1 /* 2 * Kernel Probes (KProbes) 3 * kernel/kprobes.c 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * Copyright (C) IBM Corporation, 2002, 2004 20 * 21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 22 * Probes initial implementation (includes suggestions from 23 * Rusty Russell). 24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 25 * hlists and exceptions notifier as suggested by Andi Kleen. 26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 27 * interface to access function arguments. 28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 29 * exceptions notifier to be first on the priority list. 30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 32 * <prasanna@in.ibm.com> added function-return probes. 33 */ 34 #include <linux/kprobes.h> 35 #include <linux/hash.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/stddef.h> 39 #include <linux/export.h> 40 #include <linux/moduleloader.h> 41 #include <linux/kallsyms.h> 42 #include <linux/freezer.h> 43 #include <linux/seq_file.h> 44 #include <linux/debugfs.h> 45 #include <linux/sysctl.h> 46 #include <linux/kdebug.h> 47 #include <linux/memory.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 #include <linux/jump_label.h> 51 52 #include <asm/sections.h> 53 #include <asm/cacheflush.h> 54 #include <asm/errno.h> 55 #include <linux/uaccess.h> 56 57 #define KPROBE_HASH_BITS 6 58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 59 60 61 static int kprobes_initialized; 62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 64 65 /* NOTE: change this value only with kprobe_mutex held */ 66 static bool kprobes_all_disarmed; 67 68 /* This protects kprobe_table and optimizing_list */ 69 static DEFINE_MUTEX(kprobe_mutex); 70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 71 static struct { 72 raw_spinlock_t lock ____cacheline_aligned_in_smp; 73 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 74 75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, 76 unsigned int __unused) 77 { 78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); 79 } 80 81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 82 { 83 return &(kretprobe_table_locks[hash].lock); 84 } 85 86 /* Blacklist -- list of struct kprobe_blacklist_entry */ 87 static LIST_HEAD(kprobe_blacklist); 88 89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 90 /* 91 * kprobe->ainsn.insn points to the copy of the instruction to be 92 * single-stepped. x86_64, POWER4 and above have no-exec support and 93 * stepping on the instruction on a vmalloced/kmalloced/data page 94 * is a recipe for disaster 95 */ 96 struct kprobe_insn_page { 97 struct list_head list; 98 kprobe_opcode_t *insns; /* Page of instruction slots */ 99 struct kprobe_insn_cache *cache; 100 int nused; 101 int ngarbage; 102 char slot_used[]; 103 }; 104 105 #define KPROBE_INSN_PAGE_SIZE(slots) \ 106 (offsetof(struct kprobe_insn_page, slot_used) + \ 107 (sizeof(char) * (slots))) 108 109 static int slots_per_page(struct kprobe_insn_cache *c) 110 { 111 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 112 } 113 114 enum kprobe_slot_state { 115 SLOT_CLEAN = 0, 116 SLOT_DIRTY = 1, 117 SLOT_USED = 2, 118 }; 119 120 static void *alloc_insn_page(void) 121 { 122 return module_alloc(PAGE_SIZE); 123 } 124 125 void __weak free_insn_page(void *page) 126 { 127 module_memfree(page); 128 } 129 130 struct kprobe_insn_cache kprobe_insn_slots = { 131 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 132 .alloc = alloc_insn_page, 133 .free = free_insn_page, 134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 135 .insn_size = MAX_INSN_SIZE, 136 .nr_garbage = 0, 137 }; 138 static int collect_garbage_slots(struct kprobe_insn_cache *c); 139 140 /** 141 * __get_insn_slot() - Find a slot on an executable page for an instruction. 