xref: /openbmc/linux/kernel/kprobes.c (revision 84764a41)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51 
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56 
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 
60 
61 /*
62  * Some oddball architectures like 64bit powerpc have function descriptors
63  * so this must be overridable.
64  */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69 
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73 
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76 
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83 
84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86 	return &(kretprobe_table_locks[hash].lock);
87 }
88 
89 /*
90  * Normally, functions that we'd want to prohibit kprobes in, are marked
91  * __kprobes. But, there are cases where such functions already belong to
92  * a different section (__sched for preempt_schedule)
93  *
94  * For such cases, we now have a blacklist
95  */
96 static struct kprobe_blackpoint kprobe_blacklist[] = {
97 	{"preempt_schedule",},
98 	{"native_get_debugreg",},
99 	{"irq_entries_start",},
100 	{"common_interrupt",},
101 	{"mcount",},	/* mcount can be called from everywhere */
102 	{NULL}    /* Terminator */
103 };
104 
105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106 /*
107  * kprobe->ainsn.insn points to the copy of the instruction to be
108  * single-stepped. x86_64, POWER4 and above have no-exec support and
109  * stepping on the instruction on a vmalloced/kmalloced/data page
110  * is a recipe for disaster
111  */
112 struct kprobe_insn_page {
113 	struct list_head list;
114 	kprobe_opcode_t *insns;		/* Page of instruction slots */
115 	int nused;
116 	int ngarbage;
117 	char slot_used[];
118 };
119 
120 #define KPROBE_INSN_PAGE_SIZE(slots)			\
121 	(offsetof(struct kprobe_insn_page, slot_used) +	\
122 	 (sizeof(char) * (slots)))
123 
124 struct kprobe_insn_cache {
125 	struct list_head pages;	/* list of kprobe_insn_page */
126 	size_t insn_size;	/* size of instruction slot */
127 	int nr_garbage;
128 };
129 
130 static int slots_per_page(struct kprobe_insn_cache *c)
131 {
132 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133 }
134 
135 enum kprobe_slot_state {
136 	SLOT_CLEAN = 0,
137 	SLOT_DIRTY = 1,
138 	SLOT_USED = 2,
139 };
140 
141 static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_slots */
142 static struct kprobe_insn_cache kprobe_insn_slots = {
143 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144 	.insn_size = MAX_INSN_SIZE,
145 	.nr_garbage = 0,
146 };
147 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148 
149 /**
150  * __get_insn_slot() - Find a slot on an executable page for an instruction.
151  * We allocate an executable page if there's no room on existing ones.
152  */
153 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154 {
155 	struct kprobe_insn_page *kip;
156 
157  retry:
158 	list_for_each_entry(kip, &c->pages, list) {
159 		if (kip->nused < slots_per_page(c)) {
160 			int i;
161 			for (i = 0; i < slots_per_page(c); i++) {
162 				if (kip->slot_used[i] == SLOT_CLEAN) {
163 					kip->slot_used[i] = SLOT_USED;
164 					kip->nused++;
165 					return kip->insns + (i * c->insn_size);
166 				}
167 			}
168 			/* kip->nused is broken. Fix it. */
169 			kip->nused = slots_per_page(c);
170 			WARN_ON(1);
171 		}
172 	}
173 
174 	/* If there are any garbage slots, collect it and try again. */
175 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
176 		goto retry;
177 
178 	/* All out of space.  Need to allocate a new page. */
179 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180 	if (!kip)
181 		return NULL;
182 
183 	/*
184 	 * Use module_alloc so this page is within +/- 2GB of where the
185 	 * kernel image and loaded module images reside. This is required
186 	 * so x86_64 can correctly handle the %rip-relative fixups.
187 	 */
188 	kip->insns = module_alloc(PAGE_SIZE);
189 	if (!kip->insns) {
190 		kfree(kip);
191 		return NULL;
192 	}
193 	INIT_LIST_HEAD(&kip->list);
194 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195 	kip->slot_used[0] = SLOT_USED;
196 	kip->nused = 1;
197 	kip->ngarbage = 0;
198 	list_add(&kip->list, &c->pages);
199 	return kip->insns;
200 }
201 
202 
203 kprobe_opcode_t __kprobes *get_insn_slot(void)
204 {
205 	kprobe_opcode_t *ret = NULL;
206 
207 	mutex_lock(&kprobe_insn_mutex);
208 	ret = __get_insn_slot(&kprobe_insn_slots);
209 	mutex_unlock(&kprobe_insn_mutex);
210 
211 	return ret;
212 }
213 
214 /* Return 1 if all garbages are collected, otherwise 0. */
215 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
216 {
217 	kip->slot_used[idx] = SLOT_CLEAN;
218 	kip->nused--;
219 	if (kip->nused == 0) {
220 		/*
221 		 * Page is no longer in use.  Free it unless
222 		 * it's the last one.  We keep the last one
223 		 * so as not to have to set it up again the
224 		 * next time somebody inserts a probe.
225 		 */
226 		if (!list_is_singular(&kip->list)) {
227 			list_del(&kip->list);
228 			module_free(NULL, kip->insns);
229 			kfree(kip);
230 		}
231 		return 1;
232 	}
233 	return 0;
234 }
235 
236 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237 {
238 	struct kprobe_insn_page *kip, *next;
239 
240 	/* Ensure no-one is interrupted on the garbages */
241 	synchronize_sched();
242 
243 	list_for_each_entry_safe(kip, next, &c->pages, list) {
244 		int i;
245 		if (kip->ngarbage == 0)
246 			continue;
247 		kip->ngarbage = 0;	/* we will collect all garbages */
248 		for (i = 0; i < slots_per_page(c); i++) {
249 			if (kip->slot_used[i] == SLOT_DIRTY &&
250 			    collect_one_slot(kip, i))
251 				break;
252 		}
253 	}
254 	c->nr_garbage = 0;
255 	return 0;
256 }
257 
258 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259 				       kprobe_opcode_t *slot, int dirty)
260 {
261 	struct kprobe_insn_page *kip;
262 
263 	list_for_each_entry(kip, &c->pages, list) {
264 		long idx = ((long)slot - (long)kip->insns) /
265 				(c->insn_size * sizeof(kprobe_opcode_t));
266 		if (idx >= 0 && idx < slots_per_page(c)) {
267 			WARN_ON(kip->slot_used[idx] != SLOT_USED);
268 			if (dirty) {
269 				kip->slot_used[idx] = SLOT_DIRTY;
270 				kip->ngarbage++;
271 				if (++c->nr_garbage > slots_per_page(c))
272 					collect_garbage_slots(c);
273 			} else
274 				collect_one_slot(kip, idx);
275 			return;
276 		}
277 	}
278 	/* Could not free this slot. */
279 	WARN_ON(1);
280 }
281 
282 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
283 {
284 	mutex_lock(&kprobe_insn_mutex);
285 	__free_insn_slot(&kprobe_insn_slots, slot, dirty);
286 	mutex_unlock(&kprobe_insn_mutex);
287 }
288 #ifdef CONFIG_OPTPROBES
289 /* For optimized_kprobe buffer */
290 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291 static struct kprobe_insn_cache kprobe_optinsn_slots = {
292 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293 	/* .insn_size is initialized later */
294 	.nr_garbage = 0,
295 };
296 /* Get a slot for optimized_kprobe buffer */
297 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
298 {
299 	kprobe_opcode_t *ret = NULL;
300 
301 	mutex_lock(&kprobe_optinsn_mutex);
302 	ret = __get_insn_slot(&kprobe_optinsn_slots);
303 	mutex_unlock(&kprobe_optinsn_mutex);
304 
305 	return ret;
306 }
307 
308 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
309 {
310 	mutex_lock(&kprobe_optinsn_mutex);
311 	__free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312 	mutex_unlock(&kprobe_optinsn_mutex);
313 }
314 #endif
315 #endif
316 
317 /* We have preemption disabled.. so it is safe to use __ versions */
318 static inline void set_kprobe_instance(struct kprobe *kp)
319 {
320 	__this_cpu_write(kprobe_instance, kp);
321 }
322 
323 static inline void reset_kprobe_instance(void)
324 {
325 	__this_cpu_write(kprobe_instance, NULL);
326 }
327 
328 /*
329  * This routine is called either:
330  * 	- under the kprobe_mutex - during kprobe_[un]register()
331  * 				OR
332  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
333  */
334 struct kprobe __kprobes *get_kprobe(void *addr)
335 {
336 	struct hlist_head *head;
337 	struct hlist_node *node;
338 	struct kprobe *p;
339 
340 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
341 	hlist_for_each_entry_rcu(p, node, head, hlist) {
342 		if (p->addr == addr)
343 			return p;
344 	}
345 
346 	return NULL;
347 }
348 
349 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
350 
351 /* Return true if the kprobe is an aggregator */
352 static inline int kprobe_aggrprobe(struct kprobe *p)
353 {
354 	return p->pre_handler == aggr_pre_handler;
355 }
356 
357 /* Return true(!0) if the kprobe is unused */
358 static inline int kprobe_unused(struct kprobe *p)
359 {
360 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
361 	       list_empty(&p->list);
362 }
363 
364 /*
365  * Keep all fields in the kprobe consistent
366  */
367 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
368 {
369 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
370 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
371 }
372 
373 #ifdef CONFIG_OPTPROBES
374 /* NOTE: change this value only with kprobe_mutex held */
375 static bool kprobes_allow_optimization;
376 
377 /*
378  * Call all pre_handler on the list, but ignores its return value.
