1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * kernel/kprobes.c 5 * 6 * Copyright (C) IBM Corporation, 2002, 2004 7 * 8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 9 * Probes initial implementation (includes suggestions from 10 * Rusty Russell). 11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 12 * hlists and exceptions notifier as suggested by Andi Kleen. 13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 14 * interface to access function arguments. 15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 16 * exceptions notifier to be first on the priority list. 17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 19 * <prasanna@in.ibm.com> added function-return probes. 20 */ 21 #include <linux/kprobes.h> 22 #include <linux/hash.h> 23 #include <linux/init.h> 24 #include <linux/slab.h> 25 #include <linux/stddef.h> 26 #include <linux/export.h> 27 #include <linux/moduleloader.h> 28 #include <linux/kallsyms.h> 29 #include <linux/freezer.h> 30 #include <linux/seq_file.h> 31 #include <linux/debugfs.h> 32 #include <linux/sysctl.h> 33 #include <linux/kdebug.h> 34 #include <linux/memory.h> 35 #include <linux/ftrace.h> 36 #include <linux/cpu.h> 37 #include <linux/jump_label.h> 38 39 #include <asm/sections.h> 40 #include <asm/cacheflush.h> 41 #include <asm/errno.h> 42 #include <linux/uaccess.h> 43 44 #define KPROBE_HASH_BITS 6 45 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 46 47 48 static int kprobes_initialized; 49 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 50 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 51 52 /* NOTE: change this value only with kprobe_mutex held */ 53 static bool kprobes_all_disarmed; 54 55 /* This protects kprobe_table and optimizing_list */ 56 static DEFINE_MUTEX(kprobe_mutex); 57 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 58 static struct { 59 raw_spinlock_t lock ____cacheline_aligned_in_smp; 60 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 61 62 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, 63 unsigned int __unused) 64 { 65 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); 66 } 67 68 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 69 { 70 return &(kretprobe_table_locks[hash].lock); 71 } 72 73 /* Blacklist -- list of struct kprobe_blacklist_entry */ 74 static LIST_HEAD(kprobe_blacklist); 75 76 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 77 /* 78 * kprobe->ainsn.insn points to the copy of the instruction to be 79 * single-stepped. x86_64, POWER4 and above have no-exec support and 80 * stepping on the instruction on a vmalloced/kmalloced/data page 81 * is a recipe for disaster 82 */ 83 struct kprobe_insn_page { 84 struct list_head list; 85 kprobe_opcode_t *insns; /* Page of instruction slots */ 86 struct kprobe_insn_cache *cache; 87 int nused; 88 int ngarbage; 89 char slot_used[]; 90 }; 91 92 #define KPROBE_INSN_PAGE_SIZE(slots) \ 93 (offsetof(struct kprobe_insn_page, slot_used) + \ 94 (sizeof(char) * (slots))) 95 96 static int slots_per_page(struct kprobe_insn_cache *c) 97 { 98 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 99 } 100 101 enum kprobe_slot_state { 102 SLOT_CLEAN = 0, 103 SLOT_DIRTY = 1, 104 SLOT_USED = 2, 105 }; 106 107 void __weak *alloc_insn_page(void) 108 { 109 return module_alloc(PAGE_SIZE); 110 } 111 112 void __weak free_insn_page(void *page) 113 { 114 module_memfree(page); 115 } 116 117 struct kprobe_insn_cache kprobe_insn_slots = { 118 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 119 .alloc = alloc_insn_page, 120 .free = free_insn_page, 121 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 122 .insn_size = MAX_INSN_SIZE, 123 .nr_garbage = 0, 124 }; 125 static int collect_garbage_slots(struct kprobe_insn_cache *c); 126 127 /** 128 * __get_insn_slot() - Find a slot on an executable page for an instruction. 129 * We allocate an executable page if there's no room on existing ones. 130 */ 131 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 132 { 133 struct kprobe_insn_page *kip; 134 kprobe_opcode_t *slot = NULL; 135 136 /* Since the slot array is not protected by rcu, we need a mutex */ 137 mutex_lock(&c->mutex); 138 retry: 139 rcu_read_lock(); 140 list_for_each_entry_rcu(kip, &c->pages, list) { 141 if (kip->nused < slots_per_page(c)) { 142 int i; 143 for (i = 0; i < slots_per_page(c); i++) { 144 if (kip->slot_used[i] == SLOT_CLEAN) { 145 kip->slot_used[i] = SLOT_USED; 146 kip->nused++; 147 slot = kip->insns + (i * c->insn_size); 148 rcu_read_unlock(); 149 goto out; 150 } 151 } 152 /* kip->nused is broken. Fix it. */ 153 kip->nused = slots_per_page(c); 154 WARN_ON(1); 155 } 156 } 157 rcu_read_unlock(); 158 159 /* If there are any garbage slots, collect it and try again. */ 160 if (c->nr_garbage && collect_garbage_slots(c) == 0) 161 goto retry; 162 163 /* All out of space. Need to allocate a new page. */ 164 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 165 if (!kip) 166 goto out; 167 168 /* 169 * Use module_alloc so this page is within +/- 2GB of where the 170 * kernel image and loaded module images reside. This is required 171 * so x86_64 can correctly handle the %rip-relative fixups. 172 */ 173 kip->insns = c->alloc(); 174 if (!kip->insns) { 175 kfree(kip); 176 goto out; 177 } 178 INIT_LIST_HEAD(&kip->list); 179 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 180 kip->slot_used[0] = SLOT_USED; 181 kip->nused = 1; 182 kip->ngarbage = 0; 183 kip->cache = c; 184 list_add_rcu(&kip->list, &c->pages); 185 slot = kip->insns; 186 out: 187 mutex_unlock(&c->mutex); 188 return slot; 189 } 190 191 /* Return 1 if all garbages are collected, otherwise 0. */ 192 static int collect_one_slot(struct kprobe_insn_page *kip, int idx) 193 { 194 kip->slot_used[idx] = SLOT_CLEAN; 195 kip->nused--; 196 if (kip->nused == 0) { 197 /* 198 * Page is no longer in use. Free it unless 199 * it's the last one. We keep the last one 200 * so as not to have to set it up again the 201 * next time somebody inserts a probe. 202 */ 203 if (!list_is_singular(&kip->list)) { 204 list_del_rcu(&kip->list); 205 synchronize_rcu(); 206 kip->cache->free(kip->insns); 207 kfree(kip); 208 } 209 return 1; 210 } 211 return 0; 212 } 213 214 static int collect_garbage_slots(struct kprobe_insn_cache *c) 215 { 216 struct kprobe_insn_page *kip, *next; 217 218 /* Ensure no-one is interrupted on the garbages */ 219 synchronize_rcu(); 220 221 list_for_each_entry_safe(kip, next, &c->pages, list) { 222 int i; 223 if (kip->ngarbage == 0) 224 continue; 225 kip->ngarbage = 0; /* we will collect all garbages */ 226 for (i = 0; i < slots_per_page(c); i++) { 227 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 228 break; 229 } 230 } 231 c->nr_garbage = 0; 232 return 0; 233 } 234 235 void __free_insn_slot(struct kprobe_insn_cache *c, 236 kprobe_opcode_t *slot, int dirty) 237 { 238 struct kprobe_insn_page *kip; 239 long idx; 240 241 mutex_lock(&c->mutex); 242 rcu_read_lock(); 243 list_for_each_entry_rcu(kip, &c->pages, list) { 244 idx = ((long)slot - (long)kip->insns) / 245 (c->insn_size * sizeof(kprobe_opcode_t)); 246 if (idx >= 0 && idx < slots_per_page(c)) 247 goto out; 248 } 249 /* Could not find this slot. */ 250 WARN_ON(1); 251 kip = NULL; 252 out: 253 rcu_read_unlock(); 254 /* Mark and sweep: this may sleep */ 255 if (kip) { 256 /* Check double free */ 257 WARN_ON(kip->slot_used[idx] != SLOT_USED); 258 if (dirty) { 259 kip->slot_used[idx] = SLOT_DIRTY; 260 kip->ngarbage++; 261 if (++c->nr_garbage > slots_per_page(c)) 262 collect_garbage_slots(c); 263 } else { 264 collect_one_slot(kip, idx); 265 } 266 } 267 mutex_unlock(&c->mutex); 268 } 269 270 /* 271 * Check given address is on the page of kprobe instruction slots. 272 * This will be used for checking whether the address on a stack 273 * is on a text area or not. 274 */ 275 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 276 { 277 struct kprobe_insn_page *kip; 278 bool ret = false; 279 280 rcu_read_lock(); 281 list_for_each_entry_rcu(kip, &c->pages, list) { 282 if (addr >= (unsigned long)kip->insns && 283 addr < (unsigned long)kip->insns + PAGE_SIZE) { 284 ret = true; 285 break; 286 } 287 } 288 rcu_read_unlock(); 289 290 return ret; 291 } 292 293 #ifdef CONFIG_OPTPROBES 294 /* For optimized_kprobe buffer */ 295 struct kprobe_insn_cache kprobe_optinsn_slots = { 296 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 297 .alloc = alloc_insn_page, 298 .free = free_insn_page, 299 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 300 /* .insn_size is initialized later */ 301 .nr_garbage = 0, 302 }; 303 #endif 304 #endif 305 306 /* We have preemption disabled.. so it is safe to use __ versions */ 307 static inline void set_kprobe_instance(struct kprobe *kp) 308 { 309 __this_cpu_write(kprobe_instance, kp); 310 } 311 312 static inline void reset_kprobe_instance(void) 313 { 314 __this_cpu_write(kprobe_instance, NULL); 315 } 316 317 /* 318 * This routine is called either: 319 * - under the kprobe_mutex - during kprobe_[un]register() 320 * OR 321 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 322 */ 323 struct kprobe *get_kprobe(void *addr) 324 { 325 struct hlist_head *head; 326 struct kprobe *p; 327 328 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 329 hlist_for_each_entry_rcu(p, head, hlist) { 330 if (p->addr == addr) 331 return p; 332 } 333 334 return NULL; 335 } 336 NOKPROBE_SYMBOL(get_kprobe); 337 338 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 339 340 /* Return true if the kprobe is an aggregator */ 341 static inline int kprobe_aggrprobe(struct kprobe *p) 342 { 343 return p->pre_handler == aggr_pre_handler; 344 } 345 346 /* Return true(!0) if the kprobe is unused */ 347 static inline int kprobe_unused(struct kprobe *p) 348 { 349 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 350 list_empty(&p->list); 351 } 352 353 /* 354 * Keep all fields in the kprobe consistent 355 */ 356 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 357 { 358 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 359 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 360 } 361 362 #ifdef CONFIG_OPTPROBES 363 /* NOTE: change this value only with kprobe_mutex held */ 364 static bool kprobes_allow_optimization; 365 366 /* 367 * Call all pre_handler on the list, but ignores its return value. 