1 /* 2 * Kernel Probes (KProbes) 3 * kernel/kprobes.c 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * Copyright (C) IBM Corporation, 2002, 2004 20 * 21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 22 * Probes initial implementation (includes suggestions from 23 * Rusty Russell). 24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 25 * hlists and exceptions notifier as suggested by Andi Kleen. 26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 27 * interface to access function arguments. 28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 29 * exceptions notifier to be first on the priority list. 30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 32 * <prasanna@in.ibm.com> added function-return probes. 33 */ 34 #include <linux/kprobes.h> 35 #include <linux/hash.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/stddef.h> 39 #include <linux/export.h> 40 #include <linux/moduleloader.h> 41 #include <linux/kallsyms.h> 42 #include <linux/freezer.h> 43 #include <linux/seq_file.h> 44 #include <linux/debugfs.h> 45 #include <linux/sysctl.h> 46 #include <linux/kdebug.h> 47 #include <linux/memory.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 #include <linux/jump_label.h> 51 52 #include <asm/sections.h> 53 #include <asm/cacheflush.h> 54 #include <asm/errno.h> 55 #include <linux/uaccess.h> 56 57 #define KPROBE_HASH_BITS 6 58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 59 60 61 static int kprobes_initialized; 62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 64 65 /* NOTE: change this value only with kprobe_mutex held */ 66 static bool kprobes_all_disarmed; 67 68 /* This protects kprobe_table and optimizing_list */ 69 static DEFINE_MUTEX(kprobe_mutex); 70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 71 static struct { 72 raw_spinlock_t lock ____cacheline_aligned_in_smp; 73 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 74 75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, 76 unsigned int __unused) 77 { 78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); 79 } 80 81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 82 { 83 return &(kretprobe_table_locks[hash].lock); 84 } 85 86 /* Blacklist -- list of struct kprobe_blacklist_entry */ 87 static LIST_HEAD(kprobe_blacklist); 88 89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 90 /* 91 * kprobe->ainsn.insn points to the copy of the instruction to be 92 * single-stepped. x86_64, POWER4 and above have no-exec support and 93 * stepping on the instruction on a vmalloced/kmalloced/data page 94 * is a recipe for disaster 95 */ 96 struct kprobe_insn_page { 97 struct list_head list; 98 kprobe_opcode_t *insns; /* Page of instruction slots */ 99 struct kprobe_insn_cache *cache; 100 int nused; 101 int ngarbage; 102 char slot_used[]; 103 }; 104 105 #define KPROBE_INSN_PAGE_SIZE(slots) \ 106 (offsetof(struct kprobe_insn_page, slot_used) + \ 107 (sizeof(char) * (slots))) 108 109 static int slots_per_page(struct kprobe_insn_cache *c) 110 { 111 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 112 } 113 114 enum kprobe_slot_state { 115 SLOT_CLEAN = 0, 116 SLOT_DIRTY = 1, 117 SLOT_USED = 2, 118 }; 119 120 void __weak *alloc_insn_page(void) 121 { 122 return module_alloc(PAGE_SIZE); 123 } 124 125 void __weak free_insn_page(void *page) 126 { 127 module_memfree(page); 128 } 129 130 struct kprobe_insn_cache kprobe_insn_slots = { 131 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 132 .alloc = alloc_insn_page, 133 .free = free_insn_page, 134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 135 .insn_size = MAX_INSN_SIZE, 136 .nr_garbage = 0, 137 }; 138 static int collect_garbage_slots(struct kprobe_insn_cache *c); 139 140 /** 141 * __get_insn_slot() - Find a slot on an executable page for an instruction. 142 * We allocate an executable page if there's no room on existing ones. 143 */ 144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 145 { 146 struct kprobe_insn_page *kip; 147 kprobe_opcode_t *slot = NULL; 148 149 /* Since the slot array is not protected by rcu, we need a mutex */ 150 mutex_lock(&c->mutex); 151 retry: 152 rcu_read_lock(); 153 list_for_each_entry_rcu(kip, &c->pages, list) { 154 if (kip->nused < slots_per_page(c)) { 155 int i; 156 for (i = 0; i < slots_per_page(c); i++) { 157 if (kip->slot_used[i] == SLOT_CLEAN) { 158 kip->slot_used[i] = SLOT_USED; 159 kip->nused++; 160 slot = kip->insns + (i * c->insn_size); 161 rcu_read_unlock(); 162 goto out; 163 } 164 } 165 /* kip->nused is broken. Fix it. */ 166 kip->nused = slots_per_page(c); 167 WARN_ON(1); 168 } 169 } 170 rcu_read_unlock(); 171 172 /* If there are any garbage slots, collect it and try again. */ 173 if (c->nr_garbage && collect_garbage_slots(c) == 0) 174 goto retry; 175 176 /* All out of space. Need to allocate a new page. */ 177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 178 if (!kip) 179 goto out; 180 181 /* 182 * Use module_alloc so this page is within +/- 2GB of where the 183 * kernel image and loaded module images reside. This is required 184 * so x86_64 can correctly handle the %rip-relative fixups. 185 */ 186 kip->insns = c->alloc(); 187 if (!kip->insns) { 188 kfree(kip); 189 goto out; 190 } 191 INIT_LIST_HEAD(&kip->list); 192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 193 kip->slot_used[0] = SLOT_USED; 194 kip->nused = 1; 195 kip->ngarbage = 0; 196 kip->cache = c; 197 list_add_rcu(&kip->list, &c->pages); 198 slot = kip->insns; 199 out: 200 mutex_unlock(&c->mutex); 201 return slot; 202 } 203 204 /* Return 1 if all garbages are collected, otherwise 0. */ 205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx) 206 { 207 kip->slot_used[idx] = SLOT_CLEAN; 208 kip->nused--; 209 if (kip->nused == 0) { 210 /* 211 * Page is no longer in use. Free it unless 212 * it's the last one. We keep the last one 213 * so as not to have to set it up again the 214 * next time somebody inserts a probe. 215 */ 216 if (!list_is_singular(&kip->list)) { 217 list_del_rcu(&kip->list); 218 synchronize_rcu(); 219 kip->cache->free(kip->insns); 220 kfree(kip); 221 } 222 return 1; 223 } 224 return 0; 225 } 226 227 static int collect_garbage_slots(struct kprobe_insn_cache *c) 228 { 229 struct kprobe_insn_page *kip, *next; 230 231 /* Ensure no-one is interrupted on the garbages */ 232 synchronize_rcu(); 233 234 list_for_each_entry_safe(kip, next, &c->pages, list) { 235 int i; 236 if (kip->ngarbage == 0) 237 continue; 238 kip->ngarbage = 0; /* we will collect all garbages */ 239 for (i = 0; i < slots_per_page(c); i++) { 240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 241 break; 242 } 243 } 244 c->nr_garbage = 0; 245 return 0; 246 } 247 248 void __free_insn_slot(struct kprobe_insn_cache *c, 249 kprobe_opcode_t *slot, int dirty) 250 { 251 struct kprobe_insn_page *kip; 252 long idx; 253 254 mutex_lock(&c->mutex); 255 rcu_read_lock(); 256 list_for_each_entry_rcu(kip, &c->pages, list) { 257 idx = ((long)slot - (long)kip->insns) / 258 (c->insn_size * sizeof(kprobe_opcode_t)); 259 if (idx >= 0 && idx < slots_per_page(c)) 260 goto out; 261 } 262 /* Could not find this slot. */ 263 WARN_ON(1); 264 kip = NULL; 265 out: 266 rcu_read_unlock(); 267 /* Mark and sweep: this may sleep */ 268 if (kip) { 269 /* Check double free */ 270 WARN_ON(kip->slot_used[idx] != SLOT_USED); 271 if (dirty) { 272 kip->slot_used[idx] = SLOT_DIRTY; 273 kip->ngarbage++; 274 if (++c->nr_garbage > slots_per_page(c)) 275 collect_garbage_slots(c); 276 } else { 277 collect_one_slot(kip, idx); 278 } 279 } 280 mutex_unlock(&c->mutex); 281 } 282 283 /* 284 * Check given address is on the page of kprobe instruction slots. 285 * This will be used for checking whether the address on a stack 286 * is on a text area or not. 287 */ 288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 289 { 290 struct kprobe_insn_page *kip; 291 bool ret = false; 292 293 rcu_read_lock(); 294 list_for_each_entry_rcu(kip, &c->pages, list) { 295 if (addr >= (unsigned long)kip->insns && 296 addr < (unsigned long)kip->insns + PAGE_SIZE) { 297 ret = true; 298 break; 299 } 300 } 301 rcu_read_unlock(); 302 303 return ret; 304 } 305 306 #ifdef CONFIG_OPTPROBES 307 /* For optimized_kprobe buffer */ 308 struct kprobe_insn_cache kprobe_optinsn_slots = { 309 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 310 .alloc = alloc_insn_page, 311 .free = free_insn_page, 312 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 313 /* .insn_size is initialized later */ 314 .nr_garbage = 0, 315 }; 316 #endif 317 #endif 318 319 /* We have preemption disabled.. so it is safe to use __ versions */ 320 static inline void set_kprobe_instance(struct kprobe *kp) 321 { 322 __this_cpu_write(kprobe_instance, kp); 323 } 324 325 static inline void reset_kprobe_instance(void) 326 { 327 __this_cpu_write(kprobe_instance, NULL); 328 } 329 330 /* 331 * This routine is called either: 332 * - under the kprobe_mutex - during kprobe_[un]register() 333 * OR 334 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 335 */ 336 struct kprobe *get_kprobe(void *addr) 337 { 338 struct hlist_head *head; 339 struct kprobe *p; 340 341 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 342 hlist_for_each_entry_rcu(p, head, hlist) { 343 if (p->addr == addr) 344 return p; 345 } 346 347 return NULL; 348 } 349 NOKPROBE_SYMBOL(get_kprobe); 350 351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 352 353 /* Return true if the kprobe is an aggregator */ 354 static inline int kprobe_aggrprobe(struct kprobe *p) 355 { 356 return p->pre_handler == aggr_pre_handler; 357 } 358 359 /* Return true(!0) if the kprobe is unused */ 360 static inline int kprobe_unused(struct kprobe *p) 361 { 362 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 363 list_empty(&p->list); 364 } 365 366 /* 367 * Keep all fields in the kprobe consistent 368 */ 369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 370 { 371 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 372 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 373 } 374 375 #ifdef CONFIG_OPTPROBES 376 /* NOTE: change this value only with kprobe_mutex held */ 377 static bool kprobes_allow_optimization; 378 379 /* 380 * Call all pre_handler on the list, but ignores its return value. 