379  * This must be called from arch-dep optimized caller.
380  */
381 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
382 {
383 	struct kprobe *kp;
384 
385 	list_for_each_entry_rcu(kp, &p->list, list) {
386 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
387 			set_kprobe_instance(kp);
388 			kp->pre_handler(kp, regs);
389 		}
390 		reset_kprobe_instance();
391 	}
392 }
393 
394 /* Free optimized instructions and optimized_kprobe */
395 static __kprobes void free_aggr_kprobe(struct kprobe *p)
396 {
397 	struct optimized_kprobe *op;
398 
399 	op = container_of(p, struct optimized_kprobe, kp);
400 	arch_remove_optimized_kprobe(op);
401 	arch_remove_kprobe(p);
402 	kfree(op);
403 }
404 
405 /* Return true(!0) if the kprobe is ready for optimization. */
406 static inline int kprobe_optready(struct kprobe *p)
407 {
408 	struct optimized_kprobe *op;
409 
410 	if (kprobe_aggrprobe(p)) {
411 		op = container_of(p, struct optimized_kprobe, kp);
412 		return arch_prepared_optinsn(&op->optinsn);
413 	}
414 
415 	return 0;
416 }
417 
418 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
419 static inline int kprobe_disarmed(struct kprobe *p)
420 {
421 	struct optimized_kprobe *op;
422 
423 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
424 	if (!kprobe_aggrprobe(p))
425 		return kprobe_disabled(p);
426 
427 	op = container_of(p, struct optimized_kprobe, kp);
428 
429 	return kprobe_disabled(p) && list_empty(&op->list);
430 }
431 
432 /* Return true(!0) if the probe is queued on (un)optimizing lists */
433 static int __kprobes kprobe_queued(struct kprobe *p)
434 {
435 	struct optimized_kprobe *op;
436 
437 	if (kprobe_aggrprobe(p)) {
438 		op = container_of(p, struct optimized_kprobe, kp);
439 		if (!list_empty(&op->list))
440 			return 1;
441 	}
442 	return 0;
443 }
444 
445 /*
446  * Return an optimized kprobe whose optimizing code replaces
447  * instructions including addr (exclude breakpoint).
448  */
449 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
450 {
451 	int i;
452 	struct kprobe *p = NULL;
453 	struct optimized_kprobe *op;
454 
455 	/* Don't check i == 0, since that is a breakpoint case. */
456 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
457 		p = get_kprobe((void *)(addr - i));
458 
459 	if (p && kprobe_optready(p)) {
460 		op = container_of(p, struct optimized_kprobe, kp);
461 		if (arch_within_optimized_kprobe(op, addr))
462 			return p;
463 	}
464 
465 	return NULL;
466 }
467 
468 /* Optimization staging list, protected by kprobe_mutex */
469 static LIST_HEAD(optimizing_list);
470 static LIST_HEAD(unoptimizing_list);
471 
472 static void kprobe_optimizer(struct work_struct *work);
473 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
474 static DECLARE_COMPLETION(optimizer_comp);
475 #define OPTIMIZE_DELAY 5
476 
477 /*
478  * Optimize (replace a breakpoint with a jump) kprobes listed on
479  * optimizing_list.
480  */
481 static __kprobes void do_optimize_kprobes(void)
482 {
483 	/* Optimization never be done when disarmed */
484 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
485 	    list_empty(&optimizing_list))
486 		return;
487 
488 	/*
489 	 * The optimization/unoptimization refers online_cpus via
490 	 * stop_machine() and cpu-hotplug modifies online_cpus.
491 	 * And same time, text_mutex will be held in cpu-hotplug and here.
492 	 * This combination can cause a deadlock (cpu-hotplug try to lock
493 	 * text_mutex but stop_machine can not be done because online_cpus
494 	 * has been changed)
495 	 * To avoid this deadlock, we need to call get_online_cpus()
496 	 * for preventing cpu-hotplug outside of text_mutex locking.
497 	 */
498 	get_online_cpus();
499 	mutex_lock(&text_mutex);
500 	arch_optimize_kprobes(&optimizing_list);
501 	mutex_unlock(&text_mutex);
502 	put_online_cpus();
503 }
504 
505 /*
506  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
507  * if need) kprobes listed on unoptimizing_list.
508  */
509 static __kprobes void do_unoptimize_kprobes(struct list_head *free_list)
510 {
511 	struct optimized_kprobe *op, *tmp;
512 
513 	/* Unoptimization must be done anytime */
514 	if (list_empty(&unoptimizing_list))
515 		return;
516 
517 	/* Ditto to do_optimize_kprobes */
518 	get_online_cpus();
519 	mutex_lock(&text_mutex);
520 	arch_unoptimize_kprobes(&unoptimizing_list, free_list);
521 	/* Loop free_list for disarming */
522 	list_for_each_entry_safe(op, tmp, free_list, list) {
523 		/* Disarm probes if marked disabled */
524 		if (kprobe_disabled(&op->kp))
525 			arch_disarm_kprobe(&op->kp);
526 		if (kprobe_unused(&op->kp)) {
527 			/*
528 			 * Remove unused probes from hash list. After waiting
529 			 * for synchronization, these probes are reclaimed.
530 			 * (reclaiming is done by do_free_cleaned_kprobes.)
531 			 */
532 			hlist_del_rcu(&op->kp.hlist);
533 		} else
534 			list_del_init(&op->list);
535 	}
536 	mutex_unlock(&text_mutex);
537 	put_online_cpus();
538 }
539 
540 /* Reclaim all kprobes on the free_list */
541 static __kprobes void do_free_cleaned_kprobes(struct list_head *free_list)
542 {
543 	struct optimized_kprobe *op, *tmp;
544 
545 	list_for_each_entry_safe(op, tmp, free_list, list) {
546 		BUG_ON(!kprobe_unused(&op->kp));
547 		list_del_init(&op->list);
548 		free_aggr_kprobe(&op->kp);
549 	}
550 }
551 
552 /* Start optimizer after OPTIMIZE_DELAY passed */
553 static __kprobes void kick_kprobe_optimizer(void)
554 {
555 	if (!delayed_work_pending(&optimizing_work))
556 		schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
557 }
558 
559 /* Kprobe jump optimizer */
560 static __kprobes void kprobe_optimizer(struct work_struct *work)
561 {
562 	LIST_HEAD(free_list);
563 
564 	mutex_lock(&kprobe_mutex);
565 	/* Lock modules while optimizing kprobes */
566 	mutex_lock(&module_mutex);
567 
568 	/*
569 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
570 	 * kprobes before waiting for quiesence period.
571 	 */
572 	do_unoptimize_kprobes(&free_list);
573 
574 	/*
575 	 * Step 2: Wait for quiesence period to ensure all running interrupts
576 	 * are done. Because optprobe may modify multiple instructions
577 	 * there is a chance that Nth instruction is interrupted. In that
578 	 * case, running interrupt can return to 2nd-Nth byte of jump
579 	 * instruction. This wait is for avoiding it.
580 	 */
581 	synchronize_sched();
582 
583 	/* Step 3: Optimize kprobes after quiesence period */
584 	do_optimize_kprobes();
585 
586 	/* Step 4: Free cleaned kprobes after quiesence period */
587 	do_free_cleaned_kprobes(&free_list);
588 
589 	mutex_unlock(&module_mutex);
590 	mutex_unlock(&kprobe_mutex);
591 
592 	/* Step 5: Kick optimizer again if needed */
593 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
594 		kick_kprobe_optimizer();
595 	else
596 		/* Wake up all waiters */
597 		complete_all(&optimizer_comp);
598 }
599 
600 /* Wait for completing optimization and unoptimization */
601 static __kprobes void wait_for_kprobe_optimizer(void)
602 {
603 	if (delayed_work_pending(&optimizing_work))
604 		wait_for_completion(&optimizer_comp);
605 }
606 
607 /* Optimize kprobe if p is ready to be optimized */
608 static __kprobes void optimize_kprobe(struct kprobe *p)
609 {
610 	struct optimized_kprobe *op;
611 
612 	/* Check if the kprobe is disabled or not ready for optimization. */
613 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
614 	    (kprobe_disabled(p) || kprobes_all_disarmed))
615 		return;
616 
617 	/* Both of break_handler and post_handler are not supported. */
618 	if (p->break_handler || p->post_handler)
619 		return;
620 
621 	op = container_of(p, struct optimized_kprobe, kp);
622 
623 	/* Check there is no other kprobes at the optimized instructions */
624 	if (arch_check_optimized_kprobe(op) < 0)
625 		return;
626 
627 	/* Check if it is already optimized. */
628 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
629 		return;
630 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
631 
632 	if (!list_empty(&op->list))
633 		/* This is under unoptimizing. Just dequeue the probe */
634 		list_del_init(&op->list);
635 	else {
636 		list_add(&op->list, &optimizing_list);
637 		kick_kprobe_optimizer();
638 	}
639 }
640 
641 /* Short cut to direct unoptimizing */
642 static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
643 {
644 	get_online_cpus();
645 	arch_unoptimize_kprobe(op);
646 	put_online_cpus();
647 	if (kprobe_disabled(&op->kp))
648 		arch_disarm_kprobe(&op->kp);
649 }
650 
651 /* Unoptimize a kprobe if p is optimized */
652 static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
653 {
654 	struct optimized_kprobe *op;
655 
656 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
657 		return; /* This is not an optprobe nor optimized */
658 
659 	op = container_of(p, struct optimized_kprobe, kp);
660 	if (!kprobe_optimized(p)) {
661 		/* Unoptimized or unoptimizing case */
662 		if (force && !list_empty(&op->list)) {
663 			/*
664 			 * Only if this is unoptimizing kprobe and forced,
665 			 * forcibly unoptimize it. (No need to unoptimize
666 			 * unoptimized kprobe again :)
667 			 */
668 			list_del_init(&op->list);
669 			force_unoptimize_kprobe(op);
670 		}
671 		return;
672 	}
673 
674 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
675 	if (!list_empty(&op->list)) {
676 		/* Dequeue from the optimization queue */
677 		list_del_init(&op->list);
678 		return;
679 	}
680 	/* Optimized kprobe case */
681 	if (force)
682 		/* Forcibly update the code: this is a special case */
683 		force_unoptimize_kprobe(op);
684 	else {
685 		list_add(&op->list, &unoptimizing_list);
686 		kick_kprobe_optimizer();
687 	}
688 }
689 
690 /* Cancel unoptimizing for reusing */
691 static void reuse_unused_kprobe(struct kprobe *ap)
692 {
693 	struct optimized_kprobe *op;
694 
695 	BUG_ON(!kprobe_unused(ap));
696 	/*
697 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
698 	 * there is still a relative jump) and disabled.
