xref: /openbmc/linux/kernel/kprobes.c (revision 93d90ad7)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51 
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56 
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 
60 
61 /*
62  * Some oddball architectures like 64bit powerpc have function descriptors
63  * so this must be overridable.
64  */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69 
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73 
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76 
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83 
84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86 	return &(kretprobe_table_locks[hash].lock);
87 }
88 
89 /* Blacklist -- list of struct kprobe_blacklist_entry */
90 static LIST_HEAD(kprobe_blacklist);
91 
92 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
93 /*
94  * kprobe->ainsn.insn points to the copy of the instruction to be
95  * single-stepped. x86_64, POWER4 and above have no-exec support and
96  * stepping on the instruction on a vmalloced/kmalloced/data page
97  * is a recipe for disaster
98  */
99 struct kprobe_insn_page {
100 	struct list_head list;
101 	kprobe_opcode_t *insns;		/* Page of instruction slots */
102 	struct kprobe_insn_cache *cache;
103 	int nused;
104 	int ngarbage;
105 	char slot_used[];
106 };
107 
108 #define KPROBE_INSN_PAGE_SIZE(slots)			\
109 	(offsetof(struct kprobe_insn_page, slot_used) +	\
110 	 (sizeof(char) * (slots)))
111 
112 static int slots_per_page(struct kprobe_insn_cache *c)
113 {
114 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
115 }
116 
117 enum kprobe_slot_state {
118 	SLOT_CLEAN = 0,
119 	SLOT_DIRTY = 1,
120 	SLOT_USED = 2,
121 };
122 
123 static void *alloc_insn_page(void)
124 {
125 	return module_alloc(PAGE_SIZE);
126 }
127 
128 static void free_insn_page(void *page)
129 {
130 	module_free(NULL, page);
131 }
132 
133 struct kprobe_insn_cache kprobe_insn_slots = {
134 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
135 	.alloc = alloc_insn_page,
136 	.free = free_insn_page,
137 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
138 	.insn_size = MAX_INSN_SIZE,
139 	.nr_garbage = 0,
140 };
141 static int collect_garbage_slots(struct kprobe_insn_cache *c);
142 
143 /**
144  * __get_insn_slot() - Find a slot on an executable page for an instruction.
145  * We allocate an executable page if there's no room on existing ones.
146  */
147 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
148 {
149 	struct kprobe_insn_page *kip;
150 	kprobe_opcode_t *slot = NULL;
151 
152 	mutex_lock(&c->mutex);
153  retry:
154 	list_for_each_entry(kip, &c->pages, list) {
155 		if (kip->nused < slots_per_page(c)) {
156 			int i;
157 			for (i = 0; i < slots_per_page(c); i++) {
158 				if (kip->slot_used[i] == SLOT_CLEAN) {
159 					kip->slot_used[i] = SLOT_USED;
160 					kip->nused++;
161 					slot = kip->insns + (i * c->insn_size);
162 					goto out;
163 				}
164 			}
165 			/* kip->nused is broken. Fix it. */
166 			kip->nused = slots_per_page(c);
167 			WARN_ON(1);
168 		}
169 	}
170 
171 	/* If there are any garbage slots, collect it and try again. */
172 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
173 		goto retry;
174 
175 	/* All out of space.  Need to allocate a new page. */
176 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
177 	if (!kip)
178 		goto out;
179 
180 	/*
181 	 * Use module_alloc so this page is within +/- 2GB of where the
182 	 * kernel image and loaded module images reside. This is required
183 	 * so x86_64 can correctly handle the %rip-relative fixups.
184 	 */
185 	kip->insns = c->alloc();
186 	if (!kip->insns) {
187 		kfree(kip);
188 		goto out;
189 	}
190 	INIT_LIST_HEAD(&kip->list);
191 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
192 	kip->slot_used[0] = SLOT_USED;
193 	kip->nused = 1;
194 	kip->ngarbage = 0;
195 	kip->cache = c;
196 	list_add(&kip->list, &c->pages);
197 	slot = kip->insns;
198 out:
199 	mutex_unlock(&c->mutex);
200 	return slot;
201 }
202 
203 /* Return 1 if all garbages are collected, otherwise 0. */
204 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
205 {
206 	kip->slot_used[idx] = SLOT_CLEAN;
207 	kip->nused--;
208 	if (kip->nused == 0) {
209 		/*
210 		 * Page is no longer in use.  Free it unless
211 		 * it's the last one.  We keep the last one
212 		 * so as not to have to set it up again the
213 		 * next time somebody inserts a probe.
214 		 */
215 		if (!list_is_singular(&kip->list)) {
216 			list_del(&kip->list);
217 			kip->cache->free(kip->insns);
218 			kfree(kip);
219 		}
220 		return 1;
221 	}
222 	return 0;
223 }
224 
225 static int collect_garbage_slots(struct kprobe_insn_cache *c)
226 {
227 	struct kprobe_insn_page *kip, *next;
228 
229 	/* Ensure no-one is interrupted on the garbages */
230 	synchronize_sched();
231 
232 	list_for_each_entry_safe(kip, next, &c->pages, list) {
233 		int i;
234 		if (kip->ngarbage == 0)
235 			continue;
236 		kip->ngarbage = 0;	/* we will collect all garbages */
237 		for (i = 0; i < slots_per_page(c); i++) {
238 			if (kip->slot_used[i] == SLOT_DIRTY &&
239 			    collect_one_slot(kip, i))
240 				break;
241 		}
242 	}
243 	c->nr_garbage = 0;
244 	return 0;
245 }
246 
247 void __free_insn_slot(struct kprobe_insn_cache *c,
248 		      kprobe_opcode_t *slot, int dirty)
249 {
250 	struct kprobe_insn_page *kip;
251 
252 	mutex_lock(&c->mutex);
253 	list_for_each_entry(kip, &c->pages, list) {
254 		long idx = ((long)slot - (long)kip->insns) /
255 				(c->insn_size * sizeof(kprobe_opcode_t));
256 		if (idx >= 0 && idx < slots_per_page(c)) {
257 			WARN_ON(kip->slot_used[idx] != SLOT_USED);
258 			if (dirty) {
259 				kip->slot_used[idx] = SLOT_DIRTY;
260 				kip->ngarbage++;
261 				if (++c->nr_garbage > slots_per_page(c))
262 					collect_garbage_slots(c);
263 			} else
264 				collect_one_slot(kip, idx);
265 			goto out;
266 		}
267 	}
268 	/* Could not free this slot. */
269 	WARN_ON(1);
270 out:
271 	mutex_unlock(&c->mutex);
272 }
273 
274 #ifdef CONFIG_OPTPROBES
275 /* For optimized_kprobe buffer */
276 struct kprobe_insn_cache kprobe_optinsn_slots = {
277 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
278 	.alloc = alloc_insn_page,
279 	.free = free_insn_page,
280 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
281 	/* .insn_size is initialized later */
282 	.nr_garbage = 0,
283 };
284 #endif
285 #endif
286 
287 /* We have preemption disabled.. so it is safe to use __ versions */
288 static inline void set_kprobe_instance(struct kprobe *kp)
289 {
290 	__this_cpu_write(kprobe_instance, kp);
291 }
292 
293 static inline void reset_kprobe_instance(void)
294 {
295 	__this_cpu_write(kprobe_instance, NULL);
296 }
297 
298 /*
299  * This routine is called either:
300  * 	- under the kprobe_mutex - during kprobe_[un]register()
301  * 				OR
302  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
303  */
304 struct kprobe *get_kprobe(void *addr)
305 {
306 	struct hlist_head *head;
307 	struct kprobe *p;
308 
309 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
310 	hlist_for_each_entry_rcu(p, head, hlist) {
311 		if (p->addr == addr)
312 			return p;
313 	}
314 
315 	return NULL;
316 }
317 NOKPROBE_SYMBOL(get_kprobe);
318 
319 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
320 
321 /* Return true if the kprobe is an aggregator */
322 static inline int kprobe_aggrprobe(struct kprobe *p)
323 {
324 	return p->pre_handler == aggr_pre_handler;
325 }
326 
327 /* Return true(!0) if the kprobe is unused */
328 static inline int kprobe_unused(struct kprobe *p)
329 {
330 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
331 	       list_empty(&p->list);
332 }
333 
334 /*
335  * Keep all fields in the kprobe consistent
336  */
337 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
338 {
339 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
340 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
341 }
342 
343 #ifdef CONFIG_OPTPROBES
344 /* NOTE: change this value only with kprobe_mutex held */
345 static bool kprobes_allow_optimization;
346 
347 /*
348  * Call all pre_handler on the list, but ignores its return value.
349  * This must be called from arch-dep optimized caller.
350  */
351 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
352 {
353 	struct kprobe *kp;
354 
355 	list_for_each_entry_rcu(kp, &p->list, list) {
356 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
357 			set_kprobe_instance(kp);
358 			kp->pre_handler(kp, regs);
359 		}
360 		reset_kprobe_instance();
361 	}
362 }
363 NOKPROBE_SYMBOL(opt_pre_handler);
364 
365 /* Free optimized instructions and optimized_kprobe */
366 static void free_aggr_kprobe(struct kprobe *p)
367 {
368 	struct optimized_kprobe *op;
369 
370 	op = container_of(p, struct optimized_kprobe, kp);
371 	arch_remove_optimized_kprobe(op);
372 	arch_remove_kprobe(p);
373 	kfree(op);
374 }
375 
376 /* Return true(!0) if the kprobe is ready for optimization. */
377 static inline int kprobe_optready(struct kprobe *p)
378 {
379 	struct optimized_kprobe *op;
380 
381 	if (kprobe_aggrprobe(p)) {
382 		op = container_of(p, struct optimized_kprobe, kp);
383 		return arch_prepared_optinsn(&op->optinsn);
384 	}
385 
386 	return 0;
387 }
388 
389 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
390 static inline int kprobe_disarmed(struct kprobe *p)
391 {
392 	struct optimized_kprobe *op;
393 
394 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
395 	if (!kprobe_aggrprobe(p))
396 		return kprobe_disabled(p);
397 
398 	op = container_of(p, struct optimized_kprobe, kp);
399 
400 	return kprobe_disabled(p) && list_empty(&op->list);
401 }
402 
403 /* Return true(!0) if the probe is queued on (un)optimizing lists */
404 static int kprobe_queued(struct kprobe *p)
405 {
406 	struct optimized_kprobe *op;
407 
408 	if (kprobe_aggrprobe(p)) {
409 		op = container_of(p, struct optimized_kprobe, kp);
410 		if (!list_empty(&op->list))
411 			return 1;
412 	}
413 	return 0;
414 }
415 
416 /*
417  * Return an optimized kprobe whose optimizing code replaces
418  * instructions including addr (exclude breakpoint).