381 * This must be called from arch-dep optimized caller. 382 */ 383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 384 { 385 struct kprobe *kp; 386 387 list_for_each_entry_rcu(kp, &p->list, list) { 388 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 389 set_kprobe_instance(kp); 390 kp->pre_handler(kp, regs); 391 } 392 reset_kprobe_instance(); 393 } 394 } 395 NOKPROBE_SYMBOL(opt_pre_handler); 396 397 /* Free optimized instructions and optimized_kprobe */ 398 static void free_aggr_kprobe(struct kprobe *p) 399 { 400 struct optimized_kprobe *op; 401 402 op = container_of(p, struct optimized_kprobe, kp); 403 arch_remove_optimized_kprobe(op); 404 arch_remove_kprobe(p); 405 kfree(op); 406 } 407 408 /* Return true(!0) if the kprobe is ready for optimization. */ 409 static inline int kprobe_optready(struct kprobe *p) 410 { 411 struct optimized_kprobe *op; 412 413 if (kprobe_aggrprobe(p)) { 414 op = container_of(p, struct optimized_kprobe, kp); 415 return arch_prepared_optinsn(&op->optinsn); 416 } 417 418 return 0; 419 } 420 421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 422 static inline int kprobe_disarmed(struct kprobe *p) 423 { 424 struct optimized_kprobe *op; 425 426 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 427 if (!kprobe_aggrprobe(p)) 428 return kprobe_disabled(p); 429 430 op = container_of(p, struct optimized_kprobe, kp); 431 432 return kprobe_disabled(p) && list_empty(&op->list); 433 } 434 435 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 436 static int kprobe_queued(struct kprobe *p) 437 { 438 struct optimized_kprobe *op; 439 440 if (kprobe_aggrprobe(p)) { 441 op = container_of(p, struct optimized_kprobe, kp); 442 if (!list_empty(&op->list)) 443 return 1; 444 } 445 return 0; 446 } 447 448 /* 449 * Return an optimized kprobe whose optimizing code replaces 450 * instructions including addr (exclude breakpoint). 451 */ 452 static struct kprobe *get_optimized_kprobe(unsigned long addr) 453 { 454 int i; 455 struct kprobe *p = NULL; 456 struct optimized_kprobe *op; 457 458 /* Don't check i == 0, since that is a breakpoint case. */ 459 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 460 p = get_kprobe((void *)(addr - i)); 461 462 if (p && kprobe_optready(p)) { 463 op = container_of(p, struct optimized_kprobe, kp); 464 if (arch_within_optimized_kprobe(op, addr)) 465 return p; 466 } 467 468 return NULL; 469 } 470 471 /* Optimization staging list, protected by kprobe_mutex */ 472 static LIST_HEAD(optimizing_list); 473 static LIST_HEAD(unoptimizing_list); 474 static LIST_HEAD(freeing_list); 475 476 static void kprobe_optimizer(struct work_struct *work); 477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 478 #define OPTIMIZE_DELAY 5 479 480 /* 481 * Optimize (replace a breakpoint with a jump) kprobes listed on 482 * optimizing_list. 483 */ 484 static void do_optimize_kprobes(void) 485 { 486 /* 487 * The optimization/unoptimization refers online_cpus via 488 * stop_machine() and cpu-hotplug modifies online_cpus. 489 * And same time, text_mutex will be held in cpu-hotplug and here. 490 * This combination can cause a deadlock (cpu-hotplug try to lock 491 * text_mutex but stop_machine can not be done because online_cpus 492 * has been changed) 493 * To avoid this deadlock, caller must have locked cpu hotplug 494 * for preventing cpu-hotplug outside of text_mutex locking. 495 */ 496 lockdep_assert_cpus_held(); 497 498 /* Optimization never be done when disarmed */ 499 if (kprobes_all_disarmed || !kprobes_allow_optimization || 500 list_empty(&optimizing_list)) 501 return; 502 503 mutex_lock(&text_mutex); 504 arch_optimize_kprobes(&optimizing_list); 505 mutex_unlock(&text_mutex); 506 } 507 508 /* 509 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 510 * if need) kprobes listed on unoptimizing_list. 511 */ 512 static void do_unoptimize_kprobes(void) 513 { 514 struct optimized_kprobe *op, *tmp; 515 516 /* See comment in do_optimize_kprobes() */ 517 lockdep_assert_cpus_held(); 518 519 /* Unoptimization must be done anytime */ 520 if (list_empty(&unoptimizing_list)) 521 return; 522 523 mutex_lock(&text_mutex); 524 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 525 /* Loop free_list for disarming */ 526 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 527 /* Disarm probes if marked disabled */ 528 if (kprobe_disabled(&op->kp)) 529 arch_disarm_kprobe(&op->kp); 530 if (kprobe_unused(&op->kp)) { 531 /* 532 * Remove unused probes from hash list. After waiting 533 * for synchronization, these probes are reclaimed. 534 * (reclaiming is done by do_free_cleaned_kprobes.) 535 */ 536 hlist_del_rcu(&op->kp.hlist); 537 } else 538 list_del_init(&op->list); 539 } 540 mutex_unlock(&text_mutex); 541 } 542 543 /* Reclaim all kprobes on the free_list */ 544 static void do_free_cleaned_kprobes(void) 545 { 546 struct optimized_kprobe *op, *tmp; 547 548 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 549 list_del_init(&op->list); 550 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) { 551 /* 552 * This must not happen, but if there is a kprobe 553 * still in use, keep it on kprobes hash list. 554 */ 555 continue; 556 } 557 free_aggr_kprobe(&op->kp); 558 } 559 } 560 561 /* Start optimizer after OPTIMIZE_DELAY passed */ 562 static void kick_kprobe_optimizer(void) 563 { 564 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 565 } 566 567 /* Kprobe jump optimizer */ 568 static void kprobe_optimizer(struct work_struct *work) 569 { 570 mutex_lock(&kprobe_mutex); 571 cpus_read_lock(); 572 /* Lock modules while optimizing kprobes */ 573 mutex_lock(&module_mutex); 574 575 /* 576 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 577 * kprobes before waiting for quiesence period. 578 */ 579 do_unoptimize_kprobes(); 580 581 /* 582 * Step 2: Wait for quiesence period to ensure all potentially 583 * preempted tasks to have normally scheduled. Because optprobe 584 * may modify multiple instructions, there is a chance that Nth 585 * instruction is preempted. In that case, such tasks can return 586 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. 587 * Note that on non-preemptive kernel, this is transparently converted 588 * to synchronoze_sched() to wait for all interrupts to have completed. 589 */ 590 synchronize_rcu_tasks(); 591 592 /* Step 3: Optimize kprobes after quiesence period */ 593 do_optimize_kprobes(); 594 595 /* Step 4: Free cleaned kprobes after quiesence period */ 596 do_free_cleaned_kprobes(); 597 598 mutex_unlock(&module_mutex); 599 cpus_read_unlock(); 600 mutex_unlock(&kprobe_mutex); 601 602 /* Step 5: Kick optimizer again if needed */ 603 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 604 kick_kprobe_optimizer(); 605 } 606 607 /* Wait for completing optimization and unoptimization */ 608 void wait_for_kprobe_optimizer(void) 609 { 610 mutex_lock(&kprobe_mutex); 611 612 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 613 mutex_unlock(&kprobe_mutex); 614 615 /* this will also make optimizing_work execute immmediately */ 616 flush_delayed_work(&optimizing_work); 617 /* @optimizing_work might not have been queued yet, relax */ 618 cpu_relax(); 619 620 mutex_lock(&kprobe_mutex); 621 } 622 623 mutex_unlock(&kprobe_mutex); 624 } 625 626 /* Optimize kprobe if p is ready to be optimized */ 627 static void optimize_kprobe(struct kprobe *p) 628 { 629 struct optimized_kprobe *op; 630 631 /* Check if the kprobe is disabled or not ready for optimization. */ 632 if (!kprobe_optready(p) || !kprobes_allow_optimization || 633 (kprobe_disabled(p) || kprobes_all_disarmed)) 634 return; 635 636 /* kprobes with post_handler can not be optimized */ 637 if (p->post_handler) 638 return; 639 640 