1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright (C) IBM Corporation, 2002, 2004 6 * 7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 8 * Probes initial implementation (includes suggestions from 9 * Rusty Russell). 10 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 11 * hlists and exceptions notifier as suggested by Andi Kleen. 12 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 13 * interface to access function arguments. 14 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 15 * exceptions notifier to be first on the priority list. 16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 18 * <prasanna@in.ibm.com> added function-return probes. 19 */ 20 21 #define pr_fmt(fmt) "kprobes: " fmt 22 23 #include <linux/kprobes.h> 24 #include <linux/hash.h> 25 #include <linux/init.h> 26 #include <linux/slab.h> 27 #include <linux/stddef.h> 28 #include <linux/export.h> 29 #include <linux/moduleloader.h> 30 #include <linux/kallsyms.h> 31 #include <linux/freezer.h> 32 #include <linux/seq_file.h> 33 #include <linux/debugfs.h> 34 #include <linux/sysctl.h> 35 #include <linux/kdebug.h> 36 #include <linux/memory.h> 37 #include <linux/ftrace.h> 38 #include <linux/cpu.h> 39 #include <linux/jump_label.h> 40 #include <linux/static_call.h> 41 #include <linux/perf_event.h> 42 43 #include <asm/sections.h> 44 #include <asm/cacheflush.h> 45 #include <asm/errno.h> 46 #include <linux/uaccess.h> 47 48 #define KPROBE_HASH_BITS 6 49 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 50 51 #if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL) 52 #define kprobe_sysctls_init() do { } while (0) 53 #endif 54 55 static int kprobes_initialized; 56 /* kprobe_table can be accessed by 57 * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held. 58 * Or 59 * - RCU hlist traversal under disabling preempt (breakpoint handlers) 60 */ 61 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 62 63 /* NOTE: change this value only with 'kprobe_mutex' held */ 64 static bool kprobes_all_disarmed; 65 66 /* This protects 'kprobe_table' and 'optimizing_list' */ 67 static DEFINE_MUTEX(kprobe_mutex); 68 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance); 69 70 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, 71 unsigned int __unused) 72 { 73 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); 74 } 75 76 /* 77 * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where 78 * kprobes can not probe. 79 */ 80 static LIST_HEAD(kprobe_blacklist); 81 82 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 83 /* 84 * 'kprobe::ainsn.insn' points to the copy of the instruction to be 85 * single-stepped. x86_64, POWER4 and above have no-exec support and 86 * stepping on the instruction on a vmalloced/kmalloced/data page 87 * is a recipe for disaster 88 */ 89 struct kprobe_insn_page { 90 struct list_head list; 91 kprobe_opcode_t *insns; /* Page of instruction slots */ 92 struct kprobe_insn_cache *cache; 93 int nused; 94 int ngarbage; 95 char slot_used[]; 96 }; 97 98 #define KPROBE_INSN_PAGE_SIZE(slots) \ 99 (offsetof(struct kprobe_insn_page, slot_used) + \ 100 (sizeof(char) * (slots))) 101 102 static int slots_per_page(struct kprobe_insn_cache *c) 103 { 104 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 105 } 106 107 enum kprobe_slot_state { 108 SLOT_CLEAN = 0, 109 SLOT_DIRTY = 1, 110 SLOT_USED = 2, 111 }; 112 113 void __weak *alloc_insn_page(void) 114 { 115 /* 116 * Use module_alloc() so this page is within +/- 2GB of where the 117 * kernel image and loaded module images reside. This is required 118 * for most of the architectures. 119 * (e.g. x86-64 needs this to handle the %rip-relative fixups.) 120 */ 121 return module_alloc(PAGE_SIZE); 122 } 123 124 static void free_insn_page(void *page) 125 { 126 module_memfree(page); 127 } 128 129 struct kprobe_insn_cache kprobe_insn_slots = { 130 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 131 .alloc = alloc_insn_page, 132 .free = free_insn_page, 133 .sym = KPROBE_INSN_PAGE_SYM, 134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 135 .insn_size = MAX_INSN_SIZE, 136 .nr_garbage = 0, 137 }; 138 static int collect_garbage_slots(struct kprobe_insn_cache *c); 139 140 /** 141 * __get_insn_slot() - Find a slot on an executable page for an instruction. 142 * We allocate an executable page if there's no room on existing ones. 143 */ 144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 145 { 146 struct kprobe_insn_page *kip; 147 kprobe_opcode_t *slot = NULL; 148 149 /* Since the slot array is not protected by rcu, we need a mutex */ 150 mutex_lock(&c->mutex); 151 retry: 152 rcu_read_lock(); 153 list_for_each_entry_rcu(kip, &c->pages, list) { 154 if (kip->nused < slots_per_page(c)) { 155 int i; 156 157 for (i = 0; i < slots_per_page(c); i++) { 158 if (kip->slot_used[i] == SLOT_CLEAN) { 159 kip->slot_used[i] = SLOT_USED; 160 kip->nused++; 161 slot = kip->insns + (i * c->insn_size); 162 rcu_read_unlock(); 163 goto out; 164 } 165 } 166 /* kip->nused is broken. Fix it. */ 167 kip->nused = slots_per_page(c); 168 WARN_ON(1); 169 } 170 } 171 rcu_read_unlock(); 172 173 /* If there are any garbage slots, collect it and try again. */ 174 if (c->nr_garbage && collect_garbage_slots(c) == 0) 175 goto retry; 176 177 /* All out of space. Need to allocate a new page. */ 178 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 179 if (!kip) 180 goto out; 181 182 kip->insns = c->alloc(); 183 if (!kip->insns) { 184 kfree(kip); 185 goto out; 186 } 187 INIT_LIST_HEAD(&kip->list); 188 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 189 kip->slot_used[0] = SLOT_USED; 190 kip->nused = 1; 191 kip->ngarbage = 0; 192 kip->cache = c; 193 list_add_rcu(&kip->list, &c->pages); 194 slot = kip->insns; 195 196 /* Record the perf ksymbol register event after adding the page */ 197 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns, 198 PAGE_SIZE, false, c->sym); 199 out: 200 mutex_unlock(&c->mutex); 201 return slot; 202 } 203 204 /* Return true if all garbages are collected, otherwise false. */ 205 static bool collect_one_slot(struct kprobe_insn_page *kip, int idx) 206 { 207 kip->slot_used[idx] = SLOT_CLEAN; 208 kip->nused--; 209 if (kip->nused == 0) { 210 /* 211 * Page is no longer in use. Free it unless 212 * it's the last one. We keep the last one 213 * so as not to have to set it up again the 214 * next time somebody inserts a probe. 215 */ 216 if (!list_is_singular(&kip->list)) { 217 /* 218 * Record perf ksymbol unregister event before removing 219 * the page. 220 */ 221 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 222 (unsigned long)kip->insns, PAGE_SIZE, true, 223 kip->cache->sym); 224 list_del_rcu(&kip->list); 225 synchronize_rcu(); 226 kip->cache->free(kip->insns); 227 kfree(kip); 228 } 229 return true; 230 } 231 return false; 232 } 233 234 static int collect_garbage_slots(struct kprobe_insn_cache *c) 235 { 236 struct kprobe_insn_page *kip, *next; 237 238 /* Ensure no-one is interrupted on the garbages */ 239 synchronize_rcu(); 240 241 list_for_each_entry_safe(kip, next, &c->pages, list) { 242 int i; 243 244 if (kip->ngarbage == 0) 245 continue; 246 kip->ngarbage = 0; /* we will collect all garbages */ 247 for (i = 0; i < slots_per_page(c); i++) { 248 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 249 break; 250 } 251 } 252 c->nr_garbage = 0; 253 return 0; 254 } 255 256 void __free_insn_slot(struct kprobe_insn_cache *c, 257 kprobe_opcode_t *slot, int dirty) 258 { 259 struct kprobe_insn_page *kip; 260 long idx; 261 262 mutex_lock(&c->mutex); 263 rcu_read_lock(); 264 list_for_each_entry_rcu(kip, &c->pages, list) { 265 idx = ((long)slot - (long)kip->insns) / 266 (c->insn_size * sizeof(kprobe_opcode_t)); 267 if (idx >= 0 && idx < slots_per_page(c)) 268 goto out; 269 } 270 /* Could not find this slot. */ 271 WARN_ON(1); 272 kip = NULL; 273 out: 274 rcu_read_unlock(); 275 /* Mark and sweep: this may sleep */ 276 if (kip) { 277 /* Check double free */ 278 WARN_ON(kip->slot_used[idx] != SLOT_USED); 279 if (dirty) { 280 kip->slot_used[idx] = SLOT_DIRTY; 281 kip->ngarbage++; 282 if (++c->nr_garbage > slots_per_page(c)) 283 collect_garbage_slots(c); 284 } else { 285 collect_one_slot(kip, idx); 286 } 287 } 288 mutex_unlock(&c->mutex); 289 } 290 291 /* 292 * Check given address is on the page of kprobe instruction slots. 293 * This will be used for checking whether the address on a stack 294 * is on a text area or not. 295 */ 296 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 297 { 298 struct kprobe_insn_page *kip; 299 bool ret = false; 300 301 rcu_read_lock(); 302 list_for_each_entry_rcu(kip, &c->pages, list) { 303 if (addr >= (unsigned long)kip->insns && 304 addr < (unsigned long)kip->insns + PAGE_SIZE) { 305 ret = true; 306 break; 307 } 308 } 309 rcu_read_unlock(); 310 311 return ret; 312 } 313 314 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum, 315 unsigned long *value, char *type, char *sym) 316 { 317 struct kprobe_insn_page *kip; 318 int ret = -ERANGE; 319 320 rcu_read_lock(); 321 list_for_each_entry_rcu(kip, &c->pages, list) { 322 if ((*symnum)--) 323 continue; 324 strscpy(sym, c->sym, KSYM_NAME_LEN); 325 *type = 't'; 326 *value = (unsigned long)kip->insns; 327 ret = 0; 328 break; 329 } 330 rcu_read_unlock(); 331 332 return ret; 333 } 334 335 #ifdef CONFIG_OPTPROBES 336 void __weak *alloc_optinsn_page(void) 337 { 338 return alloc_insn_page(); 339 } 340 341 void __weak free_optinsn_page(void *page) 342 { 343 free_insn_page(page); 344 } 345 346 /* For optimized_kprobe buffer */ 347 struct kprobe_insn_cache kprobe_optinsn_slots = { 348 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 349 .alloc = alloc_optinsn_page, 350 .free = free_optinsn_page, 351 .sym = KPROBE_OPTINSN_PAGE_SYM, 352 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 353 /* .insn_size is initialized later */ 354 .nr_garbage = 0, 355 }; 356 #endif 357 #endif 358 359 /* We have preemption disabled.. so it is safe to use __ versions */ 360 static inline void set_kprobe_instance(struct kprobe *kp) 361 { 362 __this_cpu_write(kprobe_instance, kp); 363 } 364 365 static inline void reset_kprobe_instance(void) 366 { 367 __this_cpu_write(kprobe_instance, NULL); 368 } 369 370 /* 371 * This routine is called either: 372 * - under the 'kprobe_mutex' - during kprobe_[un]register(). 