xref: /openbmc/linux/kernel/kprobes.c (revision 82ced6fd)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/kdebug.h>
46 #include <linux/memory.h>
47 
48 #include <asm-generic/sections.h>
49 #include <asm/cacheflush.h>
50 #include <asm/errno.h>
51 #include <asm/uaccess.h>
52 
53 #define KPROBE_HASH_BITS 6
54 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
55 
56 
57 /*
58  * Some oddball architectures like 64bit powerpc have function descriptors
59  * so this must be overridable.
60  */
61 #ifndef kprobe_lookup_name
62 #define kprobe_lookup_name(name, addr) \
63 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
64 #endif
65 
66 static int kprobes_initialized;
67 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
68 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
69 
70 /* NOTE: change this value only with kprobe_mutex held */
71 static bool kprobes_all_disarmed;
72 
73 static DEFINE_MUTEX(kprobe_mutex);	/* Protects kprobe_table */
74 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
75 static struct {
76 	spinlock_t lock ____cacheline_aligned_in_smp;
77 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
78 
79 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
80 {
81 	return &(kretprobe_table_locks[hash].lock);
82 }
83 
84 /*
85  * Normally, functions that we'd want to prohibit kprobes in, are marked
86  * __kprobes. But, there are cases where such functions already belong to
87  * a different section (__sched for preempt_schedule)
88  *
89  * For such cases, we now have a blacklist
90  */
91 static struct kprobe_blackpoint kprobe_blacklist[] = {
92 	{"preempt_schedule",},
93 	{NULL}    /* Terminator */
94 };
95 
96 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
97 /*
98  * kprobe->ainsn.insn points to the copy of the instruction to be
99  * single-stepped. x86_64, POWER4 and above have no-exec support and
100  * stepping on the instruction on a vmalloced/kmalloced/data page
101  * is a recipe for disaster
102  */
103 #define INSNS_PER_PAGE	(PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
104 
105 struct kprobe_insn_page {
106 	struct hlist_node hlist;
107 	kprobe_opcode_t *insns;		/* Page of instruction slots */
108 	char slot_used[INSNS_PER_PAGE];
109 	int nused;
110 	int ngarbage;
111 };
112 
113 enum kprobe_slot_state {
114 	SLOT_CLEAN = 0,
115 	SLOT_DIRTY = 1,
116 	SLOT_USED = 2,
117 };
118 
119 static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_pages */
120 static struct hlist_head kprobe_insn_pages;
121 static int kprobe_garbage_slots;
122 static int collect_garbage_slots(void);
123 
124 static int __kprobes check_safety(void)
125 {
126 	int ret = 0;
127 #if defined(CONFIG_PREEMPT) && defined(CONFIG_FREEZER)
128 	ret = freeze_processes();
129 	if (ret == 0) {
130 		struct task_struct *p, *q;
131 		do_each_thread(p, q) {
132 			if (p != current && p->state == TASK_RUNNING &&
133 			    p->pid != 0) {
134 				printk("Check failed: %s is running\n",p->comm);
135 				ret = -1;
136 				goto loop_end;
137 			}
138 		} while_each_thread(p, q);
139 	}
140 loop_end:
141 	thaw_processes();
142 #else
143 	synchronize_sched();
144 #endif
145 	return ret;
146 }
147 
148 /**
149  * __get_insn_slot() - Find a slot on an executable page for an instruction.
150  * We allocate an executable page if there's no room on existing ones.
151  */
152 static kprobe_opcode_t __kprobes *__get_insn_slot(void)
153 {
154 	struct kprobe_insn_page *kip;
155 	struct hlist_node *pos;
156 
157  retry:
158 	hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
159 		if (kip->nused < INSNS_PER_PAGE) {
160 			int i;
161 			for (i = 0; i < INSNS_PER_PAGE; i++) {
162 				if (kip->slot_used[i] == SLOT_CLEAN) {
163 					kip->slot_used[i] = SLOT_USED;
164 					kip->nused++;
165 					return kip->insns + (i * MAX_INSN_SIZE);
166 				}
167 			}
168 			/* Surprise!  No unused slots.  Fix kip->nused. */
169 			kip->nused = INSNS_PER_PAGE;
170 		}
171 	}
172 
173 	/* If there are any garbage slots, collect it and try again. */
174 	if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
175 		goto retry;
176 	}
177 	/* All out of space.  Need to allocate a new page. Use slot 0. */
178 	kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
179 	if (!kip)
180 		return NULL;
181 
182 	/*
183 	 * Use module_alloc so this page is within +/- 2GB of where the
184 	 * kernel image and loaded module images reside. This is required
185 	 * so x86_64 can correctly handle the %rip-relative fixups.
186 	 */
187 	kip->insns = module_alloc(PAGE_SIZE);
188 	if (!kip->insns) {
189 		kfree(kip);
190 		return NULL;
191 	}
192 	INIT_HLIST_NODE(&kip->hlist);
193 	hlist_add_head(&kip->hlist, &kprobe_insn_pages);
194 	memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
195 	kip->slot_used[0] = SLOT_USED;
196 	kip->nused = 1;
197 	kip->ngarbage = 0;
198 	return kip->insns;
199 }
200 
201 kprobe_opcode_t __kprobes *get_insn_slot(void)
202 {
203 	kprobe_opcode_t *ret;
204 	mutex_lock(&kprobe_insn_mutex);
205 	ret = __get_insn_slot();
206 	mutex_unlock(&kprobe_insn_mutex);
207 	return ret;
208 }
209 
210 /* Return 1 if all garbages are collected, otherwise 0. */
211 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
212 {
213 	kip->slot_used[idx] = SLOT_CLEAN;
214 	kip->nused--;
215 	if (kip->nused == 0) {
216 		/*
217 		 * Page is no longer in use.  Free it unless
218 		 * it's the last one.  We keep the last one
219 		 * so as not to have to set it up again the
220 		 * next time somebody inserts a probe.