142 * We allocate an executable page if there's no room on existing ones. 143 */ 144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 145 { 146 struct kprobe_insn_page *kip; 147 kprobe_opcode_t *slot = NULL; 148 149 /* Since the slot array is not protected by rcu, we need a mutex */ 150 mutex_lock(&c->mutex); 151 retry: 152 rcu_read_lock(); 153 list_for_each_entry_rcu(kip, &c->pages, list) { 154 if (kip->nused < slots_per_page(c)) { 155 int i; 156 for (i = 0; i < slots_per_page(c); i++) { 157 if (kip->slot_used[i] == SLOT_CLEAN) { 158 kip->slot_used[i] = SLOT_USED; 159 kip->nused++; 160 slot = kip->insns + (i * c->insn_size); 161 rcu_read_unlock(); 162 goto out; 163 } 164 } 165 /* kip->nused is broken. Fix it. */ 166 kip->nused = slots_per_page(c); 167 WARN_ON(1); 168 } 169 } 170 rcu_read_unlock(); 171 172 /* If there are any garbage slots, collect it and try again. */ 173 if (c->nr_garbage && collect_garbage_slots(c) == 0) 174 goto retry; 175 176 /* All out of space. Need to allocate a new page. */ 177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 178 if (!kip) 179 goto out; 180 181 /* 182 * Use module_alloc so this page is within +/- 2GB of where the 183 * kernel image and loaded module images reside. This is required 184 * so x86_64 can correctly handle the %rip-relative fixups. 185 */ 186 kip->insns = c->alloc(); 187 if (!kip->insns) { 188 kfree(kip); 189 goto out; 190 } 191 INIT_LIST_HEAD(&kip->list); 192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 193 kip->slot_used[0] = SLOT_USED; 194 kip->nused = 1; 195 kip->ngarbage = 0; 196 kip->cache = c; 197 list_add_rcu(&kip->list, &c->pages); 198 slot = kip->insns; 199 out: 200 mutex_unlock(&c->mutex); 201 return slot; 202 } 203 204 /* Return 1 if all garbages are collected, otherwise 0. */ 205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx) 206 { 207 kip->slot_used[idx] = SLOT_CLEAN; 208 kip->nused--; 209 if (kip->nused == 0) { 210 /* 211 * Page is no longer in use. Free it unless 212 * it's the last one. We keep the last one 213 * so as not to have to set it up again the 214 * next time somebody inserts a probe. 215 */ 216 if (!list_is_singular(&kip->list)) { 217 list_del_rcu(&kip->list); 218 synchronize_rcu(); 219 kip->cache->free(kip->insns); 220 kfree(kip); 221 } 222 return 1; 223 } 224 return 0; 225 } 226 227 static int collect_garbage_slots(struct kprobe_insn_cache *c) 228 { 229 struct kprobe_insn_page *kip, *next; 230 231 /* Ensure no-one is interrupted on the garbages */ 232 synchronize_sched(); 233 234 list_for_each_entry_safe(kip, next, &c->pages, list) { 235 int i; 236 if (kip->ngarbage == 0) 237 continue; 238 kip->ngarbage = 0; /* we will collect all garbages */ 239 for (i = 0; i < slots_per_page(c); i++) { 240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 241 break; 242 } 243 } 244 c->nr_garbage = 0; 245 return 0; 246 } 247 248 void __free_insn_slot(struct kprobe_insn_cache *c, 249 kprobe_opcode_t *slot, int dirty) 250 { 251 struct kprobe_insn_page *kip; 252 long idx; 253 254 mutex_lock(&c->mutex); 255 rcu_read_lock(); 256 list_for_each_entry_rcu(kip, &c->pages, list) { 257 idx = ((long)slot - (long)kip->insns) / 258 (c->insn_size * sizeof(kprobe_opcode_t)); 259 if (idx >= 0 && idx < slots_per_page(c)) 260 goto out; 261 } 262 /* Could not find this slot. */ 263 WARN_ON(1); 264 kip = NULL; 265 out: 266 rcu_read_unlock(); 267 /* Mark and sweep: this may sleep */ 268 if (kip) { 269 /* Check double free */ 270 WARN_ON(kip->slot_used[idx] != SLOT_USED); 271 if (dirty) { 272 kip->slot_used[idx] = SLOT_DIRTY; 273 kip->ngarbage++; 274 if (++c->nr_garbage > slots_per_page(c)) 275 collect_garbage_slots(c); 276 } else { 277 collect_one_slot(kip, idx); 278 } 279 } 280 mutex_unlock(&c->mutex); 281 } 282 283 /* 284 * Check given address is on the page of kprobe instruction slots. 