373 * OR 374 * - with preemption disabled - from architecture specific code. 375 */ 376 struct kprobe *get_kprobe(void *addr) 377 { 378 struct hlist_head *head; 379 struct kprobe *p; 380 381 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 382 hlist_for_each_entry_rcu(p, head, hlist, 383 lockdep_is_held(&kprobe_mutex)) { 384 if (p->addr == addr) 385 return p; 386 } 387 388 return NULL; 389 } 390 NOKPROBE_SYMBOL(get_kprobe); 391 392 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 393 394 /* Return true if 'p' is an aggregator */ 395 static inline bool kprobe_aggrprobe(struct kprobe *p) 396 { 397 return p->pre_handler == aggr_pre_handler; 398 } 399 400 /* Return true if 'p' is unused */ 401 static inline bool kprobe_unused(struct kprobe *p) 402 { 403 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 404 list_empty(&p->list); 405 } 406 407 /* Keep all fields in the kprobe consistent. */ 408 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 409 { 410 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 411 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 412 } 413 414 #ifdef CONFIG_OPTPROBES 415 /* NOTE: This is protected by 'kprobe_mutex'. */ 416 static bool kprobes_allow_optimization; 417 418 /* 419 * Call all 'kprobe::pre_handler' on the list, but ignores its return value. 420 * This must be called from arch-dep optimized caller. 421 */ 422 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 423 { 424 struct kprobe *kp; 425 426 list_for_each_entry_rcu(kp, &p->list, list) { 427 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 428 set_kprobe_instance(kp); 429 kp->pre_handler(kp, regs); 430 } 431 reset_kprobe_instance(); 432 } 433 } 434 NOKPROBE_SYMBOL(opt_pre_handler); 435 436 /* Free optimized instructions and optimized_kprobe */ 437 static void free_aggr_kprobe(struct kprobe *p) 438 { 439 struct optimized_kprobe *op; 440 441 op = container_of(p, struct optimized_kprobe, kp); 442 arch_remove_optimized_kprobe(op); 443 arch_remove_kprobe(p); 444 kfree(op); 445 } 446 447 /* Return true if the kprobe is ready for optimization. */ 448 static inline int kprobe_optready(struct kprobe *p) 449 { 450 struct optimized_kprobe *op; 451 452 if (kprobe_aggrprobe(p)) { 453 op = container_of(p, struct optimized_kprobe, kp); 454 return arch_prepared_optinsn(&op->optinsn); 455 } 456 457 return 0; 458 } 459 460 /* Return true if the kprobe is disarmed. Note: p must be on hash list */ 461 static inline bool kprobe_disarmed(struct kprobe *p) 462 { 463 struct optimized_kprobe *op; 464 465 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 466 if (!kprobe_aggrprobe(p)) 467 return kprobe_disabled(p); 468 469 op = container_of(p, struct optimized_kprobe, kp); 470 471 return kprobe_disabled(p) && list_empty(&op->list); 472 } 473 474 /* Return true if the probe is queued on (un)optimizing lists */ 475 static bool kprobe_queued(struct kprobe *p) 476 { 477 struct optimized_kprobe *op; 478 479 if (kprobe_aggrprobe(p)) { 480 op = container_of(p, struct optimized_kprobe, kp); 481 if (!list_empty(&op->list)) 482 return true; 483 } 484 return false; 485 } 486 487 /* 488 * Return an optimized kprobe whose optimizing code replaces 489 * instructions including 'addr' (exclude breakpoint). 490 */ 491 static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr) 492 { 493 int i; 494 struct kprobe *p = NULL; 495 struct optimized_kprobe *op; 496 497 /* Don't check i == 0, since that is a breakpoint case. */ 498 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++) 499 p = get_kprobe(addr - i); 500 501 if (p && kprobe_optready(p)) { 502 op = container_of(p, struct optimized_kprobe, kp); 503 if (arch_within_optimized_kprobe(op, addr)) 504 return p; 505 } 506 507 return NULL; 508 } 509 510 /* Optimization staging list, protected by 'kprobe_mutex' */ 511 static LIST_HEAD(optimizing_list); 512 static LIST_HEAD(unoptimizing_list); 513 static LIST_HEAD(freeing_list); 514 515 static void kprobe_optimizer(struct work_struct *work); 516 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 517 #define OPTIMIZE_DELAY 5 518 519 /* 520 * Optimize (replace a breakpoint with a jump) kprobes listed on 521 * 'optimizing_list'. 522 */ 523 static void do_optimize_kprobes(void) 524 { 525 lockdep_assert_held(&text_mutex); 526 /* 527 * The optimization/unoptimization refers 'online_cpus' via 528 * stop_machine() and cpu-hotplug modifies the 'online_cpus'. 529 * And same time, 'text_mutex' will be held in cpu-hotplug and here. 530 * This combination can cause a deadlock (cpu-hotplug tries to lock 531 * 'text_mutex' but stop_machine() can not be done because 532 * the 'online_cpus' has been changed) 533 * To avoid this deadlock, caller must have locked cpu-hotplug 534 * for preventing cpu-hotplug outside of 'text_mutex' locking. 535 */ 536 lockdep_assert_cpus_held(); 537 538 /* Optimization never be done when disarmed */ 539 if (kprobes_all_disarmed || !kprobes_allow_optimization || 540 list_empty(&optimizing_list)) 541 return; 542 543 arch_optimize_kprobes(&optimizing_list); 544 } 545 546 /* 547 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 548 * if need) kprobes listed on 'unoptimizing_list'. 549 */ 550 static void do_unoptimize_kprobes(void) 551 { 552 struct optimized_kprobe *op, *tmp; 553 554 lockdep_assert_held(&text_mutex); 555 /* See comment in do_optimize_kprobes() */ 556 lockdep_assert_cpus_held(); 557 558 /* Unoptimization must be done anytime */ 559 if (list_empty(&unoptimizing_list)) 560 return; 561 562 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 563 /* Loop on 'freeing_list' for disarming */ 564 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 565 /* Switching from detour code to origin */ 566 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 567 /* Disarm probes if marked disabled */ 568 if (kprobe_disabled(&op->kp)) 569 arch_disarm_kprobe(&op->kp); 570 if (kprobe_unused(&op->kp)) { 571 /* 572 * Remove unused probes from hash list. After waiting 573 * for synchronization, these probes are reclaimed. 574 * (reclaiming is done by do_free_cleaned_kprobes().) 575 */ 576 hlist_del_rcu(&op->kp.hlist); 577 } else 578 list_del_init(&op->list); 579 } 580 } 581 582 /* Reclaim all kprobes on the 'freeing_list' */ 583 static void do_free_cleaned_kprobes(void) 584 { 585 struct optimized_kprobe *op, *tmp; 586 587 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 588 list_del_init(&op->list); 589 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) { 590 /* 591 * This must not happen, but if there is a kprobe 592 * still in use, keep it on kprobes hash list. 593 */ 594 continue; 595 } 596 free_aggr_kprobe(&op->kp); 597 } 598 } 599 600 /* Start optimizer after OPTIMIZE_DELAY passed */ 601 static void kick_kprobe_optimizer(void) 602 { 603 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 604 } 605 606 /* Kprobe jump optimizer */ 607 static void kprobe_optimizer(struct work_struct *work) 608 { 609 mutex_lock(&kprobe_mutex); 610 cpus_read_lock(); 611 mutex_lock(&text_mutex); 612 613 /* 614 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 615 * kprobes before waiting for quiesence period. 616 */ 617 do_unoptimize_kprobes(); 618 619 /* 620 * Step 2: Wait for quiesence period to ensure all potentially 621 * preempted tasks to have normally scheduled. Because optprobe 622 * may modify multiple instructions, there is a chance that Nth 623 * instruction is preempted. In that case, such tasks can return 624 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. 625 * Note that on non-preemptive kernel, this is transparently converted 626 * to synchronoze_sched() to wait for all interrupts to have completed. 627 */ 628 synchronize_rcu_tasks(); 629 630 /* Step 3: Optimize kprobes after quiesence period */ 631 do_optimize_kprobes(); 632 633 /* Step 4: Free cleaned kprobes after quiesence period */ 634 do_free_cleaned_kprobes(); 635 636 mutex_unlock(&text_mutex); 637 cpus_read_unlock(); 638 639 /* Step 5: Kick optimizer again if needed */ 640 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 641 kick_kprobe_optimizer(); 642 643 mutex_unlock(&kprobe_mutex); 644 } 645 646 /* Wait for completing optimization and unoptimization */ 647 void wait_for_kprobe_optimizer(void) 648 { 649 mutex_lock(&kprobe_mutex); 650 651 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 652 mutex_unlock(&kprobe_mutex); 653 654 /* This will also make 'optimizing_work' execute immmediately */ 655 flush_delayed_work(&optimizing_work); 656 /* 'optimizing_work' might not have been queued yet, relax */ 657 cpu_relax(); 658 659 mutex_lock(&kprobe_mutex); 660 } 661 662 mutex_unlock(&kprobe_mutex); 663 } 664 665 static bool optprobe_queued_unopt(struct optimized_kprobe *op) 666 { 667 struct optimized_kprobe *_op; 668 669 list_for_each_entry(_op, &unoptimizing_list, list) { 670 if (op == _op) 671 return true; 672 } 673 674 return false; 675 } 676 677 /* Optimize kprobe if p is ready to be optimized */ 678 static void optimize_kprobe(struct kprobe *p) 679 { 680 struct optimized_kprobe *op; 681 682 /* Check if the kprobe is disabled or not ready for optimization. */ 683 if (!kprobe_optready(p) || !kprobes_allow_optimization || 684 (kprobe_disabled(p) || kprobes_all_disarmed)) 685 return; 686 687 /* kprobes with 'post_handler' can not be optimized */ 688 if (p->post_handler) 689 return; 690 691 op = container_of(p, struct optimized_kprobe, kp); 692 693 /* Check there is no other kprobes at the optimized instructions */ 694 if (arch_check_optimized_kprobe(op) < 0) 695 return; 696 697 /* Check if it is already optimized. */ 698 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) { 699 if (optprobe_queued_unopt(op)) { 700 /* This is under unoptimizing. Just dequeue the probe */ 701 list_del_init(&op->list); 702 } 703 return; 704 } 705 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 706 707 /* 708 * On the 'unoptimizing_list' and 'optimizing_list', 709 * 'op' must have OPTIMIZED flag 710 */ 711 if (WARN_ON_ONCE(!list_empty(&op->list))) 712 return; 713 714 list_add(&op->list, &optimizing_list); 715 kick_kprobe_optimizer(); 716 } 717 718 /* Short cut to direct unoptimizing */ 719 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 720 { 721 lockdep_assert_cpus_held(); 722 arch_unoptimize_kprobe(op); 723 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 724 } 725 726 /* Unoptimize a kprobe if p is optimized */ 727 static void unoptimize_kprobe(struct kprobe *p, bool force) 728 { 729 struct optimized_kprobe *op; 730 731 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 732 return; /* This is not an optprobe nor optimized */ 733 734 op = container_of(p, struct optimized_kprobe, kp); 735 if (!kprobe_optimized(p)) 736 return; 737 738 if (!list_empty(&op->list)) { 739 if (optprobe_queued_unopt(op)) { 740 /* Queued in unoptimizing queue */ 741 if (force) { 742 /* 743 * Forcibly unoptimize the kprobe here, and queue it 744 * in the freeing list for release afterwards. 