xref: /openbmc/linux/kernel/kprobes.c (revision 930beb5a)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51 
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56 
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 
60 
61 /*
62  * Some oddball architectures like 64bit powerpc have function descriptors
63  * so this must be overridable.
64  */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69 
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73 
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76 
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83 
84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86 	return &(kretprobe_table_locks[hash].lock);
87 }
88 
89 /*
90  * Normally, functions that we'd want to prohibit kprobes in, are marked
91  * __kprobes. But, there are cases where such functions already belong to
92  * a different section (__sched for preempt_schedule)
93  *
94  * For such cases, we now have a blacklist
95  */
96 static struct kprobe_blackpoint kprobe_blacklist[] = {
97 	{"preempt_schedule",},
98 	{"native_get_debugreg",},
99 	{"irq_entries_start",},
100 	{"common_interrupt",},
101 	{"mcount",},	/* mcount can be called from everywhere */
102 	{NULL}    /* Terminator */
103 };
104 
105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106 /*
107  * kprobe->ainsn.insn points to the copy of the instruction to be
108  * single-stepped. x86_64, POWER4 and above have no-exec support and
109  * stepping on the instruction on a vmalloced/kmalloced/data page
110  * is a recipe for disaster
111  */
112 struct kprobe_insn_page {
113 	struct list_head list;
114 	kprobe_opcode_t *insns;		/* Page of instruction slots */
115 	struct kprobe_insn_cache *cache;
116 	int nused;
117 	int ngarbage;
118 	char slot_used[];
119 };
120 
121 #define KPROBE_INSN_PAGE_SIZE(slots)			\
122 	(offsetof(struct kprobe_insn_page, slot_used) +	\
123 	 (sizeof(char) * (slots)))
124 
125 static int slots_per_page(struct kprobe_insn_cache *c)
126 {
127 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
128 }
129 
130 enum kprobe_slot_state {
131 	SLOT_CLEAN = 0,
132 	SLOT_DIRTY = 1,
133 	SLOT_USED = 2,
134 };
135 
136 static void *alloc_insn_page(void)
137 {
138 	return module_alloc(PAGE_SIZE);
139 }
140 
141 static void free_insn_page(void *page)
142 {
143 	module_free(NULL, page);
144 }
145 
146 struct kprobe_insn_cache kprobe_insn_slots = {
147 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
148 	.alloc = alloc_insn_page,
149 	.free = free_insn_page,
150 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
151 	.insn_size = MAX_INSN_SIZE,
152 	.nr_garbage = 0,
153 };
154 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
155 
156 /**
157  * __get_insn_slot() - Find a slot on an executable page for an instruction.
158  * We allocate an executable page if there's no room on existing ones.
159  */
160 kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
161 {
162 	struct kprobe_insn_page *kip;
163 	kprobe_opcode_t *slot = NULL;
164 
165 	mutex_lock(&c->mutex);
166  retry:
167 	list_for_each_entry(kip, &c->pages, list) {
168 		if (kip->nused < slots_per_page(c)) {
169 			int i;
170 			for (i = 0; i < slots_per_page(c); i++) {
171 				if (kip->slot_used[i] == SLOT_CLEAN) {
172 					kip->slot_used[i] = SLOT_USED;
173 					kip->nused++;
174 					slot = kip->insns + (i * c->insn_size);
175 					goto out;
176 				}
177 			}
178 			/* kip->nused is broken. Fix it. */
179 			kip->nused = slots_per_page(c);
180 			WARN_ON(1);
181 		}
182 	}
183 
184 	/* If there are any garbage slots, collect it and try again. */
185 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
186 		goto retry;
187 
188 	/* All out of space.  Need to allocate a new page. */
189 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
190 	if (!kip)
191 		goto out;
192 
193 	/*
194 	 * Use module_alloc so this page is within +/- 2GB of where the
195 	 * kernel image and loaded module images reside. This is required
196 	 * so x86_64 can correctly handle the %rip-relative fixups.
197 	 */
198 	kip->insns = c->alloc();
199 	if (!kip->insns) {
200 		kfree(kip);
201 		goto out;
202 	}
203 	INIT_LIST_HEAD(&kip->list);
204 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
205 	kip->slot_used[0] = SLOT_USED;
206 	kip->nused = 1;
207 	kip->ngarbage = 0;
208 	kip->cache = c;
209 	list_add(&kip->list, &c->pages);
210 	slot = kip->insns;
211 out:
212 	mutex_unlock(&c->mutex);
213 	return slot;
214 }
215 
216 /* Return 1 if all garbages are collected, otherwise 0. */
217 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
218 {
219 	kip->slot_used[idx] = SLOT_CLEAN;
220 	kip->nused--;
221 	if (kip->nused == 0) {
222 		/*
223 		 * Page is no longer in use.  Free it unless
224 		 * it's the last one.  We keep the last one
225 		 * so as not to have to set it up again the
226 		 * next time somebody inserts a probe.
227 		 */
228 		if (!list_is_singular(&kip->list)) {
229 			list_del(&kip->list);
230 			kip->cache->free(kip->insns);
231 			kfree(kip);
232 		}
233 		return 1;
234 	}
235 	return 0;
236 }
237 
238 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
239 {
240 	struct kprobe_insn_page *kip, *next;
241 
242 	/* Ensure no-one is interrupted on the garbages */
243 	synchronize_sched();
244 
245 	list_for_each_entry_safe(kip, next, &c->pages, list) {
246 		int i;
247 		if (kip->ngarbage == 0)
248 			continue;
249 		kip->ngarbage = 0;	/* we will collect all garbages */
250 		for (i = 0; i < slots_per_page(c); i++) {
251 			if (kip->slot_used[i] == SLOT_DIRTY &&
252 			    collect_one_slot(kip, i))
253 				break;
254 		}
255 	}
256 	c->nr_garbage = 0;
257 	return 0;
258 }
259 
260 void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
261 				kprobe_opcode_t *slot, int dirty)
262 {
263 	struct kprobe_insn_page *kip;
264 
265 	mutex_lock(&c->mutex);
266 	list_for_each_entry(kip, &c->pages, list) {
267 		long idx = ((long)slot - (long)kip->insns) /
268 				(c->insn_size * sizeof(kprobe_opcode_t));
269 		if (idx >= 0 && idx < slots_per_page(c)) {
270 			WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 			if (dirty) {
272 				kip->slot_used[idx] = SLOT_DIRTY;
273 				kip->ngarbage++;
274 				if (++c->nr_garbage > slots_per_page(c))
275 					collect_garbage_slots(c);
276 			} else
277 				collect_one_slot(kip, idx);
278 			goto out;
279 		}
280 	}
281 	/* Could not free this slot. */
282 	WARN_ON(1);
283 out:
284 	mutex_unlock(&c->mutex);
285 }
286 
287 #ifdef CONFIG_OPTPROBES
288 /* For optimized_kprobe buffer */
289 struct kprobe_insn_cache kprobe_optinsn_slots = {
290 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
291 	.alloc = alloc_insn_page,
292 	.free = free_insn_page,
293 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
294 	/* .insn_size is initialized later */
295 	.nr_garbage = 0,
296 };
297 #endif
298 #endif
299 
300 /* We have preemption disabled.. so it is safe to use __ versions */
301 static inline void set_kprobe_instance(struct kprobe *kp)
302 {
303 	__this_cpu_write(kprobe_instance, kp);
304 }
305 
306 static inline void reset_kprobe_instance(void)
307 {
308 	__this_cpu_write(kprobe_instance, NULL);
309 }
310 
311 /*
312  * This routine is called either:
313  * 	- under the kprobe_mutex - during kprobe_[un]register()
314  * 				OR
315  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
316  */
317 struct kprobe __kprobes *get_kprobe(void *addr)
318 {
319 	struct hlist_head *head;
320 	struct kprobe *p;
321 
322 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
323 	hlist_for_each_entry_rcu(p, head, hlist) {
324 		if (p->addr == addr)
325 			return p;
326 	}
327 
328 	return NULL;
329 }
330 
331 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
332 
333 /* Return true if the kprobe is an aggregator */
334 static inline int kprobe_aggrprobe(struct kprobe *p)
335 {
336 	return p->pre_handler == aggr_pre_handler;
337 }
338 
339 /* Return true(!0) if the kprobe is unused */
340 static inline int kprobe_unused(struct kprobe *p)
341 {
342 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
343 	       list_empty(&p->list);
344 }
345 
346 /*
347  * Keep all fields in the kprobe consistent
348  */
349 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
350 {
351 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
352 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
353 }
354 
355 #ifdef CONFIG_OPTPROBES
356 /* NOTE: change this value only with kprobe_mutex held */
357 static bool kprobes_allow_optimization;
358 
359 /*
360  * Call all pre_handler on the list, but ignores its return value.
361  * This must be called from arch-dep optimized caller.