419  */
420 static struct kprobe *get_optimized_kprobe(unsigned long addr)
421 {
422 	int i;
423 	struct kprobe *p = NULL;
424 	struct optimized_kprobe *op;
425 
426 	/* Don't check i == 0, since that is a breakpoint case. */
427 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
428 		p = get_kprobe((void *)(addr - i));
429 
430 	if (p && kprobe_optready(p)) {
431 		op = container_of(p, struct optimized_kprobe, kp);
432 		if (arch_within_optimized_kprobe(op, addr))
433 			return p;
434 	}
435 
436 	return NULL;
437 }
438 
439 /* Optimization staging list, protected by kprobe_mutex */
440 static LIST_HEAD(optimizing_list);
441 static LIST_HEAD(unoptimizing_list);
442 static LIST_HEAD(freeing_list);
443 
444 static void kprobe_optimizer(struct work_struct *work);
445 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
446 #define OPTIMIZE_DELAY 5
447 
448 /*
449  * Optimize (replace a breakpoint with a jump) kprobes listed on
450  * optimizing_list.
451  */
452 static void do_optimize_kprobes(void)
453 {
454 	/* Optimization never be done when disarmed */
455 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
456 	    list_empty(&optimizing_list))
457 		return;
458 
459 	/*
460 	 * The optimization/unoptimization refers online_cpus via
461 	 * stop_machine() and cpu-hotplug modifies online_cpus.
462 	 * And same time, text_mutex will be held in cpu-hotplug and here.
463 	 * This combination can cause a deadlock (cpu-hotplug try to lock
464 	 * text_mutex but stop_machine can not be done because online_cpus
465 	 * has been changed)
466 	 * To avoid this deadlock, we need to call get_online_cpus()
467 	 * for preventing cpu-hotplug outside of text_mutex locking.
468 	 */
469 	get_online_cpus();
470 	mutex_lock(&text_mutex);
471 	arch_optimize_kprobes(&optimizing_list);
472 	mutex_unlock(&text_mutex);
473 	put_online_cpus();
474 }
475 
476 /*
477  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
478  * if need) kprobes listed on unoptimizing_list.
479  */
480 static void do_unoptimize_kprobes(void)
481 {
482 	struct optimized_kprobe *op, *tmp;
483 
484 	/* Unoptimization must be done anytime */
485 	if (list_empty(&unoptimizing_list))
486 		return;
487 
488 	/* Ditto to do_optimize_kprobes */
489 	get_online_cpus();
490 	mutex_lock(&text_mutex);
491 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
492 	/* Loop free_list for disarming */
493 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
494 		/* Disarm probes if marked disabled */
495 		if (kprobe_disabled(&op->kp))
496 			arch_disarm_kprobe(&op->kp);
497 		if (kprobe_unused(&op->kp)) {
498 			/*
499 			 * Remove unused probes from hash list. After waiting
500 			 * for synchronization, these probes are reclaimed.
501 			 * (reclaiming is done by do_free_cleaned_kprobes.)
502 			 */
503 			hlist_del_rcu(&op->kp.hlist);
504 		} else
505 			list_del_init(&op->list);
506 	}
507 	mutex_unlock(&text_mutex);
508 	put_online_cpus();
509 }
510 
511 /* Reclaim all kprobes on the free_list */
512 static void do_free_cleaned_kprobes(void)
513 {
514 	struct optimized_kprobe *op, *tmp;
515 
516 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
517 		BUG_ON(!kprobe_unused(&op->kp));
518 		list_del_init(&op->list);
519 		free_aggr_kprobe(&op->kp);
520 	}
521 }
522 
523 /* Start optimizer after OPTIMIZE_DELAY passed */
524 static void kick_kprobe_optimizer(void)
525 {
526 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
527 }
528 
529 /* Kprobe jump optimizer */
530 static void kprobe_optimizer(struct work_struct *work)
531 {
532 	mutex_lock(&kprobe_mutex);
533 	/* Lock modules while optimizing kprobes */
534 	mutex_lock(&module_mutex);
535 
536 	/*
537 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
538 	 * kprobes before waiting for quiesence period.
539 	 */
540 	do_unoptimize_kprobes();
541 
542 	/*
543 	 * Step 2: Wait for quiesence period to ensure all running interrupts
544 	 * are done. Because optprobe may modify multiple instructions
545 	 * there is a chance that Nth instruction is interrupted. In that
546 	 * case, running interrupt can return to 2nd-Nth byte of jump
547 	 * instruction. This wait is for avoiding it.
548 	 */
549 	synchronize_sched();
550 
551 	/* Step 3: Optimize kprobes after quiesence period */
552 	do_optimize_kprobes();
553 
554 	/* Step 4: Free cleaned kprobes after quiesence period */
555 	do_free_cleaned_kprobes();
556 
557 	mutex_unlock(&module_mutex);
558 	mutex_unlock(&kprobe_mutex);
559 
560 	/* Step 5: Kick optimizer again if needed */
561 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
562 		kick_kprobe_optimizer();
563 }
564 
565 /* Wait for completing optimization and unoptimization */
566 static void wait_for_kprobe_optimizer(void)
567 {
568 	mutex_lock(&kprobe_mutex);
569 
570 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
571 		mutex_unlock(&kprobe_mutex);
572 
573 		/* this will also make optimizing_work execute immmediately */
574 		flush_delayed_work(&optimizing_work);
575 		/* @optimizing_work might not have been queued yet, relax */
576 		cpu_relax();
577 
578 		mutex_lock(&kprobe_mutex);
579 	}
580 
581 	mutex_unlock(&kprobe_mutex);
582 }
583 
584 /* Optimize kprobe if p is ready to be optimized */
585 static void optimize_kprobe(struct kprobe *p)
586 {
587 	struct optimized_kprobe *op;
588 
589 	/* Check if the kprobe is disabled or not ready for optimization. */
590 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
591 	    (kprobe_disabled(p) || kprobes_all_disarmed))
592 		return;
593 
594 	/* Both of break_handler and post_handler are not supported. */
595 	if (p->break_handler || p->post_handler)
596 		return;
597 
598 	op = container_of(p, struct optimized_kprobe, kp);
599 
600 	/* Check there is no other kprobes at the optimized instructions */
601 	if (arch_check_optimized_kprobe(op) < 0)
602 		return;
603 
604 	/* Check if it is already optimized. */
605 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
606 		return;
607 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
608 
609 	if (!list_empty(&op->list))
610 		/* This is under unoptimizing. Just dequeue the probe */
611 		list_del_init(&op->list);
612 	else {
613 		list_add(&op->list, &optimizing_list);
614 		kick_kprobe_optimizer();
615 	}
616 }
617 
618 /* Short cut to direct unoptimizing */
619 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
620 {
621 	get_online_cpus();
622 	arch_unoptimize_kprobe(op);
623 	put_online_cpus();
624 	if (kprobe_disabled(&op->kp))
625 		arch_disarm_kprobe(&op->kp);
626 }
627 
628 /* Unoptimize a kprobe if p is optimized */
629 static void unoptimize_kprobe(struct kprobe *p, bool force)
630 {
631 	struct optimized_kprobe *op;
632 
633 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
634 		return; /* This is not an optprobe nor optimized */
635 
636 	op = container_of(p, struct optimized_kprobe, kp);
637 	if (!kprobe_optimized(p)) {
638 		/* Unoptimized or unoptimizing case */
639 		if (force && !list_empty(&op->list)) {
640 			/*
641 			 * Only if this is unoptimizing kprobe and forced,
642 			 * forcibly unoptimize it. (No need to unoptimize
643 			 * unoptimized kprobe again :)
644 			 */
645 			list_del_init(&op->list);
646 			force_unoptimize_kprobe(op);
647 		}
648 		return;
649 	}
650 
651 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
652 	if (!list_empty(&op->list)) {
653 		/* Dequeue from the optimization queue */
654 		list_del_init(&op->list);
655 		return;
656 	}
657 	/* Optimized kprobe case */
658 	if (force)
659 		/* Forcibly update the code: this is a special case */
660 		force_unoptimize_kprobe(op);
661 	else {
662 		list_add(&op->list, &unoptimizing_list);
663 		kick_kprobe_optimizer();
664 	}
665 }
666 
667 /* Cancel unoptimizing for reusing */
668 static void reuse_unused_kprobe(struct kprobe *ap)
669 {
670 	struct optimized_kprobe *op;
671 
672 	BUG_ON(!kprobe_unused(ap));
673 	/*
674 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
675 	 * there is still a relative jump) and disabled.