745 */ 746 force_unoptimize_kprobe(op); 747 list_move(&op->list, &freeing_list); 748 } 749 } else { 750 /* Dequeue from the optimizing queue */ 751 list_del_init(&op->list); 752 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 753 } 754 return; 755 } 756 757 /* Optimized kprobe case */ 758 if (force) { 759 /* Forcibly update the code: this is a special case */ 760 force_unoptimize_kprobe(op); 761 } else { 762 list_add(&op->list, &unoptimizing_list); 763 kick_kprobe_optimizer(); 764 } 765 } 766 767 /* Cancel unoptimizing for reusing */ 768 static int reuse_unused_kprobe(struct kprobe *ap) 769 { 770 struct optimized_kprobe *op; 771 772 /* 773 * Unused kprobe MUST be on the way of delayed unoptimizing (means 774 * there is still a relative jump) and disabled. 775 */ 776 op = container_of(ap, struct optimized_kprobe, kp); 777 WARN_ON_ONCE(list_empty(&op->list)); 778 /* Enable the probe again */ 779 ap->flags &= ~KPROBE_FLAG_DISABLED; 780 /* Optimize it again. (remove from 'op->list') */ 781 if (!kprobe_optready(ap)) 782 return -EINVAL; 783 784 optimize_kprobe(ap); 785 return 0; 786 } 787 788 /* Remove optimized instructions */ 789 static void kill_optimized_kprobe(struct kprobe *p) 790 { 791 struct optimized_kprobe *op; 792 793 op = container_of(p, struct optimized_kprobe, kp); 794 if (!list_empty(&op->list)) 795 /* Dequeue from the (un)optimization queue */ 796 list_del_init(&op->list); 797 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 798 799 if (kprobe_unused(p)) { 800 /* Enqueue if it is unused */ 801 list_add(&op->list, &freeing_list); 802 /* 803 * Remove unused probes from the hash list. After waiting 804 * for synchronization, this probe is reclaimed. 805 * (reclaiming is done by do_free_cleaned_kprobes().) 806 */ 807 hlist_del_rcu(&op->kp.hlist); 808 } 809 810 /* Don't touch the code, because it is already freed. */ 811 arch_remove_optimized_kprobe(op); 812 } 813 814 static inline 815 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) 816 { 817 if (!kprobe_ftrace(p)) 818 arch_prepare_optimized_kprobe(op, p); 819 } 820 821 /* Try to prepare optimized instructions */ 822 static void prepare_optimized_kprobe(struct kprobe *p) 823 { 824 struct optimized_kprobe *op; 825 826 op = container_of(p, struct optimized_kprobe, kp); 827 __prepare_optimized_kprobe(op, p); 828 } 829 830 /* Allocate new optimized_kprobe and try to prepare optimized instructions. */ 831 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 832 { 833 struct optimized_kprobe *op; 834 835 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 836 if (!op) 837 return NULL; 838 839 INIT_LIST_HEAD(&op->list); 840 op->kp.addr = p->addr; 841 __prepare_optimized_kprobe(op, p); 842 843 return &op->kp; 844 } 845 846 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 847 848 /* 849 * Prepare an optimized_kprobe and optimize it. 850 * NOTE: 'p' must be a normal registered kprobe. 851 */ 852 static void try_to_optimize_kprobe(struct kprobe *p) 853 { 854 struct kprobe *ap; 855 struct optimized_kprobe *op; 856 857 /* Impossible to optimize ftrace-based kprobe. */ 858 if (kprobe_ftrace(p)) 859 return; 860 861 /* For preparing optimization, jump_label_text_reserved() is called. */ 862 cpus_read_lock(); 863 jump_label_lock(); 864 mutex_lock(&text_mutex); 865 866 ap = alloc_aggr_kprobe(p); 867 if (!ap) 868 goto out; 869 870 op = container_of(ap, struct optimized_kprobe, kp); 871 if (!arch_prepared_optinsn(&op->optinsn)) { 872 /* If failed to setup optimizing, fallback to kprobe. */ 873 arch_remove_optimized_kprobe(op); 874 kfree(op); 875 goto out; 876 } 877 878 init_aggr_kprobe(ap, p); 879 optimize_kprobe(ap); /* This just kicks optimizer thread. */ 880 881 out: 882 mutex_unlock(&text_mutex); 883 jump_label_unlock(); 884 cpus_read_unlock(); 885 } 886 887 static void optimize_all_kprobes(void) 888 { 889 struct hlist_head *head; 890 struct kprobe *p; 891 unsigned int i; 892 893 mutex_lock(&kprobe_mutex); 894 /* If optimization is already allowed, just return. */ 895 if (kprobes_allow_optimization) 896 goto out; 897 898 cpus_read_lock(); 899 kprobes_allow_optimization = true; 900 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 901 head = &kprobe_table[i]; 902 hlist_for_each_entry(p, head, hlist) 903 if (!kprobe_disabled(p)) 904 optimize_kprobe(p); 905 } 906 cpus_read_unlock(); 907 pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n"); 908 out: 909 mutex_unlock(&kprobe_mutex); 910 } 911 912 #ifdef CONFIG_SYSCTL 913 static void unoptimize_all_kprobes(void) 914 { 915 struct hlist_head *head; 916 struct kprobe *p; 917 unsigned int i; 918 919 mutex_lock(&kprobe_mutex); 920 /* If optimization is already prohibited, just return. */ 921 if (!kprobes_allow_optimization) { 922 mutex_unlock(&kprobe_mutex); 923 return; 924 } 925 926 cpus_read_lock(); 927 kprobes_allow_optimization = false; 928 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 929 head = &kprobe_table[i]; 930 hlist_for_each_entry(p, head, hlist) { 931 if (!kprobe_disabled(p)) 932 unoptimize_kprobe(p, false); 933 } 934 } 935 cpus_read_unlock(); 936 mutex_unlock(&kprobe_mutex); 937 938 /* Wait for unoptimizing completion. */ 939 wait_for_kprobe_optimizer(); 940 pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n"); 941 } 942 943 static DEFINE_MUTEX(kprobe_sysctl_mutex); 944 static int sysctl_kprobes_optimization; 945 static int proc_kprobes_optimization_handler(struct ctl_table *table, 946 int write, void *buffer, 947 size_t *length, loff_t *ppos) 948 { 949 int ret; 950 951 mutex_lock(&kprobe_sysctl_mutex); 952 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 953 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 954 955 if (sysctl_kprobes_optimization) 956 optimize_all_kprobes(); 957 else 958 unoptimize_all_kprobes(); 959 mutex_unlock(&kprobe_sysctl_mutex); 960 961 return ret; 962 } 963 964 static struct ctl_table kprobe_sysctls[] = { 965 { 966 .procname = "kprobes-optimization", 967 .data = &sysctl_kprobes_optimization, 968 .maxlen = sizeof(int), 969 .mode = 0644, 970 .proc_handler = proc_kprobes_optimization_handler, 971 .extra1 = SYSCTL_ZERO, 972 .extra2 = SYSCTL_ONE, 973 }, 974 {} 975 }; 976 977 static void __init kprobe_sysctls_init(void) 978 { 979 register_sysctl_init("debug", kprobe_sysctls); 980 } 981 #endif /* CONFIG_SYSCTL */ 982 983 /* Put a breakpoint for a probe. */ 984 static void __arm_kprobe(struct kprobe *p) 985 { 986 struct kprobe *_p; 987 988 lockdep_assert_held(&text_mutex); 989 990 /* Find the overlapping optimized kprobes. */ 991 _p = get_optimized_kprobe(p->addr); 992 if (unlikely(_p)) 993 /* Fallback to unoptimized kprobe */ 994 unoptimize_kprobe(_p, true); 995 996 arch_arm_kprobe(p); 997 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 998 } 999 1000 /* Remove the breakpoint of a probe. */ 1001 static void __disarm_kprobe(struct kprobe *p, bool reopt) 1002 { 1003 struct kprobe *_p; 1004 1005 lockdep_assert_held(&text_mutex); 1006 1007 /* Try to unoptimize */ 1008 unoptimize_kprobe(p, kprobes_all_disarmed); 1009 1010 if (!kprobe_queued(p)) { 1011 arch_disarm_kprobe(p); 1012 /* If another kprobe was blocked, re-optimize it. */ 1013 _p = get_optimized_kprobe(p->addr); 1014 if (unlikely(_p) && reopt) 1015 optimize_kprobe(_p); 1016 } 1017 /* 1018 * TODO: Since unoptimization and real disarming will be done by 1019 * the worker thread, we can not check whether another probe are 1020 * unoptimized because of this probe here. It should be re-optimized 1021 * by the worker thread. 1022 */ 1023 } 1024 1025 #else /* !CONFIG_OPTPROBES */ 1026 1027 #define optimize_kprobe(p) do {} while (0) 1028 #define unoptimize_kprobe(p, f) do {} while (0) 1029 #define kill_optimized_kprobe(p) do {} while (0) 1030 #define prepare_optimized_kprobe(p) do {} while (0) 1031 #define try_to_optimize_kprobe(p) do {} while (0) 1032 #define __arm_kprobe(p) arch_arm_kprobe(p) 1033 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 1034 #define kprobe_disarmed(p) kprobe_disabled(p) 1035 #define wait_for_kprobe_optimizer() do {} while (0) 1036 1037 static int reuse_unused_kprobe(struct kprobe *ap) 1038 { 1039 /* 1040 * If the optimized kprobe is NOT supported, the aggr kprobe is 1041 * released at the same time that the last aggregated kprobe is 1042 * unregistered. 1043 * Thus there should be no chance to reuse unused kprobe. 1044 */ 1045 WARN_ON_ONCE(1); 1046 return -EINVAL; 1047 } 1048 1049 static void free_aggr_kprobe(struct kprobe *p) 1050 { 1051 arch_remove_kprobe(p); 1052 kfree(p); 1053 } 1054 1055 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 1056 { 1057 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 1058 } 1059 #endif /* CONFIG_OPTPROBES */ 1060 1061 #ifdef CONFIG_KPROBES_ON_FTRACE 1062 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 1063 .func = kprobe_ftrace_handler, 1064 .flags = FTRACE_OPS_FL_SAVE_REGS, 1065 }; 1066 1067 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = { 1068 .func = kprobe_ftrace_handler, 1069 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 1070 }; 1071 1072 static int kprobe_ipmodify_enabled; 1073 static int kprobe_ftrace_enabled; 1074 1075 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1076 int *cnt) 1077 { 1078 int ret = 0; 1079 1080 lockdep_assert_held(&kprobe_mutex); 1081 1082 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0); 1083 if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret)) 1084 return ret; 1085 1086 if (*cnt == 0) { 1087 ret = register_ftrace_function(ops); 1088 if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret)) 1089 goto err_ftrace; 1090 } 1091 1092 (*cnt)++; 1093 return ret; 1094 1095 err_ftrace: 1096 /* 1097 * At this point, sinec ops is not registered, we should be sefe from 1098 * registering empty filter. 