368 * This must be called from arch-dep optimized caller. 369 */ 370 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 371 { 372 struct kprobe *kp; 373 374 list_for_each_entry_rcu(kp, &p->list, list) { 375 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 376 set_kprobe_instance(kp); 377 kp->pre_handler(kp, regs); 378 } 379 reset_kprobe_instance(); 380 } 381 } 382 NOKPROBE_SYMBOL(opt_pre_handler); 383 384 /* Free optimized instructions and optimized_kprobe */ 385 static void free_aggr_kprobe(struct kprobe *p) 386 { 387 struct optimized_kprobe *op; 388 389 op = container_of(p, struct optimized_kprobe, kp); 390 arch_remove_optimized_kprobe(op); 391 arch_remove_kprobe(p); 392 kfree(op); 393 } 394 395 /* Return true(!0) if the kprobe is ready for optimization. */ 396 static inline int kprobe_optready(struct kprobe *p) 397 { 398 struct optimized_kprobe *op; 399 400 if (kprobe_aggrprobe(p)) { 401 op = container_of(p, struct optimized_kprobe, kp); 402 return arch_prepared_optinsn(&op->optinsn); 403 } 404 405 return 0; 406 } 407 408 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 409 static inline int kprobe_disarmed(struct kprobe *p) 410 { 411 struct optimized_kprobe *op; 412 413 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 414 if (!kprobe_aggrprobe(p)) 415 return kprobe_disabled(p); 416 417 op = container_of(p, struct optimized_kprobe, kp); 418 419 return kprobe_disabled(p) && list_empty(&op->list); 420 } 421 422 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 423 static int kprobe_queued(struct kprobe *p) 424 { 425 struct optimized_kprobe *op; 426 427 if (kprobe_aggrprobe(p)) { 428 op = container_of(p, struct optimized_kprobe, kp); 429 if (!list_empty(&op->list)) 430 return 1; 431 } 432 return 0; 433 } 434 435 /* 436 * Return an optimized kprobe whose optimizing code replaces 437 * instructions including addr (exclude breakpoint). 438 */ 439 static struct kprobe *get_optimized_kprobe(unsigned long addr) 440 { 441 int i; 442 struct kprobe *p = NULL; 443 struct optimized_kprobe *op; 444 445 /* Don't check i == 0, since that is a breakpoint case. */ 446 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 447 p = get_kprobe((void *)(addr - i)); 448 449 if (p && kprobe_optready(p)) { 450 op = container_of(p, struct optimized_kprobe, kp); 451 if (arch_within_optimized_kprobe(op, addr)) 452 return p; 453 } 454 455 return NULL; 456 } 457 458 /* Optimization staging list, protected by kprobe_mutex */ 459 static LIST_HEAD(optimizing_list); 460 static LIST_HEAD(unoptimizing_list); 461 static LIST_HEAD(freeing_list); 462 463 static void kprobe_optimizer(struct work_struct *work); 464 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 465 #define OPTIMIZE_DELAY 5 466 467 /* 468 * Optimize (replace a breakpoint with a jump) kprobes listed on 469 * optimizing_list. 470 */ 471 static void do_optimize_kprobes(void) 472 { 473 lockdep_assert_held(&text_mutex); 474 /* 475 * The optimization/unoptimization refers online_cpus via 476 * stop_machine() and cpu-hotplug modifies online_cpus. 477 * And same time, text_mutex will be held in cpu-hotplug and here. 478 * This combination can cause a deadlock (cpu-hotplug try to lock 479 * text_mutex but stop_machine can not be done because online_cpus 480 * has been changed) 481 * To avoid this deadlock, caller must have locked cpu hotplug 482 * for preventing cpu-hotplug outside of text_mutex locking. 483 */ 484 lockdep_assert_cpus_held(); 485 486 /* Optimization never be done when disarmed */ 487 if (kprobes_all_disarmed || !kprobes_allow_optimization || 488 list_empty(&optimizing_list)) 489 return; 490 491 arch_optimize_kprobes(&optimizing_list); 492 } 493 494 /* 495 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 496 * if need) kprobes listed on unoptimizing_list. 497 */ 498 static void do_unoptimize_kprobes(void) 499 { 500 struct optimized_kprobe *op, *tmp; 501 502 lockdep_assert_held(&text_mutex); 503 /* See comment in do_optimize_kprobes() */ 504 lockdep_assert_cpus_held(); 505 506 /* Unoptimization must be done anytime */ 507 if (list_empty(&unoptimizing_list)) 508 return; 509 510 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 511 /* Loop free_list for disarming */ 512 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 513 /* Switching from detour code to origin */ 514 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 515 /* Disarm probes if marked disabled */ 516 if (kprobe_disabled(&op->kp)) 517 arch_disarm_kprobe(&op->kp); 518 if (kprobe_unused(&op->kp)) { 519 /* 520 * Remove unused probes from hash list. After waiting 521 * for synchronization, these probes are reclaimed. 522 * (reclaiming is done by do_free_cleaned_kprobes.) 523 */ 524 hlist_del_rcu(&op->kp.hlist); 525 } else 526 list_del_init(&op->list); 527 } 528 } 529 530 /* Reclaim all kprobes on the free_list */ 531 static void do_free_cleaned_kprobes(void) 532 { 533 struct optimized_kprobe *op, *tmp; 534 535 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 536 list_del_init(&op->list); 537 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) { 538 /* 539 * This must not happen, but if there is a kprobe 540 * still in use, keep it on kprobes hash list. 541 */ 542 continue; 543 } 544 free_aggr_kprobe(&op->kp); 545 } 546 } 547 548 /* Start optimizer after OPTIMIZE_DELAY passed */ 549 static void kick_kprobe_optimizer(void) 550 { 551 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 552 } 553 554 /* Kprobe jump optimizer */ 555 static void kprobe_optimizer(struct work_struct *work) 556 { 557 mutex_lock(&kprobe_mutex); 558 cpus_read_lock(); 559 mutex_lock(&text_mutex); 560 /* Lock modules while optimizing kprobes */ 561 mutex_lock(&module_mutex); 562 563 /* 564 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 565 * kprobes before waiting for quiesence period. 566 */ 567 do_unoptimize_kprobes(); 568 569 /* 570 * Step 2: Wait for quiesence period to ensure all potentially 571 * preempted tasks to have normally scheduled. Because optprobe 572 * may modify multiple instructions, there is a chance that Nth 573 * instruction is preempted. In that case, such tasks can return 574 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. 575 * Note that on non-preemptive kernel, this is transparently converted 576 * to synchronoze_sched() to wait for all interrupts to have completed. 577 */ 578 synchronize_rcu_tasks(); 579 580 /* Step 3: Optimize kprobes after quiesence period */ 581 do_optimize_kprobes(); 582 583 /* Step 4: Free cleaned kprobes after quiesence period */ 584 do_free_cleaned_kprobes(); 585 586 mutex_unlock(&module_mutex); 587 mutex_unlock(&text_mutex); 588 cpus_read_unlock(); 589 mutex_unlock(&kprobe_mutex); 590 591 /* Step 5: Kick optimizer again if needed */ 592 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 593 kick_kprobe_optimizer(); 594 } 595 596 /* Wait for completing optimization and unoptimization */ 597 void wait_for_kprobe_optimizer(void) 598 { 599 mutex_lock(&kprobe_mutex); 600 601 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 602 mutex_unlock(&kprobe_mutex); 603 604 /* this will also make optimizing_work execute immmediately */ 605 flush_delayed_work(&optimizing_work); 606 /* @optimizing_work might not have been queued yet, relax */ 607 cpu_relax(); 608 609 mutex_lock(&kprobe_mutex); 610 } 611 612 mutex_unlock(&kprobe_mutex); 613 } 614 615 static bool optprobe_queued_unopt(struct optimized_kprobe *op) 616 { 617 struct optimized_kprobe *_op; 618 619 list_for_each_entry(_op, &unoptimizing_list, list) { 620 if (op == _op) 621 return true; 622 } 623 624 return false; 625 } 626 627 /* Optimize kprobe if p is ready to be optimized */ 628 static void optimize_kprobe(struct kprobe *p) 629 { 630 struct optimized_kprobe *op; 631 632 /* Check if the kprobe is disabled or not ready for optimization. */ 633 if (!kprobe_optready(p) || !kprobes_allow_optimization || 634 (kprobe_disabled(p) || kprobes_all_disarmed)) 635 return; 636 637 /* kprobes with post_handler can not be optimized */ 638 if (p->post_handler) 639 return; 640 641 op = container_of(p, struct optimized_kprobe, kp); 642 643 /* Check there is no other kprobes at the optimized instructions */ 644 if (arch_check_optimized_kprobe(op) < 0) 645 return; 646 647 /* Check if it is already optimized. */ 648 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) { 649 if (optprobe_queued_unopt(op)) { 650 /* This is under unoptimizing. Just dequeue the probe */ 651 list_del_init(&op->list); 652 } 653 return; 654 } 655 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 656 657 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */ 658 if (WARN_ON_ONCE(!list_empty(&op->list))) 659 return; 660 661 list_add(&op->list, &optimizing_list); 662 kick_kprobe_optimizer(); 663 } 664 665 /* Short cut to direct unoptimizing */ 666 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 667 { 668 lockdep_assert_cpus_held(); 669 arch_unoptimize_kprobe(op); 670 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 671 if (kprobe_disabled(&op->kp)) 672 arch_disarm_kprobe(&op->kp); 673 } 674 675 /* Unoptimize a kprobe if p is optimized */ 676 static void unoptimize_kprobe(struct kprobe *p, bool force) 677 { 678 struct optimized_kprobe *op; 679 680 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 681 return; /* This is not an optprobe nor optimized */ 682 683 op = container_of(p, struct optimized_kprobe, kp); 684 if (!kprobe_optimized(p)) 685 return; 686 687 if (!list_empty(&op->list)) { 688 if (optprobe_queued_unopt(op)) { 689 /* Queued in unoptimizing queue */ 690 if (force) { 691 /* 692 * Forcibly unoptimize the kprobe here, and queue it 693 * in the freeing list for release afterwards. 