676 	 */
677 	op = container_of(ap, struct optimized_kprobe, kp);
678 	if (unlikely(list_empty(&op->list)))
679 		printk(KERN_WARNING "Warning: found a stray unused "
680 			"aggrprobe@%p\n", ap->addr);
681 	/* Enable the probe again */
682 	ap->flags &= ~KPROBE_FLAG_DISABLED;
683 	/* Optimize it again (remove from op->list) */
684 	BUG_ON(!kprobe_optready(ap));
685 	optimize_kprobe(ap);
686 }
687 
688 /* Remove optimized instructions */
689 static void kill_optimized_kprobe(struct kprobe *p)
690 {
691 	struct optimized_kprobe *op;
692 
693 	op = container_of(p, struct optimized_kprobe, kp);
694 	if (!list_empty(&op->list))
695 		/* Dequeue from the (un)optimization queue */
696 		list_del_init(&op->list);
697 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
698 
699 	if (kprobe_unused(p)) {
700 		/* Enqueue if it is unused */
701 		list_add(&op->list, &freeing_list);
702 		/*
703 		 * Remove unused probes from the hash list. After waiting
704 		 * for synchronization, this probe is reclaimed.
705 		 * (reclaiming is done by do_free_cleaned_kprobes().)
706 		 */
707 		hlist_del_rcu(&op->kp.hlist);
708 	}
709 
710 	/* Don't touch the code, because it is already freed. */
711 	arch_remove_optimized_kprobe(op);
712 }
713 
714 /* Try to prepare optimized instructions */
715 static void prepare_optimized_kprobe(struct kprobe *p)
716 {
717 	struct optimized_kprobe *op;
718 
719 	op = container_of(p, struct optimized_kprobe, kp);
720 	arch_prepare_optimized_kprobe(op);
721 }
722 
723 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
724 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
725 {
726 	struct optimized_kprobe *op;
727 
728 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
729 	if (!op)
730 		return NULL;
731 
732 	INIT_LIST_HEAD(&op->list);
733 	op->kp.addr = p->addr;
734 	arch_prepare_optimized_kprobe(op);
735 
736 	return &op->kp;
737 }
738 
739 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
740 
741 /*
742  * Prepare an optimized_kprobe and optimize it
743  * NOTE: p must be a normal registered kprobe
744  */
745 static void try_to_optimize_kprobe(struct kprobe *p)
746 {
747 	struct kprobe *ap;
748 	struct optimized_kprobe *op;
749 
750 	/* Impossible to optimize ftrace-based kprobe */
751 	if (kprobe_ftrace(p))
752 		return;
753 
754 	/* For preparing optimization, jump_label_text_reserved() is called */
755 	jump_label_lock();
756 	mutex_lock(&text_mutex);
757 
758 	ap = alloc_aggr_kprobe(p);
759 	if (!ap)
760 		goto out;
761 
762 	op = container_of(ap, struct optimized_kprobe, kp);
763 	if (!arch_prepared_optinsn(&op->optinsn)) {
764 		/* If failed to setup optimizing, fallback to kprobe */
765 		arch_remove_optimized_kprobe(op);
766 		kfree(op);
767 		goto out;
768 	}
769 
770 	init_aggr_kprobe(ap, p);
771 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
772 
773 out:
774 	mutex_unlock(&text_mutex);
775 	jump_label_unlock();
776 }
777 
778 #ifdef CONFIG_SYSCTL
779 static void optimize_all_kprobes(void)
780 {
781 	struct hlist_head *head;
782 	struct kprobe *p;
783 	unsigned int i;
784 
785 	mutex_lock(&kprobe_mutex);
786 	/* If optimization is already allowed, just return */
787 	if (kprobes_allow_optimization)
788 		goto out;
789 
790 	kprobes_allow_optimization = true;
791 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
792 		head = &kprobe_table[i];
793 		hlist_for_each_entry_rcu(p, head, hlist)
794 			if (!kprobe_disabled(p))
795 				optimize_kprobe(p);
796 	}
797 	printk(KERN_INFO "Kprobes globally optimized\n");
798 out:
799 	mutex_unlock(&kprobe_mutex);
800 }
801 
802 static void unoptimize_all_kprobes(void)
803 {
804 	struct hlist_head *head;
805 	struct kprobe *p;
806 	unsigned int i;
807 
808 	mutex_lock(&kprobe_mutex);
809 	/* If optimization is already prohibited, just return */
810 	if (!kprobes_allow_optimization) {
811 		mutex_unlock(&kprobe_mutex);
812 		return;
813 	}
814 
815 	kprobes_allow_optimization = false;
816 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
817 		head = &kprobe_table[i];
818 		hlist_for_each_entry_rcu(p, head, hlist) {
819 			if (!kprobe_disabled(p))
820 				unoptimize_kprobe(p, false);
821 		}
822 	}
823 	mutex_unlock(&kprobe_mutex);
824 
825 	/* Wait for unoptimizing completion */
826 	wait_for_kprobe_optimizer();
827 	printk(KERN_INFO "Kprobes globally unoptimized\n");
828 }
829 
830 static DEFINE_MUTEX(kprobe_sysctl_mutex);
831 int sysctl_kprobes_optimization;
832 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
833 				      void __user *buffer, size_t *length,
834 				      loff_t *ppos)
835 {
836 	int ret;
837 
838 	mutex_lock(&kprobe_sysctl_mutex);
839 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
840 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
841 
842 	if (sysctl_kprobes_optimization)
843 		optimize_all_kprobes();
844 	else
845 		unoptimize_all_kprobes();
846 	mutex_unlock(&kprobe_sysctl_mutex);
847 
848 	return ret;
849 }
850 #endif /* CONFIG_SYSCTL */
851 
852 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
853 static void __arm_kprobe(struct kprobe *p)
854 {
855 	struct kprobe *_p;
856 
857 	/* Check collision with other optimized kprobes */
858 	_p = get_optimized_kprobe((unsigned long)p->addr);
859 	if (unlikely(_p))
860 		/* Fallback to unoptimized kprobe */
861 		unoptimize_kprobe(_p, true);
862 
863 	arch_arm_kprobe(p);
864 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
865 }
866 
867 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
868 static void __disarm_kprobe(struct kprobe *p, bool reopt)
869 {
870 	struct kprobe *_p;
871 
872 	unoptimize_kprobe(p, false);	/* Try to unoptimize */
873 
874 	if (!kprobe_queued(p)) {
875 		arch_disarm_kprobe(p);
876 		/* If another kprobe was blocked, optimize it. */
877 		_p = get_optimized_kprobe((unsigned long)p->addr);
878 		if (unlikely(_p) && reopt)
879 			optimize_kprobe(_p);
880 	}
881 	/* TODO: reoptimize others after unoptimized this probe */
882 }
883 
884 #else /* !CONFIG_OPTPROBES */
885 
886 #define optimize_kprobe(p)			do {} while (0)
887 #define unoptimize_kprobe(p, f)			do {} while (0)
888 #define kill_optimized_kprobe(p)		do {} while (0)
889 #define prepare_optimized_kprobe(p)		do {} while (0)
890 #define try_to_optimize_kprobe(p)		do {} while (0)
891 #define __arm_kprobe(p)				arch_arm_kprobe(p)
892 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
893 #define kprobe_disarmed(p)			kprobe_disabled(p)
894 #define wait_for_kprobe_optimizer()		do {} while (0)
895 
896 /* There should be no unused kprobes can be reused without optimization */
897 static void reuse_unused_kprobe(struct kprobe *ap)
898 {
899 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
900 	BUG_ON(kprobe_unused(ap));
901 }
902 
903 static void free_aggr_kprobe(struct kprobe *p)
904 {
905 	arch_remove_kprobe(p);
906 	kfree(p);
907 }
908 
909 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
910 {
911 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
912 }
913 #endif /* CONFIG_OPTPROBES */
914 
915 #ifdef CONFIG_KPROBES_ON_FTRACE
916 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
917 	.func = kprobe_ftrace_handler,
918 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
919 };
920 static int kprobe_ftrace_enabled;
921 
922 /* Must ensure p->addr is really on ftrace */
923 static int prepare_kprobe(struct kprobe *p)
924 {
925 	if (!kprobe_ftrace(p))
926 		return arch_prepare_kprobe(p);
927 
928 	return arch_prepare_kprobe_ftrace(p);
929 }
930 
931 /* Caller must lock kprobe_mutex */
932 static void arm_kprobe_ftrace(struct kprobe *p)
933 {
934 	int ret;
935 
936 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
937 				   (unsigned long)p->addr, 0, 0);
938 	WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
939 	kprobe_ftrace_enabled++;
940 	if (kprobe_ftrace_enabled == 1) {
941 		ret = register_ftrace_function(&kprobe_ftrace_ops);
942 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
943 	}
944 }
945 
946 /* Caller must lock kprobe_mutex */
947 static void disarm_kprobe_ftrace(struct kprobe *p)
948 {
949 	int ret;
950 
951 	kprobe_ftrace_enabled--;
952 	if (kprobe_ftrace_enabled == 0) {
953 		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
954 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
955 	}
956 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
957 			   (unsigned long)p->addr, 1, 0);
958 	WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
959 }
960 #else	/* !CONFIG_KPROBES_ON_FTRACE */
961 #define prepare_kprobe(p)	arch_prepare_kprobe(p)
962 #define arm_kprobe_ftrace(p)	do {} while (0)
963 #define disarm_kprobe_ftrace(p)	do {} while (0)
964 #endif
965 
966 /* Arm a kprobe with text_mutex */
967 static void arm_kprobe(struct kprobe *kp)
968 {
969 	if (unlikely(kprobe_ftrace(kp))) {
970 		arm_kprobe_ftrace(kp);
971 		return;
972 	}
973 	/*
974 	 * Here, since __arm_kprobe() doesn't use stop_machine(),
975 	 * this doesn't cause deadlock on text_mutex. So, we don't
976 	 * need get_online_cpus().