1099 */ 1100 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1101 return ret; 1102 } 1103 1104 static int arm_kprobe_ftrace(struct kprobe *p) 1105 { 1106 bool ipmodify = (p->post_handler != NULL); 1107 1108 return __arm_kprobe_ftrace(p, 1109 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1110 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1111 } 1112 1113 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1114 int *cnt) 1115 { 1116 int ret = 0; 1117 1118 lockdep_assert_held(&kprobe_mutex); 1119 1120 if (*cnt == 1) { 1121 ret = unregister_ftrace_function(ops); 1122 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret)) 1123 return ret; 1124 } 1125 1126 (*cnt)--; 1127 1128 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1129 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n", 1130 p->addr, ret); 1131 return ret; 1132 } 1133 1134 static int disarm_kprobe_ftrace(struct kprobe *p) 1135 { 1136 bool ipmodify = (p->post_handler != NULL); 1137 1138 return __disarm_kprobe_ftrace(p, 1139 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1140 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1141 } 1142 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1143 static inline int arm_kprobe_ftrace(struct kprobe *p) 1144 { 1145 return -ENODEV; 1146 } 1147 1148 static inline int disarm_kprobe_ftrace(struct kprobe *p) 1149 { 1150 return -ENODEV; 1151 } 1152 #endif 1153 1154 static int prepare_kprobe(struct kprobe *p) 1155 { 1156 /* Must ensure p->addr is really on ftrace */ 1157 if (kprobe_ftrace(p)) 1158 return arch_prepare_kprobe_ftrace(p); 1159 1160 return arch_prepare_kprobe(p); 1161 } 1162 1163 static int arm_kprobe(struct kprobe *kp) 1164 { 1165 if (unlikely(kprobe_ftrace(kp))) 1166 return arm_kprobe_ftrace(kp); 1167 1168 cpus_read_lock(); 1169 mutex_lock(&text_mutex); 1170 __arm_kprobe(kp); 1171 mutex_unlock(&text_mutex); 1172 cpus_read_unlock(); 1173 1174 return 0; 1175 } 1176 1177 static int disarm_kprobe(struct kprobe *kp, bool reopt) 1178 { 1179 if (unlikely(kprobe_ftrace(kp))) 1180 return disarm_kprobe_ftrace(kp); 1181 1182 cpus_read_lock(); 1183 mutex_lock(&text_mutex); 1184 __disarm_kprobe(kp, reopt); 1185 mutex_unlock(&text_mutex); 1186 cpus_read_unlock(); 1187 1188 return 0; 1189 } 1190 1191 /* 1192 * Aggregate handlers for multiple kprobes support - these handlers 1193 * take care of invoking the individual kprobe handlers on p->list 1194 */ 1195 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1196 { 1197 struct kprobe *kp; 1198 1199 list_for_each_entry_rcu(kp, &p->list, list) { 1200 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1201 set_kprobe_instance(kp); 1202 if (kp->pre_handler(kp, regs)) 1203 return 1; 1204 } 1205 reset_kprobe_instance(); 1206 } 1207 return 0; 1208 } 1209 NOKPROBE_SYMBOL(aggr_pre_handler); 1210 1211 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1212 unsigned long flags) 1213 { 1214 struct kprobe *kp; 1215 1216 list_for_each_entry_rcu(kp, &p->list, list) { 1217 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1218 set_kprobe_instance(kp); 1219 kp->post_handler(kp, regs, flags); 1220 reset_kprobe_instance(); 1221 } 1222 } 1223 } 1224 NOKPROBE_SYMBOL(aggr_post_handler); 1225 1226 /* Walks the list and increments 'nmissed' if 'p' has child probes. */ 1227 void kprobes_inc_nmissed_count(struct kprobe *p) 1228 { 1229 struct kprobe *kp; 1230 1231 if (!kprobe_aggrprobe(p)) { 1232 p->nmissed++; 1233 } else { 1234 list_for_each_entry_rcu(kp, &p->list, list) 1235 kp->nmissed++; 1236 } 1237 } 1238 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1239 1240 static struct kprobe kprobe_busy = { 1241 .addr = (void *) get_kprobe, 1242 }; 1243 1244 void kprobe_busy_begin(void) 1245 { 1246 struct kprobe_ctlblk *kcb; 1247 1248 preempt_disable(); 1249 __this_cpu_write(current_kprobe, &kprobe_busy); 1250 kcb = get_kprobe_ctlblk(); 1251 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 1252 } 1253 1254 void kprobe_busy_end(void) 1255 { 1256 __this_cpu_write(current_kprobe, NULL); 1257 preempt_enable(); 1258 } 1259 1260 /* Add the new probe to 'ap->list'. */ 1261 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1262 { 1263 if (p->post_handler) 1264 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1265 1266 list_add_rcu(&p->list, &ap->list); 1267 if (p->post_handler && !ap->post_handler) 1268 ap->post_handler = aggr_post_handler; 1269 1270 return 0; 1271 } 1272 1273 /* 1274 * Fill in the required fields of the aggregator kprobe. Replace the 1275 * earlier kprobe in the hlist with the aggregator kprobe. 1276 */ 1277 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1278 { 1279 /* Copy the insn slot of 'p' to 'ap'. */ 1280 copy_kprobe(p, ap); 1281 flush_insn_slot(ap); 1282 ap->addr = p->addr; 1283 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1284 ap->pre_handler = aggr_pre_handler; 1285 /* We don't care the kprobe which has gone. */ 1286 if (p->post_handler && !kprobe_gone(p)) 1287 ap->post_handler = aggr_post_handler; 1288 1289 INIT_LIST_HEAD(&ap->list); 1290 INIT_HLIST_NODE(&ap->hlist); 1291 1292 list_add_rcu(&p->list, &ap->list); 1293 hlist_replace_rcu(&p->hlist, &ap->hlist); 1294 } 1295 1296 /* 1297 * This registers the second or subsequent kprobe at the same address. 1298 */ 1299 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1300 { 1301 int ret = 0; 1302 struct kprobe *ap = orig_p; 1303 1304 cpus_read_lock(); 1305 1306 /* For preparing optimization, jump_label_text_reserved() is called */ 1307 jump_label_lock(); 1308 mutex_lock(&text_mutex); 1309 1310 if (!kprobe_aggrprobe(orig_p)) { 1311 /* If 'orig_p' is not an 'aggr_kprobe', create new one. */ 1312 ap = alloc_aggr_kprobe(orig_p); 1313 if (!ap) { 1314 ret = -ENOMEM; 1315 goto out; 1316 } 1317 init_aggr_kprobe(ap, orig_p); 1318 } else if (kprobe_unused(ap)) { 1319 /* This probe is going to die. Rescue it */ 1320 ret = reuse_unused_kprobe(ap); 1321 if (ret) 1322 goto out; 1323 } 1324 1325 if (kprobe_gone(ap)) { 1326 /* 1327 * Attempting to insert new probe at the same location that 1328 * had a probe in the module vaddr area which already 1329 * freed. So, the instruction slot has already been 1330 * released. We need a new slot for the new probe. 1331 */ 1332 ret = arch_prepare_kprobe(ap); 1333 if (ret) 1334 /* 1335 * Even if fail to allocate new slot, don't need to 1336 * free the 'ap'. It will be used next time, or 1337 * freed by unregister_kprobe(). 1338 */ 1339 goto out; 1340 1341 /* Prepare optimized instructions if possible. */ 1342 prepare_optimized_kprobe(ap); 1343 1344 /* 1345 * Clear gone flag to prevent allocating new slot again, and 1346 * set disabled flag because it is not armed yet. 1347 */ 1348 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1349 | KPROBE_FLAG_DISABLED; 1350 } 1351 1352 /* Copy the insn slot of 'p' to 'ap'. */ 1353 copy_kprobe(ap, p); 1354 ret = add_new_kprobe(ap, p); 1355 1356 out: 1357 mutex_unlock(&text_mutex); 1358 jump_label_unlock(); 1359 cpus_read_unlock(); 1360 1361 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1362 ap->flags &= ~KPROBE_FLAG_DISABLED; 1363 if (!kprobes_all_disarmed) { 1364 /* Arm the breakpoint again. */ 1365 ret = arm_kprobe(ap); 1366 if (ret) { 1367 ap->flags |= KPROBE_FLAG_DISABLED; 1368 list_del_rcu(&p->list); 1369 synchronize_rcu(); 1370 } 1371 } 1372 } 1373 return ret; 1374 } 1375 1376 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1377 { 1378 /* The '__kprobes' functions and entry code must not be probed. */ 1379 return addr >= (unsigned long)__kprobes_text_start && 1380 addr < (unsigned long)__kprobes_text_end; 1381 } 1382 1383 static bool __within_kprobe_blacklist(unsigned long addr) 1384 { 1385 struct kprobe_blacklist_entry *ent; 1386 1387 if (arch_within_kprobe_blacklist(addr)) 1388 return true; 1389 /* 1390 * If 'kprobe_blacklist' is defined, check the address and 1391 * reject any probe registration in the prohibited area. 1392 */ 1393 list_for_each_entry(ent, &kprobe_blacklist, list) { 1394 if (addr >= ent->start_addr && addr < ent->end_addr) 1395 return true; 1396 } 1397 return false; 1398 } 1399 1400 bool within_kprobe_blacklist(unsigned long addr) 1401 { 1402 char symname[KSYM_NAME_LEN], *p; 1403 1404 if (__within_kprobe_blacklist(addr)) 1405 return true; 1406 1407 /* Check if the address is on a suffixed-symbol */ 1408 if (!lookup_symbol_name(addr, symname)) { 1409 p = strchr(symname, '.'); 1410 if (!p) 1411 return false; 1412 *p = '\0'; 1413 addr = (unsigned long)kprobe_lookup_name(symname, 0); 1414 if (addr) 1415 return __within_kprobe_blacklist(addr); 1416 } 1417 return false; 1418 } 1419 1420 /* 1421 * arch_adjust_kprobe_addr - adjust the address 1422 * @addr: symbol base address 1423 * @offset: offset within the symbol 1424 * @on_func_entry: was this @addr+@offset on the function entry 1425 * 1426 * Typically returns @addr + @offset, except for special cases where the 1427 * function might be prefixed by a CFI landing pad, in that case any offset 1428 * inside the landing pad is mapped to the first 'real' instruction of the 1429 * symbol. 1430 * 1431 * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C 1432 * instruction at +0. 1433 */ 1434 kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr, 1435 unsigned long offset, 1436 bool *on_func_entry) 1437 { 1438 *on_func_entry = !offset; 1439 return (kprobe_opcode_t *)(addr + offset); 1440 } 1441 1442 /* 1443 * If 'symbol_name' is specified, look it up and add the 'offset' 1444 * to it. This way, we can specify a relative address to a symbol. 1445 * This returns encoded errors if it fails to look up symbol or invalid 1446 * combination of parameters. 1447 */ 1448 static kprobe_opcode_t * 1449 _kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name, 1450 unsigned long offset, bool *on_func_entry) 1451 { 1452 if ((symbol_name && addr) || (!symbol_name && !addr)) 1453 goto invalid; 1454 1455 if (symbol_name) { 1456 /* 1457 * Input: @sym + @offset 1458 * Output: @addr + @offset 1459 * 1460 * NOTE: kprobe_lookup_name() does *NOT* fold the offset 1461 * argument into it's output! 1462 */ 1463 addr = kprobe_lookup_name(symbol_name, offset); 1464 if (!addr) 1465 return ERR_PTR(-ENOENT); 1466 } 1467 1468 /* 1469 * So here we have @addr + @offset, displace it into a new 1470 * @addr' + @offset' where @addr' is the symbol start address. 1471 */ 1472 addr = (void *)addr + offset; 1473 if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset)) 1474 return ERR_PTR(-ENOENT); 1475 addr = (void *)addr - offset; 1476 1477 /* 1478 * Then ask the architecture to re-combine them, taking care of 1479 * magical function entry details while telling us if this was indeed 1480 * at the start of the function. 1481 */ 1482 addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry); 1483 if (addr) 1484 return addr; 1485 1486 invalid: 1487 return ERR_PTR(-EINVAL); 1488 } 1489 1490 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1491 { 1492 bool on_func_entry; 1493 return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry); 1494 } 1495 1496 /* 1497 * Check the 'p' is valid and return the aggregator kprobe 1498 * at the same address. 