1879 if (unlikely(p == NULL)) { 1880 ret = -EINVAL; 1881 goto out; 1882 } 1883 1884 if (kprobe_gone(kp)) { 1885 /* This kprobe has gone, we couldn't enable it. */ 1886 ret = -EINVAL; 1887 goto out; 1888 } 1889 1890 if (p != kp) 1891 kp->flags &= ~KPROBE_FLAG_DISABLED; 1892 1893 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 1894 p->flags &= ~KPROBE_FLAG_DISABLED; 1895 arm_kprobe(p); 1896 } 1897 out: 1898 mutex_unlock(&kprobe_mutex); 1899 return ret; 1900 } 1901 EXPORT_SYMBOL_GPL(enable_kprobe); 1902 1903 void __kprobes dump_kprobe(struct kprobe *kp) 1904 { 1905 printk(KERN_WARNING "Dumping kprobe:\n"); 1906 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n", 1907 kp->symbol_name, kp->addr, kp->offset); 1908 } 1909 1910 /* Module notifier call back, checking kprobes on the module */ 1911 static int __kprobes kprobes_module_callback(struct notifier_block *nb, 1912 unsigned long val, void *data) 1913 { 1914 struct module *mod = data; 1915 struct hlist_head *head; 1916 struct hlist_node *node; 1917 struct kprobe *p; 1918 unsigned int i; 1919 int checkcore = (val == MODULE_STATE_GOING); 1920 1921 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 1922 return NOTIFY_DONE; 1923 1924 /* 1925 * When MODULE_STATE_GOING was notified, both of module .text and 1926 * .init.text sections would be freed. When MODULE_STATE_LIVE was 1927 * notified, only .init.text section would be freed. We need to 1928 * disable kprobes which have been inserted in the sections. 1929 */ 1930 mutex_lock(&kprobe_mutex); 1931 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1932 head = &kprobe_table[i]; 1933 hlist_for_each_entry_rcu(p, node, head, hlist) 1934 if (within_module_init((unsigned long)p->addr, mod) || 1935 (checkcore && 1936 within_module_core((unsigned long)p->addr, mod))) { 1937 /* 1938 * The vaddr this probe is installed will soon 1939 * be vfreed buy not synced to disk. Hence, 1940 * disarming the breakpoint isn't needed. 1941 */ 1942 kill_kprobe(p); 1943 } 1944 } 1945 mutex_unlock(&kprobe_mutex); 1946 return NOTIFY_DONE; 1947 } 1948 1949 static struct notifier_block kprobe_module_nb = { 1950 .notifier_call = kprobes_module_callback, 1951 .priority = 0 1952 }; 1953 1954 static int __init init_kprobes(void) 1955 { 1956 int i, err = 0; 1957 unsigned long offset = 0, size = 0; 1958 char *modname, namebuf[128]; 1959 const char *symbol_name; 1960 void *addr; 1961 struct kprobe_blackpoint *kb; 1962 1963 /* FIXME allocate the probe table, currently defined statically */ 1964 /* initialize all list heads */ 1965 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1966 INIT_HLIST_HEAD(&kprobe_table[i]); 1967 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 1968 raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); 1969 } 1970 1971 /* 1972 * Lookup and populate the kprobe_blacklist. 1973 * 1974 * Unlike the kretprobe blacklist, we'll need to determine 1975 * the range of addresses that belong to the said functions, 1976 * since a kprobe need not necessarily be at the beginning 1977 * of a function. 