977 	 */
978 	mutex_lock(&text_mutex);
979 	__arm_kprobe(kp);
980 	mutex_unlock(&text_mutex);
981 }
982 
983 /* Disarm a kprobe with text_mutex */
984 static void disarm_kprobe(struct kprobe *kp, bool reopt)
985 {
986 	if (unlikely(kprobe_ftrace(kp))) {
987 		disarm_kprobe_ftrace(kp);
988 		return;
989 	}
990 	/* Ditto */
991 	mutex_lock(&text_mutex);
992 	__disarm_kprobe(kp, reopt);
993 	mutex_unlock(&text_mutex);
994 }
995 
996 /*
997  * Aggregate handlers for multiple kprobes support - these handlers
998  * take care of invoking the individual kprobe handlers on p->list
999  */
1000 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1001 {
1002 	struct kprobe *kp;
1003 
1004 	list_for_each_entry_rcu(kp, &p->list, list) {
1005 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1006 			set_kprobe_instance(kp);
1007 			if (kp->pre_handler(kp, regs))
1008 				return 1;
1009 		}
1010 		reset_kprobe_instance();
1011 	}
1012 	return 0;
1013 }
1014 NOKPROBE_SYMBOL(aggr_pre_handler);
1015 
1016 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1017 			      unsigned long flags)
1018 {
1019 	struct kprobe *kp;
1020 
1021 	list_for_each_entry_rcu(kp, &p->list, list) {
1022 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1023 			set_kprobe_instance(kp);
1024 			kp->post_handler(kp, regs, flags);
1025 			reset_kprobe_instance();
1026 		}
1027 	}
1028 }
1029 NOKPROBE_SYMBOL(aggr_post_handler);
1030 
1031 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1032 			      int trapnr)
1033 {
1034 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1035 
1036 	/*
1037 	 * if we faulted "during" the execution of a user specified
1038 	 * probe handler, invoke just that probe's fault handler
1039 	 */
1040 	if (cur && cur->fault_handler) {
1041 		if (cur->fault_handler(cur, regs, trapnr))
1042 			return 1;
1043 	}
1044 	return 0;
1045 }
1046 NOKPROBE_SYMBOL(aggr_fault_handler);
1047 
1048 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1049 {
1050 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1051 	int ret = 0;
1052 
1053 	if (cur && cur->break_handler) {
1054 		if (cur->break_handler(cur, regs))
1055 			ret = 1;
1056 	}
1057 	reset_kprobe_instance();
1058 	return ret;
1059 }
1060 NOKPROBE_SYMBOL(aggr_break_handler);
1061 
1062 /* Walks the list and increments nmissed count for multiprobe case */
1063 void kprobes_inc_nmissed_count(struct kprobe *p)
1064 {
1065 	struct kprobe *kp;
1066 	if (!kprobe_aggrprobe(p)) {
1067 		p->nmissed++;
1068 	} else {
1069 		list_for_each_entry_rcu(kp, &p->list, list)
1070 			kp->nmissed++;
1071 	}
1072 	return;
1073 }
1074 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1075 
1076 void recycle_rp_inst(struct kretprobe_instance *ri,
1077 		     struct hlist_head *head)
1078 {
1079 	struct kretprobe *rp = ri->rp;
1080 
1081 	/* remove rp inst off the rprobe_inst_table */
1082 	hlist_del(&ri->hlist);
1083 	INIT_HLIST_NODE(&ri->hlist);
1084 	if (likely(rp)) {
1085 		raw_spin_lock(&rp->lock);
1086 		hlist_add_head(&ri->hlist, &rp->free_instances);
1087 		raw_spin_unlock(&rp->lock);
1088 	} else
1089 		/* Unregistering */
1090 		hlist_add_head(&ri->hlist, head);
1091 }
1092 NOKPROBE_SYMBOL(recycle_rp_inst);
1093 
1094 void kretprobe_hash_lock(struct task_struct *tsk,
1095 			 struct hlist_head **head, unsigned long *flags)
1096 __acquires(hlist_lock)
1097 {
1098 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1099 	raw_spinlock_t *hlist_lock;
1100 
1101 	*head = &kretprobe_inst_table[hash];
1102 	hlist_lock = kretprobe_table_lock_ptr(hash);
1103 	raw_spin_lock_irqsave(hlist_lock, *flags);
1104 }
1105 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1106 
1107 static void kretprobe_table_lock(unsigned long hash,
1108 				 unsigned long *flags)
1109 __acquires(hlist_lock)
1110 {
1111 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1112 	raw_spin_lock_irqsave(hlist_lock, *flags);
1113 }
1114 NOKPROBE_SYMBOL(kretprobe_table_lock);
1115 
1116 void kretprobe_hash_unlock(struct task_struct *tsk,
1117 			   unsigned long *flags)
1118 __releases(hlist_lock)
1119 {
1120 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1121 	raw_spinlock_t *hlist_lock;
1122 
1123 	hlist_lock = kretprobe_table_lock_ptr(hash);
1124 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1125 }
1126 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1127 
1128 static void kretprobe_table_unlock(unsigned long hash,
1129 				   unsigned long *flags)
1130 __releases(hlist_lock)
1131 {
1132 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1133 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1134 }
1135 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1136 
1137 /*
1138  * This function is called from finish_task_switch when task tk becomes dead,
1139  * so that we can recycle any function-return probe instances associated
1140  * with this task. These left over instances represent probed functions
1141  * that have been called but will never return.
1142  */
1143 void kprobe_flush_task(struct task_struct *tk)
1144 {
1145 	struct kretprobe_instance *ri;
1146 	struct hlist_head *head, empty_rp;
1147 	struct hlist_node *tmp;
1148 	unsigned long hash, flags = 0;
1149 
1150 	if (unlikely(!kprobes_initialized))
1151 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1152 		return;
1153 
1154 	INIT_HLIST_HEAD(&empty_rp);
1155 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1156 	head = &kretprobe_inst_table[hash];
1157 	kretprobe_table_lock(hash, &flags);
1158 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1159 		if (ri->task == tk)
1160 			recycle_rp_inst(ri, &empty_rp);
1161 	}
1162 	kretprobe_table_unlock(hash, &flags);
1163 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1164 		hlist_del(&ri->hlist);
1165 		kfree(ri);
1166 	}
1167 }
1168 NOKPROBE_SYMBOL(kprobe_flush_task);
1169 
1170 static inline void free_rp_inst(struct kretprobe *rp)
1171 {
1172 	struct kretprobe_instance *ri;
1173 	struct hlist_node *next;
1174 
1175 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1176 		hlist_del(&ri->hlist);
1177 		kfree(ri);
1178 	}
1179 }
1180 
1181 static void cleanup_rp_inst(struct kretprobe *rp)
1182 {
1183 	unsigned long flags, hash;
1184 	struct kretprobe_instance *ri;
1185 	struct hlist_node *next;
1186 	struct hlist_head *head;
1187 
1188 	/* No race here */
1189 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1190 		kretprobe_table_lock(hash, &flags);
1191 		head = &kretprobe_inst_table[hash];
1192 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1193 			if (ri->rp == rp)
1194 				ri->rp = NULL;
1195 		}
1196 		kretprobe_table_unlock(hash, &flags);
1197 	}
1198 	free_rp_inst(rp);
1199 }
1200 NOKPROBE_SYMBOL(cleanup_rp_inst);
1201 
1202 /*
1203 * Add the new probe to ap->list. Fail if this is the
1204 * second jprobe at the address - two jprobes can't coexist
1205 */
1206 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1207 {
1208 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1209 
1210 	if (p->break_handler || p->post_handler)
1211 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1212 
1213 	if (p->break_handler) {
1214 		if (ap->break_handler)
1215 			return -EEXIST;
1216 		list_add_tail_rcu(&p->list, &ap->list);
1217 		ap->break_handler = aggr_break_handler;
1218 	} else
1219 		list_add_rcu(&p->list, &ap->list);
1220 	if (p->post_handler && !ap->post_handler)
1221 		ap->post_handler = aggr_post_handler;
1222 
1223 	return 0;
1224 }
1225 
1226 /*
1227  * Fill in the required fields of the "manager kprobe". Replace the
1228  * earlier kprobe in the hlist with the manager kprobe
1229  */
1230 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1231 {
1232 	/* Copy p's insn slot to ap */
1233 	copy_kprobe(p, ap);
1234 	flush_insn_slot(ap);
1235 	ap->addr = p->addr;
1236 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1237 	ap->pre_handler = aggr_pre_handler;
1238 	ap->fault_handler = aggr_fault_handler;
1239 	/* We don't care the kprobe which has gone. */
1240 	if (p->post_handler && !kprobe_gone(p))
1241 		ap->post_handler = aggr_post_handler;
1242 	if (p->break_handler && !kprobe_gone(p))
1243 		ap->break_handler = aggr_break_handler;
1244 
1245 	INIT_LIST_HEAD(&ap->list);
1246 	INIT_HLIST_NODE(&ap->hlist);
1247 
1248 	list_add_rcu(&p->list, &ap->list);
1249 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1250 }
1251 
1252 /*
1253  * This is the second or subsequent kprobe at the address - handle
1254  * the intricacies
1255  */
1256 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1257 {
1258 	int ret = 0;
1259 	struct kprobe *ap = orig_p;
1260 
1261 	/* For preparing optimization, jump_label_text_reserved() is called */
1262 	jump_label_lock();
1263 	/*
1264 	 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1265 	 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1266 	 */
1267 	get_online_cpus();
1268 	mutex_lock(&text_mutex);
1269 
1270 	if (!kprobe_aggrprobe(orig_p)) {
1271 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1272 		ap = alloc_aggr_kprobe(orig_p);
1273 		if (!ap) {
1274 			ret = -ENOMEM;
1275 			goto out;
1276 		}
1277 		init_aggr_kprobe(ap, orig_p);
1278 	} else if (kprobe_unused(ap))
1279 		/* This probe is going to die. Rescue it */
1280 		reuse_unused_kprobe(ap);
1281 
1282 	if (kprobe_gone(ap)) {
1283 		/*
1284 		 * Attempting to insert new probe at the same location that
1285 		 * had a probe in the module vaddr area which already
1286 		 * freed. So, the instruction slot has already been
1287 		 * released. We need a new slot for the new probe.