362  */
363 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
364 {
365 	struct kprobe *kp;
366 
367 	list_for_each_entry_rcu(kp, &p->list, list) {
368 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
369 			set_kprobe_instance(kp);
370 			kp->pre_handler(kp, regs);
371 		}
372 		reset_kprobe_instance();
373 	}
374 }
375 
376 /* Free optimized instructions and optimized_kprobe */
377 static __kprobes void free_aggr_kprobe(struct kprobe *p)
378 {
379 	struct optimized_kprobe *op;
380 
381 	op = container_of(p, struct optimized_kprobe, kp);
382 	arch_remove_optimized_kprobe(op);
383 	arch_remove_kprobe(p);
384 	kfree(op);
385 }
386 
387 /* Return true(!0) if the kprobe is ready for optimization. */
388 static inline int kprobe_optready(struct kprobe *p)
389 {
390 	struct optimized_kprobe *op;
391 
392 	if (kprobe_aggrprobe(p)) {
393 		op = container_of(p, struct optimized_kprobe, kp);
394 		return arch_prepared_optinsn(&op->optinsn);
395 	}
396 
397 	return 0;
398 }
399 
400 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
401 static inline int kprobe_disarmed(struct kprobe *p)
402 {
403 	struct optimized_kprobe *op;
404 
405 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
406 	if (!kprobe_aggrprobe(p))
407 		return kprobe_disabled(p);
408 
409 	op = container_of(p, struct optimized_kprobe, kp);
410 
411 	return kprobe_disabled(p) && list_empty(&op->list);
412 }
413 
414 /* Return true(!0) if the probe is queued on (un)optimizing lists */
415 static int __kprobes kprobe_queued(struct kprobe *p)
416 {
417 	struct optimized_kprobe *op;
418 
419 	if (kprobe_aggrprobe(p)) {
420 		op = container_of(p, struct optimized_kprobe, kp);
421 		if (!list_empty(&op->list))
422 			return 1;
423 	}
424 	return 0;
425 }
426 
427 /*
428  * Return an optimized kprobe whose optimizing code replaces
429  * instructions including addr (exclude breakpoint).
430  */
431 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
432 {
433 	int i;
434 	struct kprobe *p = NULL;
435 	struct optimized_kprobe *op;
436 
437 	/* Don't check i == 0, since that is a breakpoint case. */
438 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
439 		p = get_kprobe((void *)(addr - i));
440 
441 	if (p && kprobe_optready(p)) {
442 		op = container_of(p, struct optimized_kprobe, kp);
443 		if (arch_within_optimized_kprobe(op, addr))
444 			return p;
445 	}
446 
447 	return NULL;
448 }
449 
450 /* Optimization staging list, protected by kprobe_mutex */
451 static LIST_HEAD(optimizing_list);
452 static LIST_HEAD(unoptimizing_list);
453 static LIST_HEAD(freeing_list);
454 
455 static void kprobe_optimizer(struct work_struct *work);
456 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
457 #define OPTIMIZE_DELAY 5
458 
459 /*
460  * Optimize (replace a breakpoint with a jump) kprobes listed on
461  * optimizing_list.
462  */
463 static __kprobes void do_optimize_kprobes(void)
464 {
465 	/* Optimization never be done when disarmed */
466 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
467 	    list_empty(&optimizing_list))
468 		return;
469 
470 	/*
471 	 * The optimization/unoptimization refers online_cpus via
472 	 * stop_machine() and cpu-hotplug modifies online_cpus.
473 	 * And same time, text_mutex will be held in cpu-hotplug and here.
474 	 * This combination can cause a deadlock (cpu-hotplug try to lock
475 	 * text_mutex but stop_machine can not be done because online_cpus
476 	 * has been changed)
477 	 * To avoid this deadlock, we need to call get_online_cpus()
478 	 * for preventing cpu-hotplug outside of text_mutex locking.
479 	 */
480 	get_online_cpus();
481 	mutex_lock(&text_mutex);
482 	arch_optimize_kprobes(&optimizing_list);
483 	mutex_unlock(&text_mutex);
484 	put_online_cpus();
485 }
486 
487 /*
488  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
489  * if need) kprobes listed on unoptimizing_list.
490  */
491 static __kprobes void do_unoptimize_kprobes(void)
492 {
493 	struct optimized_kprobe *op, *tmp;
494 
495 	/* Unoptimization must be done anytime */
496 	if (list_empty(&unoptimizing_list))
497 		return;
498 
499 	/* Ditto to do_optimize_kprobes */
500 	get_online_cpus();
501 	mutex_lock(&text_mutex);
502 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
503 	/* Loop free_list for disarming */
504 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
505 		/* Disarm probes if marked disabled */
506 		if (kprobe_disabled(&op->kp))
507 			arch_disarm_kprobe(&op->kp);
508 		if (kprobe_unused(&op->kp)) {
509 			/*
510 			 * Remove unused probes from hash list. After waiting
511 			 * for synchronization, these probes are reclaimed.
512 			 * (reclaiming is done by do_free_cleaned_kprobes.)
513 			 */
514 			hlist_del_rcu(&op->kp.hlist);
515 		} else
516 			list_del_init(&op->list);
517 	}
518 	mutex_unlock(&text_mutex);
519 	put_online_cpus();
520 }
521 
522 /* Reclaim all kprobes on the free_list */
523 static __kprobes void do_free_cleaned_kprobes(void)
524 {
525 	struct optimized_kprobe *op, *tmp;
526 
527 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
528 		BUG_ON(!kprobe_unused(&op->kp));
529 		list_del_init(&op->list);
530 		free_aggr_kprobe(&op->kp);
531 	}
532 }
533 
534 /* Start optimizer after OPTIMIZE_DELAY passed */
535 static __kprobes void kick_kprobe_optimizer(void)
536 {
537 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
538 }
539 
540 /* Kprobe jump optimizer */
541 static __kprobes void kprobe_optimizer(struct work_struct *work)
542 {
543 	mutex_lock(&kprobe_mutex);
544 	/* Lock modules while optimizing kprobes */
545 	mutex_lock(&module_mutex);
546 
547 	/*
548 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
549 	 * kprobes before waiting for quiesence period.
550 	 */
551 	do_unoptimize_kprobes();
552 
553 	/*
554 	 * Step 2: Wait for quiesence period to ensure all running interrupts
555 	 * are done. Because optprobe may modify multiple instructions
556 	 * there is a chance that Nth instruction is interrupted. In that
557 	 * case, running interrupt can return to 2nd-Nth byte of jump
558 	 * instruction. This wait is for avoiding it.
559 	 */
560 	synchronize_sched();
561 
562 	/* Step 3: Optimize kprobes after quiesence period */
563 	do_optimize_kprobes();
564 
565 	/* Step 4: Free cleaned kprobes after quiesence period */
566 	do_free_cleaned_kprobes();
567 
568 	mutex_unlock(&module_mutex);
569 	mutex_unlock(&kprobe_mutex);
570 
571 	/* Step 5: Kick optimizer again if needed */
572 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
573 		kick_kprobe_optimizer();
574 }
575 
576 /* Wait for completing optimization and unoptimization */
577 static __kprobes void wait_for_kprobe_optimizer(void)
578 {
579 	mutex_lock(&kprobe_mutex);
580 
581 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
582 		mutex_unlock(&kprobe_mutex);
583 
584 		/* this will also make optimizing_work execute immmediately */
585 		flush_delayed_work(&optimizing_work);
586 		/* @optimizing_work might not have been queued yet, relax */
587 		cpu_relax();
588 
589 		mutex_lock(&kprobe_mutex);
590 	}
591 
592 	mutex_unlock(&kprobe_mutex);
593 }
594 
595 /* Optimize kprobe if p is ready to be optimized */
596 static __kprobes void optimize_kprobe(struct kprobe *p)
597 {
598 	struct optimized_kprobe *op;
599 
600 	/* Check if the kprobe is disabled or not ready for optimization. */
601 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
602 	    (kprobe_disabled(p) || kprobes_all_disarmed))
603 		return;
604 
605 	/* Both of break_handler and post_handler are not supported. */
606 	if (p->break_handler || p->post_handler)
607 		return;
608 
609 	op = container_of(p, struct optimized_kprobe, kp);
610 
611 	/* Check there is no other kprobes at the optimized instructions */
612 	if (arch_check_optimized_kprobe(op) < 0)
613 		return;
614 
615 	/* Check if it is already optimized. */
616 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
617 		return;
618 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
619 
620 	if (!list_empty(&op->list))
621 		/* This is under unoptimizing. Just dequeue the probe */
622 		list_del_init(&op->list);
623 	else {
624 		list_add(&op->list, &optimizing_list);
625 		kick_kprobe_optimizer();
626 	}
627 }
628 
629 /* Short cut to direct unoptimizing */
630 static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
631 {
632 	get_online_cpus();
633 	arch_unoptimize_kprobe(op);
634 	put_online_cpus();
635 	if (kprobe_disabled(&op->kp))
636 		arch_disarm_kprobe(&op->kp);
637 }
638 
639 /* Unoptimize a kprobe if p is optimized */
640 static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
641 {
642 	struct optimized_kprobe *op;
643 
644 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
645 		return; /* This is not an optprobe nor optimized */
646 
647 	op = container_of(p, struct optimized_kprobe, kp);
648 	if (!kprobe_optimized(p)) {
649 		/* Unoptimized or unoptimizing case */
650 		if (force && !list_empty(&op->list)) {
651 			/*
652 			 * Only if this is unoptimizing kprobe and forced,
653 			 * forcibly unoptimize it. (No need to unoptimize
654 			 * unoptimized kprobe again :)
655 			 */
656 			list_del_init(&op->list);
657 			force_unoptimize_kprobe(op);
658 		}
659 		return;
660 	}
661 
662 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
663 	if (!list_empty(&op->list)) {
664 		/* Dequeue from the optimization queue */
665 		list_del_init(&op->list);
666 		return;
667 	}
668 	/* Optimized kprobe case */
669 	if (force)
670 		/* Forcibly update the code: this is a special case */
671 		force_unoptimize_kprobe(op);
672 	else {
673 		list_add(&op->list, &unoptimizing_list);
674 		kick_kprobe_optimizer();
675 	}
676 }
677 
678 /* Cancel unoptimizing for reusing */
679 static void reuse_unused_kprobe(struct kprobe *ap)
680 {
681 	struct optimized_kprobe *op;
682 
683 	BUG_ON(!kprobe_unused(ap));
684 	/*
685 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
686 	 * there is still a relative jump) and disabled.