1499 */ 1500 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1501 { 1502 struct kprobe *ap, *list_p; 1503 1504 lockdep_assert_held(&kprobe_mutex); 1505 1506 ap = get_kprobe(p->addr); 1507 if (unlikely(!ap)) 1508 return NULL; 1509 1510 if (p != ap) { 1511 list_for_each_entry(list_p, &ap->list, list) 1512 if (list_p == p) 1513 /* kprobe p is a valid probe */ 1514 goto valid; 1515 return NULL; 1516 } 1517 valid: 1518 return ap; 1519 } 1520 1521 /* 1522 * Warn and return error if the kprobe is being re-registered since 1523 * there must be a software bug. 1524 */ 1525 static inline int warn_kprobe_rereg(struct kprobe *p) 1526 { 1527 int ret = 0; 1528 1529 mutex_lock(&kprobe_mutex); 1530 if (WARN_ON_ONCE(__get_valid_kprobe(p))) 1531 ret = -EINVAL; 1532 mutex_unlock(&kprobe_mutex); 1533 1534 return ret; 1535 } 1536 1537 static int check_ftrace_location(struct kprobe *p) 1538 { 1539 unsigned long addr = (unsigned long)p->addr; 1540 1541 if (ftrace_location(addr) == addr) { 1542 #ifdef CONFIG_KPROBES_ON_FTRACE 1543 p->flags |= KPROBE_FLAG_FTRACE; 1544 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1545 return -EINVAL; 1546 #endif 1547 } 1548 return 0; 1549 } 1550 1551 static int check_kprobe_address_safe(struct kprobe *p, 1552 struct module **probed_mod) 1553 { 1554 int ret; 1555 1556 ret = check_ftrace_location(p); 1557 if (ret) 1558 return ret; 1559 jump_label_lock(); 1560 preempt_disable(); 1561 1562 /* Ensure it is not in reserved area nor out of text */ 1563 if (!(core_kernel_text((unsigned long) p->addr) || 1564 is_module_text_address((unsigned long) p->addr)) || 1565 in_gate_area_no_mm((unsigned long) p->addr) || 1566 within_kprobe_blacklist((unsigned long) p->addr) || 1567 jump_label_text_reserved(p->addr, p->addr) || 1568 static_call_text_reserved(p->addr, p->addr) || 1569 find_bug((unsigned long)p->addr)) { 1570 ret = -EINVAL; 1571 goto out; 1572 } 1573 1574 /* Check if 'p' is probing a module. */ 1575 *probed_mod = __module_text_address((unsigned long) p->addr); 1576 if (*probed_mod) { 1577 /* 1578 * We must hold a refcount of the probed module while updating 1579 * its code to prohibit unexpected unloading. 1580 */ 1581 if (unlikely(!try_module_get(*probed_mod))) { 1582 ret = -ENOENT; 1583 goto out; 1584 } 1585 1586 /* 1587 * If the module freed '.init.text', we couldn't insert 1588 * kprobes in there. 1589 */ 1590 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1591 (*probed_mod)->state != MODULE_STATE_COMING) { 1592 module_put(*probed_mod); 1593 *probed_mod = NULL; 1594 ret = -ENOENT; 1595 } 1596 } 1597 out: 1598 preempt_enable(); 1599 jump_label_unlock(); 1600 1601 return ret; 1602 } 1603 1604 int register_kprobe(struct kprobe *p) 1605 { 1606 int ret; 1607 struct kprobe *old_p; 1608 struct module *probed_mod; 1609 kprobe_opcode_t *addr; 1610 bool on_func_entry; 1611 1612 /* Adjust probe address from symbol */ 1613 addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry); 1614 if (IS_ERR(addr)) 1615 return PTR_ERR(addr); 1616 p->addr = addr; 1617 1618 ret = warn_kprobe_rereg(p); 1619 if (ret) 1620 return ret; 1621 1622 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1623 p->flags &= KPROBE_FLAG_DISABLED; 1624 p->nmissed = 0; 1625 INIT_LIST_HEAD(&p->list); 1626 1627 ret = check_kprobe_address_safe(p, &probed_mod); 1628 if (ret) 1629 return ret; 1630 1631 mutex_lock(&kprobe_mutex); 1632 1633 if (on_func_entry) 1634 p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY; 1635 1636 old_p = get_kprobe(p->addr); 1637 if (old_p) { 1638 /* Since this may unoptimize 'old_p', locking 'text_mutex'. */ 1639 ret = register_aggr_kprobe(old_p, p); 1640 goto out; 1641 } 1642 1643 cpus_read_lock(); 1644 /* Prevent text modification */ 1645 mutex_lock(&text_mutex); 1646 ret = prepare_kprobe(p); 1647 mutex_unlock(&text_mutex); 1648 cpus_read_unlock(); 1649 if (ret) 1650 goto out; 1651 1652 INIT_HLIST_NODE(&p->hlist); 1653 hlist_add_head_rcu(&p->hlist, 1654 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1655 1656 if (!kprobes_all_disarmed && !kprobe_disabled(p)) { 1657 ret = arm_kprobe(p); 1658 if (ret) { 1659 hlist_del_rcu(&p->hlist); 1660 synchronize_rcu(); 1661 goto out; 1662 } 1663 } 1664 1665 /* Try to optimize kprobe */ 1666 try_to_optimize_kprobe(p); 1667 out: 1668 mutex_unlock(&kprobe_mutex); 1669 1670 if (probed_mod) 1671 module_put(probed_mod); 1672 1673 return ret; 1674 } 1675 EXPORT_SYMBOL_GPL(register_kprobe); 1676 1677 /* Check if all probes on the 'ap' are disabled. */ 1678 static bool aggr_kprobe_disabled(struct kprobe *ap) 1679 { 1680 struct kprobe *kp; 1681 1682 lockdep_assert_held(&kprobe_mutex); 1683 1684 list_for_each_entry(kp, &ap->list, list) 1685 if (!kprobe_disabled(kp)) 1686 /* 1687 * Since there is an active probe on the list, 1688 * we can't disable this 'ap'. 1689 */ 1690 return false; 1691 1692 return true; 1693 } 1694 1695 static struct kprobe *__disable_kprobe(struct kprobe *p) 1696 { 1697 struct kprobe *orig_p; 1698 int ret; 1699 1700 lockdep_assert_held(&kprobe_mutex); 1701 1702 /* Get an original kprobe for return */ 1703 orig_p = __get_valid_kprobe(p); 1704 if (unlikely(orig_p == NULL)) 1705 return ERR_PTR(-EINVAL); 1706 1707 if (!kprobe_disabled(p)) { 1708 /* Disable probe if it is a child probe */ 1709 if (p != orig_p) 1710 p->flags |= KPROBE_FLAG_DISABLED; 1711 1712 /* Try to disarm and disable this/parent probe */ 1713 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1714 /* 1715 * Don't be lazy here. Even if 'kprobes_all_disarmed' 1716 * is false, 'orig_p' might not have been armed yet. 1717 * Note arm_all_kprobes() __tries__ to arm all kprobes 1718 * on the best effort basis. 1719 */ 1720 if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) { 1721 ret = disarm_kprobe(orig_p, true); 1722 if (ret) { 1723 p->flags &= ~KPROBE_FLAG_DISABLED; 1724 return ERR_PTR(ret); 1725 } 1726 } 1727 orig_p->flags |= KPROBE_FLAG_DISABLED; 1728 } 1729 } 1730 1731 return orig_p; 1732 } 1733 1734 /* 1735 * Unregister a kprobe without a scheduler synchronization. 1736 */ 1737 static int __unregister_kprobe_top(struct kprobe *p) 1738 { 1739 struct kprobe *ap, *list_p; 1740 1741 /* Disable kprobe. This will disarm it if needed. */ 1742 ap = __disable_kprobe(p); 1743 if (IS_ERR(ap)) 1744 return PTR_ERR(ap); 1745 1746 if (ap == p) 1747 /* 1748 * This probe is an independent(and non-optimized) kprobe 1749 * (not an aggrprobe). Remove from the hash list. 1750 */ 1751 goto disarmed; 1752 1753 /* Following process expects this probe is an aggrprobe */ 1754 WARN_ON(!kprobe_aggrprobe(ap)); 1755 1756 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1757 /* 1758 * !disarmed could be happen if the probe is under delayed 1759 * unoptimizing. 1760 */ 1761 goto disarmed; 1762 else { 1763 /* If disabling probe has special handlers, update aggrprobe */ 1764 if (p->post_handler && !kprobe_gone(p)) { 1765 list_for_each_entry(list_p, &ap->list, list) { 1766 if ((list_p != p) && (list_p->post_handler)) 1767 goto noclean; 1768 } 1769 /* 1770 * For the kprobe-on-ftrace case, we keep the 1771 * post_handler setting to identify this aggrprobe 1772 * armed with kprobe_ipmodify_ops. 1773 */ 1774 if (!kprobe_ftrace(ap)) 1775 ap->post_handler = NULL; 1776 } 1777 noclean: 1778 /* 1779 * Remove from the aggrprobe: this path will do nothing in 1780 * __unregister_kprobe_bottom(). 1781 */ 1782 list_del_rcu(&p->list); 1783 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1784 /* 1785 * Try to optimize this probe again, because post 1786 * handler may have been changed. 1787 */ 1788 optimize_kprobe(ap); 1789 } 1790 return 0; 1791 1792 disarmed: 1793 hlist_del_rcu(&ap->hlist); 1794 return 0; 1795 } 1796 1797 static void __unregister_kprobe_bottom(struct kprobe *p) 1798 { 1799 struct kprobe *ap; 1800 1801 if (list_empty(&p->list)) 1802 /* This is an independent kprobe */ 1803 arch_remove_kprobe(p); 1804 else if (list_is_singular(&p->list)) { 1805 /* This is the last child of an aggrprobe */ 1806 ap = list_entry(p->list.next, struct kprobe, list); 1807 list_del(&p->list); 1808 free_aggr_kprobe(ap); 1809 } 1810 /* Otherwise, do nothing. */ 1811 } 1812 1813 int register_kprobes(struct kprobe **kps, int num) 1814 { 1815 int i, ret = 0; 1816 1817 if (num <= 0) 1818 return -EINVAL; 1819 for (i = 0; i < num; i++) { 1820 ret = register_kprobe(kps[i]); 1821 if (ret < 0) { 1822 if (i > 0) 1823 unregister_kprobes(kps, i); 1824 break; 1825 } 1826 } 1827 return ret; 1828 } 1829 EXPORT_SYMBOL_GPL(register_kprobes); 1830 1831 void unregister_kprobe(struct kprobe *p) 1832 { 1833 unregister_kprobes(&p, 1); 1834 } 1835 EXPORT_SYMBOL_GPL(unregister_kprobe); 1836 1837 void unregister_kprobes(struct kprobe **kps, int num) 1838 { 1839 int i; 1840 1841 if (num <= 0) 1842 return; 1843 mutex_lock(&kprobe_mutex); 1844 for (i = 0; i < num; i++) 1845 if (__unregister_kprobe_top(kps[i]) < 0) 1846 kps[i]->addr = NULL; 1847 mutex_unlock(&kprobe_mutex); 1848 1849 synchronize_rcu(); 1850 for (i = 0; i < num; i++) 1851 if (kps[i]->addr) 1852 __unregister_kprobe_bottom(kps[i]); 1853 } 1854 EXPORT_SYMBOL_GPL(unregister_kprobes); 1855 1856 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1857 unsigned long val, void *data) 1858 { 1859 return NOTIFY_DONE; 1860 } 1861 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1862 1863 static struct notifier_block kprobe_exceptions_nb = { 1864 .notifier_call = kprobe_exceptions_notify, 1865 .priority = 0x7fffffff /* we need to be notified first */ 1866 }; 1867 1868 #ifdef CONFIG_KRETPROBES 1869 1870 #if !defined(CONFIG_KRETPROBE_ON_RETHOOK) 1871 static void free_rp_inst_rcu(struct rcu_head *head) 1872 { 1873 struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu); 1874 1875 if (refcount_dec_and_test(&ri->rph->ref)) 1876 kfree(ri->rph); 1877 kfree(ri); 1878 } 1879 NOKPROBE_SYMBOL(free_rp_inst_rcu); 1880 1881 static void recycle_rp_inst(struct kretprobe_instance *ri) 1882 { 1883 struct kretprobe *rp = get_kretprobe(ri); 1884 1885 if (likely(rp)) 1886 freelist_add(&ri->freelist, &rp->freelist); 1887 else 1888 call_rcu(&ri->rcu, free_rp_inst_rcu); 1889 } 1890 NOKPROBE_SYMBOL(recycle_rp_inst); 1891 1892 /* 1893 * This function is called from delayed_put_task_struct() when a task is 1894 * dead and cleaned up to recycle any kretprobe instances associated with 1895 * this task. These left over instances represent probed functions that 1896 * have been called but will never return. 