699 	 */
700 	op = container_of(ap, struct optimized_kprobe, kp);
701 	if (unlikely(list_empty(&op->list)))
702 		printk(KERN_WARNING "Warning: found a stray unused "
703 			"aggrprobe@%p\n", ap->addr);
704 	/* Enable the probe again */
705 	ap->flags &= ~KPROBE_FLAG_DISABLED;
706 	/* Optimize it again (remove from op->list) */
707 	BUG_ON(!kprobe_optready(ap));
708 	optimize_kprobe(ap);
709 }
710 
711 /* Remove optimized instructions */
712 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
713 {
714 	struct optimized_kprobe *op;
715 
716 	op = container_of(p, struct optimized_kprobe, kp);
717 	if (!list_empty(&op->list))
718 		/* Dequeue from the (un)optimization queue */
719 		list_del_init(&op->list);
720 
721 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
722 	/* Don't touch the code, because it is already freed. */
723 	arch_remove_optimized_kprobe(op);
724 }
725 
726 /* Try to prepare optimized instructions */
727 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
728 {
729 	struct optimized_kprobe *op;
730 
731 	op = container_of(p, struct optimized_kprobe, kp);
732 	arch_prepare_optimized_kprobe(op);
733 }
734 
735 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
736 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
737 {
738 	struct optimized_kprobe *op;
739 
740 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
741 	if (!op)
742 		return NULL;
743 
744 	INIT_LIST_HEAD(&op->list);
745 	op->kp.addr = p->addr;
746 	arch_prepare_optimized_kprobe(op);
747 
748 	return &op->kp;
749 }
750 
751 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
752 
753 /*
754  * Prepare an optimized_kprobe and optimize it
755  * NOTE: p must be a normal registered kprobe
756  */
757 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
758 {
759 	struct kprobe *ap;
760 	struct optimized_kprobe *op;
761 
762 	/* Impossible to optimize ftrace-based kprobe */
763 	if (kprobe_ftrace(p))
764 		return;
765 
766 	/* For preparing optimization, jump_label_text_reserved() is called */
767 	jump_label_lock();
768 	mutex_lock(&text_mutex);
769 
770 	ap = alloc_aggr_kprobe(p);
771 	if (!ap)
772 		goto out;
773 
774 	op = container_of(ap, struct optimized_kprobe, kp);
775 	if (!arch_prepared_optinsn(&op->optinsn)) {
776 		/* If failed to setup optimizing, fallback to kprobe */
777 		arch_remove_optimized_kprobe(op);
778 		kfree(op);
779 		goto out;
780 	}
781 
782 	init_aggr_kprobe(ap, p);
783 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
784 
785 out:
786 	mutex_unlock(&text_mutex);
787 	jump_label_unlock();
788 }
789 
790 #ifdef CONFIG_SYSCTL
791 /* This should be called with kprobe_mutex locked */
792 static void __kprobes optimize_all_kprobes(void)
793 {
794 	struct hlist_head *head;
795 	struct hlist_node *node;
796 	struct kprobe *p;
797 	unsigned int i;
798 
799 	/* If optimization is already allowed, just return */
800 	if (kprobes_allow_optimization)
801 		return;
802 
803 	kprobes_allow_optimization = true;
804 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
805 		head = &kprobe_table[i];
806 		hlist_for_each_entry_rcu(p, node, head, hlist)
807 			if (!kprobe_disabled(p))
808 				optimize_kprobe(p);
809 	}
810 	printk(KERN_INFO "Kprobes globally optimized\n");
811 }
812 
813 /* This should be called with kprobe_mutex locked */
814 static void __kprobes unoptimize_all_kprobes(void)
815 {
816 	struct hlist_head *head;
817 	struct hlist_node *node;
818 	struct kprobe *p;
819 	unsigned int i;
820 
821 	/* If optimization is already prohibited, just return */
822 	if (!kprobes_allow_optimization)
823 		return;
824 
825 	kprobes_allow_optimization = false;
826 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
827 		head = &kprobe_table[i];
828 		hlist_for_each_entry_rcu(p, node, head, hlist) {
829 			if (!kprobe_disabled(p))
830 				unoptimize_kprobe(p, false);
831 		}
832 	}
833 	/* Wait for unoptimizing completion */
834 	wait_for_kprobe_optimizer();
835 	printk(KERN_INFO "Kprobes globally unoptimized\n");
836 }
837 
838 int sysctl_kprobes_optimization;
839 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
840 				      void __user *buffer, size_t *length,
841 				      loff_t *ppos)
842 {
843 	int ret;
844 
845 	mutex_lock(&kprobe_mutex);
846 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
847 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
848 
849 	if (sysctl_kprobes_optimization)
850 		optimize_all_kprobes();
851 	else
852 		unoptimize_all_kprobes();
853 	mutex_unlock(&kprobe_mutex);
854 
855 	return ret;
856 }
857 #endif /* CONFIG_SYSCTL */
858 
859 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
860 static void __kprobes __arm_kprobe(struct kprobe *p)
861 {
862 	struct kprobe *_p;
863 
864 	/* Check collision with other optimized kprobes */
865 	_p = get_optimized_kprobe((unsigned long)p->addr);
866 	if (unlikely(_p))
867 		/* Fallback to unoptimized kprobe */
868 		unoptimize_kprobe(_p, true);
869 
870 	arch_arm_kprobe(p);
871 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
872 }
873 
874 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
875 static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
876 {
877 	struct kprobe *_p;
878 
879 	unoptimize_kprobe(p, false);	/* Try to unoptimize */
880 
881 	if (!kprobe_queued(p)) {
882 		arch_disarm_kprobe(p);
883 		/* If another kprobe was blocked, optimize it. */
884 		_p = get_optimized_kprobe((unsigned long)p->addr);
885 		if (unlikely(_p) && reopt)
886 			optimize_kprobe(_p);
887 	}
888 	/* TODO: reoptimize others after unoptimized this probe */
889 }
890 
891 #else /* !CONFIG_OPTPROBES */
892 
893 #define optimize_kprobe(p)			do {} while (0)
894 #define unoptimize_kprobe(p, f)			do {} while (0)
895 #define kill_optimized_kprobe(p)		do {} while (0)
896 #define prepare_optimized_kprobe(p)		do {} while (0)
897 #define try_to_optimize_kprobe(p)		do {} while (0)
898 #define __arm_kprobe(p)				arch_arm_kprobe(p)
899 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
900 #define kprobe_disarmed(p)			kprobe_disabled(p)
901 #define wait_for_kprobe_optimizer()		do {} while (0)
902 
903 /* There should be no unused kprobes can be reused without optimization */
904 static void reuse_unused_kprobe(struct kprobe *ap)
905 {
906 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
907 	BUG_ON(kprobe_unused(ap));
908 }
909 
910 static __kprobes void free_aggr_kprobe(struct kprobe *p)
911 {
912 	arch_remove_kprobe(p);
913 	kfree(p);
914 }
915 
916 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
917 {
918 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
919 }
920 #endif /* CONFIG_OPTPROBES */
921 
922 #ifdef KPROBES_CAN_USE_FTRACE
923 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
924 	.func = kprobe_ftrace_handler,
925 	.flags = FTRACE_OPS_FL_SAVE_REGS,
926 };
927 static int kprobe_ftrace_enabled;
928 
929 /* Must ensure p->addr is really on ftrace */
930 static int __kprobes prepare_kprobe(struct kprobe *p)
931 {
932 	if (!kprobe_ftrace(p))
933 		return arch_prepare_kprobe(p);
934 
935 	return arch_prepare_kprobe_ftrace(p);
936 }
937 
938 /* Caller must lock kprobe_mutex */
939 static void __kprobes arm_kprobe_ftrace(struct kprobe *p)
940 {
941 	int ret;
942 
943 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
944 				   (unsigned long)p->addr, 0, 0);
945 	WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
946 	kprobe_ftrace_enabled++;
947 	if (kprobe_ftrace_enabled == 1) {
948 		ret = register_ftrace_function(&kprobe_ftrace_ops);
949 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
950 	}
951 }
952 
953 /* Caller must lock kprobe_mutex */
954 static void __kprobes disarm_kprobe_ftrace(struct kprobe *p)
955 {
956 	int ret;
957 
958 	kprobe_ftrace_enabled--;
959 	if (kprobe_ftrace_enabled == 0) {
960 		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
961 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
962 	}
963 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
964 			   (unsigned long)p->addr, 1, 0);
965 	WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
966 }
967 #else	/* !KPROBES_CAN_USE_FTRACE */
968 #define prepare_kprobe(p)	arch_prepare_kprobe(p)
969 #define arm_kprobe_ftrace(p)	do {} while (0)
970 #define disarm_kprobe_ftrace(p)	do {} while (0)
971 #endif
972 
973 /* Arm a kprobe with text_mutex */
974 static void __kprobes arm_kprobe(struct kprobe *kp)
975 {
976 	if (unlikely(kprobe_ftrace(kp))) {
977 		arm_kprobe_ftrace(kp);
978 		return;
979 	}
980 	/*
981 	 * Here, since __arm_kprobe() doesn't use stop_machine(),
982 	 * this doesn't cause deadlock on text_mutex. So, we don't
983 	 * need get_online_cpus().