221 		 */
222 		hlist_del(&kip->hlist);
223 		if (hlist_empty(&kprobe_insn_pages)) {
224 			INIT_HLIST_NODE(&kip->hlist);
225 			hlist_add_head(&kip->hlist,
226 				       &kprobe_insn_pages);
227 		} else {
228 			module_free(NULL, kip->insns);
229 			kfree(kip);
230 		}
231 		return 1;
232 	}
233 	return 0;
234 }
235 
236 static int __kprobes collect_garbage_slots(void)
237 {
238 	struct kprobe_insn_page *kip;
239 	struct hlist_node *pos, *next;
240 	int safety;
241 
242 	/* Ensure no-one is preepmted on the garbages */
243 	mutex_unlock(&kprobe_insn_mutex);
244 	safety = check_safety();
245 	mutex_lock(&kprobe_insn_mutex);
246 	if (safety != 0)
247 		return -EAGAIN;
248 
249 	hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) {
250 		int i;
251 		if (kip->ngarbage == 0)
252 			continue;
253 		kip->ngarbage = 0;	/* we will collect all garbages */
254 		for (i = 0; i < INSNS_PER_PAGE; i++) {
255 			if (kip->slot_used[i] == SLOT_DIRTY &&
256 			    collect_one_slot(kip, i))
257 				break;
258 		}
259 	}
260 	kprobe_garbage_slots = 0;
261 	return 0;
262 }
263 
264 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
265 {
266 	struct kprobe_insn_page *kip;
267 	struct hlist_node *pos;
268 
269 	mutex_lock(&kprobe_insn_mutex);
270 	hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
271 		if (kip->insns <= slot &&
272 		    slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
273 			int i = (slot - kip->insns) / MAX_INSN_SIZE;
274 			if (dirty) {
275 				kip->slot_used[i] = SLOT_DIRTY;
276 				kip->ngarbage++;
277 			} else {
278 				collect_one_slot(kip, i);
279 			}
280 			break;
281 		}
282 	}
283 
284 	if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
285 		collect_garbage_slots();
286 
287 	mutex_unlock(&kprobe_insn_mutex);
288 }
289 #endif
290 
291 /* We have preemption disabled.. so it is safe to use __ versions */
292 static inline void set_kprobe_instance(struct kprobe *kp)
293 {
294 	__get_cpu_var(kprobe_instance) = kp;
295 }
296 
297 static inline void reset_kprobe_instance(void)
298 {
299 	__get_cpu_var(kprobe_instance) = NULL;
300 }
301 
302 /*
303  * This routine is called either:
304  * 	- under the kprobe_mutex - during kprobe_[un]register()
305  * 				OR
306  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
307  */
308 struct kprobe __kprobes *get_kprobe(void *addr)
309 {
310 	struct hlist_head *head;
311 	struct hlist_node *node;
312 	struct kprobe *p;
313 
314 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
315 	hlist_for_each_entry_rcu(p, node, head, hlist) {
316 		if (p->addr == addr)
317 			return p;
318 	}
319 	return NULL;
320 }
321 
322 /* Arm a kprobe with text_mutex */
323 static void __kprobes arm_kprobe(struct kprobe *kp)
324 {
325 	mutex_lock(&text_mutex);
326 	arch_arm_kprobe(kp);
327 	mutex_unlock(&text_mutex);
328 }
329 
330 /* Disarm a kprobe with text_mutex */
331 static void __kprobes disarm_kprobe(struct kprobe *kp)
332 {
333 	mutex_lock(&text_mutex);
334 	arch_disarm_kprobe(kp);
335 	mutex_unlock(&text_mutex);
336 }
337 
338 /*
339  * Aggregate handlers for multiple kprobes support - these handlers
340  * take care of invoking the individual kprobe handlers on p->list
341  */
342 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
343 {
344 	struct kprobe *kp;
345 
346 	list_for_each_entry_rcu(kp, &p->list, list) {
347 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
348 			set_kprobe_instance(kp);
349 			if (kp->pre_handler(kp, regs))
350 				return 1;
351 		}
352 		reset_kprobe_instance();
353 	}
354 	return 0;
355 }
356 
357 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
358 					unsigned long flags)
359 {
360 	struct kprobe *kp;
361 
362 	list_for_each_entry_rcu(kp, &p->list, list) {
363 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
364 			set_kprobe_instance(kp);
365 			kp->post_handler(kp, regs, flags);
366 			reset_kprobe_instance();
367 		}
368 	}
369 }
370 
371 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
372 					int trapnr)
373 {
374 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
375 
376 	/*
377 	 * if we faulted "during" the execution of a user specified
378 	 * probe handler, invoke just that probe's fault handler
379 	 */
380 	if (cur && cur->fault_handler) {
381 		if (cur->fault_handler(cur, regs, trapnr))
382 			return 1;
383 	}
384 	return 0;
385 }
386 
387 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
388 {
389 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
390 	int ret = 0;
391 
392 	if (cur && cur->break_handler) {
393 		if (cur->break_handler(cur, regs))
394 			ret = 1;
395 	}
396 	reset_kprobe_instance();
397 	return ret;
398 }
399 
400 /* Walks the list and increments nmissed count for multiprobe case */
401 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
402 {
403 	struct kprobe *kp;
404 	if (p->pre_handler != aggr_pre_handler) {
405 		p->nmissed++;
406 	} else {
407 		list_for_each_entry_rcu(kp, &p->list, list)
408 			kp->nmissed++;
409 	}
410 	return;
411 }
412 
413 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
414 				struct hlist_head *head)
415 {
416 	struct kretprobe *rp = ri->rp;
417 
418 	/* remove rp inst off the rprobe_inst_table */
419 	hlist_del(&ri->hlist);
420 	INIT_HLIST_NODE(&ri->hlist);
421 	if (likely(rp)) {
422 		spin_lock(&rp->lock);
423 		hlist_add_head(&ri->hlist, &rp->free_instances);
424 		spin_unlock(&rp->lock);
425 	} else
426 		/* Unregistering */
427 		hlist_add_head(&ri->hlist, head);
428 }
429 
430 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
431 			 struct hlist_head **head, unsigned long *flags)
432 {
433 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
434 	spinlock_t *hlist_lock;
435 
436 	*head = &kretprobe_inst_table[hash];
437 	hlist_lock = kretprobe_table_lock_ptr(hash);
438 	spin_lock_irqsave(hlist_lock, *flags);
439 }
440 
441 static void __kprobes kretprobe_table_lock(unsigned long hash,
442 	unsigned long *flags)
443 {
444 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
445 	spin_lock_irqsave(hlist_lock, *flags);
446 }
447 
448 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
449 	unsigned long *flags)
450 {
451 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
452 	spinlock_t *hlist_lock;
453 
454 	hlist_lock = kretprobe_table_lock_ptr(hash);
455 	spin_unlock_irqrestore(hlist_lock, *flags);
456 }
457 
458 void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
459 {
460 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
461 	spin_unlock_irqrestore(hlist_lock, *flags);
462 }
463 
464 /*
465  * This function is called from finish_task_switch when task tk becomes dead,
466  * so that we can recycle any function-return probe instances associated
467  * with this task. These left over instances represent probed functions
468  * that have been called but will never return.