687 	 */
688 	op = container_of(ap, struct optimized_kprobe, kp);
689 	if (unlikely(list_empty(&op->list)))
690 		printk(KERN_WARNING "Warning: found a stray unused "
691 			"aggrprobe@%p\n", ap->addr);
692 	/* Enable the probe again */
693 	ap->flags &= ~KPROBE_FLAG_DISABLED;
694 	/* Optimize it again (remove from op->list) */
695 	BUG_ON(!kprobe_optready(ap));
696 	optimize_kprobe(ap);
697 }
698 
699 /* Remove optimized instructions */
700 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
701 {
702 	struct optimized_kprobe *op;
703 
704 	op = container_of(p, struct optimized_kprobe, kp);
705 	if (!list_empty(&op->list))
706 		/* Dequeue from the (un)optimization queue */
707 		list_del_init(&op->list);
708 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
709 
710 	if (kprobe_unused(p)) {
711 		/* Enqueue if it is unused */
712 		list_add(&op->list, &freeing_list);
713 		/*
714 		 * Remove unused probes from the hash list. After waiting
715 		 * for synchronization, this probe is reclaimed.
716 		 * (reclaiming is done by do_free_cleaned_kprobes().)
717 		 */
718 		hlist_del_rcu(&op->kp.hlist);
719 	}
720 
721 	/* Don't touch the code, because it is already freed. */
722 	arch_remove_optimized_kprobe(op);
723 }
724 
725 /* Try to prepare optimized instructions */
726 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
727 {
728 	struct optimized_kprobe *op;
729 
730 	op = container_of(p, struct optimized_kprobe, kp);
731 	arch_prepare_optimized_kprobe(op);
732 }
733 
734 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
735 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
736 {
737 	struct optimized_kprobe *op;
738 
739 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
740 	if (!op)
741 		return NULL;
742 
743 	INIT_LIST_HEAD(&op->list);
744 	op->kp.addr = p->addr;
745 	arch_prepare_optimized_kprobe(op);
746 
747 	return &op->kp;
748 }
749 
750 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
751 
752 /*
753  * Prepare an optimized_kprobe and optimize it
754  * NOTE: p must be a normal registered kprobe
755  */
756 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
757 {
758 	struct kprobe *ap;
759 	struct optimized_kprobe *op;
760 
761 	/* Impossible to optimize ftrace-based kprobe */
762 	if (kprobe_ftrace(p))
763 		return;
764 
765 	/* For preparing optimization, jump_label_text_reserved() is called */
766 	jump_label_lock();
767 	mutex_lock(&text_mutex);
768 
769 	ap = alloc_aggr_kprobe(p);
770 	if (!ap)
771 		goto out;
772 
773 	op = container_of(ap, struct optimized_kprobe, kp);
774 	if (!arch_prepared_optinsn(&op->optinsn)) {
775 		/* If failed to setup optimizing, fallback to kprobe */
776 		arch_remove_optimized_kprobe(op);
777 		kfree(op);
778 		goto out;
779 	}
780 
781 	init_aggr_kprobe(ap, p);
782 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
783 
784 out:
785 	mutex_unlock(&text_mutex);
786 	jump_label_unlock();
787 }
788 
789 #ifdef CONFIG_SYSCTL
790 static void __kprobes optimize_all_kprobes(void)
791 {
792 	struct hlist_head *head;
793 	struct kprobe *p;
794 	unsigned int i;
795 
796 	mutex_lock(&kprobe_mutex);
797 	/* If optimization is already allowed, just return */
798 	if (kprobes_allow_optimization)
799 		goto out;
800 
801 	kprobes_allow_optimization = true;
802 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
803 		head = &kprobe_table[i];
804 		hlist_for_each_entry_rcu(p, head, hlist)
805 			if (!kprobe_disabled(p))
806 				optimize_kprobe(p);
807 	}
808 	printk(KERN_INFO "Kprobes globally optimized\n");
809 out:
810 	mutex_unlock(&kprobe_mutex);
811 }
812 
813 static void __kprobes unoptimize_all_kprobes(void)
814 {
815 	struct hlist_head *head;
816 	struct kprobe *p;
817 	unsigned int i;
818 
819 	mutex_lock(&kprobe_mutex);
820 	/* If optimization is already prohibited, just return */
821 	if (!kprobes_allow_optimization) {
822 		mutex_unlock(&kprobe_mutex);
823 		return;
824 	}
825 
826 	kprobes_allow_optimization = false;
827 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
828 		head = &kprobe_table[i];
829 		hlist_for_each_entry_rcu(p, head, hlist) {
830 			if (!kprobe_disabled(p))
831 				unoptimize_kprobe(p, false);
832 		}
833 	}
834 	mutex_unlock(&kprobe_mutex);
835 
836 	/* Wait for unoptimizing completion */
837 	wait_for_kprobe_optimizer();
838 	printk(KERN_INFO "Kprobes globally unoptimized\n");
839 }
840 
841 static DEFINE_MUTEX(kprobe_sysctl_mutex);
842 int sysctl_kprobes_optimization;
843 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
844 				      void __user *buffer, size_t *length,
845 				      loff_t *ppos)
846 {
847 	int ret;
848 
849 	mutex_lock(&kprobe_sysctl_mutex);
850 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
851 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
852 
853 	if (sysctl_kprobes_optimization)
854 		optimize_all_kprobes();
855 	else
856 		unoptimize_all_kprobes();
857 	mutex_unlock(&kprobe_sysctl_mutex);
858 
859 	return ret;
860 }
861 #endif /* CONFIG_SYSCTL */
862 
863 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
864 static void __kprobes __arm_kprobe(struct kprobe *p)
865 {
866 	struct kprobe *_p;
867 
868 	/* Check collision with other optimized kprobes */
869 	_p = get_optimized_kprobe((unsigned long)p->addr);
870 	if (unlikely(_p))
871 		/* Fallback to unoptimized kprobe */
872 		unoptimize_kprobe(_p, true);
873 
874 	arch_arm_kprobe(p);
875 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
876 }
877 
878 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
879 static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
880 {
881 	struct kprobe *_p;
882 
883 	unoptimize_kprobe(p, false);	/* Try to unoptimize */
884 
885 	if (!kprobe_queued(p)) {
886 		arch_disarm_kprobe(p);
887 		/* If another kprobe was blocked, optimize it. */
888 		_p = get_optimized_kprobe((unsigned long)p->addr);
889 		if (unlikely(_p) && reopt)
890 			optimize_kprobe(_p);
891 	}
892 	/* TODO: reoptimize others after unoptimized this probe */
893 }
894 
895 #else /* !CONFIG_OPTPROBES */
896 
897 #define optimize_kprobe(p)			do {} while (0)
898 #define unoptimize_kprobe(p, f)			do {} while (0)
899 #define kill_optimized_kprobe(p)		do {} while (0)
900 #define prepare_optimized_kprobe(p)		do {} while (0)
901 #define try_to_optimize_kprobe(p)		do {} while (0)
902 #define __arm_kprobe(p)				arch_arm_kprobe(p)
903 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
904 #define kprobe_disarmed(p)			kprobe_disabled(p)
905 #define wait_for_kprobe_optimizer()		do {} while (0)
906 
907 /* There should be no unused kprobes can be reused without optimization */
908 static void reuse_unused_kprobe(struct kprobe *ap)
909 {
910 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
911 	BUG_ON(kprobe_unused(ap));
912 }
913 
914 static __kprobes void free_aggr_kprobe(struct kprobe *p)
915 {
916 	arch_remove_kprobe(p);
917 	kfree(p);
918 }
919 
920 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
921 {
922 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
923 }
924 #endif /* CONFIG_OPTPROBES */
925 
926 #ifdef CONFIG_KPROBES_ON_FTRACE
927 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
928 	.func = kprobe_ftrace_handler,
929 	.flags = FTRACE_OPS_FL_SAVE_REGS,
930 };
931 static int kprobe_ftrace_enabled;
932 
933 /* Must ensure p->addr is really on ftrace */
934 static int __kprobes prepare_kprobe(struct kprobe *p)
935 {
936 	if (!kprobe_ftrace(p))
937 		return arch_prepare_kprobe(p);
938 
939 	return arch_prepare_kprobe_ftrace(p);
940 }
941 
942 /* Caller must lock kprobe_mutex */
943 static void __kprobes arm_kprobe_ftrace(struct kprobe *p)
944 {
945 	int ret;
946 
947 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
948 				   (unsigned long)p->addr, 0, 0);
949 	WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
950 	kprobe_ftrace_enabled++;
951 	if (kprobe_ftrace_enabled == 1) {
952 		ret = register_ftrace_function(&kprobe_ftrace_ops);
953 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
954 	}
955 }
956 
957 /* Caller must lock kprobe_mutex */
958 static void __kprobes disarm_kprobe_ftrace(struct kprobe *p)
959 {
960 	int ret;
961 
962 	kprobe_ftrace_enabled--;
963 	if (kprobe_ftrace_enabled == 0) {
964 		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
965 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
966 	}
967 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
968 			   (unsigned long)p->addr, 1, 0);
969 	WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
970 }
971 #else	/* !CONFIG_KPROBES_ON_FTRACE */
972 #define prepare_kprobe(p)	arch_prepare_kprobe(p)
973 #define arm_kprobe_ftrace(p)	do {} while (0)
974 #define disarm_kprobe_ftrace(p)	do {} while (0)
975 #endif
976 
977 /* Arm a kprobe with text_mutex */
978 static void __kprobes arm_kprobe(struct kprobe *kp)
979 {
980 	if (unlikely(kprobe_ftrace(kp))) {
981 		arm_kprobe_ftrace(kp);
982 		return;
983 	}
984 	/*
985 	 * Here, since __arm_kprobe() doesn't use stop_machine(),
986 	 * this doesn't cause deadlock on text_mutex. So, we don't
987 	 * need get_online_cpus().