984 	 */
985 	mutex_lock(&text_mutex);
986 	__arm_kprobe(kp);
987 	mutex_unlock(&text_mutex);
988 }
989 
990 /* Disarm a kprobe with text_mutex */
991 static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt)
992 {
993 	if (unlikely(kprobe_ftrace(kp))) {
994 		disarm_kprobe_ftrace(kp);
995 		return;
996 	}
997 	/* Ditto */
998 	mutex_lock(&text_mutex);
999 	__disarm_kprobe(kp, reopt);
1000 	mutex_unlock(&text_mutex);
1001 }
1002 
1003 /*
1004  * Aggregate handlers for multiple kprobes support - these handlers
1005  * take care of invoking the individual kprobe handlers on p->list
1006  */
1007 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1008 {
1009 	struct kprobe *kp;
1010 
1011 	list_for_each_entry_rcu(kp, &p->list, list) {
1012 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1013 			set_kprobe_instance(kp);
1014 			if (kp->pre_handler(kp, regs))
1015 				return 1;
1016 		}
1017 		reset_kprobe_instance();
1018 	}
1019 	return 0;
1020 }
1021 
1022 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1023 					unsigned long flags)
1024 {
1025 	struct kprobe *kp;
1026 
1027 	list_for_each_entry_rcu(kp, &p->list, list) {
1028 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1029 			set_kprobe_instance(kp);
1030 			kp->post_handler(kp, regs, flags);
1031 			reset_kprobe_instance();
1032 		}
1033 	}
1034 }
1035 
1036 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1037 					int trapnr)
1038 {
1039 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1040 
1041 	/*
1042 	 * if we faulted "during" the execution of a user specified
1043 	 * probe handler, invoke just that probe's fault handler
1044 	 */
1045 	if (cur && cur->fault_handler) {
1046 		if (cur->fault_handler(cur, regs, trapnr))
1047 			return 1;
1048 	}
1049 	return 0;
1050 }
1051 
1052 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1053 {
1054 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1055 	int ret = 0;
1056 
1057 	if (cur && cur->break_handler) {
1058 		if (cur->break_handler(cur, regs))
1059 			ret = 1;
1060 	}
1061 	reset_kprobe_instance();
1062 	return ret;
1063 }
1064 
1065 /* Walks the list and increments nmissed count for multiprobe case */
1066 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
1067 {
1068 	struct kprobe *kp;
1069 	if (!kprobe_aggrprobe(p)) {
1070 		p->nmissed++;
1071 	} else {
1072 		list_for_each_entry_rcu(kp, &p->list, list)
1073 			kp->nmissed++;
1074 	}
1075 	return;
1076 }
1077 
1078 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1079 				struct hlist_head *head)
1080 {
1081 	struct kretprobe *rp = ri->rp;
1082 
1083 	/* remove rp inst off the rprobe_inst_table */
1084 	hlist_del(&ri->hlist);
1085 	INIT_HLIST_NODE(&ri->hlist);
1086 	if (likely(rp)) {
1087 		raw_spin_lock(&rp->lock);
1088 		hlist_add_head(&ri->hlist, &rp->free_instances);
1089 		raw_spin_unlock(&rp->lock);
1090 	} else
1091 		/* Unregistering */
1092 		hlist_add_head(&ri->hlist, head);
1093 }
1094 
1095 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1096 			 struct hlist_head **head, unsigned long *flags)
1097 __acquires(hlist_lock)
1098 {
1099 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1100 	raw_spinlock_t *hlist_lock;
1101 
1102 	*head = &kretprobe_inst_table[hash];
1103 	hlist_lock = kretprobe_table_lock_ptr(hash);
1104 	raw_spin_lock_irqsave(hlist_lock, *flags);
1105 }
1106 
1107 static void __kprobes kretprobe_table_lock(unsigned long hash,
1108 	unsigned long *flags)
1109 __acquires(hlist_lock)
1110 {
1111 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1112 	raw_spin_lock_irqsave(hlist_lock, *flags);
1113 }
1114 
1115 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1116 	unsigned long *flags)
1117 __releases(hlist_lock)
1118 {
1119 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1120 	raw_spinlock_t *hlist_lock;
1121 
1122 	hlist_lock = kretprobe_table_lock_ptr(hash);
1123 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1124 }
1125 
1126 static void __kprobes kretprobe_table_unlock(unsigned long hash,
1127        unsigned long *flags)
1128 __releases(hlist_lock)
1129 {
1130 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1131 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1132 }
1133 
1134 /*
1135  * This function is called from finish_task_switch when task tk becomes dead,
1136  * so that we can recycle any function-return probe instances associated
1137  * with this task. These left over instances represent probed functions
1138  * that have been called but will never return.
1139  */
1140 void __kprobes kprobe_flush_task(struct task_struct *tk)
1141 {
1142 	struct kretprobe_instance *ri;
1143 	struct hlist_head *head, empty_rp;
1144 	struct hlist_node *node, *tmp;
1145 	unsigned long hash, flags = 0;
1146 
1147 	if (unlikely(!kprobes_initialized))
1148 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1149 		return;
1150 
1151 	INIT_HLIST_HEAD(&empty_rp);
1152 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1153 	head = &kretprobe_inst_table[hash];
1154 	kretprobe_table_lock(hash, &flags);
1155 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
1156 		if (ri->task == tk)
1157 			recycle_rp_inst(ri, &empty_rp);
1158 	}
1159 	kretprobe_table_unlock(hash, &flags);
1160 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
1161 		hlist_del(&ri->hlist);
1162 		kfree(ri);
1163 	}
1164 }
1165 
1166 static inline void free_rp_inst(struct kretprobe *rp)
1167 {
1168 	struct kretprobe_instance *ri;
1169 	struct hlist_node *pos, *next;
1170 
1171 	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
1172 		hlist_del(&ri->hlist);
1173 		kfree(ri);
1174 	}
1175 }
1176 
1177 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1178 {
1179 	unsigned long flags, hash;
1180 	struct kretprobe_instance *ri;
1181 	struct hlist_node *pos, *next;
1182 	struct hlist_head *head;
1183 
1184 	/* No race here */
1185 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1186 		kretprobe_table_lock(hash, &flags);
1187 		head = &kretprobe_inst_table[hash];
1188 		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
1189 			if (ri->rp == rp)
1190 				ri->rp = NULL;
1191 		}
1192 		kretprobe_table_unlock(hash, &flags);
1193 	}
1194 	free_rp_inst(rp);
1195 }
1196 
1197 /*
1198 * Add the new probe to ap->list. Fail if this is the
1199 * second jprobe at the address - two jprobes can't coexist
1200 */
1201 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1202 {
1203 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1204 
1205 	if (p->break_handler || p->post_handler)
1206 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1207 
1208 	if (p->break_handler) {
1209 		if (ap->break_handler)
1210 			return -EEXIST;
1211 		list_add_tail_rcu(&p->list, &ap->list);
1212 		ap->break_handler = aggr_break_handler;
1213 	} else
1214 		list_add_rcu(&p->list, &ap->list);
1215 	if (p->post_handler && !ap->post_handler)
1216 		ap->post_handler = aggr_post_handler;
1217 
1218 	return 0;
1219 }
1220 
1221 /*
1222  * Fill in the required fields of the "manager kprobe". Replace the
1223  * earlier kprobe in the hlist with the manager kprobe
1224  */
1225 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1226 {
1227 	/* Copy p's insn slot to ap */
1228 	copy_kprobe(p, ap);
1229 	flush_insn_slot(ap);
1230 	ap->addr = p->addr;
1231 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1232 	ap->pre_handler = aggr_pre_handler;
1233 	ap->fault_handler = aggr_fault_handler;
1234 	/* We don't care the kprobe which has gone. */
1235 	if (p->post_handler && !kprobe_gone(p))
1236 		ap->post_handler = aggr_post_handler;
1237 	if (p->break_handler && !kprobe_gone(p))
1238 		ap->break_handler = aggr_break_handler;
1239 
1240 	INIT_LIST_HEAD(&ap->list);
1241 	INIT_HLIST_NODE(&ap->hlist);
1242 
1243 	list_add_rcu(&p->list, &ap->list);
1244 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1245 }
1246 
1247 /*
1248  * This is the second or subsequent kprobe at the address - handle
1249  * the intricacies
1250  */
1251 static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1252 					  struct kprobe *p)
1253 {
1254 	int ret = 0;
1255 	struct kprobe *ap = orig_p;
1256 
1257 	/* For preparing optimization, jump_label_text_reserved() is called */
1258 	jump_label_lock();
1259 	/*
1260 	 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1261 	 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1262 	 */
1263 	get_online_cpus();
1264 	mutex_lock(&text_mutex);
1265 
1266 	if (!kprobe_aggrprobe(orig_p)) {
1267 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1268 		ap = alloc_aggr_kprobe(orig_p);
1269 		if (!ap) {
1270 			ret = -ENOMEM;
1271 			goto out;
1272 		}
1273 		init_aggr_kprobe(ap, orig_p);
1274 	} else if (kprobe_unused(ap))
1275 		/* This probe is going to die. Rescue it */
1276 		reuse_unused_kprobe(ap);
1277 
1278 	if (kprobe_gone(ap)) {
1279 		/*
1280 		 * Attempting to insert new probe at the same location that
1281 		 * had a probe in the module vaddr area which already
1282 		 * freed. So, the instruction slot has already been
1283 		 * released. We need a new slot for the new probe.