469  */
470 void __kprobes kprobe_flush_task(struct task_struct *tk)
471 {
472 	struct kretprobe_instance *ri;
473 	struct hlist_head *head, empty_rp;
474 	struct hlist_node *node, *tmp;
475 	unsigned long hash, flags = 0;
476 
477 	if (unlikely(!kprobes_initialized))
478 		/* Early boot.  kretprobe_table_locks not yet initialized. */
479 		return;
480 
481 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
482 	head = &kretprobe_inst_table[hash];
483 	kretprobe_table_lock(hash, &flags);
484 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
485 		if (ri->task == tk)
486 			recycle_rp_inst(ri, &empty_rp);
487 	}
488 	kretprobe_table_unlock(hash, &flags);
489 	INIT_HLIST_HEAD(&empty_rp);
490 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
491 		hlist_del(&ri->hlist);
492 		kfree(ri);
493 	}
494 }
495 
496 static inline void free_rp_inst(struct kretprobe *rp)
497 {
498 	struct kretprobe_instance *ri;
499 	struct hlist_node *pos, *next;
500 
501 	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
502 		hlist_del(&ri->hlist);
503 		kfree(ri);
504 	}
505 }
506 
507 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
508 {
509 	unsigned long flags, hash;
510 	struct kretprobe_instance *ri;
511 	struct hlist_node *pos, *next;
512 	struct hlist_head *head;
513 
514 	/* No race here */
515 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
516 		kretprobe_table_lock(hash, &flags);
517 		head = &kretprobe_inst_table[hash];
518 		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
519 			if (ri->rp == rp)
520 				ri->rp = NULL;
521 		}
522 		kretprobe_table_unlock(hash, &flags);
523 	}
524 	free_rp_inst(rp);
525 }
526 
527 /*
528  * Keep all fields in the kprobe consistent
529  */
530 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
531 {
532 	memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
533 	memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
534 }
535 
536 /*
537 * Add the new probe to ap->list. Fail if this is the
538 * second jprobe at the address - two jprobes can't coexist
539 */
540 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
541 {
542 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
543 	if (p->break_handler) {
544 		if (ap->break_handler)
545 			return -EEXIST;
546 		list_add_tail_rcu(&p->list, &ap->list);
547 		ap->break_handler = aggr_break_handler;
548 	} else
549 		list_add_rcu(&p->list, &ap->list);
550 	if (p->post_handler && !ap->post_handler)
551 		ap->post_handler = aggr_post_handler;
552 
553 	if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
554 		ap->flags &= ~KPROBE_FLAG_DISABLED;
555 		if (!kprobes_all_disarmed)
556 			/* Arm the breakpoint again. */
557 			arm_kprobe(ap);
558 	}
559 	return 0;
560 }
561 
562 /*
563  * Fill in the required fields of the "manager kprobe". Replace the
564  * earlier kprobe in the hlist with the manager kprobe
565  */
566 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
567 {
568 	copy_kprobe(p, ap);
569 	flush_insn_slot(ap);
570 	ap->addr = p->addr;
571 	ap->flags = p->flags;
572 	ap->pre_handler = aggr_pre_handler;
573 	ap->fault_handler = aggr_fault_handler;
574 	/* We don't care the kprobe which has gone. */
575 	if (p->post_handler && !kprobe_gone(p))
576 		ap->post_handler = aggr_post_handler;
577 	if (p->break_handler && !kprobe_gone(p))
578 		ap->break_handler = aggr_break_handler;
579 
580 	INIT_LIST_HEAD(&ap->list);
581 	list_add_rcu(&p->list, &ap->list);
582 
583 	hlist_replace_rcu(&p->hlist, &ap->hlist);
584 }
585 
586 /*
587  * This is the second or subsequent kprobe at the address - handle
588  * the intricacies
589  */
590 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
591 					  struct kprobe *p)
592 {
593 	int ret = 0;
594 	struct kprobe *ap = old_p;
595 
596 	if (old_p->pre_handler != aggr_pre_handler) {
597 		/* If old_p is not an aggr_probe, create new aggr_kprobe. */
598 		ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
599 		if (!ap)
600 			return -ENOMEM;
601 		add_aggr_kprobe(ap, old_p);
602 	}
603 
604 	if (kprobe_gone(ap)) {
605 		/*
606 		 * Attempting to insert new probe at the same location that
607 		 * had a probe in the module vaddr area which already
608 		 * freed. So, the instruction slot has already been
609 		 * released. We need a new slot for the new probe.
610 		 */
611 		ret = arch_prepare_kprobe(ap);
612 		if (ret)
613 			/*
614 			 * Even if fail to allocate new slot, don't need to
615 			 * free aggr_probe. It will be used next time, or
616 			 * freed by unregister_kprobe.
617 			 */
618 			return ret;
619 
620 		/*
621 		 * Clear gone flag to prevent allocating new slot again, and
622 		 * set disabled flag because it is not armed yet.
623 		 */
624 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
625 			    | KPROBE_FLAG_DISABLED;
626 	}
627 
628 	copy_kprobe(ap, p);
629 	return add_new_kprobe(ap, p);
630 }
631 
632 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/
633 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
634 {
635 	struct kprobe *kp;
636 
637 	list_for_each_entry_rcu(kp, &p->list, list) {
638 		if (!kprobe_disabled(kp))
639 			/*
640 			 * There is an active probe on the list.