1978 */ 1979 for (kb = kprobe_blacklist; kb->name != NULL; kb++) { 1980 kprobe_lookup_name(kb->name, addr); 1981 if (!addr) 1982 continue; 1983 1984 kb->start_addr = (unsigned long)addr; 1985 symbol_name = kallsyms_lookup(kb->start_addr, 1986 &size, &offset, &modname, namebuf); 1987 if (!symbol_name) 1988 kb->range = 0; 1989 else 1990 kb->range = size; 1991 } 1992 1993 if (kretprobe_blacklist_size) { 1994 /* lookup the function address from its name */ 1995 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1996 kprobe_lookup_name(kretprobe_blacklist[i].name, 1997 kretprobe_blacklist[i].addr); 1998 if (!kretprobe_blacklist[i].addr) 1999 printk("kretprobe: lookup failed: %s\n", 2000 kretprobe_blacklist[i].name); 2001 } 2002 } 2003 2004 #if defined(CONFIG_OPTPROBES) 2005 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2006 /* Init kprobe_optinsn_slots */ 2007 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2008 #endif 2009 /* By default, kprobes can be optimized */ 2010 kprobes_allow_optimization = true; 2011 #endif 2012 2013 /* By default, kprobes are armed */ 2014 kprobes_all_disarmed = false; 2015 2016 err = arch_init_kprobes(); 2017 if (!err) 2018 err = register_die_notifier(&kprobe_exceptions_nb); 2019 if (!err) 2020 err = register_module_notifier(&kprobe_module_nb); 2021 2022 kprobes_initialized = (err == 0); 2023 2024 if (!err) 2025 init_test_probes(); 2026 return err; 2027 } 2028 2029 #ifdef CONFIG_DEBUG_FS 2030 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p, 2031 const char *sym, int offset, char *modname, struct kprobe *pp) 2032 { 2033 char *kprobe_type; 2034 2035 if (p->pre_handler == pre_handler_kretprobe) 2036 kprobe_type = "r"; 2037 else if (p->pre_handler == setjmp_pre_handler) 2038 kprobe_type = "j"; 2039 else 2040 kprobe_type = "k"; 2041 2042 if (sym) 2043 seq_printf(pi, "%p %s %s+0x%x %s ", 2044 p->addr, kprobe_type, sym, offset, 2045 (modname ? modname : " ")); 2046 else 2047 seq_printf(pi, "%p %s %p ", 2048 p->addr, kprobe_type, p->addr); 2049 2050 if (!pp) 2051 pp = p; 2052 seq_printf(pi, "%s%s%s\n", 2053 (kprobe_gone(p) ? "[GONE]" : ""), 2054 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2055 (kprobe_optimized(pp) ? "[OPTIMIZED]" : "")); 2056 } 2057 2058 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2059 { 2060 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2061 } 2062 2063 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2064 { 2065 (*pos)++; 2066 if (*pos >= KPROBE_TABLE_SIZE) 2067 return NULL; 2068 return pos; 2069 } 2070 2071 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v) 2072 { 2073 /* Nothing to do */ 2074 } 2075 2076 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v) 2077 { 2078 struct hlist_head *head; 2079 struct hlist_node *node; 2080 struct kprobe *p, *kp; 2081 const char *sym = NULL; 2082 unsigned int i = *(loff_t *) v; 2083 unsigned long offset = 0; 2084 char *modname, namebuf[128]; 2085 2086 head = &kprobe_table[i]; 2087 preempt_disable(); 2088 hlist_for_each_entry_rcu(p, node, head, hlist) { 2089 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2090 &offset, &modname, namebuf); 2091 if (kprobe_aggrprobe(p)) { 2092 list_for_each_entry_rcu(kp, &p->list, list) 2093 report_probe(pi, kp, sym, offset, modname, p); 2094 } else 2095 report_probe(pi, p, sym, offset, modname, NULL); 2096 } 2097 preempt_enable(); 2098 return 0; 2099 } 2100 2101 static const struct seq_operations kprobes_seq_ops = { 2102 .start = kprobe_seq_start, 2103 .next = kprobe_seq_next, 2104 .stop = kprobe_seq_stop, 2105 .show = show_kprobe_addr 2106 }; 2107 2108 static int __kprobes kprobes_open(struct inode *inode, struct file *filp) 2109 { 2110 return seq_open(filp, &kprobes_seq_ops); 2111 } 2112 2113 static const struct file_operations debugfs_kprobes_operations = { 2114 .open = kprobes_open, 2115 .read = seq_read, 2116 .llseek = seq_lseek, 2117 .release = seq_release, 2118 }; 2119 2120 static void __kprobes arm_all_kprobes(void) 2121 { 2122 struct hlist_head *head; 2123 struct hlist_node *node; 2124 struct kprobe *p; 