1288 		 */
1289 		ret = arch_prepare_kprobe(ap);
1290 		if (ret)
1291 			/*
1292 			 * Even if fail to allocate new slot, don't need to
1293 			 * free aggr_probe. It will be used next time, or
1294 			 * freed by unregister_kprobe.
1295 			 */
1296 			goto out;
1297 
1298 		/* Prepare optimized instructions if possible. */
1299 		prepare_optimized_kprobe(ap);
1300 
1301 		/*
1302 		 * Clear gone flag to prevent allocating new slot again, and
1303 		 * set disabled flag because it is not armed yet.
1304 		 */
1305 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1306 			    | KPROBE_FLAG_DISABLED;
1307 	}
1308 
1309 	/* Copy ap's insn slot to p */
1310 	copy_kprobe(ap, p);
1311 	ret = add_new_kprobe(ap, p);
1312 
1313 out:
1314 	mutex_unlock(&text_mutex);
1315 	put_online_cpus();
1316 	jump_label_unlock();
1317 
1318 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1319 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1320 		if (!kprobes_all_disarmed)
1321 			/* Arm the breakpoint again. */
1322 			arm_kprobe(ap);
1323 	}
1324 	return ret;
1325 }
1326 
1327 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1328 {
1329 	/* The __kprobes marked functions and entry code must not be probed */
1330 	return addr >= (unsigned long)__kprobes_text_start &&
1331 	       addr < (unsigned long)__kprobes_text_end;
1332 }
1333 
1334 static bool within_kprobe_blacklist(unsigned long addr)
1335 {
1336 	struct kprobe_blacklist_entry *ent;
1337 
1338 	if (arch_within_kprobe_blacklist(addr))
1339 		return true;
1340 	/*
1341 	 * If there exists a kprobe_blacklist, verify and
1342 	 * fail any probe registration in the prohibited area
1343 	 */
1344 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1345 		if (addr >= ent->start_addr && addr < ent->end_addr)
1346 			return true;
1347 	}
1348 
1349 	return false;
1350 }
1351 
1352 /*
1353  * If we have a symbol_name argument, look it up and add the offset field
1354  * to it. This way, we can specify a relative address to a symbol.
1355  * This returns encoded errors if it fails to look up symbol or invalid
1356  * combination of parameters.
1357  */
1358 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1359 {
1360 	kprobe_opcode_t *addr = p->addr;
1361 
1362 	if ((p->symbol_name && p->addr) ||
1363 	    (!p->symbol_name && !p->addr))
1364 		goto invalid;
1365 
1366 	if (p->symbol_name) {
1367 		kprobe_lookup_name(p->symbol_name, addr);
1368 		if (!addr)
1369 			return ERR_PTR(-ENOENT);
1370 	}
1371 
1372 	addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1373 	if (addr)
1374 		return addr;
1375 
1376 invalid:
1377 	return ERR_PTR(-EINVAL);
1378 }
1379 
1380 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1381 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1382 {
1383 	struct kprobe *ap, *list_p;
1384 
1385 	ap = get_kprobe(p->addr);
1386 	if (unlikely(!ap))
1387 		return NULL;
1388 
1389 	if (p != ap) {
1390 		list_for_each_entry_rcu(list_p, &ap->list, list)
1391 			if (list_p == p)
1392 			/* kprobe p is a valid probe */
1393 				goto valid;
1394 		return NULL;
1395 	}
1396 valid:
1397 	return ap;
1398 }
1399 
1400 /* Return error if the kprobe is being re-registered */
1401 static inline int check_kprobe_rereg(struct kprobe *p)
1402 {
1403 	int ret = 0;
1404 
1405 	mutex_lock(&kprobe_mutex);
1406 	if (__get_valid_kprobe(p))
1407 		ret = -EINVAL;
1408 	mutex_unlock(&kprobe_mutex);
1409 
1410 	return ret;
1411 }
1412 
1413 int __weak arch_check_ftrace_location(struct kprobe *p)
1414 {
1415 	unsigned long ftrace_addr;
1416 
1417 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1418 	if (ftrace_addr) {
1419 #ifdef CONFIG_KPROBES_ON_FTRACE
1420 		/* Given address is not on the instruction boundary */
1421 		if ((unsigned long)p->addr != ftrace_addr)
1422 			return -EILSEQ;
1423 		p->flags |= KPROBE_FLAG_FTRACE;
1424 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1425 		return -EINVAL;
1426 #endif
1427 	}
1428 	return 0;
1429 }
1430 
1431 static int check_kprobe_address_safe(struct kprobe *p,
1432 				     struct module **probed_mod)
1433 {
1434 	int ret;
1435 
1436 	ret = arch_check_ftrace_location(p);
1437 	if (ret)
1438 		return ret;
1439 	jump_label_lock();
1440 	preempt_disable();
1441 
1442 	/* Ensure it is not in reserved area nor out of text */
1443 	if (!kernel_text_address((unsigned long) p->addr) ||
1444 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1445 	    jump_label_text_reserved(p->addr, p->addr)) {
1446 		ret = -EINVAL;
1447 		goto out;
1448 	}
1449 
1450 	/* Check if are we probing a module */
1451 	*probed_mod = __module_text_address((unsigned long) p->addr);
1452 	if (*probed_mod) {
1453 		/*
1454 		 * We must hold a refcount of the probed module while updating
1455 		 * its code to prohibit unexpected unloading.
1456 		 */
1457 		if (unlikely(!try_module_get(*probed_mod))) {
1458 			ret = -ENOENT;
1459 			goto out;
1460 		}
1461 
1462 		/*
1463 		 * If the module freed .init.text, we couldn't insert
1464 		 * kprobes in there.
1465 		 */
1466 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1467 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1468 			module_put(*probed_mod);
1469 			*probed_mod = NULL;
1470 			ret = -ENOENT;
1471 		}
1472 	}
1473 out:
1474 	preempt_enable();
1475 	jump_label_unlock();
1476 
1477 	return ret;
1478 }
1479 
1480 int register_kprobe(struct kprobe *p)
1481 {
1482 	int ret;
1483 	struct kprobe *old_p;
1484 	struct module *probed_mod;
1485 	kprobe_opcode_t *addr;
1486 
1487 	/* Adjust probe address from symbol */
1488 	addr = kprobe_addr(p);
1489 	if (IS_ERR(addr))
1490 		return PTR_ERR(addr);
1491 	p->addr = addr;
1492 
1493 	ret = check_kprobe_rereg(p);
1494 	if (ret)
1495 		return ret;
1496 
1497 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1498 	p->flags &= KPROBE_FLAG_DISABLED;
1499 	p->nmissed = 0;
1500 	INIT_LIST_HEAD(&p->list);
1501 
1502 	ret = check_kprobe_address_safe(p, &probed_mod);
1503 	if (ret)
1504 		return ret;
1505 
1506 	mutex_lock(&kprobe_mutex);
1507 
1508 	old_p = get_kprobe(p->addr);
1509 	if (old_p) {
1510 		/* Since this may unoptimize old_p, locking text_mutex. */
1511 		ret = register_aggr_kprobe(old_p, p);
1512 		goto out;
1513 	}
1514 
1515 	mutex_lock(&text_mutex);	/* Avoiding text modification */
1516 	ret = prepare_kprobe(p);
1517 	mutex_unlock(&text_mutex);
1518 	if (ret)
1519 		goto out;
1520 
1521 	INIT_HLIST_NODE(&p->hlist);
1522 	hlist_add_head_rcu(&p->hlist,
1523 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1524 
1525 	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1526 		arm_kprobe(p);
1527 
1528 	/* Try to optimize kprobe */
1529 	try_to_optimize_kprobe(p);
1530 
1531 out:
1532 	mutex_unlock(&kprobe_mutex);
1533 
1534 	if (probed_mod)
1535 		module_put(probed_mod);
1536 
1537 	return ret;
1538 }
1539 EXPORT_SYMBOL_GPL(register_kprobe);
1540 
1541 /* Check if all probes on the aggrprobe are disabled */
1542 static int aggr_kprobe_disabled(struct kprobe *ap)
1543 {
1544 	struct kprobe *kp;
1545 
1546 	list_for_each_entry_rcu(kp, &ap->list, list)
1547 		if (!kprobe_disabled(kp))
1548 			/*
1549 			 * There is an active probe on the list.
1550 			 * We can't disable this ap.
1551 			 */
1552 			return 0;
1553 
1554 	return 1;
1555 }
1556 
1557 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1558 static struct kprobe *__disable_kprobe(struct kprobe *p)
1559 {
1560 	struct kprobe *orig_p;
1561 
1562 	/* Get an original kprobe for return */
1563 	orig_p = __get_valid_kprobe(p);
1564 	if (unlikely(orig_p == NULL))
1565 		return NULL;
1566 
1567 	if (!kprobe_disabled(p)) {
1568 		/* Disable probe if it is a child probe */
1569 		if (p != orig_p)
1570 			p->flags |= KPROBE_FLAG_DISABLED;
1571 
1572 		/* Try to disarm and disable this/parent probe */
1573 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1574 			disarm_kprobe(orig_p, true);
1575 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1576 		}
1577 	}
1578 
1579 	return orig_p;
1580 }
1581 
1582 /*
1583  * Unregister a kprobe without a scheduler synchronization.