988 	 */
989 	mutex_lock(&text_mutex);
990 	__arm_kprobe(kp);
991 	mutex_unlock(&text_mutex);
992 }
993 
994 /* Disarm a kprobe with text_mutex */
995 static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt)
996 {
997 	if (unlikely(kprobe_ftrace(kp))) {
998 		disarm_kprobe_ftrace(kp);
999 		return;
1000 	}
1001 	/* Ditto */
1002 	mutex_lock(&text_mutex);
1003 	__disarm_kprobe(kp, reopt);
1004 	mutex_unlock(&text_mutex);
1005 }
1006 
1007 /*
1008  * Aggregate handlers for multiple kprobes support - these handlers
1009  * take care of invoking the individual kprobe handlers on p->list
1010  */
1011 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1012 {
1013 	struct kprobe *kp;
1014 
1015 	list_for_each_entry_rcu(kp, &p->list, list) {
1016 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1017 			set_kprobe_instance(kp);
1018 			if (kp->pre_handler(kp, regs))
1019 				return 1;
1020 		}
1021 		reset_kprobe_instance();
1022 	}
1023 	return 0;
1024 }
1025 
1026 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1027 					unsigned long flags)
1028 {
1029 	struct kprobe *kp;
1030 
1031 	list_for_each_entry_rcu(kp, &p->list, list) {
1032 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1033 			set_kprobe_instance(kp);
1034 			kp->post_handler(kp, regs, flags);
1035 			reset_kprobe_instance();
1036 		}
1037 	}
1038 }
1039 
1040 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1041 					int trapnr)
1042 {
1043 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1044 
1045 	/*
1046 	 * if we faulted "during" the execution of a user specified
1047 	 * probe handler, invoke just that probe's fault handler
1048 	 */
1049 	if (cur && cur->fault_handler) {
1050 		if (cur->fault_handler(cur, regs, trapnr))
1051 			return 1;
1052 	}
1053 	return 0;
1054 }
1055 
1056 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1057 {
1058 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1059 	int ret = 0;
1060 
1061 	if (cur && cur->break_handler) {
1062 		if (cur->break_handler(cur, regs))
1063 			ret = 1;
1064 	}
1065 	reset_kprobe_instance();
1066 	return ret;
1067 }
1068 
1069 /* Walks the list and increments nmissed count for multiprobe case */
1070 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
1071 {
1072 	struct kprobe *kp;
1073 	if (!kprobe_aggrprobe(p)) {
1074 		p->nmissed++;
1075 	} else {
1076 		list_for_each_entry_rcu(kp, &p->list, list)
1077 			kp->nmissed++;
1078 	}
1079 	return;
1080 }
1081 
1082 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1083 				struct hlist_head *head)
1084 {
1085 	struct kretprobe *rp = ri->rp;
1086 
1087 	/* remove rp inst off the rprobe_inst_table */
1088 	hlist_del(&ri->hlist);
1089 	INIT_HLIST_NODE(&ri->hlist);
1090 	if (likely(rp)) {
1091 		raw_spin_lock(&rp->lock);
1092 		hlist_add_head(&ri->hlist, &rp->free_instances);
1093 		raw_spin_unlock(&rp->lock);
1094 	} else
1095 		/* Unregistering */
1096 		hlist_add_head(&ri->hlist, head);
1097 }
1098 
1099 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1100 			 struct hlist_head **head, unsigned long *flags)
1101 __acquires(hlist_lock)
1102 {
1103 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1104 	raw_spinlock_t *hlist_lock;
1105 
1106 	*head = &kretprobe_inst_table[hash];
1107 	hlist_lock = kretprobe_table_lock_ptr(hash);
1108 	raw_spin_lock_irqsave(hlist_lock, *flags);
1109 }
1110 
1111 static void __kprobes kretprobe_table_lock(unsigned long hash,
1112 	unsigned long *flags)
1113 __acquires(hlist_lock)
1114 {
1115 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1116 	raw_spin_lock_irqsave(hlist_lock, *flags);
1117 }
1118 
1119 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1120 	unsigned long *flags)
1121 __releases(hlist_lock)
1122 {
1123 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1124 	raw_spinlock_t *hlist_lock;
1125 
1126 	hlist_lock = kretprobe_table_lock_ptr(hash);
1127 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1128 }
1129 
1130 static void __kprobes kretprobe_table_unlock(unsigned long hash,
1131        unsigned long *flags)
1132 __releases(hlist_lock)
1133 {
1134 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1135 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1136 }
1137 
1138 /*
1139  * This function is called from finish_task_switch when task tk becomes dead,
1140  * so that we can recycle any function-return probe instances associated
1141  * with this task. These left over instances represent probed functions
1142  * that have been called but will never return.
1143  */
1144 void __kprobes kprobe_flush_task(struct task_struct *tk)
1145 {
1146 	struct kretprobe_instance *ri;
1147 	struct hlist_head *head, empty_rp;
1148 	struct hlist_node *tmp;
1149 	unsigned long hash, flags = 0;
1150 
1151 	if (unlikely(!kprobes_initialized))
1152 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1153 		return;
1154 
1155 	INIT_HLIST_HEAD(&empty_rp);
1156 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1157 	head = &kretprobe_inst_table[hash];
1158 	kretprobe_table_lock(hash, &flags);
1159 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1160 		if (ri->task == tk)
1161 			recycle_rp_inst(ri, &empty_rp);
1162 	}
1163 	kretprobe_table_unlock(hash, &flags);
1164 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1165 		hlist_del(&ri->hlist);
1166 		kfree(ri);
1167 	}
1168 }
1169 
1170 static inline void free_rp_inst(struct kretprobe *rp)
1171 {
1172 	struct kretprobe_instance *ri;
1173 	struct hlist_node *next;
1174 
1175 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1176 		hlist_del(&ri->hlist);
1177 		kfree(ri);
1178 	}
1179 }
1180 
1181 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1182 {
1183 	unsigned long flags, hash;
1184 	struct kretprobe_instance *ri;
1185 	struct hlist_node *next;
1186 	struct hlist_head *head;
1187 
1188 	/* No race here */
1189 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1190 		kretprobe_table_lock(hash, &flags);
1191 		head = &kretprobe_inst_table[hash];
1192 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1193 			if (ri->rp == rp)
1194 				ri->rp = NULL;
1195 		}
1196 		kretprobe_table_unlock(hash, &flags);
1197 	}
1198 	free_rp_inst(rp);
1199 }
1200 
1201 /*
1202 * Add the new probe to ap->list. Fail if this is the
1203 * second jprobe at the address - two jprobes can't coexist
1204 */
1205 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1206 {
1207 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1208 
1209 	if (p->break_handler || p->post_handler)
1210 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1211 
1212 	if (p->break_handler) {
1213 		if (ap->break_handler)
1214 			return -EEXIST;
1215 		list_add_tail_rcu(&p->list, &ap->list);
1216 		ap->break_handler = aggr_break_handler;
1217 	} else
1218 		list_add_rcu(&p->list, &ap->list);
1219 	if (p->post_handler && !ap->post_handler)
1220 		ap->post_handler = aggr_post_handler;
1221 
1222 	return 0;
1223 }
1224 
1225 /*
1226  * Fill in the required fields of the "manager kprobe". Replace the
1227  * earlier kprobe in the hlist with the manager kprobe
1228  */
1229 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1230 {
1231 	/* Copy p's insn slot to ap */
1232 	copy_kprobe(p, ap);
1233 	flush_insn_slot(ap);
1234 	ap->addr = p->addr;
1235 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1236 	ap->pre_handler = aggr_pre_handler;
1237 	ap->fault_handler = aggr_fault_handler;
1238 	/* We don't care the kprobe which has gone. */
1239 	if (p->post_handler && !kprobe_gone(p))
1240 		ap->post_handler = aggr_post_handler;
1241 	if (p->break_handler && !kprobe_gone(p))
1242 		ap->break_handler = aggr_break_handler;
1243 
1244 	INIT_LIST_HEAD(&ap->list);
1245 	INIT_HLIST_NODE(&ap->hlist);
1246 
1247 	list_add_rcu(&p->list, &ap->list);
1248 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1249 }
1250 
1251 /*
1252  * This is the second or subsequent kprobe at the address - handle
1253  * the intricacies
1254  */
1255 static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1256 					  struct kprobe *p)
1257 {
1258 	int ret = 0;
1259 	struct kprobe *ap = orig_p;
1260 
1261 	/* For preparing optimization, jump_label_text_reserved() is called */
1262 	jump_label_lock();
1263 	/*
1264 	 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1265 	 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1266 	 */
1267 	get_online_cpus();
1268 	mutex_lock(&text_mutex);
1269 
1270 	if (!kprobe_aggrprobe(orig_p)) {
1271 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1272 		ap = alloc_aggr_kprobe(orig_p);
1273 		if (!ap) {
1274 			ret = -ENOMEM;
1275 			goto out;
1276 		}
1277 		init_aggr_kprobe(ap, orig_p);
1278 	} else if (kprobe_unused(ap))
1279 		/* This probe is going to die. Rescue it */
1280 		reuse_unused_kprobe(ap);
1281 
1282 	if (kprobe_gone(ap)) {
1283 		/*
1284 		 * Attempting to insert new probe at the same location that
1285 		 * had a probe in the module vaddr area which already
1286 		 * freed. So, the instruction slot has already been
1287 		 * released. We need a new slot for the new probe.