1284 		 */
1285 		ret = arch_prepare_kprobe(ap);
1286 		if (ret)
1287 			/*
1288 			 * Even if fail to allocate new slot, don't need to
1289 			 * free aggr_probe. It will be used next time, or
1290 			 * freed by unregister_kprobe.
1291 			 */
1292 			goto out;
1293 
1294 		/* Prepare optimized instructions if possible. */
1295 		prepare_optimized_kprobe(ap);
1296 
1297 		/*
1298 		 * Clear gone flag to prevent allocating new slot again, and
1299 		 * set disabled flag because it is not armed yet.
1300 		 */
1301 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1302 			    | KPROBE_FLAG_DISABLED;
1303 	}
1304 
1305 	/* Copy ap's insn slot to p */
1306 	copy_kprobe(ap, p);
1307 	ret = add_new_kprobe(ap, p);
1308 
1309 out:
1310 	mutex_unlock(&text_mutex);
1311 	put_online_cpus();
1312 	jump_label_unlock();
1313 
1314 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1315 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1316 		if (!kprobes_all_disarmed)
1317 			/* Arm the breakpoint again. */
1318 			arm_kprobe(ap);
1319 	}
1320 	return ret;
1321 }
1322 
1323 static int __kprobes in_kprobes_functions(unsigned long addr)
1324 {
1325 	struct kprobe_blackpoint *kb;
1326 
1327 	if (addr >= (unsigned long)__kprobes_text_start &&
1328 	    addr < (unsigned long)__kprobes_text_end)
1329 		return -EINVAL;
1330 	/*
1331 	 * If there exists a kprobe_blacklist, verify and
1332 	 * fail any probe registration in the prohibited area
1333 	 */
1334 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1335 		if (kb->start_addr) {
1336 			if (addr >= kb->start_addr &&
1337 			    addr < (kb->start_addr + kb->range))
1338 				return -EINVAL;
1339 		}
1340 	}
1341 	return 0;
1342 }
1343 
1344 /*
1345  * If we have a symbol_name argument, look it up and add the offset field
1346  * to it. This way, we can specify a relative address to a symbol.
1347  * This returns encoded errors if it fails to look up symbol or invalid
1348  * combination of parameters.
1349  */
1350 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1351 {
1352 	kprobe_opcode_t *addr = p->addr;
1353 
1354 	if ((p->symbol_name && p->addr) ||
1355 	    (!p->symbol_name && !p->addr))
1356 		goto invalid;
1357 
1358 	if (p->symbol_name) {
1359 		kprobe_lookup_name(p->symbol_name, addr);
1360 		if (!addr)
1361 			return ERR_PTR(-ENOENT);
1362 	}
1363 
1364 	addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1365 	if (addr)
1366 		return addr;
1367 
1368 invalid:
1369 	return ERR_PTR(-EINVAL);
1370 }
1371 
1372 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1373 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1374 {
1375 	struct kprobe *ap, *list_p;
1376 
1377 	ap = get_kprobe(p->addr);
1378 	if (unlikely(!ap))
1379 		return NULL;
1380 
1381 	if (p != ap) {
1382 		list_for_each_entry_rcu(list_p, &ap->list, list)
1383 			if (list_p == p)
1384 			/* kprobe p is a valid probe */
1385 				goto valid;
1386 		return NULL;
1387 	}
1388 valid:
1389 	return ap;
1390 }
1391 
1392 /* Return error if the kprobe is being re-registered */
1393 static inline int check_kprobe_rereg(struct kprobe *p)
1394 {
1395 	int ret = 0;
1396 
1397 	mutex_lock(&kprobe_mutex);
1398 	if (__get_valid_kprobe(p))
1399 		ret = -EINVAL;
1400 	mutex_unlock(&kprobe_mutex);
1401 
1402 	return ret;
1403 }
1404 
1405 static __kprobes int check_kprobe_address_safe(struct kprobe *p,
1406 					       struct module **probed_mod)
1407 {
1408 	int ret = 0;
1409 	unsigned long ftrace_addr;
1410 
1411 	/*
1412 	 * If the address is located on a ftrace nop, set the
1413 	 * breakpoint to the following instruction.
1414 	 */
1415 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1416 	if (ftrace_addr) {
1417 #ifdef KPROBES_CAN_USE_FTRACE
1418 		/* Given address is not on the instruction boundary */
1419 		if ((unsigned long)p->addr != ftrace_addr)
1420 			return -EILSEQ;
1421 		p->flags |= KPROBE_FLAG_FTRACE;
1422 #else	/* !KPROBES_CAN_USE_FTRACE */
1423 		return -EINVAL;
1424 #endif
1425 	}
1426 
1427 	jump_label_lock();
1428 	preempt_disable();
1429 
1430 	/* Ensure it is not in reserved area nor out of text */
1431 	if (!kernel_text_address((unsigned long) p->addr) ||
1432 	    in_kprobes_functions((unsigned long) p->addr) ||
1433 	    jump_label_text_reserved(p->addr, p->addr)) {
1434 		ret = -EINVAL;
1435 		goto out;
1436 	}
1437 
1438 	/* Check if are we probing a module */
1439 	*probed_mod = __module_text_address((unsigned long) p->addr);
1440 	if (*probed_mod) {
1441 		/*
1442 		 * We must hold a refcount of the probed module while updating
1443 		 * its code to prohibit unexpected unloading.
1444 		 */
1445 		if (unlikely(!try_module_get(*probed_mod))) {
1446 			ret = -ENOENT;
1447 			goto out;
1448 		}
1449 
1450 		/*
1451 		 * If the module freed .init.text, we couldn't insert
1452 		 * kprobes in there.
1453 		 */
1454 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1455 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1456 			module_put(*probed_mod);
1457 			*probed_mod = NULL;
1458 			ret = -ENOENT;
1459 		}
1460 	}
1461 out:
1462 	preempt_enable();
1463 	jump_label_unlock();
1464 
1465 	return ret;
1466 }
1467 
1468 int __kprobes register_kprobe(struct kprobe *p)
1469 {
1470 	int ret;
1471 	struct kprobe *old_p;
1472 	struct module *probed_mod;
1473 	kprobe_opcode_t *addr;
1474 
1475 	/* Adjust probe address from symbol */
1476 	addr = kprobe_addr(p);
1477 	if (IS_ERR(addr))
1478 		return PTR_ERR(addr);
1479 	p->addr = addr;
1480 
1481 	ret = check_kprobe_rereg(p);
1482 	if (ret)
1483 		return ret;
1484 
1485 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1486 	p->flags &= KPROBE_FLAG_DISABLED;
1487 	p->nmissed = 0;
1488 	INIT_LIST_HEAD(&p->list);
1489 
1490 	ret = check_kprobe_address_safe(p, &probed_mod);
1491 	if (ret)
1492 		return ret;
1493 
1494 	mutex_lock(&kprobe_mutex);
1495 
1496 	old_p = get_kprobe(p->addr);
1497 	if (old_p) {
1498 		/* Since this may unoptimize old_p, locking text_mutex. */
1499 		ret = register_aggr_kprobe(old_p, p);
1500 		goto out;
1501 	}
1502 
1503 	mutex_lock(&text_mutex);	/* Avoiding text modification */
1504 	ret = prepare_kprobe(p);
1505 	mutex_unlock(&text_mutex);
1506 	if (ret)
1507 		goto out;
1508 
1509 	INIT_HLIST_NODE(&p->hlist);
1510 	hlist_add_head_rcu(&p->hlist,
1511 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1512 
1513 	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1514 		arm_kprobe(p);
1515 
1516 	/* Try to optimize kprobe */
1517 	try_to_optimize_kprobe(p);
1518 
1519 out:
1520 	mutex_unlock(&kprobe_mutex);
1521 
1522 	if (probed_mod)
1523 		module_put(probed_mod);
1524 
1525 	return ret;
1526 }
1527 EXPORT_SYMBOL_GPL(register_kprobe);
1528 
1529 /* Check if all probes on the aggrprobe are disabled */
1530 static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1531 {
1532 	struct kprobe *kp;
1533 
1534 	list_for_each_entry_rcu(kp, &ap->list, list)
1535 		if (!kprobe_disabled(kp))
1536 			/*
1537 			 * There is an active probe on the list.