694 */ 695 force_unoptimize_kprobe(op); 696 list_move(&op->list, &freeing_list); 697 } 698 } else { 699 /* Dequeue from the optimizing queue */ 700 list_del_init(&op->list); 701 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 702 } 703 return; 704 } 705 706 /* Optimized kprobe case */ 707 if (force) { 708 /* Forcibly update the code: this is a special case */ 709 force_unoptimize_kprobe(op); 710 } else { 711 list_add(&op->list, &unoptimizing_list); 712 kick_kprobe_optimizer(); 713 } 714 } 715 716 /* Cancel unoptimizing for reusing */ 717 static int reuse_unused_kprobe(struct kprobe *ap) 718 { 719 struct optimized_kprobe *op; 720 721 /* 722 * Unused kprobe MUST be on the way of delayed unoptimizing (means 723 * there is still a relative jump) and disabled. 724 */ 725 op = container_of(ap, struct optimized_kprobe, kp); 726 WARN_ON_ONCE(list_empty(&op->list)); 727 /* Enable the probe again */ 728 ap->flags &= ~KPROBE_FLAG_DISABLED; 729 /* Optimize it again (remove from op->list) */ 730 if (!kprobe_optready(ap)) 731 return -EINVAL; 732 733 optimize_kprobe(ap); 734 return 0; 735 } 736 737 /* Remove optimized instructions */ 738 static void kill_optimized_kprobe(struct kprobe *p) 739 { 740 struct optimized_kprobe *op; 741 742 op = container_of(p, struct optimized_kprobe, kp); 743 if (!list_empty(&op->list)) 744 /* Dequeue from the (un)optimization queue */ 745 list_del_init(&op->list); 746 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 747 748 if (kprobe_unused(p)) { 749 /* Enqueue if it is unused */ 750 list_add(&op->list, &freeing_list); 751 /* 752 * Remove unused probes from the hash list. After waiting 753 * for synchronization, this probe is reclaimed. 754 * (reclaiming is done by do_free_cleaned_kprobes().) 755 */ 756 hlist_del_rcu(&op->kp.hlist); 757 } 758 759 /* Don't touch the code, because it is already freed. */ 760 arch_remove_optimized_kprobe(op); 761 } 762 763 static inline 764 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) 765 { 766 if (!kprobe_ftrace(p)) 767 arch_prepare_optimized_kprobe(op, p); 768 } 769 770 /* Try to prepare optimized instructions */ 771 static void prepare_optimized_kprobe(struct kprobe *p) 772 { 773 struct optimized_kprobe *op; 774 775 op = container_of(p, struct optimized_kprobe, kp); 776 __prepare_optimized_kprobe(op, p); 777 } 778 779 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 780 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 781 { 782 struct optimized_kprobe *op; 783 784 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 785 if (!op) 786 return NULL; 787 788 INIT_LIST_HEAD(&op->list); 789 op->kp.addr = p->addr; 790 __prepare_optimized_kprobe(op, p); 791 792 return &op->kp; 793 } 794 795 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 796 797 /* 798 * Prepare an optimized_kprobe and optimize it 799 * NOTE: p must be a normal registered kprobe 800 */ 801 static void try_to_optimize_kprobe(struct kprobe *p) 802 { 803 struct kprobe *ap; 804 struct optimized_kprobe *op; 805 806 /* Impossible to optimize ftrace-based kprobe */ 807 if (kprobe_ftrace(p)) 808 return; 809 810 /* For preparing optimization, jump_label_text_reserved() is called */ 811 cpus_read_lock(); 812 jump_label_lock(); 813 mutex_lock(&text_mutex); 814 815 ap = alloc_aggr_kprobe(p); 816 if (!ap) 817 goto out; 818 819 op = container_of(ap, struct optimized_kprobe, kp); 820 if (!arch_prepared_optinsn(&op->optinsn)) { 821 /* If failed to setup optimizing, fallback to kprobe */ 822 arch_remove_optimized_kprobe(op); 823 kfree(op); 824 goto out; 825 } 826 827 init_aggr_kprobe(ap, p); 828 optimize_kprobe(ap); /* This just kicks optimizer thread */ 829 830 out: 831 mutex_unlock(&text_mutex); 832 jump_label_unlock(); 833 cpus_read_unlock(); 834 } 835 836 #ifdef CONFIG_SYSCTL 837 static void optimize_all_kprobes(void) 838 { 839 struct hlist_head *head; 840 struct kprobe *p; 841 unsigned int i; 842 843 mutex_lock(&kprobe_mutex); 844 /* If optimization is already allowed, just return */ 845 if (kprobes_allow_optimization) 846 goto out; 847 848 cpus_read_lock(); 849 kprobes_allow_optimization = true; 850 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 851 head = &kprobe_table[i]; 852 hlist_for_each_entry_rcu(p, head, hlist) 853 if (!kprobe_disabled(p)) 854 optimize_kprobe(p); 855 } 856 cpus_read_unlock(); 857 printk(KERN_INFO "Kprobes globally optimized\n"); 858 out: 859 mutex_unlock(&kprobe_mutex); 860 } 861 862 static void unoptimize_all_kprobes(void) 863 { 864 struct hlist_head *head; 865 struct kprobe *p; 866 unsigned int i; 867 868 mutex_lock(&kprobe_mutex); 869 /* If optimization is already prohibited, just return */ 870 if (!kprobes_allow_optimization) { 871 mutex_unlock(&kprobe_mutex); 872 return; 873 } 874 875 cpus_read_lock(); 876 kprobes_allow_optimization = false; 877 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 878 head = &kprobe_table[i]; 879 hlist_for_each_entry_rcu(p, head, hlist) { 880 if (!kprobe_disabled(p)) 881 unoptimize_kprobe(p, false); 882 } 883 } 884 cpus_read_unlock(); 885 mutex_unlock(&kprobe_mutex); 886 887 /* Wait for unoptimizing completion */ 888 wait_for_kprobe_optimizer(); 889 printk(KERN_INFO "Kprobes globally unoptimized\n"); 890 } 891 892 static DEFINE_MUTEX(kprobe_sysctl_mutex); 893 int sysctl_kprobes_optimization; 894 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 895 void *buffer, size_t *length, 896 loff_t *ppos) 897 { 898 int ret; 899 900 mutex_lock(&kprobe_sysctl_mutex); 901 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 902 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 903 904 if (sysctl_kprobes_optimization) 905 optimize_all_kprobes(); 906 else 907 unoptimize_all_kprobes(); 908 mutex_unlock(&kprobe_sysctl_mutex); 909 910 return ret; 911 } 912 #endif /* CONFIG_SYSCTL */ 913 914 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 915 static void __arm_kprobe(struct kprobe *p) 916 { 917 struct kprobe *_p; 918 919 /* Check collision with other optimized kprobes */ 920 _p = get_optimized_kprobe((unsigned long)p->addr); 921 if (unlikely(_p)) 922 /* Fallback to unoptimized kprobe */ 923 unoptimize_kprobe(_p, true); 924 925 arch_arm_kprobe(p); 926 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 927 } 928 929 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 930 static void __disarm_kprobe(struct kprobe *p, bool reopt) 931 { 932 struct kprobe *_p; 933 934 /* Try to unoptimize */ 935 unoptimize_kprobe(p, kprobes_all_disarmed); 936 937 if (!kprobe_queued(p)) { 938 arch_disarm_kprobe(p); 939 /* If another kprobe was blocked, optimize it. */ 940 _p = get_optimized_kprobe((unsigned long)p->addr); 941 if (unlikely(_p) && reopt) 942 optimize_kprobe(_p); 943 } 944 /* TODO: reoptimize others after unoptimized this probe */ 945 } 946 947 #else /* !CONFIG_OPTPROBES */ 948 949 #define optimize_kprobe(p) do {} while (0) 950 #define unoptimize_kprobe(p, f) do {} while (0) 951 #define kill_optimized_kprobe(p) do {} while (0) 952 #define prepare_optimized_kprobe(p) do {} while (0) 953 #define try_to_optimize_kprobe(p) do {} while (0) 954 #define __arm_kprobe(p) arch_arm_kprobe(p) 955 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 956 #define kprobe_disarmed(p) kprobe_disabled(p) 957 #define wait_for_kprobe_optimizer() do {} while (0) 958 959 static int reuse_unused_kprobe(struct kprobe *ap) 960 { 961 /* 962 * If the optimized kprobe is NOT supported, the aggr kprobe is 963 * released at the same time that the last aggregated kprobe is 964 * unregistered. 965 * Thus there should be no chance to reuse unused kprobe. 