641 			 * We can't disable aggr_kprobe.
642 			 */
643 			return 0;
644 	}
645 	p->flags |= KPROBE_FLAG_DISABLED;
646 	return 1;
647 }
648 
649 static int __kprobes in_kprobes_functions(unsigned long addr)
650 {
651 	struct kprobe_blackpoint *kb;
652 
653 	if (addr >= (unsigned long)__kprobes_text_start &&
654 	    addr < (unsigned long)__kprobes_text_end)
655 		return -EINVAL;
656 	/*
657 	 * If there exists a kprobe_blacklist, verify and
658 	 * fail any probe registration in the prohibited area
659 	 */
660 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
661 		if (kb->start_addr) {
662 			if (addr >= kb->start_addr &&
663 			    addr < (kb->start_addr + kb->range))
664 				return -EINVAL;
665 		}
666 	}
667 	return 0;
668 }
669 
670 /*
671  * If we have a symbol_name argument, look it up and add the offset field
672  * to it. This way, we can specify a relative address to a symbol.
673  */
674 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
675 {
676 	kprobe_opcode_t *addr = p->addr;
677 	if (p->symbol_name) {
678 		if (addr)
679 			return NULL;
680 		kprobe_lookup_name(p->symbol_name, addr);
681 	}
682 
683 	if (!addr)
684 		return NULL;
685 	return (kprobe_opcode_t *)(((char *)addr) + p->offset);
686 }
687 
688 int __kprobes register_kprobe(struct kprobe *p)
689 {
690 	int ret = 0;
691 	struct kprobe *old_p;
692 	struct module *probed_mod;
693 	kprobe_opcode_t *addr;
694 
695 	addr = kprobe_addr(p);
696 	if (!addr)
697 		return -EINVAL;
698 	p->addr = addr;
699 
700 	preempt_disable();
701 	if (!__kernel_text_address((unsigned long) p->addr) ||
702 	    in_kprobes_functions((unsigned long) p->addr)) {
703 		preempt_enable();
704 		return -EINVAL;
705 	}
706 
707 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
708 	p->flags &= KPROBE_FLAG_DISABLED;
709 
710 	/*
711 	 * Check if are we probing a module.
712 	 */
713 	probed_mod = __module_text_address((unsigned long) p->addr);
714 	if (probed_mod) {
715 		/*
716 		 * We must hold a refcount of the probed module while updating
717 		 * its code to prohibit unexpected unloading.
718 		 */
719 		if (unlikely(!try_module_get(probed_mod))) {
720 			preempt_enable();
721 			return -EINVAL;
722 		}
723 		/*
724 		 * If the module freed .init.text, we couldn't insert
725 		 * kprobes in there.
726 		 */
727 		if (within_module_init((unsigned long)p->addr, probed_mod) &&
728 		    probed_mod->state != MODULE_STATE_COMING) {
729 			module_put(probed_mod);
730 			preempt_enable();
731 			return -EINVAL;
732 		}
733 	}
734 	preempt_enable();
735 
736 	p->nmissed = 0;
737 	INIT_LIST_HEAD(&p->list);
738 	mutex_lock(&kprobe_mutex);
739 	old_p = get_kprobe(p->addr);
740 	if (old_p) {
741 		ret = register_aggr_kprobe(old_p, p);
742 		goto out;
743 	}
744 
745 	mutex_lock(&text_mutex);
746 	ret = arch_prepare_kprobe(p);
747 	if (ret)
748 		goto out_unlock_text;
749 
750 	INIT_HLIST_NODE(&p->hlist);
751 	hlist_add_head_rcu(&p->hlist,
752 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
753 
754 	if (!kprobes_all_disarmed && !kprobe_disabled(p))
755 		arch_arm_kprobe(p);
756 
757 out_unlock_text:
758 	mutex_unlock(&text_mutex);
759 out:
760 	mutex_unlock(&kprobe_mutex);
761 
762 	if (probed_mod)
763 		module_put(probed_mod);
764 
765 	return ret;
766 }
767 EXPORT_SYMBOL_GPL(register_kprobe);
768 
769 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
770 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
771 {
772 	struct kprobe *old_p, *list_p;
773 
774 	old_p = get_kprobe(p->addr);
775 	if (unlikely(!old_p))
776 		return NULL;
777 
778 	if (p != old_p) {
779 		list_for_each_entry_rcu(list_p, &old_p->list, list)
780 			if (list_p == p)
781 			/* kprobe p is a valid probe */
782 				goto valid;
783 		return NULL;
784 	}
785 valid:
786 	return old_p;
787 }
788 
789 /*
790  * Unregister a kprobe without a scheduler synchronization.
791  */
792 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
793 {
794 	struct kprobe *old_p, *list_p;
795 
796 	old_p = __get_valid_kprobe(p);
797 	if (old_p == NULL)
798 		return -EINVAL;
799 
800 	if (old_p == p ||
801 	    (old_p->pre_handler == aggr_pre_handler &&
802 	     list_is_singular(&old_p->list))) {
803 		/*
804 		 * Only probe on the hash list. Disarm only if kprobes are
805 		 * enabled and not gone - otherwise, the breakpoint would
806 		 * already have been removed. We save on flushing icache.