op = container_of(p, struct optimized_kprobe, kp); 641 642 /* Check there is no other kprobes at the optimized instructions */ 643 if (arch_check_optimized_kprobe(op) < 0) 644 return; 645 646 /* Check if it is already optimized. */ 647 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) 648 return; 649 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 650 651 if (!list_empty(&op->list)) 652 /* This is under unoptimizing. Just dequeue the probe */ 653 list_del_init(&op->list); 654 else { 655 list_add(&op->list, &optimizing_list); 656 kick_kprobe_optimizer(); 657 } 658 } 659 660 /* Short cut to direct unoptimizing */ 661 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 662 { 663 lockdep_assert_cpus_held(); 664 arch_unoptimize_kprobe(op); 665 if (kprobe_disabled(&op->kp)) 666 arch_disarm_kprobe(&op->kp); 667 } 668 669 /* Unoptimize a kprobe if p is optimized */ 670 static void unoptimize_kprobe(struct kprobe *p, bool force) 671 { 672 struct optimized_kprobe *op; 673 674 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 675 return; /* This is not an optprobe nor optimized */ 676 677 op = container_of(p, struct optimized_kprobe, kp); 678 if (!kprobe_optimized(p)) { 679 /* Unoptimized or unoptimizing case */ 680 if (force && !list_empty(&op->list)) { 681 /* 682 * Only if this is unoptimizing kprobe and forced, 683 * forcibly unoptimize it. (No need to unoptimize 684 * unoptimized kprobe again :) 685 */ 686 list_del_init(&op->list); 687 force_unoptimize_kprobe(op); 688 } 689 return; 690 } 691 692 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 693 if (!list_empty(&op->list)) { 694 /* Dequeue from the optimization queue */ 695 list_del_init(&op->list); 696 return; 697 } 698 /* Optimized kprobe case */ 699 if (force) 700 /* Forcibly update the code: this is a special case */ 701 force_unoptimize_kprobe(op); 702 else { 703 list_add(&op->list, &unoptimizing_list); 704 kick_kprobe_optimizer(); 705 } 706 } 707 708 /* Cancel unoptimizing for reusing */ 709 static int reuse_unused_kprobe(struct kprobe *ap) 710 { 711 struct optimized_kprobe *op; 712 int ret; 713 714 /* 715 * Unused kprobe MUST be on the way of delayed unoptimizing (means 716 * there is still a relative jump) and disabled. 717 */ 718 op = container_of(ap, struct optimized_kprobe, kp); 719 WARN_ON_ONCE(list_empty(&op->list)); 720 /* Enable the probe again */ 721 ap->flags &= ~KPROBE_FLAG_DISABLED; 722 /* Optimize it again (remove from op->list) */ 723 ret = kprobe_optready(ap); 724 if (ret) 725 return ret; 726 727 optimize_kprobe(ap); 728 return 0; 729 } 730 731 /* Remove optimized instructions */ 732 static void kill_optimized_kprobe(struct kprobe *p) 733 { 734 struct optimized_kprobe *op; 735 736 op = container_of(p, struct optimized_kprobe, kp); 737 if (!list_empty(&op->list)) 738 /* Dequeue from the (un)optimization queue */ 739 list_del_init(&op->list); 740 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 741 742 if (kprobe_unused(p)) { 743 /* Enqueue if it is unused */ 744 list_add(&op->list, &freeing_list); 745 /* 746 * Remove unused probes from the hash list. After waiting 747 * for synchronization, this probe is reclaimed. 748 * (reclaiming is done by do_free_cleaned_kprobes().) 749 */ 750 hlist_del_rcu(&op->kp.hlist); 751 } 752 753 /* Don't touch the code, because it is already freed. */ 754 arch_remove_optimized_kprobe(op); 755 } 756 757 static inline 758 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) 759 { 760 if (!kprobe_ftrace(p)) 761 arch_prepare_optimized_kprobe(op, p); 762 } 763 764 /* Try to prepare optimized instructions */ 765 static void prepare_optimized_kprobe(struct kprobe *p) 766 { 767 struct optimized_kprobe *op; 768 769 op = container_of(p, struct optimized_kprobe, kp); 770 __prepare_optimized_kprobe(op, p); 771 } 772 773 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 774 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 775 { 776 struct optimized_kprobe *op; 777 778 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 779 if (!op) 780 return NULL; 781 782 INIT_LIST_HEAD(&op->list); 783 op->kp.addr = p->addr; 784 __prepare_optimized_kprobe(op, p); 785 786 return &op->kp; 787 } 788 789 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 790 791 /* 792 * Prepare an optimized_kprobe and optimize it 793 * NOTE: p must be a normal registered kprobe 794 */ 795 static void try_to_optimize_kprobe(struct kprobe *p) 796 { 797 struct kprobe *ap; 798 struct optimized_kprobe *op; 799 800 /* Impossible to optimize ftrace-based kprobe */ 801 if (kprobe_ftrace(p)) 802 return; 803 804 /* For preparing optimization, jump_label_text_reserved() is called */ 805 cpus_read_lock(); 806 jump_label_lock(); 807 mutex_lock(&text_mutex); 808 809 ap = alloc_aggr_kprobe(p); 810 if (!ap) 811 goto out; 812 813 op = container_of(ap, struct optimized_kprobe, kp); 814 if (!arch_prepared_optinsn(&op->optinsn)) { 815 /* If failed to setup optimizing, fallback to kprobe */ 816 arch_remove_optimized_kprobe(op); 817 kfree(op); 818 goto out; 819 } 820 821 init_aggr_kprobe(ap, p); 822 optimize_kprobe(ap); /* This just kicks optimizer thread */ 823 824 out: 825 mutex_unlock(&text_mutex); 826 jump_label_unlock(); 827 cpus_read_unlock(); 828 } 829 830 #ifdef CONFIG_SYSCTL 831 static void optimize_all_kprobes(void) 832 { 833 struct hlist_head *head; 834 struct kprobe *p; 835 unsigned int i; 836 837 mutex_lock(&kprobe_mutex); 838 /* If optimization is already allowed, just return */ 839 if (kprobes_allow_optimization) 840 goto out; 841 842 cpus_read_lock(); 843 kprobes_allow_optimization = true; 844 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 845 head = &kprobe_table[i]; 846 hlist_for_each_entry_rcu(p, head, hlist) 847 if (!kprobe_disabled(p)) 848 optimize_kprobe(p); 849 } 850 cpus_read_unlock(); 851 printk(KERN_INFO "Kprobes globally optimized\n"); 852 out: 853 mutex_unlock(&kprobe_mutex); 854 } 855 856 static void unoptimize_all_kprobes(void) 857 { 858 struct hlist_head *head; 859 struct kprobe *p; 860 unsigned int i; 861 862 mutex_lock(&kprobe_mutex); 863 /* If optimization is already prohibited, just return */ 864 if (!kprobes_allow_optimization) { 865 mutex_unlock(&kprobe_mutex); 866 return; 867 } 868 869 cpus_read_lock(); 870 kprobes_allow_optimization = false; 871 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 872 head = &kprobe_table[i]; 873 hlist_for_each_entry_rcu(p, head, hlist) { 874 if (!kprobe_disabled(p)) 875 unoptimize_kprobe(p, false); 876 } 877 } 878 cpus_read_unlock(); 879 mutex_unlock(&kprobe_mutex); 880 881 /* Wait for unoptimizing completion */ 882 wait_for_kprobe_optimizer(); 883 printk(KERN_INFO "Kprobes globally unoptimized\n"); 884 } 885 886 static DEFINE_MUTEX(kprobe_sysctl_mutex); 887 int sysctl_kprobes_optimization; 888 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 889 void __user *buffer, size_t *length, 890 loff_t *ppos) 891 { 892 int ret; 893 894 mutex_lock(&kprobe_sysctl_mutex); 895 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 896 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 897 898 if (sysctl_kprobes_optimization) 899 optimize_all_kprobes(); 900 else 901 unoptimize_all_kprobes(); 902 mutex_unlock(&kprobe_sysctl_mutex); 903 904 return ret; 905 } 906 #endif /* CONFIG_SYSCTL */ 907 908 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 909 static void __arm_kprobe(struct kprobe *p) 910 { 911 struct kprobe *_p; 912 913 /* Check collision with other optimized kprobes */ 914 _p = get_optimized_kprobe((unsigned long)p->addr); 915 if (unlikely(_p)) 916 /* Fallback to unoptimized kprobe */ 917 unoptimize_kprobe(_p, true); 918 919 arch_arm_kprobe(p); 920 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 921 } 922 923 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 924 static void __disarm_kprobe(struct kprobe *p, bool reopt) 925 { 926 struct kprobe *_p; 927 928 /* Try to unoptimize */ 929 unoptimize_kprobe(p, kprobes_all_disarmed); 930 931 if (!kprobe_queued(p)) { 932 arch_disarm_kprobe(p); 933 /* If another kprobe was blocked, optimize it. */ 934 _p = get_optimized_kprobe((unsigned long)p->addr); 935 if (unlikely(_p) && reopt) 936 optimize_kprobe(_p); 937 } 938 /* TODO: reoptimize others after unoptimized this probe */ 939 } 940 941 #else /* !CONFIG_OPTPROBES */ 942 943 #define optimize_kprobe(p) do {} while (0) 944 #define unoptimize_kprobe(p, f) do {} while (0) 945 #define kill_optimized_kprobe(p) do {} while (0) 946 #define prepare_optimized_kprobe(p) do {} while (0) 947 #define try_to_optimize_kprobe(p) do {} while (0) 948 #define __arm_kprobe(p) arch_arm_kprobe(p) 949 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 950 #define kprobe_disarmed(p) kprobe_disabled(p) 951 #define wait_for_kprobe_optimizer() do {} while (0) 952 953 static int reuse_unused_kprobe(struct kprobe *ap) 954 { 955 /* 956 * If the optimized kprobe is NOT supported, the aggr kprobe is 957 * released at the same time that the last aggregated kprobe is 958 * unregistered. 