966 */ 967 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 968 return -EINVAL; 969 } 970 971 static void free_aggr_kprobe(struct kprobe *p) 972 { 973 arch_remove_kprobe(p); 974 kfree(p); 975 } 976 977 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 978 { 979 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 980 } 981 #endif /* CONFIG_OPTPROBES */ 982 983 #ifdef CONFIG_KPROBES_ON_FTRACE 984 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 985 .func = kprobe_ftrace_handler, 986 .flags = FTRACE_OPS_FL_SAVE_REGS, 987 }; 988 989 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = { 990 .func = kprobe_ftrace_handler, 991 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 992 }; 993 994 static int kprobe_ipmodify_enabled; 995 static int kprobe_ftrace_enabled; 996 997 /* Must ensure p->addr is really on ftrace */ 998 static int prepare_kprobe(struct kprobe *p) 999 { 1000 if (!kprobe_ftrace(p)) 1001 return arch_prepare_kprobe(p); 1002 1003 return arch_prepare_kprobe_ftrace(p); 1004 } 1005 1006 /* Caller must lock kprobe_mutex */ 1007 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1008 int *cnt) 1009 { 1010 int ret = 0; 1011 1012 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0); 1013 if (ret) { 1014 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n", 1015 p->addr, ret); 1016 return ret; 1017 } 1018 1019 if (*cnt == 0) { 1020 ret = register_ftrace_function(ops); 1021 if (ret) { 1022 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret); 1023 goto err_ftrace; 1024 } 1025 } 1026 1027 (*cnt)++; 1028 return ret; 1029 1030 err_ftrace: 1031 /* 1032 * At this point, sinec ops is not registered, we should be sefe from 1033 * registering empty filter. 1034 */ 1035 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1036 return ret; 1037 } 1038 1039 static int arm_kprobe_ftrace(struct kprobe *p) 1040 { 1041 bool ipmodify = (p->post_handler != NULL); 1042 1043 return __arm_kprobe_ftrace(p, 1044 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1045 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1046 } 1047 1048 /* Caller must lock kprobe_mutex */ 1049 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1050 int *cnt) 1051 { 1052 int ret = 0; 1053 1054 if (*cnt == 1) { 1055 ret = unregister_ftrace_function(ops); 1056 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret)) 1057 return ret; 1058 } 1059 1060 (*cnt)--; 1061 1062 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1063 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n", 1064 p->addr, ret); 1065 return ret; 1066 } 1067 1068 static int disarm_kprobe_ftrace(struct kprobe *p) 1069 { 1070 bool ipmodify = (p->post_handler != NULL); 1071 1072 return __disarm_kprobe_ftrace(p, 1073 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1074 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1075 } 1076 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1077 #define prepare_kprobe(p) arch_prepare_kprobe(p) 1078 #define arm_kprobe_ftrace(p) (-ENODEV) 1079 #define disarm_kprobe_ftrace(p) (-ENODEV) 1080 #endif 1081 1082 /* Arm a kprobe with text_mutex */ 1083 static int arm_kprobe(struct kprobe *kp) 1084 { 1085 if (unlikely(kprobe_ftrace(kp))) 1086 return arm_kprobe_ftrace(kp); 1087 1088 cpus_read_lock(); 1089 mutex_lock(&text_mutex); 1090 __arm_kprobe(kp); 1091 mutex_unlock(&text_mutex); 1092 cpus_read_unlock(); 1093 1094 return 0; 1095 } 1096 1097 /* Disarm a kprobe with text_mutex */ 1098 static int disarm_kprobe(struct kprobe *kp, bool reopt) 1099 { 1100 if (unlikely(kprobe_ftrace(kp))) 1101 return disarm_kprobe_ftrace(kp); 1102 1103 cpus_read_lock(); 1104 mutex_lock(&text_mutex); 1105 __disarm_kprobe(kp, reopt); 1106 mutex_unlock(&text_mutex); 1107 cpus_read_unlock(); 1108 1109 return 0; 1110 } 1111 1112 /* 1113 * Aggregate handlers for multiple kprobes support - these handlers 1114 * take care of invoking the individual kprobe handlers on p->list 1115 */ 1116 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1117 { 1118 struct kprobe *kp; 1119 1120 list_for_each_entry_rcu(kp, &p->list, list) { 1121 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1122 set_kprobe_instance(kp); 1123 if (kp->pre_handler(kp, regs)) 1124 return 1; 1125 } 1126 reset_kprobe_instance(); 1127 } 1128 return 0; 1129 } 1130 NOKPROBE_SYMBOL(aggr_pre_handler); 1131 1132 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1133 unsigned long flags) 1134 { 1135 struct kprobe *kp; 1136 1137 list_for_each_entry_rcu(kp, &p->list, list) { 1138 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1139 set_kprobe_instance(kp); 1140 kp->post_handler(kp, regs, flags); 1141 reset_kprobe_instance(); 1142 } 1143 } 1144 } 1145 NOKPROBE_SYMBOL(aggr_post_handler); 1146 1147 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 1148 int trapnr) 1149 { 1150 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1151 1152 /* 1153 * if we faulted "during" the execution of a user specified 1154 * probe handler, invoke just that probe's fault handler 1155 */ 1156 if (cur && cur->fault_handler) { 1157 if (cur->fault_handler(cur, regs, trapnr)) 1158 return 1; 1159 } 1160 return 0; 1161 } 1162 NOKPROBE_SYMBOL(aggr_fault_handler); 1163 1164 /* Walks the list and increments nmissed count for multiprobe case */ 1165 void kprobes_inc_nmissed_count(struct kprobe *p) 1166 { 1167 struct kprobe *kp; 1168 if (!kprobe_aggrprobe(p)) { 1169 p->nmissed++; 1170 } else { 1171 list_for_each_entry_rcu(kp, &p->list, list) 1172 kp->nmissed++; 1173 } 1174 return; 1175 } 1176 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1177 1178 void recycle_rp_inst(struct kretprobe_instance *ri, 1179 struct hlist_head *head) 1180 { 1181 struct kretprobe *rp = ri->rp; 1182 1183 /* remove rp inst off the rprobe_inst_table */ 1184 hlist_del(&ri->hlist); 1185 INIT_HLIST_NODE(&ri->hlist); 1186 if (likely(rp)) { 1187 raw_spin_lock(&rp->lock); 1188 hlist_add_head(&ri->hlist, &rp->free_instances); 1189 raw_spin_unlock(&rp->lock); 1190 } else 1191 /* Unregistering */ 1192 hlist_add_head(&ri->hlist, head); 1193 } 1194 NOKPROBE_SYMBOL(recycle_rp_inst); 1195 1196 void kretprobe_hash_lock(struct task_struct *tsk, 1197 struct hlist_head **head, unsigned long *flags) 1198 __acquires(hlist_lock) 1199 { 1200 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1201 raw_spinlock_t *hlist_lock; 1202 1203 *head = &kretprobe_inst_table[hash]; 1204 hlist_lock = kretprobe_table_lock_ptr(hash); 1205 raw_spin_lock_irqsave(hlist_lock, *flags); 1206 } 1207 NOKPROBE_SYMBOL(kretprobe_hash_lock); 1208 1209 static void kretprobe_table_lock(unsigned long hash, 1210 unsigned long *flags) 1211 __acquires(hlist_lock) 1212 { 1213 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1214 raw_spin_lock_irqsave(hlist_lock, *flags); 1215 } 1216 NOKPROBE_SYMBOL(kretprobe_table_lock); 1217 1218 void kretprobe_hash_unlock(struct task_struct *tsk, 1219 unsigned long *flags) 1220 __releases(hlist_lock) 1221 { 1222 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1223 raw_spinlock_t *hlist_lock; 1224 1225 hlist_lock = kretprobe_table_lock_ptr(hash); 1226 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1227 } 1228 NOKPROBE_SYMBOL(kretprobe_hash_unlock); 1229 1230 static void kretprobe_table_unlock(unsigned long hash, 1231 unsigned long *flags) 1232 __releases(hlist_lock) 1233 { 1234 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1235 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1236 } 1237 NOKPROBE_SYMBOL(kretprobe_table_unlock); 1238 1239 /* 1240 * This function is called from finish_task_switch when task tk becomes dead, 1241 * so that we can recycle any function-return probe instances associated 1242 * with this task. These left over instances represent probed functions 1243 * that have been called but will never return. 1244 */ 1245 void kprobe_flush_task(struct task_struct *tk) 1246 { 1247 struct kretprobe_instance *ri; 1248 struct hlist_head *head, empty_rp; 1249 struct hlist_node *tmp; 1250 unsigned long hash, flags = 0; 1251 1252 if (unlikely(!kprobes_initialized)) 1253 /* Early boot. kretprobe_table_locks not yet initialized. */ 1254 return; 1255 1256 INIT_HLIST_HEAD(&empty_rp); 1257 hash = hash_ptr(tk, KPROBE_HASH_BITS); 1258 head = &kretprobe_inst_table[hash]; 1259 kretprobe_table_lock(hash, &flags); 1260 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 1261 if (ri->task == tk) 1262 recycle_rp_inst(ri, &empty_rp); 1263 } 1264 kretprobe_table_unlock(hash, &flags); 1265 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 1266 hlist_del(&ri->hlist); 1267 kfree(ri); 1268 } 1269 } 1270 NOKPROBE_SYMBOL(kprobe_flush_task); 1271 1272 static inline void free_rp_inst(struct kretprobe *rp) 1273 { 1274 struct kretprobe_instance *ri; 1275 struct hlist_node *next; 1276 1277 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) { 1278 hlist_del(&ri->hlist); 1279 kfree(ri); 1280 } 1281 } 1282 1283 static void cleanup_rp_inst(struct kretprobe *rp) 1284 { 1285 unsigned long flags, hash; 1286 struct kretprobe_instance *ri; 1287 struct hlist_node *next; 1288 struct hlist_head *head; 1289 1290 /* No race here */ 1291 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 1292 kretprobe_table_lock(hash, &flags); 1293 head = &kretprobe_inst_table[hash]; 1294 hlist_for_each_entry_safe(ri, next, head, hlist) { 1295 if (ri->rp == rp) 1296 ri->rp = NULL; 1297 } 1298 kretprobe_table_unlock(hash, &flags); 1299 } 1300 free_rp_inst(rp); 1301 } 1302 NOKPROBE_SYMBOL(cleanup_rp_inst); 1303 1304 /* Add the new probe to ap->list */ 1305 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1306 { 1307 if (p->post_handler) 1308 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1309 1310 list_add_rcu(&p->list, &ap->list); 1311 if (p->post_handler && !ap->post_handler) 1312 ap->post_handler = aggr_post_handler; 1313 1314 return 0; 1315 } 1316 1317 /* 1318 * Fill in the required fields