807 		 */
808 		if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
809 			disarm_kprobe(p);
810 		hlist_del_rcu(&old_p->hlist);
811 	} else {
812 		if (p->break_handler && !kprobe_gone(p))
813 			old_p->break_handler = NULL;
814 		if (p->post_handler && !kprobe_gone(p)) {
815 			list_for_each_entry_rcu(list_p, &old_p->list, list) {
816 				if ((list_p != p) && (list_p->post_handler))
817 					goto noclean;
818 			}
819 			old_p->post_handler = NULL;
820 		}
821 noclean:
822 		list_del_rcu(&p->list);
823 		if (!kprobe_disabled(old_p)) {
824 			try_to_disable_aggr_kprobe(old_p);
825 			if (!kprobes_all_disarmed && kprobe_disabled(old_p))
826 				disarm_kprobe(old_p);
827 		}
828 	}
829 	return 0;
830 }
831 
832 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
833 {
834 	struct kprobe *old_p;
835 
836 	if (list_empty(&p->list))
837 		arch_remove_kprobe(p);
838 	else if (list_is_singular(&p->list)) {
839 		/* "p" is the last child of an aggr_kprobe */
840 		old_p = list_entry(p->list.next, struct kprobe, list);
841 		list_del(&p->list);
842 		arch_remove_kprobe(old_p);
843 		kfree(old_p);
844 	}
845 }
846 
847 int __kprobes register_kprobes(struct kprobe **kps, int num)
848 {
849 	int i, ret = 0;
850 
851 	if (num <= 0)
852 		return -EINVAL;
853 	for (i = 0; i < num; i++) {
854 		ret = register_kprobe(kps[i]);
855 		if (ret < 0) {
856 			if (i > 0)
857 				unregister_kprobes(kps, i);
858 			break;
859 		}
860 	}
861 	return ret;
862 }
863 EXPORT_SYMBOL_GPL(register_kprobes);
864 
865 void __kprobes unregister_kprobe(struct kprobe *p)
866 {
867 	unregister_kprobes(&p, 1);
868 }
869 EXPORT_SYMBOL_GPL(unregister_kprobe);
870 
871 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
872 {
873 	int i;
874 
875 	if (num <= 0)
876 		return;
877 	mutex_lock(&kprobe_mutex);
878 	for (i = 0; i < num; i++)
879 		if (__unregister_kprobe_top(kps[i]) < 0)
880 			kps[i]->addr = NULL;
881 	mutex_unlock(&kprobe_mutex);
882 
883 	synchronize_sched();
884 	for (i = 0; i < num; i++)
885 		if (kps[i]->addr)
886 			__unregister_kprobe_bottom(kps[i]);
887 }
888 EXPORT_SYMBOL_GPL(unregister_kprobes);
889 
890 static struct notifier_block kprobe_exceptions_nb = {
891 	.notifier_call = kprobe_exceptions_notify,
892 	.priority = 0x7fffffff /* we need to be notified first */
893 };
894 
895 unsigned long __weak arch_deref_entry_point(void *entry)
896 {
897 	return (unsigned long)entry;
898 }
899 
900 int __kprobes register_jprobes(struct jprobe **jps, int num)
901 {
902 	struct jprobe *jp;
903 	int ret = 0, i;
904 
905 	if (num <= 0)
906 		return -EINVAL;
907 	for (i = 0; i < num; i++) {
908 		unsigned long addr;
909 		jp = jps[i];
910 		addr = arch_deref_entry_point(jp->entry);
911 
912 		if (!kernel_text_address(addr))
913 			ret = -EINVAL;
914 		else {
915 			/* Todo: Verify probepoint is a function entry point */
916 			jp->kp.pre_handler = setjmp_pre_handler;
917 			jp->kp.break_handler = longjmp_break_handler;
918 			ret = register_kprobe(&jp->kp);
919 		}
920 		if (ret < 0) {
921 			if (i > 0)
922 				unregister_jprobes(jps, i);
923 			break;
924 		}
925 	}
926 	return ret;
927 }
928 EXPORT_SYMBOL_GPL(register_jprobes);
929 
930 int __kprobes register_jprobe(struct jprobe *jp)
931 {
932 	return register_jprobes(&jp, 1);
933 }
934 EXPORT_SYMBOL_GPL(register_jprobe);
935 
936 void __kprobes unregister_jprobe(struct jprobe *jp)
937 {
938 	unregister_jprobes(&jp, 1);
939 }
940 EXPORT_SYMBOL_GPL(unregister_jprobe);
941 
942 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
943 {
944 	int i;
945 
946 	if (num <= 0)
947 		return;
948 	mutex_lock(&kprobe_mutex);
949 	for (i = 0; i < num; i++)
950 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
951 			jps[i]->kp.addr = NULL;
952 	mutex_unlock(&kprobe_mutex);
953 
954 	synchronize_sched();
955 	for (i = 0; i < num; i++) {
956 		if (jps[i]->kp.addr)
957 			__unregister_kprobe_bottom(&jps[i]->kp);
958 	}
959 }
960 EXPORT_SYMBOL_GPL(unregister_jprobes);
961 
962 #ifdef CONFIG_KRETPROBES
963 /*
964  * This kprobe pre_handler is registered with every kretprobe. When probe
965  * hits it will set up the return probe.
966  */
967 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
968 					   struct pt_regs *regs)
969 {
970 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
971 	unsigned long hash, flags = 0;
972 	struct kretprobe_instance *ri;
973 
974 	/*TODO: consider to only swap the RA after the last pre_handler fired */
975 	hash = hash_ptr(current, KPROBE_HASH_BITS);
976 	spin_lock_irqsave(&rp->lock, flags);
977 	if (!hlist_empty(&rp->free_instances)) {
978 		ri = hlist_entry(rp->free_instances.first,
979 				struct kretprobe_instance, hlist);
980 		hlist_del(&ri->hlist);
981 		spin_unlock_irqrestore(&rp->lock, flags);
982 
983 		ri->rp = rp;
984 		ri->task = current;
985 
986 		if (rp->entry_handler && rp->entry_handler(ri, regs))
987 			return 0;
988 
989 		arch_prepare_kretprobe(ri, regs);
990 
991 		/* XXX(hch): why is there no hlist_move_head? */
992 		INIT_HLIST_NODE(&ri->hlist);
993 		kretprobe_table_lock(hash, &flags);
994 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
995 		kretprobe_table_unlock(hash, &flags);
996 	} else {
997 		rp->nmissed++;
998 		spin_unlock_irqrestore(&rp->lock, flags);
999 	}
1000 	return 0;
1001 }
1002 
1003 int __kprobes register_kretprobe(struct kretprobe *rp)
1004 {
1005 	int ret = 0;
1006 	struct kretprobe_instance *inst;
1007 	int i;
1008 	void *addr;
1009 
1010 	if (kretprobe_blacklist_size) {
1011 		addr = kprobe_addr(&rp->kp);
1012 		if (!addr)
1013 			return -EINVAL;
1014 
1015 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1016 			if (kretprobe_blacklist[i].addr == addr)
1017 				return -EINVAL;
1018 		}
1019 	}
1020 
1021 	rp->kp.pre_handler = pre_handler_kretprobe;