1288 		 */
1289 		ret = arch_prepare_kprobe(ap);
1290 		if (ret)
1291 			/*
1292 			 * Even if fail to allocate new slot, don't need to
1293 			 * free aggr_probe. It will be used next time, or
1294 			 * freed by unregister_kprobe.
1295 			 */
1296 			goto out;
1297 
1298 		/* Prepare optimized instructions if possible. */
1299 		prepare_optimized_kprobe(ap);
1300 
1301 		/*
1302 		 * Clear gone flag to prevent allocating new slot again, and
1303 		 * set disabled flag because it is not armed yet.
1304 		 */
1305 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1306 			    | KPROBE_FLAG_DISABLED;
1307 	}
1308 
1309 	/* Copy ap's insn slot to p */
1310 	copy_kprobe(ap, p);
1311 	ret = add_new_kprobe(ap, p);
1312 
1313 out:
1314 	mutex_unlock(&text_mutex);
1315 	put_online_cpus();
1316 	jump_label_unlock();
1317 
1318 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1319 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1320 		if (!kprobes_all_disarmed)
1321 			/* Arm the breakpoint again. */
1322 			arm_kprobe(ap);
1323 	}
1324 	return ret;
1325 }
1326 
1327 static int __kprobes in_kprobes_functions(unsigned long addr)
1328 {
1329 	struct kprobe_blackpoint *kb;
1330 
1331 	if (addr >= (unsigned long)__kprobes_text_start &&
1332 	    addr < (unsigned long)__kprobes_text_end)
1333 		return -EINVAL;
1334 	/*
1335 	 * If there exists a kprobe_blacklist, verify and
1336 	 * fail any probe registration in the prohibited area
1337 	 */
1338 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1339 		if (kb->start_addr) {
1340 			if (addr >= kb->start_addr &&
1341 			    addr < (kb->start_addr + kb->range))
1342 				return -EINVAL;
1343 		}
1344 	}
1345 	return 0;
1346 }
1347 
1348 /*
1349  * If we have a symbol_name argument, look it up and add the offset field
1350  * to it. This way, we can specify a relative address to a symbol.
1351  * This returns encoded errors if it fails to look up symbol or invalid
1352  * combination of parameters.
1353  */
1354 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1355 {
1356 	kprobe_opcode_t *addr = p->addr;
1357 
1358 	if ((p->symbol_name && p->addr) ||
1359 	    (!p->symbol_name && !p->addr))
1360 		goto invalid;
1361 
1362 	if (p->symbol_name) {
1363 		kprobe_lookup_name(p->symbol_name, addr);
1364 		if (!addr)
1365 			return ERR_PTR(-ENOENT);
1366 	}
1367 
1368 	addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1369 	if (addr)
1370 		return addr;
1371 
1372 invalid:
1373 	return ERR_PTR(-EINVAL);
1374 }
1375 
1376 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1377 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1378 {
1379 	struct kprobe *ap, *list_p;
1380 
1381 	ap = get_kprobe(p->addr);
1382 	if (unlikely(!ap))
1383 		return NULL;
1384 
1385 	if (p != ap) {
1386 		list_for_each_entry_rcu(list_p, &ap->list, list)
1387 			if (list_p == p)
1388 			/* kprobe p is a valid probe */
1389 				goto valid;
1390 		return NULL;
1391 	}
1392 valid:
1393 	return ap;
1394 }
1395 
1396 /* Return error if the kprobe is being re-registered */
1397 static inline int check_kprobe_rereg(struct kprobe *p)
1398 {
1399 	int ret = 0;
1400 
1401 	mutex_lock(&kprobe_mutex);
1402 	if (__get_valid_kprobe(p))
1403 		ret = -EINVAL;
1404 	mutex_unlock(&kprobe_mutex);
1405 
1406 	return ret;
1407 }
1408 
1409 static __kprobes int check_kprobe_address_safe(struct kprobe *p,
1410 					       struct module **probed_mod)
1411 {
1412 	int ret = 0;
1413 	unsigned long ftrace_addr;
1414 
1415 	/*
1416 	 * If the address is located on a ftrace nop, set the
1417 	 * breakpoint to the following instruction.
1418 	 */
1419 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1420 	if (ftrace_addr) {
1421 #ifdef CONFIG_KPROBES_ON_FTRACE
1422 		/* Given address is not on the instruction boundary */
1423 		if ((unsigned long)p->addr != ftrace_addr)
1424 			return -EILSEQ;
1425 		p->flags |= KPROBE_FLAG_FTRACE;
1426 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1427 		return -EINVAL;
1428 #endif
1429 	}
1430 
1431 	jump_label_lock();
1432 	preempt_disable();
1433 
1434 	/* Ensure it is not in reserved area nor out of text */
1435 	if (!kernel_text_address((unsigned long) p->addr) ||
1436 	    in_kprobes_functions((unsigned long) p->addr) ||
1437 	    jump_label_text_reserved(p->addr, p->addr)) {
1438 		ret = -EINVAL;
1439 		goto out;
1440 	}
1441 
1442 	/* Check if are we probing a module */
1443 	*probed_mod = __module_text_address((unsigned long) p->addr);
1444 	if (*probed_mod) {
1445 		/*
1446 		 * We must hold a refcount of the probed module while updating
1447 		 * its code to prohibit unexpected unloading.
1448 		 */
1449 		if (unlikely(!try_module_get(*probed_mod))) {
1450 			ret = -ENOENT;
1451 			goto out;
1452 		}
1453 
1454 		/*
1455 		 * If the module freed .init.text, we couldn't insert
1456 		 * kprobes in there.
1457 		 */
1458 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1459 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1460 			module_put(*probed_mod);
1461 			*probed_mod = NULL;
1462 			ret = -ENOENT;
1463 		}
1464 	}
1465 out:
1466 	preempt_enable();
1467 	jump_label_unlock();
1468 
1469 	return ret;
1470 }
1471 
1472 int __kprobes register_kprobe(struct kprobe *p)
1473 {
1474 	int ret;
1475 	struct kprobe *old_p;
1476 	struct module *probed_mod;
1477 	kprobe_opcode_t *addr;
1478 
1479 	/* Adjust probe address from symbol */
1480 	addr = kprobe_addr(p);
1481 	if (IS_ERR(addr))
1482 		return PTR_ERR(addr);
1483 	p->addr = addr;
1484 
1485 	ret = check_kprobe_rereg(p);
1486 	if (ret)
1487 		return ret;
1488 
1489 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1490 	p->flags &= KPROBE_FLAG_DISABLED;
1491 	p->nmissed = 0;
1492 	INIT_LIST_HEAD(&p->list);
1493 
1494 	ret = check_kprobe_address_safe(p, &probed_mod);
1495 	if (ret)
1496 		return ret;
1497 
1498 	mutex_lock(&kprobe_mutex);
1499 
1500 	old_p = get_kprobe(p->addr);
1501 	if (old_p) {
1502 		/* Since this may unoptimize old_p, locking text_mutex. */
1503 		ret = register_aggr_kprobe(old_p, p);
1504 		goto out;
1505 	}
1506 
1507 	mutex_lock(&text_mutex);	/* Avoiding text modification */
1508 	ret = prepare_kprobe(p);
1509 	mutex_unlock(&text_mutex);
1510 	if (ret)
1511 		goto out;
1512 
1513 	INIT_HLIST_NODE(&p->hlist);
1514 	hlist_add_head_rcu(&p->hlist,
1515 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1516 
1517 	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1518 		arm_kprobe(p);
1519 
1520 	/* Try to optimize kprobe */
1521 	try_to_optimize_kprobe(p);
1522 
1523 out:
1524 	mutex_unlock(&kprobe_mutex);
1525 
1526 	if (probed_mod)
1527 		module_put(probed_mod);
1528 
1529 	return ret;
1530 }
1531 EXPORT_SYMBOL_GPL(register_kprobe);
1532 
1533 /* Check if all probes on the aggrprobe are disabled */
1534 static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1535 {
1536 	struct kprobe *kp;
1537 
1538 	list_for_each_entry_rcu(kp, &ap->list, list)
1539 		if (!kprobe_disabled(kp))
1540 			/*
1541 			 * There is an active probe on the list.