2125 unsigned int i; 2126 2127 mutex_lock(&kprobe_mutex); 2128 2129 /* If kprobes are armed, just return */ 2130 if (!kprobes_all_disarmed) 2131 goto already_enabled; 2132 2133 /* Arming kprobes doesn't optimize kprobe itself */ 2134 mutex_lock(&text_mutex); 2135 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2136 head = &kprobe_table[i]; 2137 hlist_for_each_entry_rcu(p, node, head, hlist) 2138 if (!kprobe_disabled(p)) 2139 __arm_kprobe(p); 2140 } 2141 mutex_unlock(&text_mutex); 2142 2143 kprobes_all_disarmed = false; 2144 printk(KERN_INFO "Kprobes globally enabled\n"); 2145 2146 already_enabled: 2147 mutex_unlock(&kprobe_mutex); 2148 return; 2149 } 2150 2151 static void __kprobes disarm_all_kprobes(void) 2152 { 2153 struct hlist_head *head; 2154 struct hlist_node *node; 2155 struct kprobe *p; 2156 unsigned int i; 2157 2158 mutex_lock(&kprobe_mutex); 2159 2160 /* If kprobes are already disarmed, just return */ 2161 if (kprobes_all_disarmed) { 2162 mutex_unlock(&kprobe_mutex); 2163 return; 2164 } 2165 2166 kprobes_all_disarmed = true; 2167 printk(KERN_INFO "Kprobes globally disabled\n"); 2168 2169 mutex_lock(&text_mutex); 2170 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2171 head = &kprobe_table[i]; 2172 hlist_for_each_entry_rcu(p, node, head, hlist) { 2173 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) 2174 __disarm_kprobe(p, false); 2175 } 2176 } 2177 mutex_unlock(&text_mutex); 2178 mutex_unlock(&kprobe_mutex); 2179 2180 /* Wait for disarming all kprobes by optimizer */ 2181 wait_for_kprobe_optimizer(); 2182 } 2183 2184 /* 2185 * XXX: The debugfs bool file interface doesn't allow for callbacks 2186 * when the bool state is switched. We can reuse that facility when 2187 * available 2188 */ 2189 static ssize_t read_enabled_file_bool(struct file *file, 2190 char __user *user_buf, size_t count, loff_t *ppos) 2191 { 2192 char buf[3]; 2193 2194 if (!kprobes_all_disarmed) 2195 buf[0] = '1'; 2196 else 2197 buf[0] = '0'; 2198 buf[1] = '\n'; 2199 buf[2] = 0x00; 2200 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2201 } 2202 2203 static ssize_t write_enabled_file_bool(struct file *file, 2204 const char __user *user_buf, size_t count, loff_t *ppos) 2205 { 2206 char buf[32]; 2207 size_t buf_size; 2208 2209 buf_size = min(count, (sizeof(buf)-1)); 2210 if (copy_from_user(buf, user_buf, buf_size)) 2211 return -EFAULT; 2212 2213 switch (buf[0]) { 2214 case 'y': 2215 case 'Y': 2216 case '1': 2217 arm_all_kprobes(); 2218 break; 2219 case 'n': 2220 case 'N': 2221 case '0': 2222 disarm_all_kprobes(); 2223 break; 2224 } 2225 2226 return count; 2227 } 2228 2229 static const struct file_operations fops_kp = { 2230 .read = read_enabled_file_bool, 2231 .write = write_enabled_file_bool, 2232 .llseek = default_llseek, 2233 }; 2234 2235 static int __kprobes debugfs_kprobe_init(void) 2236 { 2237 struct dentry *dir, *file; 2238 unsigned int value = 1; 2239 2240 dir = debugfs_create_dir("kprobes", NULL); 2241 if (!dir) 2242 return -ENOMEM; 2243 2244 file = debugfs_create_file("list", 0444, dir, NULL, 2245 &debugfs_kprobes_operations); 2246 if (!file) { 2247 debugfs_remove(dir); 2248 return -ENOMEM; 2249 } 2250 2251 file = debugfs_create_file("enabled", 0600, dir, 2252 &value, &fops_kp); 2253 if (!file) { 2254 debugfs_remove(dir); 2255 return -ENOMEM; 2256 } 2257 2258 return 0; 2259 } 2260 2261 late_initcall(debugfs_kprobe_init); 2262 #endif /* CONFIG_DEBUG_FS */ 2263 2264 module_init(init_kprobes); 2265 2266 /* defined in arch/.../kernel/kprobes.c */ 2267 EXPORT_SYMBOL_GPL(jprobe_return); 2268