of the "manager kprobe". Replace the 1319 * earlier kprobe in the hlist with the manager kprobe 1320 */ 1321 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1322 { 1323 /* Copy p's insn slot to ap */ 1324 copy_kprobe(p, ap); 1325 flush_insn_slot(ap); 1326 ap->addr = p->addr; 1327 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1328 ap->pre_handler = aggr_pre_handler; 1329 ap->fault_handler = aggr_fault_handler; 1330 /* We don't care the kprobe which has gone. */ 1331 if (p->post_handler && !kprobe_gone(p)) 1332 ap->post_handler = aggr_post_handler; 1333 1334 INIT_LIST_HEAD(&ap->list); 1335 INIT_HLIST_NODE(&ap->hlist); 1336 1337 list_add_rcu(&p->list, &ap->list); 1338 hlist_replace_rcu(&p->hlist, &ap->hlist); 1339 } 1340 1341 /* 1342 * This is the second or subsequent kprobe at the address - handle 1343 * the intricacies 1344 */ 1345 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1346 { 1347 int ret = 0; 1348 struct kprobe *ap = orig_p; 1349 1350 cpus_read_lock(); 1351 1352 /* For preparing optimization, jump_label_text_reserved() is called */ 1353 jump_label_lock(); 1354 mutex_lock(&text_mutex); 1355 1356 if (!kprobe_aggrprobe(orig_p)) { 1357 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1358 ap = alloc_aggr_kprobe(orig_p); 1359 if (!ap) { 1360 ret = -ENOMEM; 1361 goto out; 1362 } 1363 init_aggr_kprobe(ap, orig_p); 1364 } else if (kprobe_unused(ap)) { 1365 /* This probe is going to die. Rescue it */ 1366 ret = reuse_unused_kprobe(ap); 1367 if (ret) 1368 goto out; 1369 } 1370 1371 if (kprobe_gone(ap)) { 1372 /* 1373 * Attempting to insert new probe at the same location that 1374 * had a probe in the module vaddr area which already 1375 * freed. So, the instruction slot has already been 1376 * released. We need a new slot for the new probe. 1377 */ 1378 ret = arch_prepare_kprobe(ap); 1379 if (ret) 1380 /* 1381 * Even if fail to allocate new slot, don't need to 1382 * free aggr_probe. It will be used next time, or 1383 * freed by unregister_kprobe. 1384 */ 1385 goto out; 1386 1387 /* Prepare optimized instructions if possible. */ 1388 prepare_optimized_kprobe(ap); 1389 1390 /* 1391 * Clear gone flag to prevent allocating new slot again, and 1392 * set disabled flag because it is not armed yet. 1393 */ 1394 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1395 | KPROBE_FLAG_DISABLED; 1396 } 1397 1398 /* Copy ap's insn slot to p */ 1399 copy_kprobe(ap, p); 1400 ret = add_new_kprobe(ap, p); 1401 1402 out: 1403 mutex_unlock(&text_mutex); 1404 jump_label_unlock(); 1405 cpus_read_unlock(); 1406 1407 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1408 ap->flags &= ~KPROBE_FLAG_DISABLED; 1409 if (!kprobes_all_disarmed) { 1410 /* Arm the breakpoint again. */ 1411 ret = arm_kprobe(ap); 1412 if (ret) { 1413 ap->flags |= KPROBE_FLAG_DISABLED; 1414 list_del_rcu(&p->list); 1415 synchronize_rcu(); 1416 } 1417 } 1418 } 1419 return ret; 1420 } 1421 1422 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1423 { 1424 /* The __kprobes marked functions and entry code must not be probed */ 1425 return addr >= (unsigned long)__kprobes_text_start && 1426 addr < (unsigned long)__kprobes_text_end; 1427 } 1428 1429 static bool __within_kprobe_blacklist(unsigned long addr) 1430 { 1431 struct kprobe_blacklist_entry *ent; 1432 1433 if (arch_within_kprobe_blacklist(addr)) 1434 return true; 1435 /* 1436 * If there exists a kprobe_blacklist, verify and 1437 * fail any probe registration in the prohibited area 1438 */ 1439 list_for_each_entry(ent, &kprobe_blacklist, list) { 1440 if (addr >= ent->start_addr && addr < ent->end_addr) 1441 return true; 1442 } 1443 return false; 1444 } 1445 1446 bool within_kprobe_blacklist(unsigned long addr) 1447 { 1448 char symname[KSYM_NAME_LEN], *p; 1449 1450 if (__within_kprobe_blacklist(addr)) 1451 return true; 1452 1453 /* Check if the address is on a suffixed-symbol */ 1454 if (!lookup_symbol_name(addr, symname)) { 1455 p = strchr(symname, '.'); 1456 if (!p) 1457 return false; 1458 *p = '\0'; 1459 addr = (unsigned long)kprobe_lookup_name(symname, 0); 1460 if (addr) 1461 return __within_kprobe_blacklist(addr); 1462 } 1463 return false; 1464 } 1465 1466 /* 1467 * If we have a symbol_name argument, look it up and add the offset field 1468 * to it. This way, we can specify a relative address to a symbol. 1469 * This returns encoded errors if it fails to look up symbol or invalid 1470 * combination of parameters. 1471 */ 1472 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr, 1473 const char *symbol_name, unsigned int offset) 1474 { 1475 if ((symbol_name && addr) || (!symbol_name && !addr)) 1476 goto invalid; 1477 1478 if (symbol_name) { 1479 addr = kprobe_lookup_name(symbol_name, offset); 1480 if (!addr) 1481 return ERR_PTR(-ENOENT); 1482 } 1483 1484 addr = (kprobe_opcode_t *)(((char *)addr) + offset); 1485 if (addr) 1486 return addr; 1487 1488 invalid: 1489 return ERR_PTR(-EINVAL); 1490 } 1491 1492 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1493 { 1494 return _kprobe_addr(p->addr, p->symbol_name, p->offset); 1495 } 1496 1497 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1498 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1499 { 1500 struct kprobe *ap, *list_p; 1501 1502 ap = get_kprobe(p->addr); 1503 if (unlikely(!ap)) 1504 return NULL; 1505 1506 if (p != ap) { 1507 list_for_each_entry_rcu(list_p, &ap->list, list) 1508 if (list_p == p) 1509 /* kprobe p is a valid probe */ 1510 goto valid; 1511 return NULL; 1512 } 1513 valid: 1514 return ap; 1515 } 1516 1517 /* Return error if the kprobe is being re-registered */ 1518 static inline int check_kprobe_rereg(struct kprobe *p) 1519 { 1520 int ret = 0; 1521 1522 mutex_lock(&kprobe_mutex); 1523 if (__get_valid_kprobe(p)) 1524 ret = -EINVAL; 1525 mutex_unlock(&kprobe_mutex); 1526 1527 return ret; 1528 } 1529 1530 int __weak arch_check_ftrace_location(struct kprobe *p) 1531 { 1532 unsigned long ftrace_addr; 1533 1534 ftrace_addr = ftrace_location((unsigned long)p->addr); 1535 if (ftrace_addr) { 1536 #ifdef CONFIG_KPROBES_ON_FTRACE 1537 /* Given address is not on the instruction boundary */ 1538 if ((unsigned long)p->addr != ftrace_addr) 1539 return -EILSEQ; 1540 p->flags |= KPROBE_FLAG_FTRACE; 1541 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1542 return -EINVAL; 1543 #endif 1544 } 1545 return 0; 1546 } 1547 1548 static int check_kprobe_address_safe(struct kprobe *p, 1549 struct module **probed_mod) 1550 { 1551 int ret; 1552 1553 ret = arch_check_ftrace_location(p); 1554 if (ret) 1555 return ret; 1556 jump_label_lock(); 1557 preempt_disable(); 1558 1559 /* Ensure it is not in reserved area nor out of text */ 1560 if (!kernel_text_address((unsigned long) p->addr) || 1561 within_kprobe_blacklist((unsigned long) p->addr) || 1562 jump_label_text_reserved(p->addr, p->addr) || 1563 find_bug((unsigned long)p->addr)) { 1564 ret = -EINVAL; 1565 goto out; 1566 } 1567 1568 /* Check if are we probing a module */ 1569 *probed_mod = __module_text_address((unsigned long) p->addr); 1570 if (*probed_mod) { 1571 /* 1572 * We must hold a refcount of the probed module while updating 1573 * its code to prohibit unexpected unloading. 1574 */ 1575 if (unlikely(!try_module_get(*probed_mod))) { 1576 ret = -ENOENT; 1577 goto out; 1578 } 1579 1580 /* 1581 * If the module freed .init.text, we couldn't insert 1582 * kprobes in there. 1583 */ 1584 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1585 (*probed_mod)->state != MODULE_STATE_COMING) { 1586 module_put(*probed_mod); 1587 *probed_mod = NULL; 1588 ret = -ENOENT; 1589 } 1590 } 1591 out: 1592 preempt_enable(); 1593 jump_label_unlock(); 1594 1595 return ret; 1596 } 1597 1598 int register_kprobe(struct kprobe *p) 1599 { 1600 int ret; 1601 struct kprobe *old_p; 1602 struct module *probed_mod; 1603 kprobe_opcode_t *addr; 1604 1605 /* Adjust probe address from symbol */ 1606 addr = kprobe_addr(p); 1607 if (IS_ERR(addr)) 1608 return PTR_ERR(addr); 1609 p->addr = addr; 1610 1611 ret = check_kprobe_rereg(p); 1612 if (ret) 1613 return ret; 1614 1615 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1616 p->flags &= KPROBE_FLAG_DISABLED; 1617 p->nmissed = 0; 1618 INIT_LIST_HEAD(&p->list); 1619 1620 ret = check_kprobe_address_safe(p, &probed_mod); 1621 if (ret) 1622 return ret; 1623 1624 mutex_lock(&kprobe_mutex); 1625 1626 old_p = get_kprobe(p->addr); 1627 if (old_p) { 1628 /* Since this may unoptimize old_p, locking text_mutex. */ 1629 ret = register_aggr_kprobe(old_p, p); 1630 goto out; 1631 } 1632 1633 cpus_read_lock(); 1634 /* Prevent text modification */ 1635 mutex_lock(&text_mutex); 1636 ret = prepare_kprobe(p); 1637 mutex_unlock(&text_mutex); 1638 cpus_read_unlock(); 1639 if (ret) 1640 goto out; 1641 1642 INIT_HLIST_NODE(&p->hlist); 1643 hlist_add_head_rcu(&p->hlist, 1644 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1645 1646 if (!kprobes_all_disarmed && !kprobe_disabled(p)) { 1647 ret = arm_kprobe(p); 1648 if (ret) { 1649 hlist_del_rcu(&p->hlist); 1650 synchronize_rcu(); 1651 goto out; 1652 } 1653 } 1654 1655 /* Try to optimize kprobe */ 1656 try_to_optimize_kprobe(p); 1657 out: 1658 mutex_unlock(&kprobe_mutex); 1659 1660 if (probed_mod) 1661 module_put(probed_mod); 1662 1663 return ret; 1664 } 1665 EXPORT_SYMBOL_GPL(register_kprobe); 1666 1667 /* Check if all probes on the aggrprobe are disabled */ 1668 static int aggr_kprobe_disabled(struct kprobe *ap) 1669 { 1670 struct kprobe *kp; 1671 1672 list_for_each_entry_rcu(kp, &ap->list, list) 1673 if (!kprobe_disabled(kp)) 1674 /* 1675 * There is an active probe on the list. 1676 * We can't disable this ap. 1677 */ 1678 return 0; 1679 1680 return 1; 1681 } 1682 1683 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1684 static struct kprobe *__disable_kprobe(struct kprobe *p) 1685 { 1686 struct kprobe *orig_p; 1687 int ret; 1688 1689 /* Get an original kprobe for return */ 1690 orig_p = __get_valid_kprobe(p); 1691 if (unlikely(orig_p == NULL)) 1692 return ERR_PTR(-EINVAL); 1693 1694 if (!kprobe_disabled(p)) { 1695 /* Disable probe if it is a child probe */ 1696 if (p != orig_p) 1697 p->flags |= KPROBE_FLAG_DISABLED; 1698 1699 /* Try to disarm and disable this/parent probe */ 1700 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1701 /* 1702 * If kprobes_all_disarmed is set, orig_p 1703 * should have already been disarmed, so 1704 * skip unneed disarming process. 