1542 			 * We can't disable this ap.
1543 			 */
1544 			return 0;
1545 
1546 	return 1;
1547 }
1548 
1549 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1550 static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1551 {
1552 	struct kprobe *orig_p;
1553 
1554 	/* Get an original kprobe for return */
1555 	orig_p = __get_valid_kprobe(p);
1556 	if (unlikely(orig_p == NULL))
1557 		return NULL;
1558 
1559 	if (!kprobe_disabled(p)) {
1560 		/* Disable probe if it is a child probe */
1561 		if (p != orig_p)
1562 			p->flags |= KPROBE_FLAG_DISABLED;
1563 
1564 		/* Try to disarm and disable this/parent probe */
1565 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1566 			disarm_kprobe(orig_p, true);
1567 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1568 		}
1569 	}
1570 
1571 	return orig_p;
1572 }
1573 
1574 /*
1575  * Unregister a kprobe without a scheduler synchronization.
1576  */
1577 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1578 {
1579 	struct kprobe *ap, *list_p;
1580 
1581 	/* Disable kprobe. This will disarm it if needed. */
1582 	ap = __disable_kprobe(p);
1583 	if (ap == NULL)
1584 		return -EINVAL;
1585 
1586 	if (ap == p)
1587 		/*
1588 		 * This probe is an independent(and non-optimized) kprobe
1589 		 * (not an aggrprobe). Remove from the hash list.
1590 		 */
1591 		goto disarmed;
1592 
1593 	/* Following process expects this probe is an aggrprobe */
1594 	WARN_ON(!kprobe_aggrprobe(ap));
1595 
1596 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1597 		/*
1598 		 * !disarmed could be happen if the probe is under delayed
1599 		 * unoptimizing.
1600 		 */
1601 		goto disarmed;
1602 	else {
1603 		/* If disabling probe has special handlers, update aggrprobe */
1604 		if (p->break_handler && !kprobe_gone(p))
1605 			ap->break_handler = NULL;
1606 		if (p->post_handler && !kprobe_gone(p)) {
1607 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1608 				if ((list_p != p) && (list_p->post_handler))
1609 					goto noclean;
1610 			}
1611 			ap->post_handler = NULL;
1612 		}
1613 noclean:
1614 		/*
1615 		 * Remove from the aggrprobe: this path will do nothing in
1616 		 * __unregister_kprobe_bottom().
1617 		 */
1618 		list_del_rcu(&p->list);
1619 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1620 			/*
1621 			 * Try to optimize this probe again, because post
1622 			 * handler may have been changed.
1623 			 */
1624 			optimize_kprobe(ap);
1625 	}
1626 	return 0;
1627 
1628 disarmed:
1629 	BUG_ON(!kprobe_disarmed(ap));
1630 	hlist_del_rcu(&ap->hlist);
1631 	return 0;
1632 }
1633 
1634 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1635 {
1636 	struct kprobe *ap;
1637 
1638 	if (list_empty(&p->list))
1639 		/* This is an independent kprobe */
1640 		arch_remove_kprobe(p);
1641 	else if (list_is_singular(&p->list)) {
1642 		/* This is the last child of an aggrprobe */
1643 		ap = list_entry(p->list.next, struct kprobe, list);
1644 		list_del(&p->list);
1645 		free_aggr_kprobe(ap);
1646 	}
1647 	/* Otherwise, do nothing. */
1648 }
1649 
1650 int __kprobes register_kprobes(struct kprobe **kps, int num)
1651 {
1652 	int i, ret = 0;
1653 
1654 	if (num <= 0)
1655 		return -EINVAL;
1656 	for (i = 0; i < num; i++) {
1657 		ret = register_kprobe(kps[i]);
1658 		if (ret < 0) {
1659 			if (i > 0)
1660 				unregister_kprobes(kps, i);
1661 			break;
1662 		}
1663 	}
1664 	return ret;
1665 }
1666 EXPORT_SYMBOL_GPL(register_kprobes);
1667 
1668 void __kprobes unregister_kprobe(struct kprobe *p)
1669 {
1670 	unregister_kprobes(&p, 1);
1671 }
1672 EXPORT_SYMBOL_GPL(unregister_kprobe);
1673 
1674 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1675 {
1676 	int i;
1677 
1678 	if (num <= 0)
1679 		return;
1680 	mutex_lock(&kprobe_mutex);
1681 	for (i = 0; i < num; i++)
1682 		if (__unregister_kprobe_top(kps[i]) < 0)
1683 			kps[i]->addr = NULL;
1684 	mutex_unlock(&kprobe_mutex);
1685 
1686 	synchronize_sched();
1687 	for (i = 0; i < num; i++)
1688 		if (kps[i]->addr)
1689 			__unregister_kprobe_bottom(kps[i]);
1690 }
1691 EXPORT_SYMBOL_GPL(unregister_kprobes);
1692 
1693 static struct notifier_block kprobe_exceptions_nb = {
1694 	.notifier_call = kprobe_exceptions_notify,
1695 	.priority = 0x7fffffff /* we need to be notified first */
1696 };
1697 
1698 unsigned long __weak arch_deref_entry_point(void *entry)
1699 {
1700 	return (unsigned long)entry;
1701 }
1702 
1703 int __kprobes register_jprobes(struct jprobe **jps, int num)
1704 {
1705 	struct jprobe *jp;
1706 	int ret = 0, i;
1707 
1708 	if (num <= 0)
1709 		return -EINVAL;
1710 	for (i = 0; i < num; i++) {
1711 		unsigned long addr, offset;
1712 		jp = jps[i];
1713 		addr = arch_deref_entry_point(jp->entry);
1714 
1715 		/* Verify probepoint is a function entry point */
1716 		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1717 		    offset == 0) {
1718 			jp->kp.pre_handler = setjmp_pre_handler;
1719 			jp->kp.break_handler = longjmp_break_handler;
1720 			ret = register_kprobe(&jp->kp);
1721 		} else
1722 			ret = -EINVAL;
1723 
1724 		if (ret < 0) {
1725 			if (i > 0)
1726 				unregister_jprobes(jps, i);
1727 			break;
1728 		}
1729 	}
1730 	return ret;
1731 }
1732 EXPORT_SYMBOL_GPL(register_jprobes);
1733 
1734 int __kprobes register_jprobe(struct jprobe *jp)
1735 {
1736 	return register_jprobes(&jp, 1);
1737 }
1738 EXPORT_SYMBOL_GPL(register_jprobe);
1739 
1740 void __kprobes unregister_jprobe(struct jprobe *jp)
1741 {
1742 	unregister_jprobes(&jp, 1);
1743 }
1744 EXPORT_SYMBOL_GPL(unregister_jprobe);
1745 
1746 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1747 {
1748 	int i;
1749 
1750 	if (num <= 0)
1751 		return;
1752 	mutex_lock(&kprobe_mutex);
1753 	for (i = 0; i < num; i++)
1754 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1755 			jps[i]->kp.addr = NULL;
1756 	mutex_unlock(&kprobe_mutex);
1757 
1758 	synchronize_sched();
1759 	for (i = 0; i < num; i++) {
1760 		if (jps[i]->kp.addr)
1761 			__unregister_kprobe_bottom(&jps[i]->kp);
1762 	}
1763 }
1764 EXPORT_SYMBOL_GPL(unregister_jprobes);
1765 
1766 #ifdef CONFIG_KRETPROBES
1767 /*
1768  * This kprobe pre_handler is registered with every kretprobe. When probe
1769  * hits it will set up the return probe.