1022 	rp->kp.post_handler = NULL;
1023 	rp->kp.fault_handler = NULL;
1024 	rp->kp.break_handler = NULL;
1025 
1026 	/* Pre-allocate memory for max kretprobe instances */
1027 	if (rp->maxactive <= 0) {
1028 #ifdef CONFIG_PREEMPT
1029 		rp->maxactive = max(10, 2 * NR_CPUS);
1030 #else
1031 		rp->maxactive = NR_CPUS;
1032 #endif
1033 	}
1034 	spin_lock_init(&rp->lock);
1035 	INIT_HLIST_HEAD(&rp->free_instances);
1036 	for (i = 0; i < rp->maxactive; i++) {
1037 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1038 			       rp->data_size, GFP_KERNEL);
1039 		if (inst == NULL) {
1040 			free_rp_inst(rp);
1041 			return -ENOMEM;
1042 		}
1043 		INIT_HLIST_NODE(&inst->hlist);
1044 		hlist_add_head(&inst->hlist, &rp->free_instances);
1045 	}
1046 
1047 	rp->nmissed = 0;
1048 	/* Establish function entry probe point */
1049 	ret = register_kprobe(&rp->kp);
1050 	if (ret != 0)
1051 		free_rp_inst(rp);
1052 	return ret;
1053 }
1054 EXPORT_SYMBOL_GPL(register_kretprobe);
1055 
1056 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1057 {
1058 	int ret = 0, i;
1059 
1060 	if (num <= 0)
1061 		return -EINVAL;
1062 	for (i = 0; i < num; i++) {
1063 		ret = register_kretprobe(rps[i]);
1064 		if (ret < 0) {
1065 			if (i > 0)
1066 				unregister_kretprobes(rps, i);
1067 			break;
1068 		}
1069 	}
1070 	return ret;
1071 }
1072 EXPORT_SYMBOL_GPL(register_kretprobes);
1073 
1074 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1075 {
1076 	unregister_kretprobes(&rp, 1);
1077 }
1078 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1079 
1080 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1081 {
1082 	int i;
1083 
1084 	if (num <= 0)
1085 		return;
1086 	mutex_lock(&kprobe_mutex);
1087 	for (i = 0; i < num; i++)
1088 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1089 			rps[i]->kp.addr = NULL;
1090 	mutex_unlock(&kprobe_mutex);
1091 
1092 	synchronize_sched();
1093 	for (i = 0; i < num; i++) {
1094 		if (rps[i]->kp.addr) {
1095 			__unregister_kprobe_bottom(&rps[i]->kp);
1096 			cleanup_rp_inst(rps[i]);
1097 		}
1098 	}
1099 }
1100 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1101 
1102 #else /* CONFIG_KRETPROBES */
1103 int __kprobes register_kretprobe(struct kretprobe *rp)
1104 {
1105 	return -ENOSYS;
1106 }
1107 EXPORT_SYMBOL_GPL(register_kretprobe);
1108 
1109 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1110 {
1111 	return -ENOSYS;
1112 }
1113 EXPORT_SYMBOL_GPL(register_kretprobes);
1114 
1115 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1116 {
1117 }
1118 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1119 
1120 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1121 {
1122 }
1123 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1124 
1125 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1126 					   struct pt_regs *regs)
1127 {
1128 	return 0;
1129 }
1130 
1131 #endif /* CONFIG_KRETPROBES */
1132 
1133 /* Set the kprobe gone and remove its instruction buffer. */
1134 static void __kprobes kill_kprobe(struct kprobe *p)
1135 {
1136 	struct kprobe *kp;
1137 
1138 	p->flags |= KPROBE_FLAG_GONE;
1139 	if (p->pre_handler == aggr_pre_handler) {
1140 		/*
1141 		 * If this is an aggr_kprobe, we have to list all the
1142 		 * chained probes and mark them GONE.
1143 		 */
1144 		list_for_each_entry_rcu(kp, &p->list, list)
1145 			kp->flags |= KPROBE_FLAG_GONE;
1146 		p->post_handler = NULL;
1147 		p->break_handler = NULL;
1148 	}
1149 	/*
1150 	 * Here, we can remove insn_slot safely, because no thread calls
1151 	 * the original probed function (which will be freed soon) any more.
1152 	 */
1153 	arch_remove_kprobe(p);
1154 }
1155 
1156 /* Module notifier call back, checking kprobes on the module */
1157 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1158 					     unsigned long val, void *data)
1159 {
1160 	struct module *mod = data;
1161 	struct hlist_head *head;
1162 	struct hlist_node *node;
1163 	struct kprobe *p;
1164 	unsigned int i;
1165 	int checkcore = (val == MODULE_STATE_GOING);
1166 
1167 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1168 		return NOTIFY_DONE;
1169 
1170 	/*
1171 	 * When MODULE_STATE_GOING was notified, both of module .text and
1172 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1173 	 * notified, only .init.text section would be freed. We need to
1174 	 * disable kprobes which have been inserted in the sections.
1175 	 */
1176 	mutex_lock(&kprobe_mutex);
1177 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1178 		head = &kprobe_table[i];
1179 		hlist_for_each_entry_rcu(p, node, head, hlist)
1180 			if (within_module_init((unsigned long)p->addr, mod) ||
1181 			    (checkcore &&
1182 			     within_module_core((unsigned long)p->addr, mod))) {
1183 				/*
1184 				 * The vaddr this probe is installed will soon
1185 				 * be vfreed buy not synced to disk. Hence,
1186 				 * disarming the breakpoint isn't needed.
1187 				 */
1188 				kill_kprobe(p);
1189 			}
1190 	}
1191 	mutex_unlock(&kprobe_mutex);
1192 	return NOTIFY_DONE;
1193 }
1194 
1195 static struct notifier_block kprobe_module_nb = {
1196 	.notifier_call = kprobes_module_callback,
1197 	.priority = 0
1198 };
1199 
1200 static int __init init_kprobes(void)
1201 {
1202 	int i, err = 0;
1203 	unsigned long offset = 0, size = 0;
1204 	char *modname, namebuf[128];
1205 	const char *symbol_name;
1206 	void *addr;
1207 	struct kprobe_blackpoint *kb;
1208 
1209 	/* FIXME allocate the probe table, currently defined statically */
1210 	/* initialize all list heads */
1211 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1212 		INIT_HLIST_HEAD(&kprobe_table[i]);
1213 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1214 		spin_lock_init(&(kretprobe_table_locks[i].lock));
1215 	}
1216 
1217 	/*
1218 	 * Lookup and populate the kprobe_blacklist.