1897 */ 1898 void kprobe_flush_task(struct task_struct *tk) 1899 { 1900 struct kretprobe_instance *ri; 1901 struct llist_node *node; 1902 1903 /* Early boot, not yet initialized. */ 1904 if (unlikely(!kprobes_initialized)) 1905 return; 1906 1907 kprobe_busy_begin(); 1908 1909 node = __llist_del_all(&tk->kretprobe_instances); 1910 while (node) { 1911 ri = container_of(node, struct kretprobe_instance, llist); 1912 node = node->next; 1913 1914 recycle_rp_inst(ri); 1915 } 1916 1917 kprobe_busy_end(); 1918 } 1919 NOKPROBE_SYMBOL(kprobe_flush_task); 1920 1921 static inline void free_rp_inst(struct kretprobe *rp) 1922 { 1923 struct kretprobe_instance *ri; 1924 struct freelist_node *node; 1925 int count = 0; 1926 1927 node = rp->freelist.head; 1928 while (node) { 1929 ri = container_of(node, struct kretprobe_instance, freelist); 1930 node = node->next; 1931 1932 kfree(ri); 1933 count++; 1934 } 1935 1936 if (refcount_sub_and_test(count, &rp->rph->ref)) { 1937 kfree(rp->rph); 1938 rp->rph = NULL; 1939 } 1940 } 1941 1942 /* This assumes the 'tsk' is the current task or the is not running. */ 1943 static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk, 1944 struct llist_node **cur) 1945 { 1946 struct kretprobe_instance *ri = NULL; 1947 struct llist_node *node = *cur; 1948 1949 if (!node) 1950 node = tsk->kretprobe_instances.first; 1951 else 1952 node = node->next; 1953 1954 while (node) { 1955 ri = container_of(node, struct kretprobe_instance, llist); 1956 if (ri->ret_addr != kretprobe_trampoline_addr()) { 1957 *cur = node; 1958 return ri->ret_addr; 1959 } 1960 node = node->next; 1961 } 1962 return NULL; 1963 } 1964 NOKPROBE_SYMBOL(__kretprobe_find_ret_addr); 1965 1966 /** 1967 * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe 1968 * @tsk: Target task 1969 * @fp: A frame pointer 1970 * @cur: a storage of the loop cursor llist_node pointer for next call 1971 * 1972 * Find the correct return address modified by a kretprobe on @tsk in unsigned 1973 * long type. If it finds the return address, this returns that address value, 1974 * or this returns 0. 1975 * The @tsk must be 'current' or a task which is not running. @fp is a hint 1976 * to get the currect return address - which is compared with the 1977 * kretprobe_instance::fp field. The @cur is a loop cursor for searching the 1978 * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the 1979 * first call, but '@cur' itself must NOT NULL. 1980 */ 1981 unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp, 1982 struct llist_node **cur) 1983 { 1984 struct kretprobe_instance *ri = NULL; 1985 kprobe_opcode_t *ret; 1986 1987 if (WARN_ON_ONCE(!cur)) 1988 return 0; 1989 1990 do { 1991 ret = __kretprobe_find_ret_addr(tsk, cur); 1992 if (!ret) 1993 break; 1994 ri = container_of(*cur, struct kretprobe_instance, llist); 1995 } while (ri->fp != fp); 1996 1997 return (unsigned long)ret; 1998 } 1999 NOKPROBE_SYMBOL(kretprobe_find_ret_addr); 2000 2001 void __weak arch_kretprobe_fixup_return(struct pt_regs *regs, 2002 kprobe_opcode_t *correct_ret_addr) 2003 { 2004 /* 2005 * Do nothing by default. Please fill this to update the fake return 2006 * address on the stack with the correct one on each arch if possible. 2007 */ 2008 } 2009 2010 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs, 2011 void *frame_pointer) 2012 { 2013 kprobe_opcode_t *correct_ret_addr = NULL; 2014 struct kretprobe_instance *ri = NULL; 2015 struct llist_node *first, *node = NULL; 2016 struct kretprobe *rp; 2017 2018 /* Find correct address and all nodes for this frame. */ 2019 correct_ret_addr = __kretprobe_find_ret_addr(current, &node); 2020 if (!correct_ret_addr) { 2021 pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n"); 2022 BUG_ON(1); 2023 } 2024 2025 /* 2026 * Set the return address as the instruction pointer, because if the 2027 * user handler calls stack_trace_save_regs() with this 'regs', 2028 * the stack trace will start from the instruction pointer. 2029 */ 2030 instruction_pointer_set(regs, (unsigned long)correct_ret_addr); 2031 2032 /* Run the user handler of the nodes. */ 2033 first = current->kretprobe_instances.first; 2034 while (first) { 2035 ri = container_of(first, struct kretprobe_instance, llist); 2036 2037 if (WARN_ON_ONCE(ri->fp != frame_pointer)) 2038 break; 2039 2040 rp = get_kretprobe(ri); 2041 if (rp && rp->handler) { 2042 struct kprobe *prev = kprobe_running(); 2043 2044 __this_cpu_write(current_kprobe, &rp->kp); 2045 ri->ret_addr = correct_ret_addr; 2046 rp->handler(ri, regs); 2047 __this_cpu_write(current_kprobe, prev); 2048 } 2049 if (first == node) 2050 break; 2051 2052 first = first->next; 2053 } 2054 2055 arch_kretprobe_fixup_return(regs, correct_ret_addr); 2056 2057 /* Unlink all nodes for this frame. */ 2058 first = current->kretprobe_instances.first; 2059 current->kretprobe_instances.first = node->next; 2060 node->next = NULL; 2061 2062 /* Recycle free instances. */ 2063 while (first) { 2064 ri = container_of(first, struct kretprobe_instance, llist); 2065 first = first->next; 2066 2067 recycle_rp_inst(ri); 2068 } 2069 2070 return (unsigned long)correct_ret_addr; 2071 } 2072 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler) 2073 2074 /* 2075 * This kprobe pre_handler is registered with every kretprobe. When probe 2076 * hits it will set up the return probe. 2077 */ 2078 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2079 { 2080 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 2081 struct kretprobe_instance *ri; 2082 struct freelist_node *fn; 2083 2084 fn = freelist_try_get(&rp->freelist); 2085 if (!fn) { 2086 rp->nmissed++; 2087 return 0; 2088 } 2089 2090 ri = container_of(fn, struct kretprobe_instance, freelist); 2091 2092 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 2093 freelist_add(&ri->freelist, &rp->freelist); 2094 return 0; 2095 } 2096 2097 arch_prepare_kretprobe(ri, regs); 2098 2099 __llist_add(&ri->llist, ¤t->kretprobe_instances); 2100 2101 return 0; 2102 } 2103 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2104 #else /* CONFIG_KRETPROBE_ON_RETHOOK */ 2105 /* 2106 * This kprobe pre_handler is registered with every kretprobe. When probe 2107 * hits it will set up the return probe. 2108 */ 2109 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2110 { 2111 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 2112 struct kretprobe_instance *ri; 2113 struct rethook_node *rhn; 2114 2115 rhn = rethook_try_get(rp->rh); 2116 if (!rhn) { 2117 rp->nmissed++; 2118 return 0; 2119 } 2120 2121 ri = container_of(rhn, struct kretprobe_instance, node); 2122 2123 if (rp->entry_handler && rp->entry_handler(ri, regs)) 2124 rethook_recycle(rhn); 2125 else 2126 rethook_hook(rhn, regs, kprobe_ftrace(p)); 2127 2128 return 0; 2129 } 2130 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2131 2132 static void kretprobe_rethook_handler(struct rethook_node *rh, void *data, 2133 struct pt_regs *regs) 2134 { 2135 struct kretprobe *rp = (struct kretprobe *)data; 2136 struct kretprobe_instance *ri; 2137 struct kprobe_ctlblk *kcb; 2138 2139 /* The data must NOT be null. This means rethook data structure is broken. */ 2140 if (WARN_ON_ONCE(!data) || !rp->handler) 2141 return; 2142 2143 __this_cpu_write(current_kprobe, &rp->kp); 2144 kcb = get_kprobe_ctlblk(); 2145 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 2146 2147 ri = container_of(rh, struct kretprobe_instance, node); 2148 rp->handler(ri, regs); 2149 2150 __this_cpu_write(current_kprobe, NULL); 2151 } 2152 NOKPROBE_SYMBOL(kretprobe_rethook_handler); 2153 2154 #endif /* !CONFIG_KRETPROBE_ON_RETHOOK */ 2155 2156 /** 2157 * kprobe_on_func_entry() -- check whether given address is function entry 2158 * @addr: Target address 2159 * @sym: Target symbol name 2160 * @offset: The offset from the symbol or the address 2161 * 2162 * This checks whether the given @addr+@offset or @sym+@offset is on the 2163 * function entry address or not. 2164 * This returns 0 if it is the function entry, or -EINVAL if it is not. 2165 * And also it returns -ENOENT if it fails the symbol or address lookup. 2166 * Caller must pass @addr or @sym (either one must be NULL), or this 2167 * returns -EINVAL. 2168 */ 2169 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 2170 { 2171 bool on_func_entry; 2172 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry); 2173 2174 if (IS_ERR(kp_addr)) 2175 return PTR_ERR(kp_addr); 2176 2177 if (!on_func_entry) 2178 return -EINVAL; 2179 2180 return 0; 2181 } 2182 2183 int register_kretprobe(struct kretprobe *rp) 2184 { 2185 int ret; 2186 struct kretprobe_instance *inst; 2187 int i; 2188 void *addr; 2189 2190 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset); 2191 if (ret) 2192 return ret; 2193 2194 /* If only 'rp->kp.addr' is specified, check reregistering kprobes */ 2195 if (rp->kp.addr && warn_kprobe_rereg(&rp->kp)) 2196 return -EINVAL; 2197 2198 if (kretprobe_blacklist_size) { 2199 addr = kprobe_addr(&rp->kp); 2200 if (IS_ERR(addr)) 2201 return PTR_ERR(addr); 2202 2203 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2204 if (kretprobe_blacklist[i].addr == addr) 2205 return -EINVAL; 2206 } 2207 } 2208 2209 if (rp->data_size > KRETPROBE_MAX_DATA_SIZE) 2210 return -E2BIG; 2211 2212 rp->kp.pre_handler = pre_handler_kretprobe; 2213 rp->kp.post_handler = NULL; 2214 2215 /* Pre-allocate memory for max kretprobe instances */ 2216 if (rp->maxactive <= 0) { 2217 #ifdef CONFIG_PREEMPTION 2218 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 2219 #else 2220 rp->maxactive = num_possible_cpus(); 2221 #endif 2222 } 2223 #ifdef CONFIG_KRETPROBE_ON_RETHOOK 2224 rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler); 2225 if (!rp->rh) 2226 return -ENOMEM; 2227 2228 for (i = 0; i < rp->maxactive; i++) { 2229 inst = kzalloc(sizeof(struct kretprobe_instance) + 2230 rp->data_size, GFP_KERNEL); 2231 if (inst == NULL) { 2232 rethook_free(rp->rh); 2233 rp->rh = NULL; 2234 return -ENOMEM; 2235 } 2236 rethook_add_node(rp->rh, &inst->node); 2237 } 2238 rp->nmissed = 0; 2239 /* Establish function entry probe point */ 2240 ret = register_kprobe(&rp->kp); 2241 if (ret != 0) { 2242 rethook_free(rp->rh); 2243 rp->rh = NULL; 2244 } 2245 #else /* !CONFIG_KRETPROBE_ON_RETHOOK */ 2246 rp->freelist.head = NULL; 2247 rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL); 2248 if (!rp->rph) 2249 return -ENOMEM; 2250 2251 rp->rph->rp = rp; 2252 for (i = 0; i < rp->maxactive; i++) { 2253 inst = kzalloc(sizeof(struct kretprobe_instance) + 2254 rp->data_size, GFP_KERNEL); 2255 if (inst == NULL) { 2256 refcount_set(&rp->rph->ref, i); 2257 free_rp_inst(rp); 2258 return -ENOMEM; 2259 } 2260 inst->rph = rp->rph; 2261 freelist_add(&inst->freelist, &rp->freelist); 2262 } 2263 refcount_set(&rp->rph->ref, i); 2264 2265 rp->nmissed = 0; 2266 /* Establish function entry probe point */ 2267 ret = register_kprobe(&rp->kp); 