1770  */
1771 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1772 					   struct pt_regs *regs)
1773 {
1774 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1775 	unsigned long hash, flags = 0;
1776 	struct kretprobe_instance *ri;
1777 
1778 	/*TODO: consider to only swap the RA after the last pre_handler fired */
1779 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1780 	raw_spin_lock_irqsave(&rp->lock, flags);
1781 	if (!hlist_empty(&rp->free_instances)) {
1782 		ri = hlist_entry(rp->free_instances.first,
1783 				struct kretprobe_instance, hlist);
1784 		hlist_del(&ri->hlist);
1785 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1786 
1787 		ri->rp = rp;
1788 		ri->task = current;
1789 
1790 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1791 			raw_spin_lock_irqsave(&rp->lock, flags);
1792 			hlist_add_head(&ri->hlist, &rp->free_instances);
1793 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1794 			return 0;
1795 		}
1796 
1797 		arch_prepare_kretprobe(ri, regs);
1798 
1799 		/* XXX(hch): why is there no hlist_move_head? */
1800 		INIT_HLIST_NODE(&ri->hlist);
1801 		kretprobe_table_lock(hash, &flags);
1802 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1803 		kretprobe_table_unlock(hash, &flags);
1804 	} else {
1805 		rp->nmissed++;
1806 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1807 	}
1808 	return 0;
1809 }
1810 
1811 int __kprobes register_kretprobe(struct kretprobe *rp)
1812 {
1813 	int ret = 0;
1814 	struct kretprobe_instance *inst;
1815 	int i;
1816 	void *addr;
1817 
1818 	if (kretprobe_blacklist_size) {
1819 		addr = kprobe_addr(&rp->kp);
1820 		if (IS_ERR(addr))
1821 			return PTR_ERR(addr);
1822 
1823 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1824 			if (kretprobe_blacklist[i].addr == addr)
1825 				return -EINVAL;
1826 		}
1827 	}
1828 
1829 	rp->kp.pre_handler = pre_handler_kretprobe;
1830 	rp->kp.post_handler = NULL;
1831 	rp->kp.fault_handler = NULL;
1832 	rp->kp.break_handler = NULL;
1833 
1834 	/* Pre-allocate memory for max kretprobe instances */
1835 	if (rp->maxactive <= 0) {
1836 #ifdef CONFIG_PREEMPT
1837 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1838 #else
1839 		rp->maxactive = num_possible_cpus();
1840 #endif
1841 	}
1842 	raw_spin_lock_init(&rp->lock);
1843 	INIT_HLIST_HEAD(&rp->free_instances);
1844 	for (i = 0; i < rp->maxactive; i++) {
1845 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1846 			       rp->data_size, GFP_KERNEL);
1847 		if (inst == NULL) {
1848 			free_rp_inst(rp);
1849 			return -ENOMEM;
1850 		}
1851 		INIT_HLIST_NODE(&inst->hlist);
1852 		hlist_add_head(&inst->hlist, &rp->free_instances);
1853 	}
1854 
1855 	rp->nmissed = 0;
1856 	/* Establish function entry probe point */
1857 	ret = register_kprobe(&rp->kp);
1858 	if (ret != 0)
1859 		free_rp_inst(rp);
1860 	return ret;
1861 }
1862 EXPORT_SYMBOL_GPL(register_kretprobe);
1863 
1864 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1865 {
1866 	int ret = 0, i;
1867 
1868 	if (num <= 0)
1869 		return -EINVAL;
1870 	for (i = 0; i < num; i++) {
1871 		ret = register_kretprobe(rps[i]);
1872 		if (ret < 0) {
1873 			if (i > 0)
1874 				unregister_kretprobes(rps, i);
1875 			break;
1876 		}
1877 	}
1878 	return ret;
1879 }
1880 EXPORT_SYMBOL_GPL(register_kretprobes);
1881 
1882 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1883 {
1884 	unregister_kretprobes(&rp, 1);
1885 }
1886 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1887 
1888 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1889 {
1890 	int i;
1891 
1892 	if (num <= 0)
1893 		return;
1894 	mutex_lock(&kprobe_mutex);
1895 	for (i = 0; i < num; i++)
1896 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1897 			rps[i]->kp.addr = NULL;
1898 	mutex_unlock(&kprobe_mutex);
1899 
1900 	synchronize_sched();
1901 	for (i = 0; i < num; i++) {
1902 		if (rps[i]->kp.addr) {
1903 			__unregister_kprobe_bottom(&rps[i]->kp);
1904 			cleanup_rp_inst(rps[i]);
1905 		}
1906 	}
1907 }
1908 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1909 
1910 #else /* CONFIG_KRETPROBES */
1911 int __kprobes register_kretprobe(struct kretprobe *rp)
1912 {
1913 	return -ENOSYS;
1914 }
1915 EXPORT_SYMBOL_GPL(register_kretprobe);
1916 
1917 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1918 {
1919 	return -ENOSYS;
1920 }
1921 EXPORT_SYMBOL_GPL(register_kretprobes);
1922 
1923 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1924 {
1925 }
1926 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1927 
1928 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1929 {
1930 }
1931 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1932 
1933 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1934 					   struct pt_regs *regs)
1935 {
1936 	return 0;
1937 }
1938 
1939 #endif /* CONFIG_KRETPROBES */
1940 
1941 /* Set the kprobe gone and remove its instruction buffer. */
1942 static void __kprobes kill_kprobe(struct kprobe *p)
1943 {
1944 	struct kprobe *kp;
1945 
1946 	p->flags |= KPROBE_FLAG_GONE;
1947 	if (kprobe_aggrprobe(p)) {
1948 		/*
1949 		 * If this is an aggr_kprobe, we have to list all the
1950 		 * chained probes and mark them GONE.
1951 		 */
1952 		list_for_each_entry_rcu(kp, &p->list, list)
1953 			kp->flags |= KPROBE_FLAG_GONE;
1954 		p->post_handler = NULL;
1955 		p->break_handler = NULL;
1956 		kill_optimized_kprobe(p);
1957 	}
1958 	/*
1959 	 * Here, we can remove insn_slot safely, because no thread calls
1960 	 * the original probed function (which will be freed soon) any more.
1961 	 */
1962 	arch_remove_kprobe(p);
1963 }
1964 
1965 /* Disable one kprobe */
1966 int __kprobes disable_kprobe(struct kprobe *kp)
1967 {
1968 	int ret = 0;
1969 
1970 	mutex_lock(&kprobe_mutex);
1971 
1972 	/* Disable this kprobe */
1973 	if (__disable_kprobe(kp) == NULL)
1974 		ret = -EINVAL;
1975 
1976 	mutex_unlock(&kprobe_mutex);
1977 	return ret;
1978 }
1979 EXPORT_SYMBOL_GPL(disable_kprobe);
1980 
1981 /* Enable one kprobe */
1982 int __kprobes enable_kprobe(struct kprobe *kp)
1983 {
1984 	int ret = 0;
1985 	struct kprobe *p;
1986 
1987 	mutex_lock(&kprobe_mutex);
1988 
1989 	/* Check whether specified probe is valid. */
1990 	p = __get_valid_kprobe(kp);
1991 	if (unlikely(p == NULL)) {
1992 		ret = -EINVAL;
1993 		goto out;
1994 	}
1995 
1996 	if (kprobe_gone(kp)) {
1997 		/* This kprobe has gone, we couldn't enable it. */
1998 		ret = -EINVAL;
1999 		goto out;
2000 	}
2001 
2002 	if (p != kp)
2003 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2004 
2005 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2006 		p->flags &= ~KPROBE_FLAG_DISABLED;
2007 		arm_kprobe(p);
2008 	}
2009 out:
2010 	mutex_unlock(&kprobe_mutex);
2011 	return ret;
2012 }
2013 EXPORT_SYMBOL_GPL(enable_kprobe);
2014 
2015 void __kprobes dump_kprobe(struct kprobe *kp)
2016 {
2017 	printk(KERN_WARNING "Dumping kprobe:\n");
2018 	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2019 	       kp->symbol_name, kp->addr, kp->offset);
2020 }
2021 
2022 /* Module notifier call back, checking kprobes on the module */
2023 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
2024 					     unsigned long val, void *data)
2025 {
2026 	struct module *mod = data;
2027 	struct hlist_head *head;
2028 	struct kprobe *p;
2029 	unsigned int i;
2030 	int checkcore = (val == MODULE_STATE_GOING);
2031 
2032 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2033 		return NOTIFY_DONE;
2034 
2035 	/*
2036 	 * When MODULE_STATE_GOING was notified, both of module .text and
2037 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2038 	 * notified, only .init.text section would be freed. We need to
2039 	 * disable kprobes which have been inserted in the sections.
2040 	 */
2041 	mutex_lock(&kprobe_mutex);
2042 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2043 		head = &kprobe_table[i];
2044 		hlist_for_each_entry_rcu(p, head, hlist)
2045 			if (within_module_init((unsigned long)p->addr, mod) ||
2046 			    (checkcore &&
2047 			     within_module_core((unsigned long)p->addr, mod))) {
2048 				/*
2049 				 * The vaddr this probe is installed will soon
2050 				 * be vfreed buy not synced to disk. Hence,
2051 				 * disarming the breakpoint isn't needed.
2052 				 */
2053 				kill_kprobe(p);
2054 			}
2055 	}
2056 	mutex_unlock(&kprobe_mutex);
2057 	return NOTIFY_DONE;
2058 }
2059 
2060 static struct notifier_block kprobe_module_nb = {
2061 	.notifier_call = kprobes_module_callback,
2062 	.priority = 0
2063 };
2064 
2065 static int __init init_kprobes(void)
2066 {
2067 	int i, err = 0;
2068 	unsigned long offset = 0, size = 0;
2069 	char *modname, namebuf[KSYM_NAME_LEN];
2070 	const char *symbol_name;
2071 	void *addr;
2072 	struct kprobe_blackpoint *kb;
2073 
2074 	/* FIXME allocate the probe table, currently defined statically */
2075 	/* initialize all list heads */
2076 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2077 		INIT_HLIST_HEAD(&kprobe_table[i]);
2078 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2079 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2080 	}
2081 
2082 	/*
2083 	 * Lookup and populate the kprobe_blacklist.
2084 	 *
2085 	 * Unlike the kretprobe blacklist, we'll need to determine
2086 	 * the range of addresses that belong to the said functions,
2087 	 * since a kprobe need not necessarily be at the beginning
2088 	 * of a function.