959 * Thus there should be no chance to reuse unused kprobe. 960 */ 961 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 962 return -EINVAL; 963 } 964 965 static void free_aggr_kprobe(struct kprobe *p) 966 { 967 arch_remove_kprobe(p); 968 kfree(p); 969 } 970 971 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 972 { 973 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 974 } 975 #endif /* CONFIG_OPTPROBES */ 976 977 #ifdef CONFIG_KPROBES_ON_FTRACE 978 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 979 .func = kprobe_ftrace_handler, 980 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 981 }; 982 static int kprobe_ftrace_enabled; 983 984 /* Must ensure p->addr is really on ftrace */ 985 static int prepare_kprobe(struct kprobe *p) 986 { 987 if (!kprobe_ftrace(p)) 988 return arch_prepare_kprobe(p); 989 990 return arch_prepare_kprobe_ftrace(p); 991 } 992 993 /* Caller must lock kprobe_mutex */ 994 static int arm_kprobe_ftrace(struct kprobe *p) 995 { 996 int ret = 0; 997 998 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 999 (unsigned long)p->addr, 0, 0); 1000 if (ret) { 1001 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n", 1002 p->addr, ret); 1003 return ret; 1004 } 1005 1006 if (kprobe_ftrace_enabled == 0) { 1007 ret = register_ftrace_function(&kprobe_ftrace_ops); 1008 if (ret) { 1009 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret); 1010 goto err_ftrace; 1011 } 1012 } 1013 1014 kprobe_ftrace_enabled++; 1015 return ret; 1016 1017 err_ftrace: 1018 /* 1019 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a 1020 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental 1021 * empty filter_hash which would undesirably trace all functions. 1022 */ 1023 ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0); 1024 return ret; 1025 } 1026 1027 /* Caller must lock kprobe_mutex */ 1028 static int disarm_kprobe_ftrace(struct kprobe *p) 1029 { 1030 int ret = 0; 1031 1032 if (kprobe_ftrace_enabled == 1) { 1033 ret = unregister_ftrace_function(&kprobe_ftrace_ops); 1034 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret)) 1035 return ret; 1036 } 1037 1038 kprobe_ftrace_enabled--; 1039 1040 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 1041 (unsigned long)p->addr, 1, 0); 1042 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n", 1043 p->addr, ret); 1044 return ret; 1045 } 1046 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1047 #define prepare_kprobe(p) arch_prepare_kprobe(p) 1048 #define arm_kprobe_ftrace(p) (-ENODEV) 1049 #define disarm_kprobe_ftrace(p) (-ENODEV) 1050 #endif 1051 1052 /* Arm a kprobe with text_mutex */ 1053 static int arm_kprobe(struct kprobe *kp) 1054 { 1055 if (unlikely(kprobe_ftrace(kp))) 1056 return arm_kprobe_ftrace(kp); 1057 1058 cpus_read_lock(); 1059 mutex_lock(&text_mutex); 1060 __arm_kprobe(kp); 1061 mutex_unlock(&text_mutex); 1062 cpus_read_unlock(); 1063 1064 return 0; 1065 } 1066 1067 /* Disarm a kprobe with text_mutex */ 1068 static int disarm_kprobe(struct kprobe *kp, bool reopt) 1069 { 1070 if (unlikely(kprobe_ftrace(kp))) 1071 return disarm_kprobe_ftrace(kp); 1072 1073 cpus_read_lock(); 1074 mutex_lock(&text_mutex); 1075 __disarm_kprobe(kp, reopt); 1076 mutex_unlock(&text_mutex); 1077 cpus_read_unlock(); 1078 1079 return 0; 1080 } 1081 1082 /* 1083 * Aggregate handlers for multiple kprobes support - these handlers 1084 * take care of invoking the individual kprobe handlers on p->list 1085 */ 1086 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1087 { 1088 struct kprobe *kp; 1089 1090 list_for_each_entry_rcu(kp, &p->list, list) { 1091 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1092 set_kprobe_instance(kp); 1093 if (kp->pre_handler(kp, regs)) 1094 return 1; 1095 } 1096 reset_kprobe_instance(); 1097 } 1098 return 0; 1099 } 1100 NOKPROBE_SYMBOL(aggr_pre_handler); 1101 1102 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1103 unsigned long flags) 1104 { 1105 struct kprobe *kp; 1106 1107 list_for_each_entry_rcu(kp, &p->list, list) { 1108 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1109 set_kprobe_instance(kp); 1110 kp->post_handler(kp, regs, flags); 1111 reset_kprobe_instance(); 1112 } 1113 } 1114 } 1115 NOKPROBE_SYMBOL(aggr_post_handler); 1116 1117 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 1118 int trapnr) 1119 { 1120 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1121 1122 /* 1123 * if we faulted "during" the execution of a user specified 1124 * probe handler, invoke just that probe's fault handler 1125 */ 1126 if (cur && cur->fault_handler) { 1127 if (cur->fault_handler(cur, regs, trapnr)) 1128 return 1; 1129 } 1130 return 0; 1131 } 1132 NOKPROBE_SYMBOL(aggr_fault_handler); 1133 1134 /* Walks the list and increments nmissed count for multiprobe case */ 1135 void kprobes_inc_nmissed_count(struct kprobe *p) 1136 { 1137 struct kprobe *kp; 1138 if (!kprobe_aggrprobe(p)) { 1139 p->nmissed++; 1140 } else { 1141 list_for_each_entry_rcu(kp, &p->list, list) 1142 kp->nmissed++; 1143 } 1144 return; 1145 } 1146 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1147 1148 void recycle_rp_inst(struct kretprobe_instance *ri, 1149 struct hlist_head *head) 1150 { 1151 struct kretprobe *rp = ri->rp; 1152 1153 /* remove rp inst off the rprobe_inst_table */ 1154 hlist_del(&ri->hlist); 1155 INIT_HLIST_NODE(&ri->hlist); 1156 if (likely(rp)) { 1157 raw_spin_lock(&rp->lock); 1158 hlist_add_head(&ri->hlist, &rp->free_instances); 1159 raw_spin_unlock(&rp->lock); 1160 } else 1161 /* Unregistering */ 1162 hlist_add_head(&ri->hlist, head); 1163 } 1164 NOKPROBE_SYMBOL(recycle_rp_inst); 1165 1166 void kretprobe_hash_lock(struct task_struct *tsk, 1167 struct hlist_head **head, unsigned long *flags) 1168 __acquires(hlist_lock) 1169 { 1170 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1171 raw_spinlock_t *hlist_lock; 1172 1173 *head = &kretprobe_inst_table[hash]; 1174 hlist_lock = kretprobe_table_lock_ptr(hash); 1175 raw_spin_lock_irqsave(hlist_lock, *flags); 1176 } 1177 NOKPROBE_SYMBOL(kretprobe_hash_lock); 1178 1179 static void kretprobe_table_lock(unsigned long hash, 1180 unsigned long *flags) 1181 __acquires(hlist_lock) 1182 { 1183 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1184 raw_spin_lock_irqsave(hlist_lock, *flags); 1185 } 1186 NOKPROBE_SYMBOL(kretprobe_table_lock); 1187 1188 void kretprobe_hash_unlock(struct task_struct *tsk, 1189 unsigned long *flags) 1190 __releases(hlist_lock) 1191 { 1192 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1193 raw_spinlock_t *hlist_lock; 1194 1195 hlist_lock = kretprobe_table_lock_ptr(hash); 1196 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1197 } 1198 NOKPROBE_SYMBOL(kretprobe_hash_unlock); 1199 1200 static void kretprobe_table_unlock(unsigned long hash, 1201 unsigned long *flags) 1202 __releases(hlist_lock) 1203 { 1204 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1205 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1206 } 1207 NOKPROBE_SYMBOL(kretprobe_table_unlock); 1208 1209 /* 1210 * This function is called from finish_task_switch when task tk becomes dead, 1211 * so that we can recycle any function-return probe instances associated 1212 * with this task. These left over instances represent probed functions 1213 * that have been called but will never return. 1214 */ 1215 void kprobe_flush_task(struct task_struct *tk) 1216 { 1217 struct kretprobe_instance *ri; 1218 struct hlist_head *head, empty_rp; 1219 struct hlist_node *tmp; 1220 unsigned long hash, flags = 0; 1221 1222 if (unlikely(!kprobes_initialized)) 1223 /* Early boot. kretprobe_table_locks not yet initialized. */ 1224 return; 1225 1226 INIT_HLIST_HEAD(&empty_rp); 1227 hash = hash_ptr(tk, KPROBE_HASH_BITS); 1228 head = &kretprobe_inst_table[hash]; 1229 kretprobe_table_lock(hash, &flags); 1230 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 1231 if (ri->task == tk) 1232 recycle_rp_inst(ri, &empty_rp); 1233 } 1234 kretprobe_table_unlock(hash, &flags); 1235 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 1236 hlist_del(&ri->hlist); 1237 kfree(ri); 1238 } 1239 } 1240 NOKPROBE_SYMBOL(kprobe_flush_task); 1241 1242 static inline void free_rp_inst(struct kretprobe *rp) 1243 { 1244 struct kretprobe_instance *ri; 1245 struct hlist_node *next; 1246 1247 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) { 1248 hlist_del(&ri->hlist); 1249 kfree(ri); 1250 } 1251 } 1252 1253 static void cleanup_rp_inst(struct kretprobe *rp) 1254 { 1255 unsigned long flags, hash; 1256 struct kretprobe_instance *ri; 1257 struct hlist_node *next; 1258 struct hlist_head *head; 1259 1260 /* No race here */ 1261 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 1262 kretprobe_table_lock(hash, &flags); 1263 head = &kretprobe_inst_table[hash]; 1264 hlist_for_each_entry_safe(ri, next, head, hlist) { 1265 if (ri->rp == rp) 1266 ri->rp = NULL; 1267 } 1268 kretprobe_table_unlock(hash, &flags); 1269 } 1270 