1705 */ 1706 if (!kprobes_all_disarmed) { 1707 ret = disarm_kprobe(orig_p, true); 1708 if (ret) { 1709 p->flags &= ~KPROBE_FLAG_DISABLED; 1710 return ERR_PTR(ret); 1711 } 1712 } 1713 orig_p->flags |= KPROBE_FLAG_DISABLED; 1714 } 1715 } 1716 1717 return orig_p; 1718 } 1719 1720 /* 1721 * Unregister a kprobe without a scheduler synchronization. 1722 */ 1723 static int __unregister_kprobe_top(struct kprobe *p) 1724 { 1725 struct kprobe *ap, *list_p; 1726 1727 /* Disable kprobe. This will disarm it if needed. */ 1728 ap = __disable_kprobe(p); 1729 if (IS_ERR(ap)) 1730 return PTR_ERR(ap); 1731 1732 if (ap == p) 1733 /* 1734 * This probe is an independent(and non-optimized) kprobe 1735 * (not an aggrprobe). Remove from the hash list. 1736 */ 1737 goto disarmed; 1738 1739 /* Following process expects this probe is an aggrprobe */ 1740 WARN_ON(!kprobe_aggrprobe(ap)); 1741 1742 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1743 /* 1744 * !disarmed could be happen if the probe is under delayed 1745 * unoptimizing. 1746 */ 1747 goto disarmed; 1748 else { 1749 /* If disabling probe has special handlers, update aggrprobe */ 1750 if (p->post_handler && !kprobe_gone(p)) { 1751 list_for_each_entry_rcu(list_p, &ap->list, list) { 1752 if ((list_p != p) && (list_p->post_handler)) 1753 goto noclean; 1754 } 1755 ap->post_handler = NULL; 1756 } 1757 noclean: 1758 /* 1759 * Remove from the aggrprobe: this path will do nothing in 1760 * __unregister_kprobe_bottom(). 1761 */ 1762 list_del_rcu(&p->list); 1763 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1764 /* 1765 * Try to optimize this probe again, because post 1766 * handler may have been changed. 1767 */ 1768 optimize_kprobe(ap); 1769 } 1770 return 0; 1771 1772 disarmed: 1773 hlist_del_rcu(&ap->hlist); 1774 return 0; 1775 } 1776 1777 static void __unregister_kprobe_bottom(struct kprobe *p) 1778 { 1779 struct kprobe *ap; 1780 1781 if (list_empty(&p->list)) 1782 /* This is an independent kprobe */ 1783 arch_remove_kprobe(p); 1784 else if (list_is_singular(&p->list)) { 1785 /* This is the last child of an aggrprobe */ 1786 ap = list_entry(p->list.next, struct kprobe, list); 1787 list_del(&p->list); 1788 free_aggr_kprobe(ap); 1789 } 1790 /* Otherwise, do nothing. */ 1791 } 1792 1793 int register_kprobes(struct kprobe **kps, int num) 1794 { 1795 int i, ret = 0; 1796 1797 if (num <= 0) 1798 return -EINVAL; 1799 for (i = 0; i < num; i++) { 1800 ret = register_kprobe(kps[i]); 1801 if (ret < 0) { 1802 if (i > 0) 1803 unregister_kprobes(kps, i); 1804 break; 1805 } 1806 } 1807 return ret; 1808 } 1809 EXPORT_SYMBOL_GPL(register_kprobes); 1810 1811 void unregister_kprobe(struct kprobe *p) 1812 { 1813 unregister_kprobes(&p, 1); 1814 } 1815 EXPORT_SYMBOL_GPL(unregister_kprobe); 1816 1817 void unregister_kprobes(struct kprobe **kps, int num) 1818 { 1819 int i; 1820 1821 if (num <= 0) 1822 return; 1823 mutex_lock(&kprobe_mutex); 1824 for (i = 0; i < num; i++) 1825 if (__unregister_kprobe_top(kps[i]) < 0) 1826 kps[i]->addr = NULL; 1827 mutex_unlock(&kprobe_mutex); 1828 1829 synchronize_rcu(); 1830 for (i = 0; i < num; i++) 1831 if (kps[i]->addr) 1832 __unregister_kprobe_bottom(kps[i]); 1833 } 1834 EXPORT_SYMBOL_GPL(unregister_kprobes); 1835 1836 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1837 unsigned long val, void *data) 1838 { 1839 return NOTIFY_DONE; 1840 } 1841 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1842 1843 static struct notifier_block kprobe_exceptions_nb = { 1844 .notifier_call = kprobe_exceptions_notify, 1845 .priority = 0x7fffffff /* we need to be notified first */ 1846 }; 1847 1848 unsigned long __weak arch_deref_entry_point(void *entry) 1849 { 1850 return (unsigned long)entry; 1851 } 1852 1853 #ifdef CONFIG_KRETPROBES 1854 /* 1855 * This kprobe pre_handler is registered with every kretprobe. When probe 1856 * hits it will set up the return probe. 1857 */ 1858 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 1859 { 1860 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1861 unsigned long hash, flags = 0; 1862 struct kretprobe_instance *ri; 1863 1864 /* 1865 * To avoid deadlocks, prohibit return probing in NMI contexts, 1866 * just skip the probe and increase the (inexact) 'nmissed' 1867 * statistical counter, so that the user is informed that 1868 * something happened: 1869 */ 1870 if (unlikely(in_nmi())) { 1871 rp->nmissed++; 1872 return 0; 1873 } 1874 1875 /* TODO: consider to only swap the RA after the last pre_handler fired */ 1876 hash = hash_ptr(current, KPROBE_HASH_BITS); 1877 raw_spin_lock_irqsave(&rp->lock, flags); 1878 if (!hlist_empty(&rp->free_instances)) { 1879 ri = hlist_entry(rp->free_instances.first, 1880 struct kretprobe_instance, hlist); 1881 hlist_del(&ri->hlist); 1882 raw_spin_unlock_irqrestore(&rp->lock, flags); 1883 1884 ri->rp = rp; 1885 ri->task = current; 1886 1887 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 1888 raw_spin_lock_irqsave(&rp->lock, flags); 1889 hlist_add_head(&ri->hlist, &rp->free_instances); 1890 raw_spin_unlock_irqrestore(&rp->lock, flags); 1891 return 0; 1892 } 1893 1894 arch_prepare_kretprobe(ri, regs); 1895 1896 /* XXX(hch): why is there no hlist_move_head? */ 1897 INIT_HLIST_NODE(&ri->hlist); 1898 kretprobe_table_lock(hash, &flags); 1899 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 1900 kretprobe_table_unlock(hash, &flags); 1901 } else { 1902 rp->nmissed++; 1903 raw_spin_unlock_irqrestore(&rp->lock, flags); 1904 } 1905 return 0; 1906 } 1907 NOKPROBE_SYMBOL(pre_handler_kretprobe); 1908 1909 bool __weak arch_kprobe_on_func_entry(unsigned long offset) 1910 { 1911 return !offset; 1912 } 1913 1914 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 1915 { 1916 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset); 1917 1918 if (IS_ERR(kp_addr)) 1919 return false; 1920 1921 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) || 1922 !arch_kprobe_on_func_entry(offset)) 1923 return false; 1924 1925 return true; 1926 } 1927 1928 int register_kretprobe(struct kretprobe *rp) 1929 { 1930 int ret = 0; 1931 struct kretprobe_instance *inst; 1932 int i; 1933 void *addr; 1934 1935 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset)) 1936 return -EINVAL; 1937 1938 if (kretprobe_blacklist_size) { 1939 addr = kprobe_addr(&rp->kp); 1940 if (IS_ERR(addr)) 1941 return PTR_ERR(addr); 1942 1943 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1944 if (kretprobe_blacklist[i].addr == addr) 1945 return -EINVAL; 1946 } 1947 } 1948 1949 rp->kp.pre_handler = pre_handler_kretprobe; 1950 rp->kp.post_handler = NULL; 1951 rp->kp.fault_handler = NULL; 1952 1953 /* Pre-allocate memory for max kretprobe instances */ 1954 if (rp->maxactive <= 0) { 1955 #ifdef CONFIG_PREEMPTION 1956 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 1957 #else 1958 rp->maxactive = num_possible_cpus(); 1959 #endif 1960 } 1961 raw_spin_lock_init(&rp->lock); 1962 INIT_HLIST_HEAD(&rp->free_instances); 1963 for (i = 0; i < rp->maxactive; i++) { 1964 inst = kmalloc(sizeof(struct kretprobe_instance) + 1965 rp->data_size, GFP_KERNEL); 1966 if (inst == NULL) { 1967 free_rp_inst(rp); 1968 return -ENOMEM; 1969 } 1970 INIT_HLIST_NODE(&inst->hlist); 1971 hlist_add_head(&inst->hlist, &rp->free_instances); 1972 } 1973 1974 rp->nmissed = 0; 1975 /* Establish function entry probe point */ 1976 ret = register_kprobe(&rp->kp); 1977 if (ret != 0) 1978 free_rp_inst(rp); 1979 return ret; 1980 } 1981 EXPORT_SYMBOL_GPL(register_kretprobe); 1982 1983 int register_kretprobes(struct kretprobe **rps, int num) 1984 { 1985 int ret = 0, i; 1986 1987 if (num <= 0) 1988 return -EINVAL; 1989 for (i = 0; i < num; i++) { 1990 ret = register_kretprobe(rps[i]); 1991 if (ret < 0) { 1992 if (i > 0) 1993 unregister_kretprobes(rps, i); 1994 break; 1995 } 1996 } 1997 return ret; 1998 } 1999 EXPORT_SYMBOL_GPL(register_kretprobes); 2000 2001 void unregister_kretprobe(struct kretprobe *rp) 2002 { 2003 unregister_kretprobes(&rp, 1); 2004 } 2005 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2006 2007 void unregister_kretprobes(struct kretprobe **rps, int num) 2008 { 2009 int i; 2010 2011 if (num <= 0) 2012 return; 2013 mutex_lock(&kprobe_mutex); 2014 for (i = 0; i < num; i++) 2015 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 2016 rps[i]->kp.addr = NULL; 2017 mutex_unlock(&kprobe_mutex); 2018 2019 