1584  */
1585 static int __unregister_kprobe_top(struct kprobe *p)
1586 {
1587 	struct kprobe *ap, *list_p;
1588 
1589 	/* Disable kprobe. This will disarm it if needed. */
1590 	ap = __disable_kprobe(p);
1591 	if (ap == NULL)
1592 		return -EINVAL;
1593 
1594 	if (ap == p)
1595 		/*
1596 		 * This probe is an independent(and non-optimized) kprobe
1597 		 * (not an aggrprobe). Remove from the hash list.
1598 		 */
1599 		goto disarmed;
1600 
1601 	/* Following process expects this probe is an aggrprobe */
1602 	WARN_ON(!kprobe_aggrprobe(ap));
1603 
1604 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1605 		/*
1606 		 * !disarmed could be happen if the probe is under delayed
1607 		 * unoptimizing.
1608 		 */
1609 		goto disarmed;
1610 	else {
1611 		/* If disabling probe has special handlers, update aggrprobe */
1612 		if (p->break_handler && !kprobe_gone(p))
1613 			ap->break_handler = NULL;
1614 		if (p->post_handler && !kprobe_gone(p)) {
1615 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1616 				if ((list_p != p) && (list_p->post_handler))
1617 					goto noclean;
1618 			}
1619 			ap->post_handler = NULL;
1620 		}
1621 noclean:
1622 		/*
1623 		 * Remove from the aggrprobe: this path will do nothing in
1624 		 * __unregister_kprobe_bottom().
1625 		 */
1626 		list_del_rcu(&p->list);
1627 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1628 			/*
1629 			 * Try to optimize this probe again, because post
1630 			 * handler may have been changed.
1631 			 */
1632 			optimize_kprobe(ap);
1633 	}
1634 	return 0;
1635 
1636 disarmed:
1637 	BUG_ON(!kprobe_disarmed(ap));
1638 	hlist_del_rcu(&ap->hlist);
1639 	return 0;
1640 }
1641 
1642 static void __unregister_kprobe_bottom(struct kprobe *p)
1643 {
1644 	struct kprobe *ap;
1645 
1646 	if (list_empty(&p->list))
1647 		/* This is an independent kprobe */
1648 		arch_remove_kprobe(p);
1649 	else if (list_is_singular(&p->list)) {
1650 		/* This is the last child of an aggrprobe */
1651 		ap = list_entry(p->list.next, struct kprobe, list);
1652 		list_del(&p->list);
1653 		free_aggr_kprobe(ap);
1654 	}
1655 	/* Otherwise, do nothing. */
1656 }
1657 
1658 int register_kprobes(struct kprobe **kps, int num)
1659 {
1660 	int i, ret = 0;
1661 
1662 	if (num <= 0)
1663 		return -EINVAL;
1664 	for (i = 0; i < num; i++) {
1665 		ret = register_kprobe(kps[i]);
1666 		if (ret < 0) {
1667 			if (i > 0)
1668 				unregister_kprobes(kps, i);
1669 			break;
1670 		}
1671 	}
1672 	return ret;
1673 }
1674 EXPORT_SYMBOL_GPL(register_kprobes);
1675 
1676 void unregister_kprobe(struct kprobe *p)
1677 {
1678 	unregister_kprobes(&p, 1);
1679 }
1680 EXPORT_SYMBOL_GPL(unregister_kprobe);
1681 
1682 void unregister_kprobes(struct kprobe **kps, int num)
1683 {
1684 	int i;
1685 
1686 	if (num <= 0)
1687 		return;
1688 	mutex_lock(&kprobe_mutex);
1689 	for (i = 0; i < num; i++)
1690 		if (__unregister_kprobe_top(kps[i]) < 0)
1691 			kps[i]->addr = NULL;
1692 	mutex_unlock(&kprobe_mutex);
1693 
1694 	synchronize_sched();
1695 	for (i = 0; i < num; i++)
1696 		if (kps[i]->addr)
1697 			__unregister_kprobe_bottom(kps[i]);
1698 }
1699 EXPORT_SYMBOL_GPL(unregister_kprobes);
1700 
1701 static struct notifier_block kprobe_exceptions_nb = {
1702 	.notifier_call = kprobe_exceptions_notify,
1703 	.priority = 0x7fffffff /* we need to be notified first */
1704 };
1705 
1706 unsigned long __weak arch_deref_entry_point(void *entry)
1707 {
1708 	return (unsigned long)entry;
1709 }
1710 
1711 int register_jprobes(struct jprobe **jps, int num)
1712 {
1713 	struct jprobe *jp;
1714 	int ret = 0, i;
1715 
1716 	if (num <= 0)
1717 		return -EINVAL;
1718 	for (i = 0; i < num; i++) {
1719 		unsigned long addr, offset;
1720 		jp = jps[i];
1721 		addr = arch_deref_entry_point(jp->entry);
1722 
1723 		/* Verify probepoint is a function entry point */
1724 		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1725 		    offset == 0) {
1726 			jp->kp.pre_handler = setjmp_pre_handler;
1727 			jp->kp.break_handler = longjmp_break_handler;
1728 			ret = register_kprobe(&jp->kp);
1729 		} else
1730 			ret = -EINVAL;
1731 
1732 		if (ret < 0) {
1733 			if (i > 0)
1734 				unregister_jprobes(jps, i);
1735 			break;
1736 		}
1737 	}
1738 	return ret;
1739 }
1740 EXPORT_SYMBOL_GPL(register_jprobes);
1741 
1742 int register_jprobe(struct jprobe *jp)
1743 {
1744 	return register_jprobes(&jp, 1);
1745 }
1746 EXPORT_SYMBOL_GPL(register_jprobe);
1747 
1748 void unregister_jprobe(struct jprobe *jp)
1749 {
1750 	unregister_jprobes(&jp, 1);
1751 }
1752 EXPORT_SYMBOL_GPL(unregister_jprobe);
1753 
1754 void unregister_jprobes(struct jprobe **jps, int num)
1755 {
1756 	int i;
1757 
1758 	if (num <= 0)
1759 		return;
1760 	mutex_lock(&kprobe_mutex);
1761 	for (i = 0; i < num; i++)
1762 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1763 			jps[i]->kp.addr = NULL;
1764 	mutex_unlock(&kprobe_mutex);
1765 
1766 	synchronize_sched();
1767 	for (i = 0; i < num; i++) {
1768 		if (jps[i]->kp.addr)
1769 			__unregister_kprobe_bottom(&jps[i]->kp);
1770 	}
1771 }
1772 EXPORT_SYMBOL_GPL(unregister_jprobes);
1773 
1774 #ifdef CONFIG_KRETPROBES
1775 /*
1776  * This kprobe pre_handler is registered with every kretprobe. When probe
1777  * hits it will set up the return probe.
1778  */
1779 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1780 {
1781 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1782 	unsigned long hash, flags = 0;
1783 	struct kretprobe_instance *ri;
1784 
1785 	/*
1786 	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1787 	 * just skip the probe and increase the (inexact) 'nmissed'
1788 	 * statistical counter, so that the user is informed that
1789 	 * something happened:
1790 	 */
1791 	if (unlikely(in_nmi())) {
1792 		rp->nmissed++;
1793 		return 0;
1794 	}
1795 
1796 	/* TODO: consider to only swap the RA after the last pre_handler fired */
1797 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1798 	raw_spin_lock_irqsave(&rp->lock, flags);
1799 	if (!hlist_empty(&rp->free_instances)) {
1800 		ri = hlist_entry(rp->free_instances.first,
1801 				struct kretprobe_instance, hlist);
1802 		hlist_del(&ri->hlist);
1803 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1804 
1805 		ri->rp = rp;
1806 		ri->task = current;
1807 
1808 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1809 			raw_spin_lock_irqsave(&rp->lock, flags);
1810 			hlist_add_head(&ri->hlist, &rp->free_instances);
1811 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1812 			return 0;
1813 		}
1814 
1815 		arch_prepare_kretprobe(ri, regs);
1816 
1817 		/* XXX(hch): why is there no hlist_move_head? */
1818 		INIT_HLIST_NODE(&ri->hlist);
1819 		kretprobe_table_lock(hash, &flags);
1820 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1821 		kretprobe_table_unlock(hash, &flags);
1822 	} else {
1823 		rp->nmissed++;
1824 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1825 	}
1826 	return 0;
1827 }
1828 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1829 
1830 int register_kretprobe(struct kretprobe *rp)
1831 {
1832 	int ret = 0;
1833 	struct kretprobe_instance *inst;
1834 	int i;
1835 	void *addr;
1836 
1837 	if (kretprobe_blacklist_size) {
1838 		addr = kprobe_addr(&rp->kp);
1839 		if (IS_ERR(addr))
1840 			return PTR_ERR(addr);
1841 
1842 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1843 			if (kretprobe_blacklist[i].addr == addr)
1844 				return -EINVAL;
1845 		}
1846 	}
1847 
1848 	rp->kp.pre_handler = pre_handler_kretprobe;