2089 	 */
2090 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
2091 		kprobe_lookup_name(kb->name, addr);
2092 		if (!addr)
2093 			continue;
2094 
2095 		kb->start_addr = (unsigned long)addr;
2096 		symbol_name = kallsyms_lookup(kb->start_addr,
2097 				&size, &offset, &modname, namebuf);
2098 		if (!symbol_name)
2099 			kb->range = 0;
2100 		else
2101 			kb->range = size;
2102 	}
2103 
2104 	if (kretprobe_blacklist_size) {
2105 		/* lookup the function address from its name */
2106 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2107 			kprobe_lookup_name(kretprobe_blacklist[i].name,
2108 					   kretprobe_blacklist[i].addr);
2109 			if (!kretprobe_blacklist[i].addr)
2110 				printk("kretprobe: lookup failed: %s\n",
2111 				       kretprobe_blacklist[i].name);
2112 		}
2113 	}
2114 
2115 #if defined(CONFIG_OPTPROBES)
2116 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2117 	/* Init kprobe_optinsn_slots */
2118 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2119 #endif
2120 	/* By default, kprobes can be optimized */
2121 	kprobes_allow_optimization = true;
2122 #endif
2123 
2124 	/* By default, kprobes are armed */
2125 	kprobes_all_disarmed = false;
2126 
2127 	err = arch_init_kprobes();
2128 	if (!err)
2129 		err = register_die_notifier(&kprobe_exceptions_nb);
2130 	if (!err)
2131 		err = register_module_notifier(&kprobe_module_nb);
2132 
2133 	kprobes_initialized = (err == 0);
2134 
2135 	if (!err)
2136 		init_test_probes();
2137 	return err;
2138 }
2139 
2140 #ifdef CONFIG_DEBUG_FS
2141 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2142 		const char *sym, int offset, char *modname, struct kprobe *pp)
2143 {
2144 	char *kprobe_type;
2145 
2146 	if (p->pre_handler == pre_handler_kretprobe)
2147 		kprobe_type = "r";
2148 	else if (p->pre_handler == setjmp_pre_handler)
2149 		kprobe_type = "j";
2150 	else
2151 		kprobe_type = "k";
2152 
2153 	if (sym)
2154 		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2155 			p->addr, kprobe_type, sym, offset,
2156 			(modname ? modname : " "));
2157 	else
2158 		seq_printf(pi, "%p  %s  %p ",
2159 			p->addr, kprobe_type, p->addr);
2160 
2161 	if (!pp)
2162 		pp = p;
2163 	seq_printf(pi, "%s%s%s%s\n",
2164 		(kprobe_gone(p) ? "[GONE]" : ""),
2165 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2166 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2167 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2168 }
2169 
2170 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2171 {
2172 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2173 }
2174 
2175 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2176 {
2177 	(*pos)++;
2178 	if (*pos >= KPROBE_TABLE_SIZE)
2179 		return NULL;
2180 	return pos;
2181 }
2182 
2183 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2184 {
2185 	/* Nothing to do */
2186 }
2187 
2188 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2189 {
2190 	struct hlist_head *head;
2191 	struct kprobe *p, *kp;
2192 	const char *sym = NULL;
2193 	unsigned int i = *(loff_t *) v;
2194 	unsigned long offset = 0;
2195 	char *modname, namebuf[KSYM_NAME_LEN];
2196 
2197 	head = &kprobe_table[i];
2198 	preempt_disable();
2199 	hlist_for_each_entry_rcu(p, head, hlist) {
2200 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2201 					&offset, &modname, namebuf);
2202 		if (kprobe_aggrprobe(p)) {
2203 			list_for_each_entry_rcu(kp, &p->list, list)
2204 				report_probe(pi, kp, sym, offset, modname, p);
2205 		} else
2206 			report_probe(pi, p, sym, offset, modname, NULL);
2207 	}
2208 	preempt_enable();
2209 	return 0;
2210 }
2211 
2212 static const struct seq_operations kprobes_seq_ops = {
2213 	.start = kprobe_seq_start,
2214 	.next  = kprobe_seq_next,
2215 	.stop  = kprobe_seq_stop,
2216 	.show  = show_kprobe_addr
2217 };
2218 
2219 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2220 {
2221 	return seq_open(filp, &kprobes_seq_ops);
2222 }
2223 
2224 static const struct file_operations debugfs_kprobes_operations = {
2225 	.open           = kprobes_open,
2226 	.read           = seq_read,
2227 	.llseek         = seq_lseek,
2228 	.release        = seq_release,
2229 };
2230 
2231 static void __kprobes arm_all_kprobes(void)
2232 {
2233 	struct hlist_head *head;
2234 	struct kprobe *p;
2235 	unsigned int i;
2236 
2237 	mutex_lock(&kprobe_mutex);
2238 
2239 	/* If kprobes are armed, just return */
2240 	if (!kprobes_all_disarmed)
2241 		goto already_enabled;
2242 
2243 	/* Arming kprobes doesn't optimize kprobe itself */
2244 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2245 		head = &kprobe_table[i];
2246 		hlist_for_each_entry_rcu(p, head, hlist)
2247 			if (!kprobe_disabled(p))
2248 				arm_kprobe(p);
2249 	}
2250 
2251 	kprobes_all_disarmed = false;
2252 	printk(KERN_INFO "Kprobes globally enabled\n");
2253 
2254 already_enabled:
2255 	mutex_unlock(&kprobe_mutex);
2256 	return;
2257 }
2258 
2259 static void __kprobes disarm_all_kprobes(void)
2260 {
2261 	struct hlist_head *head;
2262 	struct kprobe *p;
2263 	unsigned int i;
2264 
2265 	mutex_lock(&kprobe_mutex);
2266 
2267 	/* If kprobes are already disarmed, just return */
2268 	if (kprobes_all_disarmed) {
2269 		mutex_unlock(&kprobe_mutex);
2270 		return;
2271 	}
2272 
2273 	kprobes_all_disarmed = true;
2274 	printk(KERN_INFO "Kprobes globally disabled\n");
2275 
2276 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2277 		head = &kprobe_table[i];
2278 		hlist_for_each_entry_rcu(p, head, hlist) {
2279 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2280 				disarm_kprobe(p, false);
2281 		}
2282 	}
2283 	mutex_unlock(&kprobe_mutex);
2284 
2285 	/* Wait for disarming all kprobes by optimizer */
2286 	wait_for_kprobe_optimizer();
2287 }
2288 
2289 /*
2290  * XXX: The debugfs bool file interface doesn't allow for callbacks
2291  * when the bool state is switched. We can reuse that facility when
2292  * available
2293  */
2294 static ssize_t read_enabled_file_bool(struct file *file,
2295 	       char __user *user_buf, size_t count, loff_t *ppos)
2296 {
2297 	char buf[3];
2298 
2299 	if (!kprobes_all_disarmed)
2300 		buf[0] = '1';
2301 	else
2302 		buf[0] = '0';
2303 	buf[1] = '\n';
2304 	buf[2] = 0x00;
2305 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2306 }
2307 
2308 static ssize_t write_enabled_file_bool(struct file *file,
2309 	       const char __user *user_buf, size_t count, loff_t *ppos)
2310 {
2311 	char buf[32];
2312 	size_t buf_size;
2313 
2314 	buf_size = min(count, (sizeof(buf)-1));
2315 	if (copy_from_user(buf, user_buf, buf_size))
2316 		return -EFAULT;
2317 
2318 	buf[buf_size] = '\0';
2319 	switch (buf[0]) {
2320 	case 'y':
2321 	case 'Y':
2322 	case '1':
2323 		arm_all_kprobes();
2324 		break;
2325 	case 'n':
2326 	case 'N':
2327 	case '0':
2328 		disarm_all_kprobes();
2329 		break;
2330 	default:
2331 		return -EINVAL;
2332 	}
2333 
2334 	return count;
2335 }
2336 
2337 static const struct file_operations fops_kp = {
2338 	.read =         read_enabled_file_bool,
2339 	.write =        write_enabled_file_bool,
2340 	.llseek =	default_llseek,
2341 };
2342 
2343 static int __kprobes debugfs_kprobe_init(void)
2344 {
2345 	struct dentry *dir, *file;
2346 	unsigned int value = 1;
2347 
2348 	dir = debugfs_create_dir("kprobes", NULL);
2349 	if (!dir)
2350 		return -ENOMEM;
2351 
2352 	file = debugfs_create_file("list", 0444, dir, NULL,
2353 				&debugfs_kprobes_operations);
2354 	if (!file) {
2355 		debugfs_remove(dir);
2356 		return -ENOMEM;
2357 	}
2358 
2359 	file = debugfs_create_file("enabled", 0600, dir,
2360 					&value, &fops_kp);
2361 	if (!file) {
2362 		debugfs_remove(dir);
2363 		return -ENOMEM;
2364 	}
2365 
2366 	return 0;
2367 }
2368 
2369 late_initcall(debugfs_kprobe_init);
2370 #endif /* CONFIG_DEBUG_FS */
2371 
2372 module_init(init_kprobes);
2373 
2374 /* defined in arch/.../kernel/kprobes.c */
2375 EXPORT_SYMBOL_GPL(jprobe_return);
2376