1219 	 *
1220 	 * Unlike the kretprobe blacklist, we'll need to determine
1221 	 * the range of addresses that belong to the said functions,
1222 	 * since a kprobe need not necessarily be at the beginning
1223 	 * of a function.
1224 	 */
1225 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1226 		kprobe_lookup_name(kb->name, addr);
1227 		if (!addr)
1228 			continue;
1229 
1230 		kb->start_addr = (unsigned long)addr;
1231 		symbol_name = kallsyms_lookup(kb->start_addr,
1232 				&size, &offset, &modname, namebuf);
1233 		if (!symbol_name)
1234 			kb->range = 0;
1235 		else
1236 			kb->range = size;
1237 	}
1238 
1239 	if (kretprobe_blacklist_size) {
1240 		/* lookup the function address from its name */
1241 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1242 			kprobe_lookup_name(kretprobe_blacklist[i].name,
1243 					   kretprobe_blacklist[i].addr);
1244 			if (!kretprobe_blacklist[i].addr)
1245 				printk("kretprobe: lookup failed: %s\n",
1246 				       kretprobe_blacklist[i].name);
1247 		}
1248 	}
1249 
1250 	/* By default, kprobes are armed */
1251 	kprobes_all_disarmed = false;
1252 
1253 	err = arch_init_kprobes();
1254 	if (!err)
1255 		err = register_die_notifier(&kprobe_exceptions_nb);
1256 	if (!err)
1257 		err = register_module_notifier(&kprobe_module_nb);
1258 
1259 	kprobes_initialized = (err == 0);
1260 
1261 	if (!err)
1262 		init_test_probes();
1263 	return err;
1264 }
1265 
1266 #ifdef CONFIG_DEBUG_FS
1267 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1268 		const char *sym, int offset,char *modname)
1269 {
1270 	char *kprobe_type;
1271 
1272 	if (p->pre_handler == pre_handler_kretprobe)
1273 		kprobe_type = "r";
1274 	else if (p->pre_handler == setjmp_pre_handler)
1275 		kprobe_type = "j";
1276 	else
1277 		kprobe_type = "k";
1278 	if (sym)
1279 		seq_printf(pi, "%p  %s  %s+0x%x  %s %s%s\n",
1280 			p->addr, kprobe_type, sym, offset,
1281 			(modname ? modname : " "),
1282 			(kprobe_gone(p) ? "[GONE]" : ""),
1283 			((kprobe_disabled(p) && !kprobe_gone(p)) ?
1284 			 "[DISABLED]" : ""));
1285 	else
1286 		seq_printf(pi, "%p  %s  %p %s%s\n",
1287 			p->addr, kprobe_type, p->addr,
1288 			(kprobe_gone(p) ? "[GONE]" : ""),
1289 			((kprobe_disabled(p) && !kprobe_gone(p)) ?
1290 			 "[DISABLED]" : ""));
1291 }
1292 
1293 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1294 {
1295 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1296 }
1297 
1298 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1299 {
1300 	(*pos)++;
1301 	if (*pos >= KPROBE_TABLE_SIZE)
1302 		return NULL;
1303 	return pos;
1304 }
1305 
1306 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1307 {
1308 	/* Nothing to do */
1309 }
1310 
1311 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1312 {
1313 	struct hlist_head *head;
1314 	struct hlist_node *node;
1315 	struct kprobe *p, *kp;
1316 	const char *sym = NULL;
1317 	unsigned int i = *(loff_t *) v;
1318 	unsigned long offset = 0;
1319 	char *modname, namebuf[128];
1320 
1321 	head = &kprobe_table[i];
1322 	preempt_disable();
1323 	hlist_for_each_entry_rcu(p, node, head, hlist) {
1324 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1325 					&offset, &modname, namebuf);
1326 		if (p->pre_handler == aggr_pre_handler) {
1327 			list_for_each_entry_rcu(kp, &p->list, list)
1328 				report_probe(pi, kp, sym, offset, modname);
1329 		} else
1330 			report_probe(pi, p, sym, offset, modname);
1331 	}
1332 	preempt_enable();
1333 	return 0;
1334 }
1335 
1336 static struct seq_operations kprobes_seq_ops = {
1337 	.start = kprobe_seq_start,
1338 	.next  = kprobe_seq_next,
1339 	.stop  = kprobe_seq_stop,
1340 	.show  = show_kprobe_addr
1341 };
1342 
1343 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1344 {
1345 	return seq_open(filp, &kprobes_seq_ops);
1346 }
1347 
1348 static struct file_operations debugfs_kprobes_operations = {
1349 	.open           = kprobes_open,
1350 	.read           = seq_read,
1351 	.llseek         = seq_lseek,
1352 	.release        = seq_release,
1353 };
1354 
1355 /* Disable one kprobe */
1356 int __kprobes disable_kprobe(struct kprobe *kp)
1357 {
1358 	int ret = 0;
1359 	struct kprobe *p;
1360 
1361 	mutex_lock(&kprobe_mutex);
1362 
1363 	/* Check whether specified probe is valid. */
1364 	p = __get_valid_kprobe(kp);
1365 	if (unlikely(p == NULL)) {
1366 		ret = -EINVAL;
1367 		goto out;
1368 	}
1369 
1370 	/* If the probe is already disabled (or gone), just return */
1371 	if (kprobe_disabled(kp))
1372 		goto out;
1373 
1374 	kp->flags |= KPROBE_FLAG_DISABLED;
1375 	if (p != kp)
1376 		/* When kp != p, p is always enabled. */
1377 		try_to_disable_aggr_kprobe(p);
1378 
1379 	if (!kprobes_all_disarmed && kprobe_disabled(p))
1380 		disarm_kprobe(p);