1849 	rp->kp.post_handler = NULL;
1850 	rp->kp.fault_handler = NULL;
1851 	rp->kp.break_handler = NULL;
1852 
1853 	/* Pre-allocate memory for max kretprobe instances */
1854 	if (rp->maxactive <= 0) {
1855 #ifdef CONFIG_PREEMPT
1856 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1857 #else
1858 		rp->maxactive = num_possible_cpus();
1859 #endif
1860 	}
1861 	raw_spin_lock_init(&rp->lock);
1862 	INIT_HLIST_HEAD(&rp->free_instances);
1863 	for (i = 0; i < rp->maxactive; i++) {
1864 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1865 			       rp->data_size, GFP_KERNEL);
1866 		if (inst == NULL) {
1867 			free_rp_inst(rp);
1868 			return -ENOMEM;
1869 		}
1870 		INIT_HLIST_NODE(&inst->hlist);
1871 		hlist_add_head(&inst->hlist, &rp->free_instances);
1872 	}
1873 
1874 	rp->nmissed = 0;
1875 	/* Establish function entry probe point */
1876 	ret = register_kprobe(&rp->kp);
1877 	if (ret != 0)
1878 		free_rp_inst(rp);
1879 	return ret;
1880 }
1881 EXPORT_SYMBOL_GPL(register_kretprobe);
1882 
1883 int register_kretprobes(struct kretprobe **rps, int num)
1884 {
1885 	int ret = 0, i;
1886 
1887 	if (num <= 0)
1888 		return -EINVAL;
1889 	for (i = 0; i < num; i++) {
1890 		ret = register_kretprobe(rps[i]);
1891 		if (ret < 0) {
1892 			if (i > 0)
1893 				unregister_kretprobes(rps, i);
1894 			break;
1895 		}
1896 	}
1897 	return ret;
1898 }
1899 EXPORT_SYMBOL_GPL(register_kretprobes);
1900 
1901 void unregister_kretprobe(struct kretprobe *rp)
1902 {
1903 	unregister_kretprobes(&rp, 1);
1904 }
1905 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1906 
1907 void unregister_kretprobes(struct kretprobe **rps, int num)
1908 {
1909 	int i;
1910 
1911 	if (num <= 0)
1912 		return;
1913 	mutex_lock(&kprobe_mutex);
1914 	for (i = 0; i < num; i++)
1915 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1916 			rps[i]->kp.addr = NULL;
1917 	mutex_unlock(&kprobe_mutex);
1918 
1919 	synchronize_sched();
1920 	for (i = 0; i < num; i++) {
1921 		if (rps[i]->kp.addr) {
1922 			__unregister_kprobe_bottom(&rps[i]->kp);
1923 			cleanup_rp_inst(rps[i]);
1924 		}
1925 	}
1926 }
1927 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1928 
1929 #else /* CONFIG_KRETPROBES */
1930 int register_kretprobe(struct kretprobe *rp)
1931 {
1932 	return -ENOSYS;
1933 }
1934 EXPORT_SYMBOL_GPL(register_kretprobe);
1935 
1936 int register_kretprobes(struct kretprobe **rps, int num)
1937 {
1938 	return -ENOSYS;
1939 }
1940 EXPORT_SYMBOL_GPL(register_kretprobes);
1941 
1942 void unregister_kretprobe(struct kretprobe *rp)
1943 {
1944 }
1945 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1946 
1947 void unregister_kretprobes(struct kretprobe **rps, int num)
1948 {
1949 }
1950 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1951 
1952 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1953 {
1954 	return 0;
1955 }
1956 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1957 
1958 #endif /* CONFIG_KRETPROBES */
1959 
1960 /* Set the kprobe gone and remove its instruction buffer. */
1961 static void kill_kprobe(struct kprobe *p)
1962 {
1963 	struct kprobe *kp;
1964 
1965 	p->flags |= KPROBE_FLAG_GONE;
1966 	if (kprobe_aggrprobe(p)) {
1967 		/*
1968 		 * If this is an aggr_kprobe, we have to list all the
1969 		 * chained probes and mark them GONE.
1970 		 */
1971 		list_for_each_entry_rcu(kp, &p->list, list)
1972 			kp->flags |= KPROBE_FLAG_GONE;
1973 		p->post_handler = NULL;
1974 		p->break_handler = NULL;
1975 		kill_optimized_kprobe(p);
1976 	}
1977 	/*
1978 	 * Here, we can remove insn_slot safely, because no thread calls
1979 	 * the original probed function (which will be freed soon) any more.
1980 	 */
1981 	arch_remove_kprobe(p);
1982 }
1983 
1984 /* Disable one kprobe */
1985 int disable_kprobe(struct kprobe *kp)
1986 {
1987 	int ret = 0;
1988 
1989 	mutex_lock(&kprobe_mutex);
1990 
1991 	/* Disable this kprobe */
1992 	if (__disable_kprobe(kp) == NULL)
1993 		ret = -EINVAL;
1994 
1995 	mutex_unlock(&kprobe_mutex);
1996 	return ret;
1997 }
1998 EXPORT_SYMBOL_GPL(disable_kprobe);
1999 
2000 /* Enable one kprobe */
2001 int enable_kprobe(struct kprobe *kp)
2002 {
2003 	int ret = 0;
2004 	struct kprobe *p;
2005 
2006 	mutex_lock(&kprobe_mutex);
2007 
2008 	/* Check whether specified probe is valid. */
2009 	p = __get_valid_kprobe(kp);
2010 	if (unlikely(p == NULL)) {
2011 		ret = -EINVAL;
2012 		goto out;
2013 	}
2014 
2015 	if (kprobe_gone(kp)) {
2016 		/* This kprobe has gone, we couldn't enable it. */
2017 		ret = -EINVAL;
2018 		goto out;
2019 	}
2020 
2021 	if (p != kp)
2022 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2023 
2024 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2025 		p->flags &= ~KPROBE_FLAG_DISABLED;
2026 		arm_kprobe(p);
2027 	}
2028 out:
2029 	mutex_unlock(&kprobe_mutex);
2030 	return ret;
2031 }
2032 EXPORT_SYMBOL_GPL(enable_kprobe);
2033 
2034 void dump_kprobe(struct kprobe *kp)
2035 {
2036 	printk(KERN_WARNING "Dumping kprobe:\n");
2037 	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2038 	       kp->symbol_name, kp->addr, kp->offset);
2039 }
2040 NOKPROBE_SYMBOL(dump_kprobe);
2041 
2042 /*
2043  * Lookup and populate the kprobe_blacklist.
2044  *
2045  * Unlike the kretprobe blacklist, we'll need to determine
2046  * the range of addresses that belong to the said functions,
2047  * since a kprobe need not necessarily be at the beginning
2048  * of a function.
2049  */
2050 static int __init populate_kprobe_blacklist(unsigned long *start,
2051 					     unsigned long *end)
2052 {
2053 	unsigned long *iter;
2054 	struct kprobe_blacklist_entry *ent;
2055 	unsigned long entry, offset = 0, size = 0;
2056 
2057 	for (iter = start; iter < end; iter++) {
2058 		entry = arch_deref_entry_point((void *)*iter);
2059 
2060 		if (!kernel_text_address(entry) ||
2061 		    !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2062 			pr_err("Failed to find blacklist at %p\n",
2063 				(void *)entry);
2064 			continue;
2065 		}
2066 
2067 		ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2068 		if (!ent)
2069 			return -ENOMEM;
2070 		ent->start_addr = entry;
2071 		ent->end_addr = entry + size;
2072 		INIT_LIST_HEAD(&ent->list);
2073 		list_add_tail(&ent->list, &kprobe_blacklist);
2074 	}
2075 	return 0;
2076 }
2077 
2078 /* Module notifier call back, checking kprobes on the module */
2079 static int kprobes_module_callback(struct notifier_block *nb,
2080 				   unsigned long val, void *data)
2081 {
2082 	struct module *mod = data;
2083 	struct hlist_head *head;
2084 	struct kprobe *p;
2085 	unsigned int i;
2086 	int checkcore = (val == MODULE_STATE_GOING);
2087 
2088 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2089 		return NOTIFY_DONE;
2090 
2091 	/*
2092 	 * When MODULE_STATE_GOING was notified, both of module .text and
2093 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2094 	 * notified, only .init.text section would be freed. We need to
2095 	 * disable kprobes which have been inserted in the sections.
2096 	 */
2097 	mutex_lock(&kprobe_mutex);
2098 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2099 		head = &kprobe_table[i];
2100 		hlist_for_each_entry_rcu(p, head, hlist)
2101 			if (within_module_init((unsigned long)p->addr, mod) ||
2102 			    (checkcore &&
2103 			     within_module_core((unsigned long)p->addr, mod))) {
2104 				/*
2105 				 * The vaddr this probe is installed will soon
2106 				 * be vfreed buy not synced to disk. Hence,
2107 				 * disarming the breakpoint isn't needed.