synchronize_rcu(); 2020 for (i = 0; i < num; i++) { 2021 if (rps[i]->kp.addr) { 2022 __unregister_kprobe_bottom(&rps[i]->kp); 2023 cleanup_rp_inst(rps[i]); 2024 } 2025 } 2026 } 2027 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2028 2029 #else /* CONFIG_KRETPROBES */ 2030 int register_kretprobe(struct kretprobe *rp) 2031 { 2032 return -ENOSYS; 2033 } 2034 EXPORT_SYMBOL_GPL(register_kretprobe); 2035 2036 int register_kretprobes(struct kretprobe **rps, int num) 2037 { 2038 return -ENOSYS; 2039 } 2040 EXPORT_SYMBOL_GPL(register_kretprobes); 2041 2042 void unregister_kretprobe(struct kretprobe *rp) 2043 { 2044 } 2045 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2046 2047 void unregister_kretprobes(struct kretprobe **rps, int num) 2048 { 2049 } 2050 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2051 2052 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2053 { 2054 return 0; 2055 } 2056 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2057 2058 #endif /* CONFIG_KRETPROBES */ 2059 2060 /* Set the kprobe gone and remove its instruction buffer. */ 2061 static void kill_kprobe(struct kprobe *p) 2062 { 2063 struct kprobe *kp; 2064 2065 p->flags |= KPROBE_FLAG_GONE; 2066 if (kprobe_aggrprobe(p)) { 2067 /* 2068 * If this is an aggr_kprobe, we have to list all the 2069 * chained probes and mark them GONE. 2070 */ 2071 list_for_each_entry_rcu(kp, &p->list, list) 2072 kp->flags |= KPROBE_FLAG_GONE; 2073 p->post_handler = NULL; 2074 kill_optimized_kprobe(p); 2075 } 2076 /* 2077 * Here, we can remove insn_slot safely, because no thread calls 2078 * the original probed function (which will be freed soon) any more. 2079 */ 2080 arch_remove_kprobe(p); 2081 } 2082 2083 /* Disable one kprobe */ 2084 int disable_kprobe(struct kprobe *kp) 2085 { 2086 int ret = 0; 2087 struct kprobe *p; 2088 2089 mutex_lock(&kprobe_mutex); 2090 2091 /* Disable this kprobe */ 2092 p = __disable_kprobe(kp); 2093 if (IS_ERR(p)) 2094 ret = PTR_ERR(p); 2095 2096 mutex_unlock(&kprobe_mutex); 2097 return ret; 2098 } 2099 EXPORT_SYMBOL_GPL(disable_kprobe); 2100 2101 /* Enable one kprobe */ 2102 int enable_kprobe(struct kprobe *kp) 2103 { 2104 int ret = 0; 2105 struct kprobe *p; 2106 2107 mutex_lock(&kprobe_mutex); 2108 2109 /* Check whether specified probe is valid. */ 2110 p = __get_valid_kprobe(kp); 2111 if (unlikely(p == NULL)) { 2112 ret = -EINVAL; 2113 goto out; 2114 } 2115 2116 if (kprobe_gone(kp)) { 2117 /* This kprobe has gone, we couldn't enable it. */ 2118 ret = -EINVAL; 2119 goto out; 2120 } 2121 2122 if (p != kp) 2123 kp->flags &= ~KPROBE_FLAG_DISABLED; 2124 2125 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2126 p->flags &= ~KPROBE_FLAG_DISABLED; 2127 ret = arm_kprobe(p); 2128 if (ret) 2129 p->flags |= KPROBE_FLAG_DISABLED; 2130 } 2131 out: 2132 mutex_unlock(&kprobe_mutex); 2133 return ret; 2134 } 2135 EXPORT_SYMBOL_GPL(enable_kprobe); 2136 2137 /* Caller must NOT call this in usual path. This is only for critical case */ 2138 void dump_kprobe(struct kprobe *kp) 2139 { 2140 pr_err("Dumping kprobe:\n"); 2141 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n", 2142 kp->symbol_name, kp->offset, kp->addr); 2143 } 2144 NOKPROBE_SYMBOL(dump_kprobe); 2145 2146 int kprobe_add_ksym_blacklist(unsigned long entry) 2147 { 2148 struct kprobe_blacklist_entry *ent; 2149 unsigned long offset = 0, size = 0; 2150 2151 if (!kernel_text_address(entry) || 2152 !kallsyms_lookup_size_offset(entry, &size, &offset)) 2153 return -EINVAL; 2154 2155 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2156 if (!ent) 2157 return -ENOMEM; 2158 ent->start_addr = entry; 2159 ent->end_addr = entry + size; 2160 INIT_LIST_HEAD(&ent->list); 2161 list_add_tail(&ent->list, &kprobe_blacklist); 2162 2163 return (int)size; 2164 } 2165 2166 /* Add all symbols in given area into kprobe blacklist */ 2167 int kprobe_add_area_blacklist(unsigned long start, unsigned long end) 2168 { 2169 unsigned long entry; 2170 int ret = 0; 2171 2172 for (entry = start; entry < end; entry += ret) { 2173 ret = kprobe_add_ksym_blacklist(entry); 2174 if (ret < 0) 2175 return ret; 2176 if (ret == 0) /* In case of alias symbol */ 2177 ret = 1; 2178 } 2179 return 0; 2180 } 2181 2182 /* Remove all symbols in given area from kprobe blacklist */ 2183 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end) 2184 { 2185 struct kprobe_blacklist_entry *ent, *n; 2186 2187 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) { 2188 if (ent->start_addr < start || ent->start_addr >= end) 2189 continue; 2190 list_del(&ent->list); 2191 kfree(ent); 2192 } 2193 } 2194 2195 static void kprobe_remove_ksym_blacklist(unsigned long entry) 2196 { 2197 kprobe_remove_area_blacklist(entry, entry + 1); 2198 } 2199 2200 int __init __weak arch_populate_kprobe_blacklist(void) 2201 { 2202 return 0; 2203 } 2204 2205 /* 2206 * Lookup and populate the kprobe_blacklist. 2207 * 2208 * Unlike the kretprobe blacklist, we'll need to determine 2209 * the range of addresses that belong to the said functions, 2210 * since a kprobe need not necessarily be at the beginning 2211 * of a function. 2212 */ 2213 static int __init populate_kprobe_blacklist(unsigned long *start, 2214 unsigned long *end) 2215 { 2216 unsigned long entry; 2217 unsigned long *iter; 2218 int ret; 2219 2220 for (iter = start; iter < end; iter++) { 2221 entry = arch_deref_entry_point((void *)*iter); 2222 ret = kprobe_add_ksym_blacklist(entry); 2223 if (ret == -EINVAL) 2224 continue; 2225 if (ret < 0) 2226 return ret; 2227 } 2228 2229 /* Symbols in __kprobes_text are blacklisted */ 2230 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start, 2231 (unsigned long)__kprobes_text_end); 2232 if (ret) 2233 return ret; 2234 2235 /* Symbols in noinstr section are blacklisted */ 2236 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start, 2237 (unsigned long)__noinstr_text_end); 2238 2239 return ret ? : arch_populate_kprobe_blacklist(); 2240 } 2241 2242 static void add_module_kprobe_blacklist(struct module *mod) 2243 { 2244 unsigned long start, end; 2245 int i; 2246 2247 if (mod->kprobe_blacklist) { 2248 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2249 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]); 2250 } 2251 2252 start = (unsigned long)mod->kprobes_text_start; 2253 if (start) { 2254 end = start + mod->kprobes_text_size; 2255 kprobe_add_area_blacklist(start, end); 2256 } 2257 2258 start = (unsigned long)mod->noinstr_text_start; 2259 if (start) { 2260 end = start + mod->noinstr_text_size; 2261 kprobe_add_area_blacklist(start, end); 2262 } 2263 } 2264 2265 static void remove_module_kprobe_blacklist(struct module *mod) 2266 { 2267 unsigned long start, end; 2268 int i; 2269 2270 if (mod->kprobe_blacklist) { 2271 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2272 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]); 2273 } 2274 2275 start = (unsigned long)mod->kprobes_text_start; 2276 if (start) { 2277 end = start + mod->kprobes_text_size; 2278 kprobe_remove_area_blacklist(start, end); 2279 } 2280 2281 start = (unsigned long)mod->noinstr_text_start; 2282 if (start) { 2283 end = start + mod->noinstr_text_size; 2284 kprobe_remove_area_blacklist(start, end); 2285 } 2286 } 2287 2288 /* Module notifier call back, checking kprobes on the module */ 2289 static int kprobes_module_callback(struct notifier_block *nb, 2290 unsigned long val, void *data) 2291 { 2292 struct module *mod = data; 2293 struct hlist_head *head; 2294 struct kprobe *p; 2295 unsigned int i; 2296 int checkcore = (val == MODULE_STATE_GOING); 2297 2298 if (val == MODULE_STATE_COMING) { 2299 mutex_lock(&kprobe_mutex); 2300 add_module_kprobe_blacklist(mod); 2301 mutex_unlock(&kprobe_mutex); 2302 } 2303 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2304 return NOTIFY_DONE; 2305 2306 /* 2307 * When MODULE_STATE_GOING was notified, both of module .text and 2308 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2309 * notified, only .init.text section would be freed. We need to 2310 * disable kprobes which have been inserted in the sections. 2311 */ 2312 mutex_lock(&kprobe_mutex); 2313 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2314 head = &kprobe_table[i]; 2315 hlist_for_each_entry_rcu(p, head, hlist) 2316 if (within_module_init((unsigned long)p->addr, mod) || 2317 (checkcore && 2318 within_module_core((unsigned long)p->addr, mod))) { 2319 /* 2320 * The vaddr this probe is installed will soon 2321 * be vfreed buy not synced to disk. Hence, 2322 * disarming the breakpoint isn't needed. 2323 * 2324 * Note, this will also move any optimized probes 2325 * that are pending to be removed from their 2326 * corresponding lists to the freeing_list and 2327 * will not be touched by the delayed 2328 * kprobe_optimizer work handler. 2329 */ 2330 kill_kprobe(p); 2331 } 2332 } 2333 if (val == MODULE_STATE_GOING) 2334 remove_module_kprobe_blacklist(mod); 2335 mutex_unlock(&kprobe_mutex); 2336 return NOTIFY_DONE; 2337 } 2338 2339 static struct notifier_block kprobe_module_nb = { 2340 .notifier_call = kprobes_module_callback, 2341 .priority = 0 2342 }; 2343 2344 /* Markers of _kprobe_blacklist section */ 2345 extern unsigned long __start_kprobe_blacklist[]; 2346 extern unsigned long __stop_kprobe_blacklist[]; 2347 2348 static int __init init_kprobes(void) 2349 { 2350 int i, err = 0; 2351 2352 /* FIXME allocate the probe table, currently defined statically */ 2353 /* initialize all list heads */ 2354 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2355 INIT_HLIST_HEAD(&kprobe_table[i]); 2356 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 2357 raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); 2358 } 2359 2360 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2361 __stop_kprobe_blacklist); 2362 if (err) { 2363 pr_err("kprobes: failed to populate blacklist: %d\n", err); 2364 pr_err("Please take care of using kprobes.