285 * This will be used for checking whether the address on a stack 286 * is on a text area or not. 287 */ 288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 289 { 290 struct kprobe_insn_page *kip; 291 bool ret = false; 292 293 rcu_read_lock(); 294 list_for_each_entry_rcu(kip, &c->pages, list) { 295 if (addr >= (unsigned long)kip->insns && 296 addr < (unsigned long)kip->insns + PAGE_SIZE) { 297 ret = true; 298 break; 299 } 300 } 301 rcu_read_unlock(); 302 303 return ret; 304 } 305 306 #ifdef CONFIG_OPTPROBES 307 /* For optimized_kprobe buffer */ 308 struct kprobe_insn_cache kprobe_optinsn_slots = { 309 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 310 .alloc = alloc_insn_page, 311 .free = free_insn_page, 312 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 313 /* .insn_size is initialized later */ 314 .nr_garbage = 0, 315 }; 316 #endif 317 #endif 318 319 /* We have preemption disabled.. so it is safe to use __ versions */ 320 static inline void set_kprobe_instance(struct kprobe *kp) 321 { 322 __this_cpu_write(kprobe_instance, kp); 323 } 324 325 static inline void reset_kprobe_instance(void) 326 { 327 __this_cpu_write(kprobe_instance, NULL); 328 } 329 330 /* 331 * This routine is called either: 332 * - under the kprobe_mutex - during kprobe_[un]register() 333 * OR 334 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 335 */ 336 struct kprobe *get_kprobe(void *addr) 337 { 338 struct hlist_head *head; 339 struct kprobe *p; 340 341 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 342 hlist_for_each_entry_rcu(p, head, hlist) { 343 if (p->addr == addr) 344 return p; 345 } 346 347 return NULL; 348 } 349 NOKPROBE_SYMBOL(get_kprobe); 350 351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 352 353 /* Return true if the kprobe is an aggregator */ 354 static inline int kprobe_aggrprobe(struct kprobe *p) 355 { 356 return p->pre_handler == aggr_pre_handler; 357 } 358 359 /* Return true(!0) if the kprobe is unused */ 360 static inline int kprobe_unused(struct kprobe *p) 361 { 362 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 363 list_empty(&p->list); 364 } 365 366 /* 367 * Keep all fields in the kprobe consistent 368 */ 369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 370 { 371 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 372 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 373 } 374 375 #ifdef CONFIG_OPTPROBES 376 /* NOTE: change this value only with kprobe_mutex held */ 377 static bool kprobes_allow_optimization; 378 379 /* 380 * Call all pre_handler on the list, but ignores its return value. 381 * This must be called from arch-dep optimized caller. 382 */ 383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 384 { 385 struct kprobe *kp; 386 387 list_for_each_entry_rcu(kp, &p->list, list) { 388 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 389 set_kprobe_instance(kp); 390 kp->pre_handler(kp, regs); 391 } 392 reset_kprobe_instance(); 393 } 394 } 395 NOKPROBE_SYMBOL(opt_pre_handler); 396 397 /* Free optimized instructions and optimized_kprobe */ 398 static void free_aggr_kprobe(struct kprobe *p) 399 { 400 struct optimized_kprobe *op; 401 402 op = container_of(p, struct optimized_kprobe, kp); 403 arch_remove_optimized_kprobe(op); 404 arch_remove_kprobe(p); 405 kfree(op); 406 } 407 408 /* Return true(!0) if the kprobe is ready for optimization. */ 409 static inline int kprobe_optready(struct kprobe *p) 410 { 411 struct optimized_kprobe *op; 412 413 if (kprobe_aggrprobe(p)) { 414 op = container_of(p, struct