1538 			 * We can't disable this ap.
1539 			 */
1540 			return 0;
1541 
1542 	return 1;
1543 }
1544 
1545 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1546 static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1547 {
1548 	struct kprobe *orig_p;
1549 
1550 	/* Get an original kprobe for return */
1551 	orig_p = __get_valid_kprobe(p);
1552 	if (unlikely(orig_p == NULL))
1553 		return NULL;
1554 
1555 	if (!kprobe_disabled(p)) {
1556 		/* Disable probe if it is a child probe */
1557 		if (p != orig_p)
1558 			p->flags |= KPROBE_FLAG_DISABLED;
1559 
1560 		/* Try to disarm and disable this/parent probe */
1561 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1562 			disarm_kprobe(orig_p, true);
1563 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1564 		}
1565 	}
1566 
1567 	return orig_p;
1568 }
1569 
1570 /*
1571  * Unregister a kprobe without a scheduler synchronization.
1572  */
1573 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1574 {
1575 	struct kprobe *ap, *list_p;
1576 
1577 	/* Disable kprobe. This will disarm it if needed. */
1578 	ap = __disable_kprobe(p);
1579 	if (ap == NULL)
1580 		return -EINVAL;
1581 
1582 	if (ap == p)
1583 		/*
1584 		 * This probe is an independent(and non-optimized) kprobe
1585 		 * (not an aggrprobe). Remove from the hash list.
1586 		 */
1587 		goto disarmed;
1588 
1589 	/* Following process expects this probe is an aggrprobe */
1590 	WARN_ON(!kprobe_aggrprobe(ap));
1591 
1592 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1593 		/*
1594 		 * !disarmed could be happen if the probe is under delayed
1595 		 * unoptimizing.
1596 		 */
1597 		goto disarmed;
1598 	else {
1599 		/* If disabling probe has special handlers, update aggrprobe */
1600 		if (p->break_handler && !kprobe_gone(p))
1601 			ap->break_handler = NULL;
1602 		if (p->post_handler && !kprobe_gone(p)) {
1603 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1604 				if ((list_p != p) && (list_p->post_handler))
1605 					goto noclean;
1606 			}
1607 			ap->post_handler = NULL;
1608 		}
1609 noclean:
1610 		/*
1611 		 * Remove from the aggrprobe: this path will do nothing in
1612 		 * __unregister_kprobe_bottom().
1613 		 */
1614 		list_del_rcu(&p->list);
1615 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1616 			/*
1617 			 * Try to optimize this probe again, because post
1618 			 * handler may have been changed.
1619 			 */
1620 			optimize_kprobe(ap);
1621 	}
1622 	return 0;
1623 
1624 disarmed:
1625 	BUG_ON(!kprobe_disarmed(ap));
1626 	hlist_del_rcu(&ap->hlist);
1627 	return 0;
1628 }
1629 
1630 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1631 {
1632 	struct kprobe *ap;
1633 
1634 	if (list_empty(&p->list))
1635 		/* This is an independent kprobe */
1636 		arch_remove_kprobe(p);
1637 	else if (list_is_singular(&p->list)) {
1638 		/* This is the last child of an aggrprobe */
1639 		ap = list_entry(p->list.next, struct kprobe, list);
1640 		list_del(&p->list);
1641 		free_aggr_kprobe(ap);
1642 	}
1643 	/* Otherwise, do nothing. */
1644 }
1645 
1646 int __kprobes register_kprobes(struct kprobe **kps, int num)
1647 {
1648 	int i, ret = 0;
1649 
1650 	if (num <= 0)
1651 		return -EINVAL;
1652 	for (i = 0; i < num; i++) {
1653 		ret = register_kprobe(kps[i]);
1654 		if (ret < 0) {
1655 			if (i > 0)
1656 				unregister_kprobes(kps, i);
1657 			break;
1658 		}
1659 	}
1660 	return ret;
1661 }
1662 EXPORT_SYMBOL_GPL(register_kprobes);
1663 
1664 void __kprobes unregister_kprobe(struct kprobe *p)
1665 {
1666 	unregister_kprobes(&p, 1);
1667 }
1668 EXPORT_SYMBOL_GPL(unregister_kprobe);
1669 
1670 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1671 {
1672 	int i;
1673 
1674 	if (num <= 0)
1675 		return;
1676 	mutex_lock(&kprobe_mutex);
1677 	for (i = 0; i < num; i++)
1678 		if (__unregister_kprobe_top(kps[i]) < 0)
1679 			kps[i]->addr = NULL;
1680 	mutex_unlock(&kprobe_mutex);
1681 
1682 	synchronize_sched();
1683 	for (i = 0; i < num; i++)
1684 		if (kps[i]->addr)
1685 			__unregister_kprobe_bottom(kps[i]);
1686 }
1687 EXPORT_SYMBOL_GPL(unregister_kprobes);
1688 
1689 static struct notifier_block kprobe_exceptions_nb = {
1690 	.notifier_call = kprobe_exceptions_notify,
1691 	.priority = 0x7fffffff /* we need to be notified first */
1692 };
1693 
1694 unsigned long __weak arch_deref_entry_point(void *entry)
1695 {
1696 	return (unsigned long)entry;
1697 }
1698 
1699 int __kprobes register_jprobes(struct jprobe **jps, int num)
1700 {
1701 	struct jprobe *jp;
1702 	int ret = 0, i;
1703 
1704 	if (num <= 0)
1705 		return -EINVAL;
1706 	for (i = 0; i < num; i++) {
1707 		unsigned long addr, offset;
1708 		jp = jps[i];
1709 		addr = arch_deref_entry_point(jp->entry);
1710 
1711 		/* Verify probepoint is a function entry point */
1712 		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1713 		    offset == 0) {
1714 			jp->kp.pre_handler = setjmp_pre_handler;
1715 			jp->kp.break_handler = longjmp_break_handler;
1716 			ret = register_kprobe(&jp->kp);
1717 		} else
1718 			ret = -EINVAL;
1719 
1720 		if (ret < 0) {
1721 			if (i > 0)
1722 				unregister_jprobes(jps, i);
1723 			break;
1724 		}
1725 	}
1726 	return ret;
1727 }
1728 EXPORT_SYMBOL_GPL(register_jprobes);
1729 
1730 int __kprobes register_jprobe(struct jprobe *jp)
1731 {
1732 	return register_jprobes(&jp, 1);
1733 }
1734 EXPORT_SYMBOL_GPL(register_jprobe);
1735 
1736 void __kprobes unregister_jprobe(struct jprobe *jp)
1737 {
1738 	unregister_jprobes(&jp, 1);
1739 }
1740 EXPORT_SYMBOL_GPL(unregister_jprobe);
1741 
1742 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1743 {
1744 	int i;
1745 
1746 	if (num <= 0)
1747 		return;
1748 	mutex_lock(&kprobe_mutex);
1749 	for (i = 0; i < num; i++)
1750 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1751 			jps[i]->kp.addr = NULL;
1752 	mutex_unlock(&kprobe_mutex);
1753 
1754 	synchronize_sched();
1755 	for (i = 0; i < num; i++) {
1756 		if (jps[i]->kp.addr)
1757 			__unregister_kprobe_bottom(&jps[i]->kp);
1758 	}
1759 }
1760 EXPORT_SYMBOL_GPL(unregister_jprobes);
1761 
1762 #ifdef CONFIG_KRETPROBES
1763 /*
1764  * This kprobe pre_handler is registered with every kretprobe. When probe
1765  * hits it will set up the return probe.