free_rp_inst(rp); 1271 } 1272 NOKPROBE_SYMBOL(cleanup_rp_inst); 1273 1274 /* Add the new probe to ap->list */ 1275 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1276 { 1277 if (p->post_handler) 1278 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1279 1280 list_add_rcu(&p->list, &ap->list); 1281 if (p->post_handler && !ap->post_handler) 1282 ap->post_handler = aggr_post_handler; 1283 1284 return 0; 1285 } 1286 1287 /* 1288 * Fill in the required fields of the "manager kprobe". Replace the 1289 * earlier kprobe in the hlist with the manager kprobe 1290 */ 1291 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1292 { 1293 /* Copy p's insn slot to ap */ 1294 copy_kprobe(p, ap); 1295 flush_insn_slot(ap); 1296 ap->addr = p->addr; 1297 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1298 ap->pre_handler = aggr_pre_handler; 1299 ap->fault_handler = aggr_fault_handler; 1300 /* We don't care the kprobe which has gone. */ 1301 if (p->post_handler && !kprobe_gone(p)) 1302 ap->post_handler = aggr_post_handler; 1303 1304 INIT_LIST_HEAD(&ap->list); 1305 INIT_HLIST_NODE(&ap->hlist); 1306 1307 list_add_rcu(&p->list, &ap->list); 1308 hlist_replace_rcu(&p->hlist, &ap->hlist); 1309 } 1310 1311 /* 1312 * This is the second or subsequent kprobe at the address - handle 1313 * the intricacies 1314 */ 1315 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1316 { 1317 int ret = 0; 1318 struct kprobe *ap = orig_p; 1319 1320 cpus_read_lock(); 1321 1322 /* For preparing optimization, jump_label_text_reserved() is called */ 1323 jump_label_lock(); 1324 mutex_lock(&text_mutex); 1325 1326 if (!kprobe_aggrprobe(orig_p)) { 1327 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1328 ap = alloc_aggr_kprobe(orig_p); 1329 if (!ap) { 1330 ret = -ENOMEM; 1331 goto out; 1332 } 1333 init_aggr_kprobe(ap, orig_p); 1334 } else if (kprobe_unused(ap)) { 1335 /* This probe is going to die. Rescue it */ 1336 ret = reuse_unused_kprobe(ap); 1337 if (ret) 1338 goto out; 1339 } 1340 1341 if (kprobe_gone(ap)) { 1342 /* 1343 * Attempting to insert new probe at the same location that 1344 * had a probe in the module vaddr area which already 1345 * freed. So, the instruction slot has already been 1346 * released. We need a new slot for the new probe. 1347 */ 1348 ret = arch_prepare_kprobe(ap); 1349 if (ret) 1350 /* 1351 * Even if fail to allocate new slot, don't need to 1352 * free aggr_probe. It will be used next time, or 1353 * freed by unregister_kprobe. 1354 */ 1355 goto out; 1356 1357 /* Prepare optimized instructions if possible. */ 1358 prepare_optimized_kprobe(ap); 1359 1360 /* 1361 * Clear gone flag to prevent allocating new slot again, and 1362 * set disabled flag because it is not armed yet. 1363 */ 1364 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1365 | KPROBE_FLAG_DISABLED; 1366 } 1367 1368 /* Copy ap's insn slot to p */ 1369 copy_kprobe(ap, p); 1370 ret = add_new_kprobe(ap, p); 1371 1372 out: 1373 mutex_unlock(&text_mutex); 1374 jump_label_unlock(); 1375 cpus_read_unlock(); 1376 1377 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1378 ap->flags &= ~KPROBE_FLAG_DISABLED; 1379 if (!kprobes_all_disarmed) { 1380 /* Arm the breakpoint again. */ 1381 ret = arm_kprobe(ap); 1382 if (ret) { 1383 ap->flags |= KPROBE_FLAG_DISABLED; 1384 list_del_rcu(&p->list); 1385 synchronize_rcu(); 1386 } 1387 } 1388 } 1389 return ret; 1390 } 1391 1392 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1393 { 1394 /* The __kprobes marked functions and entry code must not be probed */ 1395 return addr >= (unsigned long)__kprobes_text_start && 1396 addr < (unsigned long)__kprobes_text_end; 1397 } 1398 1399 bool within_kprobe_blacklist(unsigned long addr) 1400 { 1401 struct kprobe_blacklist_entry *ent; 1402 1403 if (arch_within_kprobe_blacklist(addr)) 1404 return true; 1405 /* 1406 * If there exists a kprobe_blacklist, verify and 1407 * fail any probe registration in the prohibited area 1408 */ 1409 list_for_each_entry(ent, &kprobe_blacklist, list) { 1410 if (addr >= ent->start_addr && addr < ent->end_addr) 1411 return true; 1412 } 1413 1414 return false; 1415 } 1416 1417 /* 1418 * If we have a symbol_name argument, look it up and add the offset field 1419 * to it. This way, we can specify a relative address to a symbol. 1420 * This returns encoded errors if it fails to look up symbol or invalid 1421 * combination of parameters. 1422 */ 1423 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr, 1424 const char *symbol_name, unsigned int offset) 1425 { 1426 if ((symbol_name && addr) || (!symbol_name && !addr)) 1427 goto invalid; 1428 1429 if (symbol_name) { 1430 addr = kprobe_lookup_name(symbol_name, offset); 1431 if (!addr) 1432 return ERR_PTR(-ENOENT); 1433 } 1434 1435 addr = (kprobe_opcode_t *)(((char *)addr) + offset); 1436 if (addr) 1437 return addr; 1438 1439 invalid: 1440 return ERR_PTR(-EINVAL); 1441 } 1442 1443 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1444 { 1445 return _kprobe_addr(p->addr, p->symbol_name, p->offset); 1446 } 1447 1448 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1449 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1450 { 1451 struct kprobe *ap, *list_p; 1452 1453 ap = get_kprobe(p->addr); 1454 if (unlikely(!ap)) 1455 return NULL; 1456 1457 if (p != ap) { 1458 list_for_each_entry_rcu(list_p, &ap->list, list) 1459 if (list_p == p) 1460 /* kprobe p is a valid probe */ 1461 goto valid; 1462 return NULL; 1463 } 1464 valid: 1465 return ap; 1466 } 1467 1468 /* Return error if the kprobe is being re-registered */ 1469 static inline int check_kprobe_rereg(struct kprobe *p) 1470 { 1471 int ret = 0; 1472 1473 mutex_lock(&kprobe_mutex); 1474 if (__get_valid_kprobe(p)) 1475 ret = -EINVAL; 1476 mutex_unlock(&kprobe_mutex); 1477 1478 return ret; 1479 } 1480 1481 int __weak arch_check_ftrace_location(struct kprobe *p) 1482 { 1483 unsigned long ftrace_addr; 1484 1485 ftrace_addr = ftrace_location((unsigned long)p->addr); 1486 if (ftrace_addr) { 1487 #ifdef CONFIG_KPROBES_ON_FTRACE 1488 /* Given address is not on the instruction boundary */ 1489 if ((unsigned long)p->addr != ftrace_addr) 1490 return -EILSEQ; 1491 p->flags |= KPROBE_FLAG_FTRACE; 1492 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1493 return -EINVAL; 1494 #endif 1495 } 1496 return 0; 1497 } 1498 1499 static int check_kprobe_address_safe(struct kprobe *p, 1500 struct module **probed_mod) 1501 { 1502 int ret; 1503 1504 ret = arch_check_ftrace_location(p); 1505 if (ret) 1506 return ret; 1507 jump_label_lock(); 1508 preempt_disable(); 1509 1510 /* Ensure it is not in reserved area nor out of text */ 1511 if (!kernel_text_address((unsigned long) p->addr) || 1512 within_kprobe_blacklist((unsigned long) p->addr) || 1513 jump_label_text_reserved(p->addr, p->addr)) { 1514 ret = -EINVAL; 1515 goto out; 1516 } 1517 1518 /* Check if are we probing a module */ 1519 *probed_mod = __module_text_address((unsigned long) p->addr); 1520 if (*probed_mod) { 1521 /* 1522 * We must hold a refcount of the probed module while updating 1523 * its code to prohibit unexpected unloading. 1524 */ 1525 if (unlikely(!try_module_get(*probed_mod))) { 1526 ret = -ENOENT; 1527 goto out; 1528 } 1529 1530 /* 1531 * If the module freed .init.text, we couldn't insert 1532 * kprobes in there. 1533 */ 1534 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1535 (*probed_mod)->state != MODULE_STATE_COMING) { 1536 module_put(*probed_mod); 1537 *probed_mod = NULL; 1538 ret = -ENOENT; 1539 } 1540 } 1541 out: 1542 preempt_enable(); 1543 jump_label_unlock(); 1544 1545 return ret; 1546 } 1547 1548 int register_kprobe(struct kprobe *p) 1549 { 1550 int ret; 1551 struct kprobe *old_p; 1552 struct module *probed_mod; 1553 kprobe_opcode_t *addr; 1554 1555 /* Adjust probe address from symbol */ 1556 addr = kprobe_addr(p); 1557 if (IS_ERR(addr)) 1558 return PTR_ERR(addr); 1559 p->addr = addr; 1560 1561 ret = check_kprobe_rereg(p); 1562 if (ret) 1563 return ret; 1564 1565 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1566 p->flags &= KPROBE_FLAG_DISABLED; 1567 p->nmissed = 0; 1568 INIT_LIST_HEAD(&p->list); 1569 1570 ret = check_kprobe_address_safe(p, &probed_mod); 1571 if (ret) 1572 return ret; 1573 1574 mutex_lock(&kprobe_mutex); 1575 1576 old_p = get_kprobe(p->addr); 1577 if (old_p) { 1578 /* Since this may unoptimize old_p, locking text_mutex. */ 1579 ret = register_aggr_kprobe(old_p, p); 1580 goto out; 1581 } 1582 1583 cpus_read_lock(); 1584 /* Prevent text modification */ 1585 mutex_lock(&text_mutex); 1586 ret = prepare_kprobe(p); 1587 mutex_unlock(&text_mutex); 1588 cpus_read_unlock(); 1589 if (ret) 1590 goto out; 1591 1592 INIT_HLIST_NODE(&p->hlist); 1593 hlist_add_head_rcu(&p->hlist, 1594 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1595 1596 if (!kprobes_all_disarmed && !kprobe_disabled(p)) { 1597 ret = arm_kprobe(p); 1598 if (ret) { 1599 hlist_del_rcu(&p->hlist); 1600 synchronize_rcu(); 1601 goto out; 1602 } 1603 } 1604 1605 /* Try to optimize kprobe */ 1606 try_to_optimize_kprobe(p); 1607 out: 1608 mutex_unlock(&kprobe_mutex); 1609 1610 if (probed_mod) 1611 module_put(probed_mod); 1612 1613 return ret; 1614 } 1615 EXPORT_SYMBOL_GPL(register_kprobe); 1616 1617 /* Check if all probes on the aggrprobe are disabled */ 1618 static int aggr_kprobe_disabled(struct kprobe *ap) 1619 { 1620 struct kprobe *kp; 1621 1622 list_for_each_entry_rcu(kp, &ap->list, list) 1623 if (!kprobe_disabled(kp)) 1624 /* 1625 * There is an active probe on the list. 1626 * We can't disable this ap. 1627 */ 1628 return 0; 1629 1630 return 1; 1631 } 1632 1633 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1634 static struct kprobe *__disable_kprobe(struct kprobe *p) 1635 { 1636 struct kprobe *orig_p; 1637 int ret; 1638 1639 /* Get an original kprobe for return */ 1640 orig_p = __get_valid_kprobe(p); 1641 if (unlikely(orig_p == NULL)) 1642 return ERR_PTR(-EINVAL); 1643 1644 if (!kprobe_disabled(p)) { 1645 /* Disable probe if it is a child probe */ 1646 if (p != orig_p) 1647 p->flags |= KPROBE_FLAG_DISABLED; 1648 1649 /* Try to disarm and disable this/parent probe */ 1650 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1651 /* 1652 * If kprobes_all_disarmed is set, orig_p 1653 * should have already been disarmed, so 1654 * skip unneed disarming process. 