\n"); 2365 } 2366 2367 if (kretprobe_blacklist_size) { 2368 /* lookup the function address from its name */ 2369 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2370 kretprobe_blacklist[i].addr = 2371 kprobe_lookup_name(kretprobe_blacklist[i].name, 0); 2372 if (!kretprobe_blacklist[i].addr) 2373 printk("kretprobe: lookup failed: %s\n", 2374 kretprobe_blacklist[i].name); 2375 } 2376 } 2377 2378 #if defined(CONFIG_OPTPROBES) 2379 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2380 /* Init kprobe_optinsn_slots */ 2381 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2382 #endif 2383 /* By default, kprobes can be optimized */ 2384 kprobes_allow_optimization = true; 2385 #endif 2386 2387 /* By default, kprobes are armed */ 2388 kprobes_all_disarmed = false; 2389 2390 err = arch_init_kprobes(); 2391 if (!err) 2392 err = register_die_notifier(&kprobe_exceptions_nb); 2393 if (!err) 2394 err = register_module_notifier(&kprobe_module_nb); 2395 2396 kprobes_initialized = (err == 0); 2397 2398 if (!err) 2399 init_test_probes(); 2400 return err; 2401 } 2402 subsys_initcall(init_kprobes); 2403 2404 #ifdef CONFIG_DEBUG_FS 2405 static void report_probe(struct seq_file *pi, struct kprobe *p, 2406 const char *sym, int offset, char *modname, struct kprobe *pp) 2407 { 2408 char *kprobe_type; 2409 void *addr = p->addr; 2410 2411 if (p->pre_handler == pre_handler_kretprobe) 2412 kprobe_type = "r"; 2413 else 2414 kprobe_type = "k"; 2415 2416 if (!kallsyms_show_value()) 2417 addr = NULL; 2418 2419 if (sym) 2420 seq_printf(pi, "%px %s %s+0x%x %s ", 2421 addr, kprobe_type, sym, offset, 2422 (modname ? modname : " ")); 2423 else /* try to use %pS */ 2424 seq_printf(pi, "%px %s %pS ", 2425 addr, kprobe_type, p->addr); 2426 2427 if (!pp) 2428 pp = p; 2429 seq_printf(pi, "%s%s%s%s\n", 2430 (kprobe_gone(p) ? "[GONE]" : ""), 2431 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2432 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2433 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2434 } 2435 2436 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2437 { 2438 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2439 } 2440 2441 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2442 { 2443 (*pos)++; 2444 if (*pos >= KPROBE_TABLE_SIZE) 2445 return NULL; 2446 return pos; 2447 } 2448 2449 static void kprobe_seq_stop(struct seq_file *f, void *v) 2450 { 2451 /* Nothing to do */ 2452 } 2453 2454 static int show_kprobe_addr(struct seq_file *pi, void *v) 2455 { 2456 struct hlist_head *head; 2457 struct kprobe *p, *kp; 2458 const char *sym = NULL; 2459 unsigned int i = *(loff_t *) v; 2460 unsigned long offset = 0; 2461 char *modname, namebuf[KSYM_NAME_LEN]; 2462 2463 head = &kprobe_table[i]; 2464 preempt_disable(); 2465 hlist_for_each_entry_rcu(p, head, hlist) { 2466 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2467 &offset, &modname, namebuf); 2468 if (kprobe_aggrprobe(p)) { 2469 list_for_each_entry_rcu(kp, &p->list, list) 2470 report_probe(pi, kp, sym, offset, modname, p); 2471 } else 2472 report_probe(pi, p, sym, offset, modname, NULL); 2473 } 2474 preempt_enable(); 2475 return 0; 2476 } 2477 2478 static const struct seq_operations kprobes_sops = { 2479 .start = kprobe_seq_start, 2480 .next = kprobe_seq_next, 2481 .stop = kprobe_seq_stop, 2482 .show = show_kprobe_addr 2483 }; 2484 2485 DEFINE_SEQ_ATTRIBUTE(kprobes); 2486 2487 /* kprobes/blacklist -- shows which functions can not be probed */ 2488 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2489 { 2490 mutex_lock(&kprobe_mutex); 2491 return seq_list_start(&kprobe_blacklist, *pos); 2492 } 2493 2494 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2495 { 2496 return seq_list_next(v, &kprobe_blacklist, pos); 2497 } 2498 2499 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2500 { 2501 struct kprobe_blacklist_entry *ent = 2502 list_entry(v, struct kprobe_blacklist_entry, list); 2503 2504 /* 2505 * If /proc/kallsyms is not showing kernel address, we won't 2506 * show them here either. 2507 */ 2508 if (!kallsyms_show_value()) 2509 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL, 2510 (void *)ent->start_addr); 2511 else 2512 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr, 2513 (void *)ent->end_addr, (void *)ent->start_addr); 2514 return 0; 2515 } 2516 2517 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v) 2518 { 2519 mutex_unlock(&kprobe_mutex); 2520 } 2521 2522 static const struct seq_operations kprobe_blacklist_sops = { 2523 .start = kprobe_blacklist_seq_start, 2524 .next = kprobe_blacklist_seq_next, 2525 .stop = kprobe_blacklist_seq_stop, 2526 .show = kprobe_blacklist_seq_show, 2527 }; 2528 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist); 2529 2530 static int arm_all_kprobes(void) 2531 { 2532 struct hlist_head *head; 2533 struct kprobe *p; 2534 unsigned int i, total = 0, errors = 0; 2535 int err, ret = 0; 2536 2537 mutex_lock(&kprobe_mutex); 2538 2539 /* If kprobes are armed, just return */ 2540 if (!kprobes_all_disarmed) 2541 goto already_enabled; 2542 2543 /* 2544 * optimize_kprobe() called by arm_kprobe() checks 2545 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2546 * arm_kprobe. 2547 */ 2548 kprobes_all_disarmed = false; 2549 /* Arming kprobes doesn't optimize kprobe itself */ 2550 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2551 head = &kprobe_table[i]; 2552 /* Arm all kprobes on a best-effort basis */ 2553 hlist_for_each_entry_rcu(p, head, hlist) { 2554 if (!kprobe_disabled(p)) { 2555 err = arm_kprobe(p); 2556 if (err) { 2557 errors++; 2558 ret = err; 2559 } 2560 total++; 2561 } 2562 } 2563 } 2564 2565 if (errors) 2566 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n", 2567 errors, total); 2568 else 2569 pr_info("Kprobes globally enabled\n"); 2570 2571 already_enabled: 2572 mutex_unlock(&kprobe_mutex); 2573 return ret; 2574 } 2575 2576 static int disarm_all_kprobes(void) 2577 { 2578 struct hlist_head *head; 2579 struct kprobe *p; 2580 unsigned int i, total = 0, errors = 0; 2581 int err, ret = 0; 2582 2583 mutex_lock(&kprobe_mutex); 2584 2585 /* If kprobes are already disarmed, just return */ 2586 if (kprobes_all_disarmed) { 2587 mutex_unlock(&kprobe_mutex); 2588 return 0; 2589 } 2590 2591 kprobes_all_disarmed = true; 2592 2593 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2594 head = &kprobe_table[i]; 2595 /* Disarm all kprobes on a best-effort basis */ 2596 hlist_for_each_entry_rcu(p, head, hlist) { 2597 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { 2598 err = disarm_kprobe(p, false); 2599 if (err) { 2600 errors++; 2601 ret = err; 2602 } 2603 total++; 2604 } 2605 } 2606 } 2607 2608 if (errors) 2609 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n", 2610 errors, total); 2611 else 2612 pr_info("Kprobes globally disabled\n"); 2613 2614 mutex_unlock(&kprobe_mutex); 2615 2616 /* Wait for disarming all kprobes by optimizer */ 2617 wait_for_kprobe_optimizer(); 2618 2619 return ret; 2620 } 2621 2622 /* 2623 * XXX: The debugfs bool file interface doesn't allow for callbacks 2624 * when the bool state is switched. We can reuse that facility when 2625 * available 2626 */ 2627 static ssize_t read_enabled_file_bool(struct file *file, 2628 char __user *user_buf, size_t count, loff_t *ppos) 2629 { 2630 char buf[3]; 2631 2632 if (!kprobes_all_disarmed) 2633 buf[0] = '1'; 2634 else 2635 buf[0] = '0'; 2636 buf[1] = '\n'; 2637 buf[2] = 0x00; 2638 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2639 } 2640 2641 static ssize_t write_enabled_file_bool(struct file *file, 2642 const char __user *user_buf, size_t count, loff_t *ppos) 2643 { 2644 char buf[32]; 2645 size_t buf_size; 2646 int ret = 0; 2647 2648 buf_size = min(count, (sizeof(buf)-1)); 2649 if (copy_from_user(buf, user_buf, buf_size)) 2650 return -EFAULT; 2651 2652 buf[buf_size] = '\0'; 2653 switch (buf[0]) { 2654 case 'y': 2655 case 'Y': 2656 case '1': 2657 ret = arm_all_kprobes(); 2658 break; 2659 case 'n': 2660 case 'N': 2661 case '0': 2662 ret = disarm_all_kprobes(); 2663 break; 2664 default: 2665 return -EINVAL; 2666 } 2667 2668 if (ret) 2669 return ret; 2670 2671 return count; 2672 } 2673 2674 static const struct file_operations fops_kp = { 2675 .read = read_enabled_file_bool, 2676 .write = write_enabled_file_bool, 2677 .llseek = default_llseek, 2678 }; 2679 2680 static int __init debugfs_kprobe_init(void) 2681 { 2682 struct dentry *dir; 2683 unsigned int value = 1; 2684 2685 dir = debugfs_create_dir("kprobes", NULL); 2686 2687 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops); 2688 2689 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp); 2690 2691 debugfs_create_file("blacklist", 0400, dir, NULL, 2692 &kprobe_blacklist_fops); 2693 2694 return 0; 2695 } 2696 2697 late_initcall(debugfs_kprobe_init); 2698 #endif /* CONFIG_DEBUG_FS */ 2699