1766  */
1767 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1768 					   struct pt_regs *regs)
1769 {
1770 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1771 	unsigned long hash, flags = 0;
1772 	struct kretprobe_instance *ri;
1773 
1774 	/*TODO: consider to only swap the RA after the last pre_handler fired */
1775 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1776 	raw_spin_lock_irqsave(&rp->lock, flags);
1777 	if (!hlist_empty(&rp->free_instances)) {
1778 		ri = hlist_entry(rp->free_instances.first,
1779 				struct kretprobe_instance, hlist);
1780 		hlist_del(&ri->hlist);
1781 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1782 
1783 		ri->rp = rp;
1784 		ri->task = current;
1785 
1786 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1787 			raw_spin_lock_irqsave(&rp->lock, flags);
1788 			hlist_add_head(&ri->hlist, &rp->free_instances);
1789 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1790 			return 0;
1791 		}
1792 
1793 		arch_prepare_kretprobe(ri, regs);
1794 
1795 		/* XXX(hch): why is there no hlist_move_head? */
1796 		INIT_HLIST_NODE(&ri->hlist);
1797 		kretprobe_table_lock(hash, &flags);
1798 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1799 		kretprobe_table_unlock(hash, &flags);
1800 	} else {
1801 		rp->nmissed++;
1802 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1803 	}
1804 	return 0;
1805 }
1806 
1807 int __kprobes register_kretprobe(struct kretprobe *rp)
1808 {
1809 	int ret = 0;
1810 	struct kretprobe_instance *inst;
1811 	int i;
1812 	void *addr;
1813 
1814 	if (kretprobe_blacklist_size) {
1815 		addr = kprobe_addr(&rp->kp);
1816 		if (IS_ERR(addr))
1817 			return PTR_ERR(addr);
1818 
1819 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1820 			if (kretprobe_blacklist[i].addr == addr)
1821 				return -EINVAL;
1822 		}
1823 	}
1824 
1825 	rp->kp.pre_handler = pre_handler_kretprobe;
1826 	rp->kp.post_handler = NULL;
1827 	rp->kp.fault_handler = NULL;
1828 	rp->kp.break_handler = NULL;
1829 
1830 	/* Pre-allocate memory for max kretprobe instances */
1831 	if (rp->maxactive <= 0) {
1832 #ifdef CONFIG_PREEMPT
1833 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1834 #else
1835 		rp->maxactive = num_possible_cpus();
1836 #endif
1837 	}
1838 	raw_spin_lock_init(&rp->lock);
1839 	INIT_HLIST_HEAD(&rp->free_instances);
1840 	for (i = 0; i < rp->maxactive; i++) {
1841 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1842 			       rp->data_size, GFP_KERNEL);
1843 		if (inst == NULL) {
1844 			free_rp_inst(rp);
1845 			return -ENOMEM;
1846 		}
1847 		INIT_HLIST_NODE(&inst->hlist);
1848 		hlist_add_head(&inst->hlist, &rp->free_instances);
1849 	}
1850 
1851 	rp->nmissed = 0;
1852 	/* Establish function entry probe point */
1853 	ret = register_kprobe(&rp->kp);
1854 	if (ret != 0)
1855 		free_rp_inst(rp);
1856 	return ret;
1857 }
1858 EXPORT_SYMBOL_GPL(register_kretprobe);
1859 
1860 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1861 {
1862 	int ret = 0, i;
1863 
1864 	if (num <= 0)
1865 		return -EINVAL;
1866 	for (i = 0; i < num; i++) {
1867 		ret = register_kretprobe(rps[i]);
1868 		if (ret < 0) {
1869 			if (i > 0)
1870 				unregister_kretprobes(rps, i);
1871 			break;
1872 		}
1873 	}
1874 	return ret;
1875 }
1876 EXPORT_SYMBOL_GPL(register_kretprobes);
1877 
1878 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1879 {
1880 	unregister_kretprobes(&rp, 1);
1881 }
1882 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1883 
1884 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1885 {
1886 	int i;
1887 
1888 	if (num <= 0)
1889 		return;
1890 	mutex_lock(&kprobe_mutex);
1891 	for (i = 0; i < num; i++)
1892 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1893 			rps[i]->kp.addr = NULL;
1894 	mutex_unlock(&kprobe_mutex);
1895 
1896 	synchronize_sched();
1897 	for (i = 0; i < num; i++) {
1898 		if (rps[i]->kp.addr) {
1899 			__unregister_kprobe_bottom(&rps[i]->kp);
1900 			cleanup_rp_inst(rps[i]);
1901 		}
1902 	}
1903 }
1904 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1905 
1906 #else /* CONFIG_KRETPROBES */
1907 int __kprobes register_kretprobe(struct kretprobe *rp)
1908 {
1909 	return -ENOSYS;
1910 }
1911 EXPORT_SYMBOL_GPL(register_kretprobe);
1912 
1913 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1914 {
1915 	return -ENOSYS;
1916 }
1917 EXPORT_SYMBOL_GPL(register_kretprobes);
1918 
1919 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1920 {
1921 }
1922 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1923 
1924 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1925 {
1926 }
1927 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1928 
1929 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1930 					   struct pt_regs *regs)
1931 {
1932 	return 0;
1933 }
1934 
1935 #endif /* CONFIG_KRETPROBES */
1936 
1937 /* Set the kprobe gone and remove its instruction buffer. */
1938 static void __kprobes kill_kprobe(struct kprobe *p)
1939 {
1940 	struct kprobe *kp;
1941 
1942 	p->flags |= KPROBE_FLAG_GONE;
1943 	if (kprobe_aggrprobe(p)) {
1944 		/*
1945 		 * If this is an aggr_kprobe, we have to list all the
1946 		 * chained probes and mark them GONE.
1947 		 */
1948 		list_for_each_entry_rcu(kp, &p->list, list)
1949 			kp->flags |= KPROBE_FLAG_GONE;
1950 		p->post_handler = NULL;
1951 		p->break_handler = NULL;
1952 		kill_optimized_kprobe(p);
1953 	}
1954 	/*
1955 	 * Here, we can remove insn_slot safely, because no thread calls
1956 	 * the original probed function (which will be freed soon) any more.
1957 	 */
1958 	arch_remove_kprobe(p);
1959 }
1960 
1961 /* Disable one kprobe */
1962 int __kprobes disable_kprobe(struct kprobe *kp)
1963 {
1964 	int ret = 0;
1965 
1966 	mutex_lock(&kprobe_mutex);
1967 
1968 	/* Disable this kprobe */
1969 	if (__disable_kprobe(kp) == NULL)
1970 		ret = -EINVAL;
1971 
1972 	mutex_unlock(&kprobe_mutex);
1973 	return ret;
1974 }
1975 EXPORT_SYMBOL_GPL(disable_kprobe);
1976 
1977 /* Enable one kprobe */
1978 int __kprobes enable_kprobe(struct kprobe *kp)
1979 {
1980 	int ret = 0;
1981 	struct kprobe *p;
1982 
1983 	mutex_lock(&kprobe_mutex);
1984 
1985 	/* Check whether specified probe is valid. */
1986 	p = __get_valid_kprobe(kp);
1987 	if (unlikely(p == NULL)) {
1988 		ret = -EINVAL;
1989 		goto out;
1990 	}
1991 
1992 	if (kprobe_gone(kp)) {
1993 		/* This kprobe has gone, we couldn't enable it. */
1994 		ret = -EINVAL;
1995 		goto out;
1996 	}
1997 
1998 	if (p != kp)
1999 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2000 
2001 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2002 		p->flags &= ~KPROBE_FLAG_DISABLED;
2003 		arm_kprobe(p);
2004 	}
2005 out:
2006 	mutex_unlock(&kprobe_mutex);
2007 	return ret;
2008 }
2009 EXPORT_SYMBOL_GPL(enable_kprobe);
2010 
2011 void __kprobes dump_kprobe(struct kprobe *kp)
2012 {
2013 	printk(KERN_WARNING "Dumping kprobe:\n");
2014 	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2015 	       kp->symbol_name, kp->addr, kp->offset);
2016 }
2017 
2018 /* Module notifier call back, checking kprobes on the module */
2019 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
2020 					     unsigned long val, void *data)
2021 {
2022 	struct module *mod = data;
2023 	struct hlist_head *head;
2024 	struct hlist_node *node;
2025 	struct kprobe *p;
2026 	unsigned int i;
2027 	int checkcore = (val == MODULE_STATE_GOING);
2028 
2029 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2030 		return NOTIFY_DONE;
2031 
2032 	/*
2033 	 * When MODULE_STATE_GOING was notified, both of module .text and
2034 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2035 	 * notified, only .init.text section would be freed. We need to
2036 	 * disable kprobes which have been inserted in the sections.
2037 	 */
2038 	mutex_lock(&kprobe_mutex);
2039 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2040 		head = &kprobe_table[i];
2041 		hlist_for_each_entry_rcu(p, node, head, hlist)
2042 			if (within_module_init((unsigned long)p->addr, mod) ||
2043 			    (checkcore &&
2044 			     within_module_core((unsigned long)p->addr, mod))) {
2045 				/*
2046 				 * The vaddr this probe is installed will soon
2047 				 * be vfreed buy not synced to disk. Hence,
2048 				 * disarming the breakpoint isn't needed.
2049 				 */
2050 				kill_kprobe(p);
2051 			}
2052 	}
2053 	mutex_unlock(&kprobe_mutex);
2054 	return NOTIFY_DONE;
2055 }
2056 
2057 static struct notifier_block kprobe_module_nb = {
2058 	.notifier_call = kprobes_module_callback,
2059 	.priority = 0
2060 };
2061 
2062 static int __init init_kprobes(void)
2063 {
2064 	int i, err = 0;
2065 	unsigned long offset = 0, size = 0;
2066 	char *modname, namebuf[128];
2067 	const char *symbol_name;
2068 	void *addr;
2069 	struct kprobe_blackpoint *kb;
2070 
2071 	/* FIXME allocate the probe table, currently defined statically */
2072 	/* initialize all list heads */
2073 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2074 		INIT_HLIST_HEAD(&kprobe_table[i]);
2075 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2076 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2077 	}
2078 
2079 	/*
2080 	 * Lookup and populate the kprobe_blacklist.
2081 	 *
2082 	 * Unlike the kretprobe blacklist, we'll need to determine
2083 	 * the range of addresses that belong to the said functions,
2084 	 * since a kprobe need not necessarily be at the beginning
2085 	 * of a function.