1655 */ 1656 if (!kprobes_all_disarmed) { 1657 ret = disarm_kprobe(orig_p, true); 1658 if (ret) { 1659 p->flags &= ~KPROBE_FLAG_DISABLED; 1660 return ERR_PTR(ret); 1661 } 1662 } 1663 orig_p->flags |= KPROBE_FLAG_DISABLED; 1664 } 1665 } 1666 1667 return orig_p; 1668 } 1669 1670 /* 1671 * Unregister a kprobe without a scheduler synchronization. 1672 */ 1673 static int __unregister_kprobe_top(struct kprobe *p) 1674 { 1675 struct kprobe *ap, *list_p; 1676 1677 /* Disable kprobe. This will disarm it if needed. */ 1678 ap = __disable_kprobe(p); 1679 if (IS_ERR(ap)) 1680 return PTR_ERR(ap); 1681 1682 if (ap == p) 1683 /* 1684 * This probe is an independent(and non-optimized) kprobe 1685 * (not an aggrprobe). Remove from the hash list. 1686 */ 1687 goto disarmed; 1688 1689 /* Following process expects this probe is an aggrprobe */ 1690 WARN_ON(!kprobe_aggrprobe(ap)); 1691 1692 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1693 /* 1694 * !disarmed could be happen if the probe is under delayed 1695 * unoptimizing. 1696 */ 1697 goto disarmed; 1698 else { 1699 /* If disabling probe has special handlers, update aggrprobe */ 1700 if (p->post_handler && !kprobe_gone(p)) { 1701 list_for_each_entry_rcu(list_p, &ap->list, list) { 1702 if ((list_p != p) && (list_p->post_handler)) 1703 goto noclean; 1704 } 1705 ap->post_handler = NULL; 1706 } 1707 noclean: 1708 /* 1709 * Remove from the aggrprobe: this path will do nothing in 1710 * __unregister_kprobe_bottom(). 1711 */ 1712 list_del_rcu(&p->list); 1713 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1714 /* 1715 * Try to optimize this probe again, because post 1716 * handler may have been changed. 1717 */ 1718 optimize_kprobe(ap); 1719 } 1720 return 0; 1721 1722 disarmed: 1723 hlist_del_rcu(&ap->hlist); 1724 return 0; 1725 } 1726 1727 static void __unregister_kprobe_bottom(struct kprobe *p) 1728 { 1729 struct kprobe *ap; 1730 1731 if (list_empty(&p->list)) 1732 /* This is an independent kprobe */ 1733 arch_remove_kprobe(p); 1734 else if (list_is_singular(&p->list)) { 1735 /* This is the last child of an aggrprobe */ 1736 ap = list_entry(p->list.next, struct kprobe, list); 1737 list_del(&p->list); 1738 free_aggr_kprobe(ap); 1739 } 1740 /* Otherwise, do nothing. */ 1741 } 1742 1743 int register_kprobes(struct kprobe **kps, int num) 1744 { 1745 int i, ret = 0; 1746 1747 if (num <= 0) 1748 return -EINVAL; 1749 for (i = 0; i < num; i++) { 1750 ret = register_kprobe(kps[i]); 1751 if (ret < 0) { 1752 if (i > 0) 1753 unregister_kprobes(kps, i); 1754 break; 1755 } 1756 } 1757 return ret; 1758 } 1759 EXPORT_SYMBOL_GPL(register_kprobes); 1760 1761 void unregister_kprobe(struct kprobe *p) 1762 { 1763 unregister_kprobes(&p, 1); 1764 } 1765 EXPORT_SYMBOL_GPL(unregister_kprobe); 1766 1767 void unregister_kprobes(struct kprobe **kps, int num) 1768 { 1769 int i; 1770 1771 if (num <= 0) 1772 return; 1773 mutex_lock(&kprobe_mutex); 1774 for (i = 0; i < num; i++) 1775 if (__unregister_kprobe_top(kps[i]) < 0) 1776 kps[i]->addr = NULL; 1777 mutex_unlock(&kprobe_mutex); 1778 1779 synchronize_rcu(); 1780 for (i = 0; i < num; i++) 1781 if (kps[i]->addr) 1782 __unregister_kprobe_bottom(kps[i]); 1783 } 1784 EXPORT_SYMBOL_GPL(unregister_kprobes); 1785 1786 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1787 unsigned long val, void *data) 1788 { 1789 return NOTIFY_DONE; 1790 } 1791 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1792 1793 static struct notifier_block kprobe_exceptions_nb = { 1794 .notifier_call = kprobe_exceptions_notify, 1795 .priority = 0x7fffffff /* we need to be notified first */ 1796 }; 1797 1798 unsigned long __weak arch_deref_entry_point(void *entry) 1799 { 1800 return (unsigned long)entry; 1801 } 1802 1803 #ifdef CONFIG_KRETPROBES 1804 /* 1805 * This kprobe pre_handler is registered with every kretprobe. When probe 1806 * hits it will set up the return probe. 1807 */ 1808 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 1809 { 1810 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1811 unsigned long hash, flags = 0; 1812 struct kretprobe_instance *ri; 1813 1814 /* 1815 * To avoid deadlocks, prohibit return probing in NMI contexts, 1816 * just skip the probe and increase the (inexact) 'nmissed' 1817 * statistical counter, so that the user is informed that 1818 * something happened: 1819 */ 1820 if (unlikely(in_nmi())) { 1821 rp->nmissed++; 1822 return 0; 1823 } 1824 1825 /* TODO: consider to only swap the RA after the last pre_handler fired */ 1826 hash = hash_ptr(current, KPROBE_HASH_BITS); 1827 raw_spin_lock_irqsave(&rp->lock, flags); 1828 if (!hlist_empty(&rp->free_instances)) { 1829 ri = hlist_entry(rp->free_instances.first, 1830 struct kretprobe_instance, hlist); 1831 hlist_del(&ri->hlist); 1832 raw_spin_unlock_irqrestore(&rp->lock, flags); 1833 1834 ri->rp = rp; 1835 ri->task = current; 1836 1837 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 1838 raw_spin_lock_irqsave(&rp->lock, flags); 1839 hlist_add_head(&ri->hlist, &rp->free_instances); 1840 raw_spin_unlock_irqrestore(&rp->lock, flags); 1841 return 0; 1842 } 1843 1844 arch_prepare_kretprobe(ri, regs); 1845 1846 /* XXX(hch): why is there no hlist_move_head? */ 1847 INIT_HLIST_NODE(&ri->hlist); 1848 kretprobe_table_lock(hash, &flags); 1849 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 1850 kretprobe_table_unlock(hash, &flags); 1851 } else { 1852 rp->nmissed++; 1853 raw_spin_unlock_irqrestore(&rp->lock, flags); 1854 } 1855 return 0; 1856 } 1857 NOKPROBE_SYMBOL(pre_handler_kretprobe); 1858 1859 bool __weak arch_kprobe_on_func_entry(unsigned long offset) 1860 { 1861 return !offset; 1862 } 1863 1864 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 1865 { 1866 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset); 1867 1868 if (IS_ERR(kp_addr)) 1869 return false; 1870 1871 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) || 1872 !arch_kprobe_on_func_entry(offset)) 1873 return false; 1874 1875 return true; 1876 } 1877 1878 int register_kretprobe(struct kretprobe *rp) 1879 { 1880 int ret = 0; 1881 struct kretprobe_instance *inst; 1882 int i; 1883 void *addr; 1884 1885 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset)) 1886 return -EINVAL; 1887 1888 if (kretprobe_blacklist_size) { 1889 addr = kprobe_addr(&rp->kp); 1890 if (IS_ERR(addr)) 1891 return PTR_ERR(addr); 1892 1893 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1894 if (kretprobe_blacklist[i].addr == addr) 1895 return -EINVAL; 1896 } 1897 } 1898 1899 rp->kp.pre_handler = pre_handler_kretprobe; 1900 rp->kp.post_handler = NULL; 1901 rp->kp.fault_handler = NULL; 1902 1903 /* Pre-allocate memory for max kretprobe instances */ 1904 if (rp->maxactive <= 0) { 1905 #ifdef CONFIG_PREEMPT 1906 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 1907 #else 1908 rp->maxactive = num_possible_cpus(); 1909 #endif 1910 } 1911 raw_spin_lock_init(&rp->lock); 1912 INIT_HLIST_HEAD(&rp->free_instances); 1913 for (i = 0; i < rp->maxactive; i++) { 1914 inst = kmalloc(sizeof(struct kretprobe_instance) + 1915 rp->data_size, GFP_KERNEL); 1916 if (inst == NULL) { 1917 free_rp_inst(rp); 1918 return -ENOMEM; 1919 } 1920 INIT_HLIST_NODE(&inst->hlist); 1921 hlist_add_head(&inst->hlist, &rp->free_instances); 1922 } 1923 1924 rp->nmissed = 0; 1925 /* Establish function entry probe point */ 1926 ret = register_kprobe(&rp->kp); 1927 if (ret != 0) 1928 free_rp_inst(rp); 1929 return ret; 1930 } 1931 EXPORT_SYMBOL_GPL(register_kretprobe); 1932 1933 int register_kretprobes(struct kretprobe **rps, int num) 1934 { 1935 int ret = 0, i; 1936 1937 if (num <= 0) 1938 return -EINVAL; 1939 for (i = 