2268 if (ret != 0) 2269 free_rp_inst(rp); 2270 #endif 2271 return ret; 2272 } 2273 EXPORT_SYMBOL_GPL(register_kretprobe); 2274 2275 int register_kretprobes(struct kretprobe **rps, int num) 2276 { 2277 int ret = 0, i; 2278 2279 if (num <= 0) 2280 return -EINVAL; 2281 for (i = 0; i < num; i++) { 2282 ret = register_kretprobe(rps[i]); 2283 if (ret < 0) { 2284 if (i > 0) 2285 unregister_kretprobes(rps, i); 2286 break; 2287 } 2288 } 2289 return ret; 2290 } 2291 EXPORT_SYMBOL_GPL(register_kretprobes); 2292 2293 void unregister_kretprobe(struct kretprobe *rp) 2294 { 2295 unregister_kretprobes(&rp, 1); 2296 } 2297 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2298 2299 void unregister_kretprobes(struct kretprobe **rps, int num) 2300 { 2301 int i; 2302 2303 if (num <= 0) 2304 return; 2305 mutex_lock(&kprobe_mutex); 2306 for (i = 0; i < num; i++) { 2307 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 2308 rps[i]->kp.addr = NULL; 2309 #ifdef CONFIG_KRETPROBE_ON_RETHOOK 2310 rethook_free(rps[i]->rh); 2311 #else 2312 rps[i]->rph->rp = NULL; 2313 #endif 2314 } 2315 mutex_unlock(&kprobe_mutex); 2316 2317 synchronize_rcu(); 2318 for (i = 0; i < num; i++) { 2319 if (rps[i]->kp.addr) { 2320 __unregister_kprobe_bottom(&rps[i]->kp); 2321 #ifndef CONFIG_KRETPROBE_ON_RETHOOK 2322 free_rp_inst(rps[i]); 2323 #endif 2324 } 2325 } 2326 } 2327 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2328 2329 #else /* CONFIG_KRETPROBES */ 2330 int register_kretprobe(struct kretprobe *rp) 2331 { 2332 return -EOPNOTSUPP; 2333 } 2334 EXPORT_SYMBOL_GPL(register_kretprobe); 2335 2336 int register_kretprobes(struct kretprobe **rps, int num) 2337 { 2338 return -EOPNOTSUPP; 2339 } 2340 EXPORT_SYMBOL_GPL(register_kretprobes); 2341 2342 void unregister_kretprobe(struct kretprobe *rp) 2343 { 2344 } 2345 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2346 2347 void unregister_kretprobes(struct kretprobe **rps, int num) 2348 { 2349 } 2350 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2351 2352 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2353 { 2354 return 0; 2355 } 2356 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2357 2358 #endif /* CONFIG_KRETPROBES */ 2359 2360 /* Set the kprobe gone and remove its instruction buffer. */ 2361 static void kill_kprobe(struct kprobe *p) 2362 { 2363 struct kprobe *kp; 2364 2365 lockdep_assert_held(&kprobe_mutex); 2366 2367 p->flags |= KPROBE_FLAG_GONE; 2368 if (kprobe_aggrprobe(p)) { 2369 /* 2370 * If this is an aggr_kprobe, we have to list all the 2371 * chained probes and mark them GONE. 2372 */ 2373 list_for_each_entry(kp, &p->list, list) 2374 kp->flags |= KPROBE_FLAG_GONE; 2375 p->post_handler = NULL; 2376 kill_optimized_kprobe(p); 2377 } 2378 /* 2379 * Here, we can remove insn_slot safely, because no thread calls 2380 * the original probed function (which will be freed soon) any more. 2381 */ 2382 arch_remove_kprobe(p); 2383 2384 /* 2385 * The module is going away. We should disarm the kprobe which 2386 * is using ftrace, because ftrace framework is still available at 2387 * 'MODULE_STATE_GOING' notification. 2388 */ 2389 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed) 2390 disarm_kprobe_ftrace(p); 2391 } 2392 2393 /* Disable one kprobe */ 2394 int disable_kprobe(struct kprobe *kp) 2395 { 2396 int ret = 0; 2397 struct kprobe *p; 2398 2399 mutex_lock(&kprobe_mutex); 2400 2401 /* Disable this kprobe */ 2402 p = __disable_kprobe(kp); 2403 if (IS_ERR(p)) 2404 ret = PTR_ERR(p); 2405 2406 mutex_unlock(&kprobe_mutex); 2407 return ret; 2408 } 2409 EXPORT_SYMBOL_GPL(disable_kprobe); 2410 2411 /* Enable one kprobe */ 2412 int enable_kprobe(struct kprobe *kp) 2413 { 2414 int ret = 0; 2415 struct kprobe *p; 2416 2417 mutex_lock(&kprobe_mutex); 2418 2419 /* Check whether specified probe is valid. */ 2420 p = __get_valid_kprobe(kp); 2421 if (unlikely(p == NULL)) { 2422 ret = -EINVAL; 2423 goto out; 2424 } 2425 2426 if (kprobe_gone(kp)) { 2427 /* This kprobe has gone, we couldn't enable it. */ 2428 ret = -EINVAL; 2429 goto out; 2430 } 2431 2432 if (p != kp) 2433 kp->flags &= ~KPROBE_FLAG_DISABLED; 2434 2435 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2436 p->flags &= ~KPROBE_FLAG_DISABLED; 2437 ret = arm_kprobe(p); 2438 if (ret) { 2439 p->flags |= KPROBE_FLAG_DISABLED; 2440 if (p != kp) 2441 kp->flags |= KPROBE_FLAG_DISABLED; 2442 } 2443 } 2444 out: 2445 mutex_unlock(&kprobe_mutex); 2446 return ret; 2447 } 2448 EXPORT_SYMBOL_GPL(enable_kprobe); 2449 2450 /* Caller must NOT call this in usual path. This is only for critical case */ 2451 void dump_kprobe(struct kprobe *kp) 2452 { 2453 pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n", 2454 kp->symbol_name, kp->offset, kp->addr); 2455 } 2456 NOKPROBE_SYMBOL(dump_kprobe); 2457 2458 int kprobe_add_ksym_blacklist(unsigned long entry) 2459 { 2460 struct kprobe_blacklist_entry *ent; 2461 unsigned long offset = 0, size = 0; 2462 2463 if (!kernel_text_address(entry) || 2464 !kallsyms_lookup_size_offset(entry, &size, &offset)) 2465 return -EINVAL; 2466 2467 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2468 if (!ent) 2469 return -ENOMEM; 2470 ent->start_addr = entry; 2471 ent->end_addr = entry + size; 2472 INIT_LIST_HEAD(&ent->list); 2473 list_add_tail(&ent->list, &kprobe_blacklist); 2474 2475 return (int)size; 2476 } 2477 2478 /* Add all symbols in given area into kprobe blacklist */ 2479 int kprobe_add_area_blacklist(unsigned long start, unsigned long end) 2480 { 2481 unsigned long entry; 2482 int ret = 0; 2483 2484 for (entry = start; entry < end; entry += ret) { 2485 ret = kprobe_add_ksym_blacklist(entry); 2486 if (ret < 0) 2487 return ret; 2488 if (ret == 0) /* In case of alias symbol */ 2489 ret = 1; 2490 } 2491 return 0; 2492 } 2493 2494 /* Remove all symbols in given area from kprobe blacklist */ 2495 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end) 2496 { 2497 struct kprobe_blacklist_entry *ent, *n; 2498 2499 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) { 2500 if (ent->start_addr < start || ent->start_addr >= end) 2501 continue; 2502 list_del(&ent->list); 2503 kfree(ent); 2504 } 2505 } 2506 2507 static void kprobe_remove_ksym_blacklist(unsigned long entry) 2508 { 2509 kprobe_remove_area_blacklist(entry, entry + 1); 2510 } 2511 2512 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value, 2513 char *type, char *sym) 2514 { 2515 return -ERANGE; 2516 } 2517 2518 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 2519 char *sym) 2520 { 2521 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 2522 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym)) 2523 return 0; 2524 #ifdef CONFIG_OPTPROBES 2525 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym)) 2526 return 0; 2527 #endif 2528 #endif 2529 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym)) 2530 return 0; 2531 return -ERANGE; 2532 } 2533 2534 int __init __weak arch_populate_kprobe_blacklist(void) 2535 { 2536 return 0; 2537 } 2538 2539 /* 2540 * Lookup and populate the kprobe_blacklist. 2541 * 2542 * Unlike the kretprobe blacklist, we'll need to determine 2543 * the range of addresses that belong to the said functions, 2544 * since a kprobe need not necessarily be at the beginning 2545 * of a function. 2546 */ 2547 static int __init populate_kprobe_blacklist(unsigned long *start, 2548 unsigned long *end) 2549 { 2550 unsigned long entry; 2551 unsigned long *iter; 2552 int ret; 2553 2554 for (iter = start; iter < end; iter++) { 2555 entry = (unsigned long)dereference_symbol_descriptor((void *)*iter); 2556 ret = kprobe_add_ksym_blacklist(entry); 2557 if (ret == -EINVAL) 2558 continue; 2559 if (ret < 0) 2560 return ret; 2561 } 2562 2563 /* Symbols in '__kprobes_text' are blacklisted */ 2564 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start, 2565 (unsigned long)__kprobes_text_end); 2566 if (ret) 2567 return ret; 2568 2569 /* Symbols in 'noinstr' section are blacklisted */ 2570 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start, 2571 (unsigned long)__noinstr_text_end); 2572 2573 return ret ? : arch_populate_kprobe_blacklist(); 2574 } 2575 2576 static void add_module_kprobe_blacklist(struct module *mod) 2577 { 2578 unsigned long start, end; 2579 int i; 2580 2581 if (mod->kprobe_blacklist) { 2582 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2583 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]); 2584 } 2585 2586 start = (unsigned long)mod->kprobes_text_start; 2587 if (start) { 2588 end = start + mod->kprobes_text_size; 2589 kprobe_add_area_blacklist(start, end); 2590 } 2591 2592 start = (unsigned long)mod->noinstr_text_start; 2593 if (start) { 2594 end = start + mod->noinstr_text_size; 2595 kprobe_add_area_blacklist(start, end); 2596 } 2597 } 2598 2599 static void remove_module_kprobe_blacklist(struct module *mod) 2600 { 2601 unsigned long start, end; 2602 int i; 2603 2604 if (mod->kprobe_blacklist) { 2605 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2606 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]); 2607 } 2608 2609 start = (unsigned long)mod->kprobes_text_start; 2610 if (start) { 2611 end = start + mod->kprobes_text_size; 2612 kprobe_remove_area_blacklist(start, end); 2613 } 2614 2615 start = (unsigned long)mod->noinstr_text_start; 2616 if (start) { 2617 end = start + mod->noinstr_text_size; 2618 kprobe_remove_area_blacklist(start, end); 2619 } 2620 } 2621 2622 /* Module notifier call back, checking kprobes on the module */ 2623 static int kprobes_module_callback(struct notifier_block *nb, 2624 unsigned long val, void *data) 2625 { 2626 struct module *mod = data; 2627 struct hlist_head *head; 2628 struct kprobe *p; 2629 unsigned int i; 2630 int checkcore = (val == MODULE_STATE_GOING); 2631 2632 if (val == MODULE_STATE_COMING) { 2633 mutex_lock(&kprobe_mutex); 2634 add_module_kprobe_blacklist(mod); 2635 mutex_unlock(&kprobe_mutex); 2636 } 2637 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2638 return NOTIFY_DONE; 2639 2640 /* 2641 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and 2642 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was 2643 * notified, only '.init.text' section would be freed. We need to 2644 * disable kprobes which have been inserted in the sections. 2645 */ 2646 mutex_lock(&kprobe_mutex); 2647 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2648 head = &kprobe_table[i]; 2649 hlist_for_each_entry(p, head, hlist) 2650 if (within_module_init((unsigned long)p->addr, mod) || 2651 (checkcore && 2652 within_module_core((unsigned long)p->addr, mod))) { 2653 /* 2654 * The vaddr this probe is installed will soon 2655 * be vfreed buy not synced to disk. Hence, 2656 * disarming the breakpoint isn't needed. 