2086 	 */
2087 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
2088 		kprobe_lookup_name(kb->name, addr);
2089 		if (!addr)
2090 			continue;
2091 
2092 		kb->start_addr = (unsigned long)addr;
2093 		symbol_name = kallsyms_lookup(kb->start_addr,
2094 				&size, &offset, &modname, namebuf);
2095 		if (!symbol_name)
2096 			kb->range = 0;
2097 		else
2098 			kb->range = size;
2099 	}
2100 
2101 	if (kretprobe_blacklist_size) {
2102 		/* lookup the function address from its name */
2103 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2104 			kprobe_lookup_name(kretprobe_blacklist[i].name,
2105 					   kretprobe_blacklist[i].addr);
2106 			if (!kretprobe_blacklist[i].addr)
2107 				printk("kretprobe: lookup failed: %s\n",
2108 				       kretprobe_blacklist[i].name);
2109 		}
2110 	}
2111 
2112 #if defined(CONFIG_OPTPROBES)
2113 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2114 	/* Init kprobe_optinsn_slots */
2115 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2116 #endif
2117 	/* By default, kprobes can be optimized */
2118 	kprobes_allow_optimization = true;
2119 #endif
2120 
2121 	/* By default, kprobes are armed */
2122 	kprobes_all_disarmed = false;
2123 
2124 	err = arch_init_kprobes();
2125 	if (!err)
2126 		err = register_die_notifier(&kprobe_exceptions_nb);
2127 	if (!err)
2128 		err = register_module_notifier(&kprobe_module_nb);
2129 
2130 	kprobes_initialized = (err == 0);
2131 
2132 	if (!err)
2133 		init_test_probes();
2134 	return err;
2135 }
2136 
2137 #ifdef CONFIG_DEBUG_FS
2138 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2139 		const char *sym, int offset, char *modname, struct kprobe *pp)
2140 {
2141 	char *kprobe_type;
2142 
2143 	if (p->pre_handler == pre_handler_kretprobe)
2144 		kprobe_type = "r";
2145 	else if (p->pre_handler == setjmp_pre_handler)
2146 		kprobe_type = "j";
2147 	else
2148 		kprobe_type = "k";
2149 
2150 	if (sym)
2151 		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2152 			p->addr, kprobe_type, sym, offset,
2153 			(modname ? modname : " "));
2154 	else
2155 		seq_printf(pi, "%p  %s  %p ",
2156 			p->addr, kprobe_type, p->addr);
2157 
2158 	if (!pp)
2159 		pp = p;
2160 	seq_printf(pi, "%s%s%s%s\n",
2161 		(kprobe_gone(p) ? "[GONE]" : ""),
2162 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2163 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2164 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2165 }
2166 
2167 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2168 {
2169 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2170 }
2171 
2172 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2173 {
2174 	(*pos)++;
2175 	if (*pos >= KPROBE_TABLE_SIZE)
2176 		return NULL;
2177 	return pos;
2178 }
2179 
2180 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2181 {
2182 	/* Nothing to do */
2183 }
2184 
2185 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2186 {
2187 	struct hlist_head *head;
2188 	struct hlist_node *node;
2189 	struct kprobe *p, *kp;
2190 	const char *sym = NULL;
2191 	unsigned int i = *(loff_t *) v;
2192 	unsigned long offset = 0;
2193 	char *modname, namebuf[128];
2194 
2195 	head = &kprobe_table[i];
2196 	preempt_disable();
2197 	hlist_for_each_entry_rcu(p, node, head, hlist) {
2198 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2199 					&offset, &modname, namebuf);
2200 		if (kprobe_aggrprobe(p)) {
2201 			list_for_each_entry_rcu(kp, &p->list, list)
2202 				report_probe(pi, kp, sym, offset, modname, p);
2203 		} else
2204 			report_probe(pi, p, sym, offset, modname, NULL);
2205 	}
2206 	preempt_enable();
2207 	return 0;
2208 }
2209 
2210 static const struct seq_operations kprobes_seq_ops = {
2211 	.start = kprobe_seq_start,
2212 	.next  = kprobe_seq_next,
2213 	.stop  = kprobe_seq_stop,
2214 	.show  = show_kprobe_addr
2215 };
2216 
2217 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2218 {
2219 	return seq_open(filp, &kprobes_seq_ops);
2220 }
2221 
2222 static const struct file_operations debugfs_kprobes_operations = {
2223 	.open           = kprobes_open,
2224 	.read           = seq_read,
2225 	.llseek         = seq_lseek,
2226 	.release        = seq_release,
2227 };
2228 
2229 static void __kprobes arm_all_kprobes(void)
2230 {
2231 	struct hlist_head *head;
2232 	struct hlist_node *node;
2233 	struct kprobe *p;
2234 	unsigned int i;
2235 
2236 	mutex_lock(&kprobe_mutex);
2237 
2238 	/* If kprobes are armed, just return */
2239 	if (!kprobes_all_disarmed)
2240 		goto already_enabled;
2241 
2242 	/* Arming kprobes doesn't optimize kprobe itself */
2243 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2244 		head = &kprobe_table[i];
2245 		hlist_for_each_entry_rcu(p, node, head, hlist)
2246 			if (!kprobe_disabled(p))
2247 				arm_kprobe(p);
2248 	}
2249 
2250 	kprobes_all_disarmed = false;
2251 	printk(KERN_INFO "Kprobes globally enabled\n");
2252 
2253 already_enabled:
2254 	mutex_unlock(&kprobe_mutex);
2255 	return;
2256 }
2257 
2258 static void __kprobes disarm_all_kprobes(void)
2259 {
2260 	struct hlist_head *head;
2261 	struct hlist_node *node;
2262 	struct kprobe *p;
2263 	unsigned int i;
2264 
2265 	mutex_lock(&kprobe_mutex);
2266 
2267 	/* If kprobes are already disarmed, just return */
2268 	if (kprobes_all_disarmed) {
2269 		mutex_unlock(&kprobe_mutex);
2270 		return;
2271 	}
2272 
2273 	kprobes_all_disarmed = true;
2274 	printk(KERN_INFO "Kprobes globally disabled\n");
2275 
2276 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2277 		head = &kprobe_table[i];
2278 		hlist_for_each_entry_rcu(p, node, head, hlist) {
2279 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2280 				disarm_kprobe(p, false);
2281 		}
2282 	}
2283 	mutex_unlock(&kprobe_mutex);
2284 
2285 	/* Wait for disarming all kprobes by optimizer */
2286 	wait_for_kprobe_optimizer();
2287 }
2288 
2289 /*
2290  * XXX: The debugfs bool file interface doesn't allow for callbacks
2291  * when the bool state is switched. We can reuse that facility when
2292  * available
2293  */
2294 static ssize_t read_enabled_file_bool(struct file *file,
2295 	       char __user *user_buf, size_t count, loff_t *ppos)
2296 {
2297 	char buf[3];
2298 
2299 	if (!kprobes_all_disarmed)
2300 		buf[0] = '1';
2301 	else
2302 		buf[0] = '0';
2303 	buf[1] = '\n';
2304 	buf[2] = 0x00;
2305 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2306 }
2307 
2308 static ssize_t write_enabled_file_bool(struct file *file,
2309 	       const char __user *user_buf, size_t count, loff_t *ppos)
2310 {
2311 	char buf[32];
2312 	size_t buf_size;
2313 
2314 	buf_size = min(count, (sizeof(buf)-1));
2315 	if (copy_from_user(buf, user_buf, buf_size))
2316 		return -EFAULT;
2317 
2318 	switch (buf[0]) {
2319 	case 'y':
2320 	case 'Y':
2321 	case '1':
2322 		arm_all_kprobes();
2323 		break;
2324 	case 'n':
2325 	case 'N':
2326 	case '0':
2327 		disarm_all_kprobes();
2328 		break;
2329 	}
2330 
2331 	return count;
2332 }
2333 
2334 static const struct file_operations fops_kp = {
2335 	.read =         read_enabled_file_bool,
2336 	.write =        write_enabled_file_bool,
2337 	.llseek =	default_llseek,
2338 };
2339 
2340 static int __kprobes debugfs_kprobe_init(void)
2341 {
2342 	struct dentry *dir, *file;
2343 	unsigned int value = 1;
2344 
2345 	dir = debugfs_create_dir("kprobes", NULL);
2346 	if (!dir)
2347 		return -ENOMEM;
2348 
2349 	file = debugfs_create_file("list", 0444, dir, NULL,
2350 				&debugfs_kprobes_operations);
2351 	if (!file) {
2352 		debugfs_remove(dir);
2353 		return -ENOMEM;
2354 	}
2355 
2356 	file = debugfs_create_file("enabled", 0600, dir,
2357 					&value, &fops_kp);
2358 	if (!file) {
2359 		debugfs_remove(dir);
2360 		return -ENOMEM;
2361 	}
2362 
2363 	return 0;
2364 }
2365 
2366 late_initcall(debugfs_kprobe_init);
2367 #endif /* CONFIG_DEBUG_FS */
2368 
2369 module_init(init_kprobes);
2370 
2371 /* defined in arch/.../kernel/kprobes.c */
2372 EXPORT_SYMBOL_GPL(jprobe_return);
2373