0; i < num; i++) { 1940 ret = register_kretprobe(rps[i]); 1941 if (ret < 0) { 1942 if (i > 0) 1943 unregister_kretprobes(rps, i); 1944 break; 1945 } 1946 } 1947 return ret; 1948 } 1949 EXPORT_SYMBOL_GPL(register_kretprobes); 1950 1951 void unregister_kretprobe(struct kretprobe *rp) 1952 { 1953 unregister_kretprobes(&rp, 1); 1954 } 1955 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1956 1957 void unregister_kretprobes(struct kretprobe **rps, int num) 1958 { 1959 int i; 1960 1961 if (num <= 0) 1962 return; 1963 mutex_lock(&kprobe_mutex); 1964 for (i = 0; i < num; i++) 1965 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 1966 rps[i]->kp.addr = NULL; 1967 mutex_unlock(&kprobe_mutex); 1968 1969 synchronize_rcu(); 1970 for (i = 0; i < num; i++) { 1971 if (rps[i]->kp.addr) { 1972 __unregister_kprobe_bottom(&rps[i]->kp); 1973 cleanup_rp_inst(rps[i]); 1974 } 1975 } 1976 } 1977 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1978 1979 #else /* CONFIG_KRETPROBES */ 1980 int register_kretprobe(struct kretprobe *rp) 1981 { 1982 return -ENOSYS; 1983 } 1984 EXPORT_SYMBOL_GPL(register_kretprobe); 1985 1986 int register_kretprobes(struct kretprobe **rps, int num) 1987 { 1988 return -ENOSYS; 1989 } 1990 EXPORT_SYMBOL_GPL(register_kretprobes); 1991 1992 void unregister_kretprobe(struct kretprobe *rp) 1993 { 1994 } 1995 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1996 1997 void unregister_kretprobes(struct kretprobe **rps, int num) 1998 { 1999 } 2000 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2001 2002 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2003 { 2004 return 0; 2005 } 2006 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2007 2008 #endif /* CONFIG_KRETPROBES */ 2009 2010 /* Set the kprobe gone and remove its instruction buffer. */ 2011 static void kill_kprobe(struct kprobe *p) 2012 { 2013 struct kprobe *kp; 2014 2015 p->flags |= KPROBE_FLAG_GONE; 2016 if (kprobe_aggrprobe(p)) { 2017 /* 2018 * If this is an aggr_kprobe, we have to list all the 2019 * chained probes and mark them GONE. 2020 */ 2021 list_for_each_entry_rcu(kp, &p->list, list) 2022 kp->flags |= KPROBE_FLAG_GONE; 2023 p->post_handler = NULL; 2024 kill_optimized_kprobe(p); 2025 } 2026 /* 2027 * Here, we can remove insn_slot safely, because no thread calls 2028 * the original probed function (which will be freed soon) any more. 2029 */ 2030 arch_remove_kprobe(p); 2031 } 2032 2033 /* Disable one kprobe */ 2034 int disable_kprobe(struct kprobe *kp) 2035 { 2036 int ret = 0; 2037 struct kprobe *p; 2038 2039 mutex_lock(&kprobe_mutex); 2040 2041 /* Disable this kprobe */ 2042 p = __disable_kprobe(kp); 2043 if (IS_ERR(p)) 2044 ret = PTR_ERR(p); 2045 2046 mutex_unlock(&kprobe_mutex); 2047 return ret; 2048 } 2049 EXPORT_SYMBOL_GPL(disable_kprobe); 2050 2051 /* Enable one kprobe */ 2052 int enable_kprobe(struct kprobe *kp) 2053 { 2054 int ret = 0; 2055 struct kprobe *p; 2056 2057 mutex_lock(&kprobe_mutex); 2058 2059 /* Check whether specified probe is valid. */ 2060 p = __get_valid_kprobe(kp); 2061 if (unlikely(p == NULL)) { 2062 ret = -EINVAL; 2063 goto out; 2064 } 2065 2066 if (kprobe_gone(kp)) { 2067 /* This kprobe has gone, we couldn't enable it. */ 2068 ret = -EINVAL; 2069 goto out; 2070 } 2071 2072 if (p != kp) 2073 kp->flags &= ~KPROBE_FLAG_DISABLED; 2074 2075 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2076 p->flags &= ~KPROBE_FLAG_DISABLED; 2077 ret = arm_kprobe(p); 2078 if (ret) 2079 p->flags |= KPROBE_FLAG_DISABLED; 2080 } 2081 out: 2082 mutex_unlock(&kprobe_mutex); 2083 return ret; 2084 } 2085 EXPORT_SYMBOL_GPL(enable_kprobe); 2086 2087 /* Caller must NOT call this in usual path. This is only for critical case */ 2088 void dump_kprobe(struct kprobe *kp) 2089 { 2090 pr_err("Dumping kprobe:\n"); 2091 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n", 2092 kp->symbol_name, kp->offset, kp->addr); 2093 } 2094 NOKPROBE_SYMBOL(dump_kprobe); 2095 2096 int kprobe_add_ksym_blacklist(unsigned long entry) 2097 { 2098 struct kprobe_blacklist_entry *ent; 2099 unsigned long offset = 0, size = 0; 2100 2101 if (!kernel_text_address(entry) || 2102 !kallsyms_lookup_size_offset(entry, &size, &offset)) 2103 return -EINVAL; 2104 2105 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2106 if (!ent) 2107 return -ENOMEM; 2108 ent->start_addr = entry; 2109 ent->end_addr = entry + size; 2110 INIT_LIST_HEAD(&ent->list); 2111 list_add_tail(&ent->list, &kprobe_blacklist); 2112 2113 return (int)size; 2114 } 2115 2116 /* Add all symbols in given area into kprobe blacklist */ 2117 int kprobe_add_area_blacklist(unsigned long start, unsigned long end) 2118 { 2119 unsigned long entry; 2120 int ret = 0; 2121 2122 for (entry = start; entry < end; entry += ret) { 2123 ret = kprobe_add_ksym_blacklist(entry); 2124 if (ret < 0) 2125 return ret; 2126 if (ret == 0) /* In case of alias symbol */ 2127 ret = 1; 2128 } 2129 return 0; 2130 } 2131 2132 int __init __weak arch_populate_kprobe_blacklist(void) 2133 { 2134 return 0; 2135 } 2136 2137 /* 2138 * Lookup and populate the kprobe_blacklist. 2139 * 2140 * Unlike the kretprobe blacklist, we'll need to determine 2141 * the range of addresses that belong to the said functions, 2142 * since a kprobe need not necessarily be at the beginning 2143 * of a function. 2144 */ 2145 static int __init populate_kprobe_blacklist(unsigned long *start, 2146 unsigned long *end) 2147 { 2148 unsigned long entry; 2149 unsigned long *iter; 2150 int ret; 2151 2152 for (iter = start; iter < end; iter++) { 2153 entry = arch_deref_entry_point((void *)*iter); 2154 ret = kprobe_add_ksym_blacklist(entry); 2155 if (ret == -EINVAL) 2156 continue; 2157 if (ret < 0) 2158 return ret; 2159 } 2160 2161 /* Symbols in __kprobes_text are blacklisted */ 2162 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start, 2163 (unsigned long)__kprobes_text_end); 2164 2165 return ret ? : arch_populate_kprobe_blacklist(); 2166 } 2167 2168 /* Module notifier call back, checking kprobes on the module */ 2169 static int kprobes_module_callback(struct notifier_block *nb, 2170 unsigned long val, void *data) 2171 { 2172 struct module *mod = data; 2173 struct hlist_head *head; 2174 struct kprobe *p; 2175 unsigned int i; 2176 int checkcore = (val == MODULE_STATE_GOING); 2177 2178 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2179 return NOTIFY_DONE; 2180 2181 /* 2182 * When MODULE_STATE_GOING was notified, both of module .text and 2183 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2184 * notified, only .init.text section would be freed. We need to 2185 * disable kprobes which have been inserted in the sections. 2186 */ 2187 mutex_lock(&kprobe_mutex); 2188 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2189 head = &kprobe_table[i]; 2190 hlist_for_each_entry_rcu(p, head, hlist) 2191 if (within_module_init((unsigned long)p->addr, mod) || 2192 (checkcore && 2193 within_module_core((unsigned long)p->addr, mod))) { 2194 /* 2195 * The vaddr this probe is installed will soon 2196 * be vfreed buy not synced to disk. Hence, 2197 * disarming the breakpoint isn't needed. 2198 * 2199 * Note, this will also move any optimized probes 2200 * that are pending to be removed from their 2201 * corresponding lists to the freeing_list and 2202 * will not be touched by the delayed 2203 * kprobe_optimizer work handler. 2204 */ 2205 kill_kprobe(p); 2206 } 2207 } 2208 mutex_unlock(&kprobe_mutex); 2209 return NOTIFY_DONE; 2210 } 2211 2212 static struct notifier_block kprobe_module_nb = { 2213 .notifier_call = kprobes_module_callback, 2214 .priority = 0 2215 }; 2216 2217 /* Markers of _kprobe_blacklist section */ 2218 extern unsigned long __start_kprobe_blacklist[]; 2219 extern unsigned long __stop_kprobe_blacklist[]; 2220 2221 static int __init init_kprobes(void) 2222 { 2223 int i, err = 0; 2224 2225 /* FIXME allocate the probe table, currently defined statically */ 2226 /* initialize all list heads */ 2227 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2228 INIT_HLIST_HEAD(&kprobe_table[i]); 2229 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 2230 raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); 2231 } 2232 2233 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2234 __stop_kprobe_blacklist); 2235 if (err) { 2236 pr_err("kprobes: failed to populate blacklist: %d\n", err); 2237 pr_err("Please take care of using kprobes.