2657 * 2658 * Note, this will also move any optimized probes 2659 * that are pending to be removed from their 2660 * corresponding lists to the 'freeing_list' and 2661 * will not be touched by the delayed 2662 * kprobe_optimizer() work handler. 2663 */ 2664 kill_kprobe(p); 2665 } 2666 } 2667 if (val == MODULE_STATE_GOING) 2668 remove_module_kprobe_blacklist(mod); 2669 mutex_unlock(&kprobe_mutex); 2670 return NOTIFY_DONE; 2671 } 2672 2673 static struct notifier_block kprobe_module_nb = { 2674 .notifier_call = kprobes_module_callback, 2675 .priority = 0 2676 }; 2677 2678 void kprobe_free_init_mem(void) 2679 { 2680 void *start = (void *)(&__init_begin); 2681 void *end = (void *)(&__init_end); 2682 struct hlist_head *head; 2683 struct kprobe *p; 2684 int i; 2685 2686 mutex_lock(&kprobe_mutex); 2687 2688 /* Kill all kprobes on initmem because the target code has been freed. */ 2689 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2690 head = &kprobe_table[i]; 2691 hlist_for_each_entry(p, head, hlist) { 2692 if (start <= (void *)p->addr && (void *)p->addr < end) 2693 kill_kprobe(p); 2694 } 2695 } 2696 2697 mutex_unlock(&kprobe_mutex); 2698 } 2699 2700 static int __init init_kprobes(void) 2701 { 2702 int i, err = 0; 2703 2704 /* FIXME allocate the probe table, currently defined statically */ 2705 /* initialize all list heads */ 2706 for (i = 0; i < KPROBE_TABLE_SIZE; i++) 2707 INIT_HLIST_HEAD(&kprobe_table[i]); 2708 2709 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2710 __stop_kprobe_blacklist); 2711 if (err) 2712 pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err); 2713 2714 if (kretprobe_blacklist_size) { 2715 /* lookup the function address from its name */ 2716 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2717 kretprobe_blacklist[i].addr = 2718 kprobe_lookup_name(kretprobe_blacklist[i].name, 0); 2719 if (!kretprobe_blacklist[i].addr) 2720 pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n", 2721 kretprobe_blacklist[i].name); 2722 } 2723 } 2724 2725 /* By default, kprobes are armed */ 2726 kprobes_all_disarmed = false; 2727 2728 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2729 /* Init 'kprobe_optinsn_slots' for allocation */ 2730 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2731 #endif 2732 2733 err = arch_init_kprobes(); 2734 if (!err) 2735 err = register_die_notifier(&kprobe_exceptions_nb); 2736 if (!err) 2737 err = register_module_notifier(&kprobe_module_nb); 2738 2739 kprobes_initialized = (err == 0); 2740 kprobe_sysctls_init(); 2741 return err; 2742 } 2743 early_initcall(init_kprobes); 2744 2745 #if defined(CONFIG_OPTPROBES) 2746 static int __init init_optprobes(void) 2747 { 2748 /* 2749 * Enable kprobe optimization - this kicks the optimizer which 2750 * depends on synchronize_rcu_tasks() and ksoftirqd, that is 2751 * not spawned in early initcall. So delay the optimization. 2752 */ 2753 optimize_all_kprobes(); 2754 2755 return 0; 2756 } 2757 subsys_initcall(init_optprobes); 2758 #endif 2759 2760 #ifdef CONFIG_DEBUG_FS 2761 static void report_probe(struct seq_file *pi, struct kprobe *p, 2762 const char *sym, int offset, char *modname, struct kprobe *pp) 2763 { 2764 char *kprobe_type; 2765 void *addr = p->addr; 2766 2767 if (p->pre_handler == pre_handler_kretprobe) 2768 kprobe_type = "r"; 2769 else 2770 kprobe_type = "k"; 2771 2772 if (!kallsyms_show_value(pi->file->f_cred)) 2773 addr = NULL; 2774 2775 if (sym) 2776 seq_printf(pi, "%px %s %s+0x%x %s ", 2777 addr, kprobe_type, sym, offset, 2778 (modname ? modname : " ")); 2779 else /* try to use %pS */ 2780 seq_printf(pi, "%px %s %pS ", 2781 addr, kprobe_type, p->addr); 2782 2783 if (!pp) 2784 pp = p; 2785 seq_printf(pi, "%s%s%s%s\n", 2786 (kprobe_gone(p) ? "[GONE]" : ""), 2787 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2788 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2789 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2790 } 2791 2792 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2793 { 2794 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2795 } 2796 2797 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2798 { 2799 (*pos)++; 2800 if (*pos >= KPROBE_TABLE_SIZE) 2801 return NULL; 2802 return pos; 2803 } 2804 2805 static void kprobe_seq_stop(struct seq_file *f, void *v) 2806 { 2807 /* Nothing to do */ 2808 } 2809 2810 static int show_kprobe_addr(struct seq_file *pi, void *v) 2811 { 2812 struct hlist_head *head; 2813 struct kprobe *p, *kp; 2814 const char *sym = NULL; 2815 unsigned int i = *(loff_t *) v; 2816 unsigned long offset = 0; 2817 char *modname, namebuf[KSYM_NAME_LEN]; 2818 2819 head = &kprobe_table[i]; 2820 preempt_disable(); 2821 hlist_for_each_entry_rcu(p, head, hlist) { 2822 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2823 &offset, &modname, namebuf); 2824 if (kprobe_aggrprobe(p)) { 2825 list_for_each_entry_rcu(kp, &p->list, list) 2826 report_probe(pi, kp, sym, offset, modname, p); 2827 } else 2828 report_probe(pi, p, sym, offset, modname, NULL); 2829 } 2830 preempt_enable(); 2831 return 0; 2832 } 2833 2834 static const struct seq_operations kprobes_sops = { 2835 .start = kprobe_seq_start, 2836 .next = kprobe_seq_next, 2837 .stop = kprobe_seq_stop, 2838 .show = show_kprobe_addr 2839 }; 2840 2841 DEFINE_SEQ_ATTRIBUTE(kprobes); 2842 2843 /* kprobes/blacklist -- shows which functions can not be probed */ 2844 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2845 { 2846 mutex_lock(&kprobe_mutex); 2847 return seq_list_start(&kprobe_blacklist, *pos); 2848 } 2849 2850 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2851 { 2852 return seq_list_next(v, &kprobe_blacklist, pos); 2853 } 2854 2855 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2856 { 2857 struct kprobe_blacklist_entry *ent = 2858 list_entry(v, struct kprobe_blacklist_entry, list); 2859 2860 /* 2861 * If '/proc/kallsyms' is not showing kernel address, we won't 2862 * show them here either. 2863 */ 2864 if (!kallsyms_show_value(m->file->f_cred)) 2865 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL, 2866 (void *)ent->start_addr); 2867 else 2868 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr, 2869 (void *)ent->end_addr, (void *)ent->start_addr); 2870 return 0; 2871 } 2872 2873 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v) 2874 { 2875 mutex_unlock(&kprobe_mutex); 2876 } 2877 2878 static const struct seq_operations kprobe_blacklist_sops = { 2879 .start = kprobe_blacklist_seq_start, 2880 .next = kprobe_blacklist_seq_next, 2881 .stop = kprobe_blacklist_seq_stop, 2882 .show = kprobe_blacklist_seq_show, 2883 }; 2884 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist); 2885 2886 static int arm_all_kprobes(void) 2887 { 2888 struct hlist_head *head; 2889 struct kprobe *p; 2890 unsigned int i, total = 0, errors = 0; 2891 int err, ret = 0; 2892 2893 mutex_lock(&kprobe_mutex); 2894 2895 /* If kprobes are armed, just return */ 2896 if (!kprobes_all_disarmed) 2897 goto already_enabled; 2898 2899 /* 2900 * optimize_kprobe() called by arm_kprobe() checks 2901 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2902 * arm_kprobe. 2903 */ 2904 kprobes_all_disarmed = false; 2905 /* Arming kprobes doesn't optimize kprobe itself */ 2906 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2907 head = &kprobe_table[i]; 2908 /* Arm all kprobes on a best-effort basis */ 2909 hlist_for_each_entry(p, head, hlist) { 2910 if (!kprobe_disabled(p)) { 2911 err = arm_kprobe(p); 2912 if (err) { 2913 errors++; 2914 ret = err; 2915 } 2916 total++; 2917 } 2918 } 2919 } 2920 2921 if (errors) 2922 pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n", 2923 errors, total); 2924 else 2925 pr_info("Kprobes globally enabled\n"); 2926 2927 already_enabled: 2928 mutex_unlock(&kprobe_mutex); 2929 return ret; 2930 } 2931 2932 static int disarm_all_kprobes(void) 2933 { 2934 struct hlist_head *head; 2935 struct kprobe *p; 2936 unsigned int i, total = 0, errors = 0; 2937 int err, ret = 0; 2938 2939 mutex_lock(&kprobe_mutex); 2940 2941 /* If kprobes are already disarmed, just return */ 2942 if (kprobes_all_disarmed) { 2943 mutex_unlock(&kprobe_mutex); 2944 return 0; 2945 } 2946 2947 kprobes_all_disarmed = true; 2948 2949 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2950 head = &kprobe_table[i]; 2951 /* Disarm all kprobes on a best-effort basis */ 2952 hlist_for_each_entry(p, head, hlist) { 2953 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { 2954 err = disarm_kprobe(p, false); 2955 if (err) { 2956 errors++; 2957 ret = err; 2958 } 2959 total++; 2960 } 2961 } 2962 } 2963 2964 if (errors) 2965 pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n", 2966 errors, total); 2967 else 2968 pr_info("Kprobes globally disabled\n"); 2969 2970 mutex_unlock(&kprobe_mutex); 2971 2972 /* Wait for disarming all kprobes by optimizer */ 2973 wait_for_kprobe_optimizer(); 2974 2975 return ret; 2976 } 2977 2978 /* 2979 * XXX: The debugfs bool file interface doesn't allow for callbacks 2980 * when the bool state is switched. We can reuse that facility when 2981 * available 2982 */ 2983 static ssize_t read_enabled_file_bool(struct file *file, 2984 char __user *user_buf, size_t count, loff_t *ppos) 2985 { 2986 char buf[3]; 2987 2988 if (!kprobes_all_disarmed) 2989 buf[0] = '1'; 2990 else 2991 buf[0] = '0'; 2992 buf[1] = '\n'; 2993 buf[2] = 0x00; 2994 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2995 } 2996 2997 static ssize_t write_enabled_file_bool(struct file *file, 2998 const char __user *user_buf, size_t count, loff_t *ppos) 2999 { 3000 bool enable; 3001 int ret; 3002 3003 ret = kstrtobool_from_user(user_buf, count, &enable); 3004 if (ret) 3005 return ret; 3006 3007 ret = enable ? arm_all_kprobes() : disarm_all_kprobes(); 3008 if (ret) 3009 return ret; 3010 3011 return count; 3012 } 3013 3014 static const struct file_operations fops_kp = { 3015 .read = read_enabled_file_bool, 3016 .write = write_enabled_file_bool, 3017 .llseek = default_llseek, 3018 }; 3019 3020 static int __init debugfs_kprobe_init(void) 3021 { 3022 struct dentry *dir; 3023 3024 dir = debugfs_create_dir("kprobes", NULL); 3025 3026 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops); 3027 3028 debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp); 3029 3030 debugfs_create_file("blacklist", 0400, dir, NULL, 3031 &kprobe_blacklist_fops); 3032 3033 return 0; 3034 } 3035 3036 late_initcall(debugfs_kprobe_init); 3037 #endif /* CONFIG_DEBUG_FS */ 3038