2108 				 */
2109 				kill_kprobe(p);
2110 			}
2111 	}
2112 	mutex_unlock(&kprobe_mutex);
2113 	return NOTIFY_DONE;
2114 }
2115 
2116 static struct notifier_block kprobe_module_nb = {
2117 	.notifier_call = kprobes_module_callback,
2118 	.priority = 0
2119 };
2120 
2121 /* Markers of _kprobe_blacklist section */
2122 extern unsigned long __start_kprobe_blacklist[];
2123 extern unsigned long __stop_kprobe_blacklist[];
2124 
2125 static int __init init_kprobes(void)
2126 {
2127 	int i, err = 0;
2128 
2129 	/* FIXME allocate the probe table, currently defined statically */
2130 	/* initialize all list heads */
2131 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2132 		INIT_HLIST_HEAD(&kprobe_table[i]);
2133 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2134 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2135 	}
2136 
2137 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2138 					__stop_kprobe_blacklist);
2139 	if (err) {
2140 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2141 		pr_err("Please take care of using kprobes.\n");
2142 	}
2143 
2144 	if (kretprobe_blacklist_size) {
2145 		/* lookup the function address from its name */
2146 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2147 			kprobe_lookup_name(kretprobe_blacklist[i].name,
2148 					   kretprobe_blacklist[i].addr);
2149 			if (!kretprobe_blacklist[i].addr)
2150 				printk("kretprobe: lookup failed: %s\n",
2151 				       kretprobe_blacklist[i].name);
2152 		}
2153 	}
2154 
2155 #if defined(CONFIG_OPTPROBES)
2156 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2157 	/* Init kprobe_optinsn_slots */
2158 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2159 #endif
2160 	/* By default, kprobes can be optimized */
2161 	kprobes_allow_optimization = true;
2162 #endif
2163 
2164 	/* By default, kprobes are armed */
2165 	kprobes_all_disarmed = false;
2166 
2167 	err = arch_init_kprobes();
2168 	if (!err)
2169 		err = register_die_notifier(&kprobe_exceptions_nb);
2170 	if (!err)
2171 		err = register_module_notifier(&kprobe_module_nb);
2172 
2173 	kprobes_initialized = (err == 0);
2174 
2175 	if (!err)
2176 		init_test_probes();
2177 	return err;
2178 }
2179 
2180 #ifdef CONFIG_DEBUG_FS
2181 static void report_probe(struct seq_file *pi, struct kprobe *p,
2182 		const char *sym, int offset, char *modname, struct kprobe *pp)
2183 {
2184 	char *kprobe_type;
2185 
2186 	if (p->pre_handler == pre_handler_kretprobe)
2187 		kprobe_type = "r";
2188 	else if (p->pre_handler == setjmp_pre_handler)
2189 		kprobe_type = "j";
2190 	else
2191 		kprobe_type = "k";
2192 
2193 	if (sym)
2194 		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2195 			p->addr, kprobe_type, sym, offset,
2196 			(modname ? modname : " "));
2197 	else
2198 		seq_printf(pi, "%p  %s  %p ",
2199 			p->addr, kprobe_type, p->addr);
2200 
2201 	if (!pp)
2202 		pp = p;
2203 	seq_printf(pi, "%s%s%s%s\n",
2204 		(kprobe_gone(p) ? "[GONE]" : ""),
2205 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2206 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2207 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2208 }
2209 
2210 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2211 {
2212 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2213 }
2214 
2215 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2216 {
2217 	(*pos)++;
2218 	if (*pos >= KPROBE_TABLE_SIZE)
2219 		return NULL;
2220 	return pos;
2221 }
2222 
2223 static void kprobe_seq_stop(struct seq_file *f, void *v)
2224 {
2225 	/* Nothing to do */
2226 }
2227 
2228 static int show_kprobe_addr(struct seq_file *pi, void *v)
2229 {
2230 	struct hlist_head *head;
2231 	struct kprobe *p, *kp;
2232 	const char *sym = NULL;
2233 	unsigned int i = *(loff_t *) v;
2234 	unsigned long offset = 0;
2235 	char *modname, namebuf[KSYM_NAME_LEN];
2236 
2237 	head = &kprobe_table[i];
2238 	preempt_disable();
2239 	hlist_for_each_entry_rcu(p, head, hlist) {
2240 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2241 					&offset, &modname, namebuf);
2242 		if (kprobe_aggrprobe(p)) {
2243 			list_for_each_entry_rcu(kp, &p->list, list)
2244 				report_probe(pi, kp, sym, offset, modname, p);
2245 		} else
2246 			report_probe(pi, p, sym, offset, modname, NULL);
2247 	}
2248 	preempt_enable();
2249 	return 0;
2250 }
2251 
2252 static const struct seq_operations kprobes_seq_ops = {
2253 	.start = kprobe_seq_start,
2254 	.next  = kprobe_seq_next,
2255 	.stop  = kprobe_seq_stop,
2256 	.show  = show_kprobe_addr
2257 };
2258 
2259 static int kprobes_open(struct inode *inode, struct file *filp)
2260 {
2261 	return seq_open(filp, &kprobes_seq_ops);
2262 }
2263 
2264 static const struct file_operations debugfs_kprobes_operations = {
2265 	.open           = kprobes_open,
2266 	.read           = seq_read,
2267 	.llseek         = seq_lseek,
2268 	.release        = seq_release,
2269 };
2270 
2271 /* kprobes/blacklist -- shows which functions can not be probed */
2272 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2273 {
2274 	return seq_list_start(&kprobe_blacklist, *pos);
2275 }
2276 
2277 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2278 {
2279 	return seq_list_next(v, &kprobe_blacklist, pos);
2280 }
2281 
2282 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2283 {
2284 	struct kprobe_blacklist_entry *ent =
2285 		list_entry(v, struct kprobe_blacklist_entry, list);
2286 
2287 	seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2288 		   (void *)ent->end_addr, (void *)ent->start_addr);
2289 	return 0;
2290 }
2291 
2292 static const struct seq_operations kprobe_blacklist_seq_ops = {
2293 	.start = kprobe_blacklist_seq_start,
2294 	.next  = kprobe_blacklist_seq_next,
2295 	.stop  = kprobe_seq_stop,	/* Reuse void function */
2296 	.show  = kprobe_blacklist_seq_show,
2297 };
2298 
2299 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2300 {
2301 	return seq_open(filp, &kprobe_blacklist_seq_ops);
2302 }
2303 
2304 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2305 	.open           = kprobe_blacklist_open,
2306 	.read           = seq_read,
2307 	.llseek         = seq_lseek,
2308 	.release        = seq_release,
2309 };
2310 
2311 static void arm_all_kprobes(void)
2312 {
2313 	struct hlist_head *head;
2314 	struct kprobe *p;
2315 	unsigned int i;
2316 
2317 	mutex_lock(&kprobe_mutex);
2318 
2319 	/* If kprobes are armed, just return */
2320 	if (!kprobes_all_disarmed)
2321 		goto already_enabled;
2322 
2323 	/* Arming kprobes doesn't optimize kprobe itself */
2324 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2325 		head = &kprobe_table[i];
2326 		hlist_for_each_entry_rcu(p, head, hlist)
2327 			if (!kprobe_disabled(p))
2328 				arm_kprobe(p);
2329 	}
2330 
2331 	kprobes_all_disarmed = false;
2332 	printk(KERN_INFO "Kprobes globally enabled\n");
2333 
2334 already_enabled:
2335 	mutex_unlock(&kprobe_mutex);
2336 	return;
2337 }
2338 
2339 static void disarm_all_kprobes(void)
2340 {
2341 	struct hlist_head *head;
2342 	struct kprobe *p;
2343 	unsigned int i;
2344 
2345 	mutex_lock(&kprobe_mutex);
2346 
2347 	/* If kprobes are already disarmed, just return */
2348 	if (kprobes_all_disarmed) {
2349 		mutex_unlock(&kprobe_mutex);
2350 		return;
2351 	}
2352 
2353 	kprobes_all_disarmed = true;
2354 	printk(KERN_INFO "Kprobes globally disabled\n");
2355 
2356 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2357 		head = &kprobe_table[i];
2358 		hlist_for_each_entry_rcu(p, head, hlist) {
2359 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2360 				disarm_kprobe(p, false);
2361 		}
2362 	}
2363 	mutex_unlock(&kprobe_mutex);
2364 
2365 	/* Wait for disarming all kprobes by optimizer */
2366 	wait_for_kprobe_optimizer();
2367 }
2368 
2369 /*
2370  * XXX: The debugfs bool file interface doesn't allow for callbacks
2371  * when the bool state is switched. We can reuse that facility when
2372  * available
2373  */
2374 static ssize_t read_enabled_file_bool(struct file *file,
2375 	       char __user *user_buf, size_t count, loff_t *ppos)
2376 {
2377 	char buf[3];
2378 
2379 	if (!kprobes_all_disarmed)
2380 		buf[0] = '1';
2381 	else
2382 		buf[0] = '0';
2383 	buf[1] = '\n';
2384 	buf[2] = 0x00;
2385 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2386 }
2387 
2388 static ssize_t write_enabled_file_bool(struct file *file,
2389 	       const char __user *user_buf, size_t count, loff_t *ppos)
2390 {
2391 	char buf[32];
2392 	size_t buf_size;
2393 
2394 	buf_size = min(count, (sizeof(buf)-1));
2395 	if (copy_from_user(buf, user_buf, buf_size))
2396 		return -EFAULT;
2397 
2398 	buf[buf_size] = '\0';
2399 	switch (buf[0]) {
2400 	case 'y':
2401 	case 'Y':
2402 	case '1':
2403 		arm_all_kprobes();
2404 		break;
2405 	case 'n':
2406 	case 'N':
2407 	case '0':
2408 		disarm_all_kprobes();
2409 		break;
2410 	default:
2411 		return -EINVAL;
2412 	}
2413 
2414 	return count;
2415 }
2416 
2417 static const struct file_operations fops_kp = {
2418 	.read =         read_enabled_file_bool,
2419 	.write =        write_enabled_file_bool,
2420 	.llseek =	default_llseek,
2421 };
2422 
2423 static int __init debugfs_kprobe_init(void)
2424 {
2425 	struct dentry *dir, *file;
2426 	unsigned int value = 1;
2427 
2428 	dir = debugfs_create_dir("kprobes", NULL);
2429 	if (!dir)
2430 		return -ENOMEM;
2431 
2432 	file = debugfs_create_file("list", 0444, dir, NULL,
2433 				&debugfs_kprobes_operations);
2434 	if (!file)
2435 		goto error;
2436 
2437 	file = debugfs_create_file("enabled", 0600, dir,
2438 					&value, &fops_kp);
2439 	if (!file)
2440 		goto error;
2441 
2442 	file = debugfs_create_file("blacklist", 0444, dir, NULL,
2443 				&debugfs_kprobe_blacklist_ops);
2444 	if (!file)
2445 		goto error;
2446 
2447 	return 0;
2448 
2449 error:
2450 	debugfs_remove(dir);
2451 	return -ENOMEM;
2452 }
2453 
2454 late_initcall(debugfs_kprobe_init);
2455 #endif /* CONFIG_DEBUG_FS */
2456 
2457 module_init(init_kprobes);
2458 
2459 /* defined in arch/.../kernel/kprobes.c */
2460 EXPORT_SYMBOL_GPL(jprobe_return);
2461