\n"); 2238 } 2239 2240 if (kretprobe_blacklist_size) { 2241 /* lookup the function address from its name */ 2242 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2243 kretprobe_blacklist[i].addr = 2244 kprobe_lookup_name(kretprobe_blacklist[i].name, 0); 2245 if (!kretprobe_blacklist[i].addr) 2246 printk("kretprobe: lookup failed: %s\n", 2247 kretprobe_blacklist[i].name); 2248 } 2249 } 2250 2251 #if defined(CONFIG_OPTPROBES) 2252 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2253 /* Init kprobe_optinsn_slots */ 2254 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2255 #endif 2256 /* By default, kprobes can be optimized */ 2257 kprobes_allow_optimization = true; 2258 #endif 2259 2260 /* By default, kprobes are armed */ 2261 kprobes_all_disarmed = false; 2262 2263 err = arch_init_kprobes(); 2264 if (!err) 2265 err = register_die_notifier(&kprobe_exceptions_nb); 2266 if (!err) 2267 err = register_module_notifier(&kprobe_module_nb); 2268 2269 kprobes_initialized = (err == 0); 2270 2271 if (!err) 2272 init_test_probes(); 2273 return err; 2274 } 2275 2276 #ifdef CONFIG_DEBUG_FS 2277 static void report_probe(struct seq_file *pi, struct kprobe *p, 2278 const char *sym, int offset, char *modname, struct kprobe *pp) 2279 { 2280 char *kprobe_type; 2281 void *addr = p->addr; 2282 2283 if (p->pre_handler == pre_handler_kretprobe) 2284 kprobe_type = "r"; 2285 else 2286 kprobe_type = "k"; 2287 2288 if (!kallsyms_show_value()) 2289 addr = NULL; 2290 2291 if (sym) 2292 seq_printf(pi, "%px %s %s+0x%x %s ", 2293 addr, kprobe_type, sym, offset, 2294 (modname ? modname : " ")); 2295 else /* try to use %pS */ 2296 seq_printf(pi, "%px %s %pS ", 2297 addr, kprobe_type, p->addr); 2298 2299 if (!pp) 2300 pp = p; 2301 seq_printf(pi, "%s%s%s%s\n", 2302 (kprobe_gone(p) ? "[GONE]" : ""), 2303 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2304 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2305 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2306 } 2307 2308 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2309 { 2310 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2311 } 2312 2313 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2314 { 2315 (*pos)++; 2316 if (*pos >= KPROBE_TABLE_SIZE) 2317 return NULL; 2318 return pos; 2319 } 2320 2321 static void kprobe_seq_stop(struct seq_file *f, void *v) 2322 { 2323 /* Nothing to do */ 2324 } 2325 2326 static int show_kprobe_addr(struct seq_file *pi, void *v) 2327 { 2328 struct hlist_head *head; 2329 struct kprobe *p, *kp; 2330 const char *sym = NULL; 2331 unsigned int i = *(loff_t *) v; 2332 unsigned long offset = 0; 2333 char *modname, namebuf[KSYM_NAME_LEN]; 2334 2335 head = &kprobe_table[i]; 2336 preempt_disable(); 2337 hlist_for_each_entry_rcu(p, head, hlist) { 2338 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2339 &offset, &modname, namebuf); 2340 if (kprobe_aggrprobe(p)) { 2341 list_for_each_entry_rcu(kp, &p->list, list) 2342 report_probe(pi, kp, sym, offset, modname, p); 2343 } else 2344 report_probe(pi, p, sym, offset, modname, NULL); 2345 } 2346 preempt_enable(); 2347 return 0; 2348 } 2349 2350 static const struct seq_operations kprobes_seq_ops = { 2351 .start = kprobe_seq_start, 2352 .next = kprobe_seq_next, 2353 .stop = kprobe_seq_stop, 2354 .show = show_kprobe_addr 2355 }; 2356 2357 static int kprobes_open(struct inode *inode, struct file *filp) 2358 { 2359 return seq_open(filp, &kprobes_seq_ops); 2360 } 2361 2362 static const struct file_operations debugfs_kprobes_operations = { 2363 .open = kprobes_open, 2364 .read = seq_read, 2365 .llseek = seq_lseek, 2366 .release = seq_release, 2367 }; 2368 2369 /* kprobes/blacklist -- shows which functions can not be probed */ 2370 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2371 { 2372 return seq_list_start(&kprobe_blacklist, *pos); 2373 } 2374 2375 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2376 { 2377 return seq_list_next(v, &kprobe_blacklist, pos); 2378 } 2379 2380 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2381 { 2382 struct kprobe_blacklist_entry *ent = 2383 list_entry(v, struct kprobe_blacklist_entry, list); 2384 2385 /* 2386 * If /proc/kallsyms is not showing kernel address, we won't 2387 * show them here either. 2388 */ 2389 if (!kallsyms_show_value()) 2390 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL, 2391 (void *)ent->start_addr); 2392 else 2393 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr, 2394 (void *)ent->end_addr, (void *)ent->start_addr); 2395 return 0; 2396 } 2397 2398 static const struct seq_operations kprobe_blacklist_seq_ops = { 2399 .start = kprobe_blacklist_seq_start, 2400 .next = kprobe_blacklist_seq_next, 2401 .stop = kprobe_seq_stop, /* Reuse void function */ 2402 .show = kprobe_blacklist_seq_show, 2403 }; 2404 2405 static int kprobe_blacklist_open(struct inode *inode, struct file *filp) 2406 { 2407 return seq_open(filp, &kprobe_blacklist_seq_ops); 2408 } 2409 2410 static const struct file_operations debugfs_kprobe_blacklist_ops = { 2411 .open = kprobe_blacklist_open, 2412 .read = seq_read, 2413 .llseek = seq_lseek, 2414 .release = seq_release, 2415 }; 2416 2417 static int arm_all_kprobes(void) 2418 { 2419 struct hlist_head *head; 2420 struct kprobe *p; 2421 unsigned int i, total = 0, errors = 0; 2422 int err, ret = 0; 2423 2424 mutex_lock(&kprobe_mutex); 2425 2426 /* If kprobes are armed, just return */ 2427 if (!kprobes_all_disarmed) 2428 goto already_enabled; 2429 2430 /* 2431 * optimize_kprobe() called by arm_kprobe() checks 2432 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2433 * arm_kprobe. 2434 */ 2435 kprobes_all_disarmed = false; 2436 /* Arming kprobes doesn't optimize kprobe itself */ 2437 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2438 head = &kprobe_table[i]; 2439 /* Arm all kprobes on a best-effort basis */ 2440 hlist_for_each_entry_rcu(p, head, hlist) { 2441 if (!kprobe_disabled(p)) { 2442 err = arm_kprobe(p); 2443 if (err) { 2444 errors++; 2445 ret = err; 2446 } 2447 total++; 2448 } 2449 } 2450 } 2451 2452 if (errors) 2453 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n", 2454 errors, total); 2455 else 2456 pr_info("Kprobes globally enabled\n"); 2457 2458 already_enabled: 2459 mutex_unlock(&kprobe_mutex); 2460 return ret; 2461 } 2462 2463 static int disarm_all_kprobes(void) 2464 { 2465 struct hlist_head *head; 2466 struct kprobe *p; 2467 unsigned int i, total = 0, errors = 0; 2468 int err, ret = 0; 2469 2470 mutex_lock(&kprobe_mutex); 2471 2472 /* If kprobes are already disarmed, just return */ 2473 if (kprobes_all_disarmed) { 2474 mutex_unlock(&kprobe_mutex); 2475 return 0; 2476 } 2477 2478 kprobes_all_disarmed = true; 2479 2480 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2481 head = &kprobe_table[i]; 2482 /* Disarm all kprobes on a best-effort basis */ 2483 hlist_for_each_entry_rcu(p, head, hlist) { 2484 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { 2485 err = disarm_kprobe(p, false); 2486 if (err) { 2487 errors++; 2488 ret = err; 2489 } 2490 total++; 2491 } 2492 } 2493 } 2494 2495 if (errors) 2496 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n", 2497 errors, total); 2498 else 2499 pr_info("Kprobes globally disabled\n"); 2500 2501 mutex_unlock(&kprobe_mutex); 2502 2503 /* Wait for disarming all kprobes by optimizer */ 2504 wait_for_kprobe_optimizer(); 2505 2506 return ret; 2507 } 2508 2509 /* 2510 * XXX: The debugfs bool file interface doesn't allow for callbacks 2511 * when the bool state is switched. We can reuse that facility when 2512 * available 2513 */ 2514 static ssize_t read_enabled_file_bool(struct file *file, 2515 char __user *user_buf, size_t count, loff_t *ppos) 2516 { 2517 char buf[3]; 2518 2519 if (!kprobes_all_disarmed) 2520 buf[0] = '1'; 2521 else 2522 buf[0] = '0'; 2523 buf[1] = '\n'; 2524 buf[2] = 0x00; 2525 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2526 } 2527 2528 static ssize_t write_enabled_file_bool(struct file *file, 2529 const char __user *user_buf, size_t count, loff_t *ppos) 2530 { 2531 char buf[32]; 2532 size_t buf_size; 2533 int ret = 0; 2534 2535 buf_size = min(count, (sizeof(buf)-1)); 2536 if (copy_from_user(buf, user_buf, buf_size)) 2537 return -EFAULT; 2538 2539 buf[buf_size] = '\0'; 2540 switch (buf[0]) { 2541 case 'y': 2542 case 'Y': 2543 case '1': 2544 ret = arm_all_kprobes(); 2545 break; 2546 case 'n': 2547 case 'N': 2548 case '0': 2549 ret = disarm_all_kprobes(); 2550 break; 2551 default: 2552 return -EINVAL; 2553 } 2554 2555 if (ret) 2556 return ret; 2557 2558 return count; 2559 } 2560 2561 static const struct file_operations fops_kp = { 2562 .read = read_enabled_file_bool, 2563 .write = write_enabled_file_bool, 2564 .llseek = default_llseek, 2565 }; 2566 2567 static int __init debugfs_kprobe_init(void) 2568 { 2569 struct dentry *dir, *file; 2570 unsigned int value = 1; 2571 2572 dir = debugfs_create_dir("kprobes", NULL); 2573 if (!dir) 2574 return -ENOMEM; 2575 2576 file = debugfs_create_file("list", 0400, dir, NULL, 2577 &debugfs_kprobes_operations); 2578 if (!file) 2579 goto error; 2580 2581 file = debugfs_create_file("enabled", 0600, dir, 2582 &value, &fops_kp); 2583 if (!file) 2584 goto error; 2585 2586 file = debugfs_create_file("blacklist", 0400, dir, NULL, 2587 &debugfs_kprobe_blacklist_ops); 2588 if (!file) 2589 goto error; 2590 2591 return 0; 2592 2593 error: 2594 debugfs_remove(dir); 2595 return -ENOMEM; 2596 } 2597 2598 late_initcall(debugfs_kprobe_init); 2599 #endif /* CONFIG_DEBUG_FS */ 2600 2601 module_init(init_kprobes); 2602