1381 out:
1382 	mutex_unlock(&kprobe_mutex);
1383 	return ret;
1384 }
1385 EXPORT_SYMBOL_GPL(disable_kprobe);
1386 
1387 /* Enable one kprobe */
1388 int __kprobes enable_kprobe(struct kprobe *kp)
1389 {
1390 	int ret = 0;
1391 	struct kprobe *p;
1392 
1393 	mutex_lock(&kprobe_mutex);
1394 
1395 	/* Check whether specified probe is valid. */
1396 	p = __get_valid_kprobe(kp);
1397 	if (unlikely(p == NULL)) {
1398 		ret = -EINVAL;
1399 		goto out;
1400 	}
1401 
1402 	if (kprobe_gone(kp)) {
1403 		/* This kprobe has gone, we couldn't enable it. */
1404 		ret = -EINVAL;
1405 		goto out;
1406 	}
1407 
1408 	if (!kprobes_all_disarmed && kprobe_disabled(p))
1409 		arm_kprobe(p);
1410 
1411 	p->flags &= ~KPROBE_FLAG_DISABLED;
1412 	if (p != kp)
1413 		kp->flags &= ~KPROBE_FLAG_DISABLED;
1414 out:
1415 	mutex_unlock(&kprobe_mutex);
1416 	return ret;
1417 }
1418 EXPORT_SYMBOL_GPL(enable_kprobe);
1419 
1420 static void __kprobes arm_all_kprobes(void)
1421 {
1422 	struct hlist_head *head;
1423 	struct hlist_node *node;
1424 	struct kprobe *p;
1425 	unsigned int i;
1426 
1427 	mutex_lock(&kprobe_mutex);
1428 
1429 	/* If kprobes are armed, just return */
1430 	if (!kprobes_all_disarmed)
1431 		goto already_enabled;
1432 
1433 	mutex_lock(&text_mutex);
1434 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1435 		head = &kprobe_table[i];
1436 		hlist_for_each_entry_rcu(p, node, head, hlist)
1437 			if (!kprobe_disabled(p))
1438 				arch_arm_kprobe(p);
1439 	}
1440 	mutex_unlock(&text_mutex);
1441 
1442 	kprobes_all_disarmed = false;
1443 	printk(KERN_INFO "Kprobes globally enabled\n");
1444 
1445 already_enabled:
1446 	mutex_unlock(&kprobe_mutex);
1447 	return;
1448 }
1449 
1450 static void __kprobes disarm_all_kprobes(void)
1451 {
1452 	struct hlist_head *head;
1453 	struct hlist_node *node;
1454 	struct kprobe *p;
1455 	unsigned int i;
1456 
1457 	mutex_lock(&kprobe_mutex);
1458 
1459 	/* If kprobes are already disarmed, just return */
1460 	if (kprobes_all_disarmed)
1461 		goto already_disabled;
1462 
1463 	kprobes_all_disarmed = true;
1464 	printk(KERN_INFO "Kprobes globally disabled\n");
1465 	mutex_lock(&text_mutex);
1466 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1467 		head = &kprobe_table[i];
1468 		hlist_for_each_entry_rcu(p, node, head, hlist) {
1469 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1470 				arch_disarm_kprobe(p);
1471 		}
1472 	}
1473 
1474 	mutex_unlock(&text_mutex);
1475 	mutex_unlock(&kprobe_mutex);
1476 	/* Allow all currently running kprobes to complete */
1477 	synchronize_sched();
1478 	return;
1479 
1480 already_disabled:
1481 	mutex_unlock(&kprobe_mutex);
1482 	return;
1483 }
1484 
1485 /*
1486  * XXX: The debugfs bool file interface doesn't allow for callbacks
1487  * when the bool state is switched. We can reuse that facility when
1488  * available
1489  */
1490 static ssize_t read_enabled_file_bool(struct file *file,
1491 	       char __user *user_buf, size_t count, loff_t *ppos)
1492 {
1493 	char buf[3];
1494 
1495 	if (!kprobes_all_disarmed)
1496 		buf[0] = '1';
1497 	else
1498 		buf[0] = '0';
1499 	buf[1] = '\n';
1500 	buf[2] = 0x00;
1501 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1502 }
1503 
1504 static ssize_t write_enabled_file_bool(struct file *file,
1505 	       const char __user *user_buf, size_t count, loff_t *ppos)
1506 {
1507 	char buf[32];
1508 	int buf_size;
1509 
1510 	buf_size = min(count, (sizeof(buf)-1));
1511 	if (copy_from_user(buf, user_buf, buf_size))
1512 		return -EFAULT;
1513 
1514 	switch (buf[0]) {
1515 	case 'y':
1516 	case 'Y':
1517 	case '1':
1518 		arm_all_kprobes();
1519 		break;
1520 	case 'n':
1521 	case 'N':
1522 	case '0':
1523 		disarm_all_kprobes();
1524 		break;
1525 	}
1526 
1527 	return count;
1528 }
1529 
1530 static struct file_operations fops_kp = {
1531 	.read =         read_enabled_file_bool,
1532 	.write =        write_enabled_file_bool,
1533 };
1534 
1535 static int __kprobes debugfs_kprobe_init(void)
1536 {
1537 	struct dentry *dir, *file;
1538 	unsigned int value = 1;
1539 
1540 	dir = debugfs_create_dir("kprobes", NULL);
1541 	if (!dir)
1542 		return -ENOMEM;
1543 
1544 	file = debugfs_create_file("list", 0444, dir, NULL,
1545 				&debugfs_kprobes_operations);
1546 	if (!file) {
1547 		debugfs_remove(dir);
1548 		return -ENOMEM;
1549 	}
1550 
1551 	file = debugfs_create_file("enabled", 0600, dir,
1552 					&value, &fops_kp);
1553 	if (!file) {
1554 		debugfs_remove(dir);
1555 		return -ENOMEM;
1556 	}
1557 
1558 	return 0;
1559 }
1560 
1561 late_initcall(debugfs_kprobe_init);
1562 #endif /* CONFIG_DEBUG_FS */
1563 
1564 module_init(init_kprobes);
1565 
1566 /* defined in arch/.../kernel/kprobes.c */
1567 EXPORT_SYMBOL_GPL(jprobe_return);
1568