optimized_kprobe, kp); 415 return arch_prepared_optinsn(&op->optinsn); 416 } 417 418 return 0; 419 } 420 421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 422 static inline int kprobe_disarmed(struct kprobe *p) 423 { 424 struct optimized_kprobe *op; 425 426 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 427 if (!kprobe_aggrprobe(p)) 428 return kprobe_disabled(p); 429 430 op = container_of(p, struct optimized_kprobe, kp); 431 432 return kprobe_disabled(p) && list_empty(&op->list); 433 } 434 435 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 436 static int kprobe_queued(struct kprobe *p) 437 { 438 struct optimized_kprobe *op; 439 440 if (kprobe_aggrprobe(p)) { 441 op = container_of(p, struct optimized_kprobe, kp); 442 if (!list_empty(&op->list)) 443 return 1; 444 } 445 return 0; 446 } 447 448 /* 449 * Return an optimized kprobe whose optimizing code replaces 450 * instructions including addr (exclude breakpoint). 451 */ 452 static struct kprobe *get_optimized_kprobe(unsigned long addr) 453 { 454 int i; 455 struct kprobe *p = NULL; 456 struct optimized_kprobe *op; 457 458 /* Don't check i == 0, since that is a breakpoint case. */ 459 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 460 p = get_kprobe((void *)(addr - i)); 461 462 if (p && kprobe_optready(p)) { 463 op = container_of(p, struct optimized_kprobe, kp); 464 if (arch_within_optimized_kprobe(op, addr)) 465 return p; 466 } 467 468 return NULL; 469 } 470 471 /* Optimization staging list, protected by kprobe_mutex */ 472 static LIST_HEAD(optimizing_list); 473 static LIST_HEAD(unoptimizing_list); 474 static LIST_HEAD(freeing_list); 475 476 static void kprobe_optimizer(struct work_struct *work); 477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 478 #define OPTIMIZE_DELAY 5 479 480 /* 481 * Optimize (replace a breakpoint with a jump) kprobes listed on 482 * optimizing_list. 483 */ 484 static void do_optimize_kprobes(void) 485 { 486 /* 487 * The optimization/unoptimization refers online_cpus via 488 * stop_machine() and cpu-hotplug modifies online_cpus. 489 * And same time, text_mutex will be held in cpu-hotplug and here. 490 * This combination can cause a deadlock (cpu-hotplug try to lock 491 * text_mutex but stop_machine can not be done because online_cpus 492 * has been changed) 493 * To avoid this deadlock, caller must have locked cpu hotplug 494 * for preventing cpu-hotplug outside of text_mutex locking. 495 */ 496 lockdep_assert_cpus_held(); 497 498 /* Optimization never be done when disarmed */ 499 if (kprobes_all_disarmed || !kprobes_allow_optimization || 500 list_empty(&optimizing_list)) 501 return; 502 503 mutex_lock(&text_mutex); 504 arch_optimize_kprobes(&optimizing_list); 505 mutex_unlock(&text_mutex); 506 } 507 508 /* 509 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 510 * if need) kprobes listed on unoptimizing_list. 511 */ 512 static void do_unoptimize_kprobes(void) 513 { 514 struct optimized_kprobe *op, *tmp; 515 516 /* See comment in do_optimize_kprobes() */ 517 lockdep_assert_cpus_held(); 518 519 /* Unoptimization must be done anytime */ 520 if (list_empty(&unoptimizing_list)) 521 return; 522 523 mutex_lock(&text_mutex); 524 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 525 /* Loop free_list for disarming */ 526 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 527 /* Disarm probes if marked disabled */ 528 if (kprobe_disabled(&op->kp)) 529 arch_disarm_kprobe(&op->kp); 530 if (kprobe_unused(&op->kp)) { 531 /* 532 * Remove unused probes from hash list. After waiting 533 * for synchronization, these probes are reclaimed. 534 * (reclaiming is done by do_free_cleaned_kprobes.) 535 */ 536 hlist_del_rcu(&op->kp.hlist); 537 } else 538 list_del_init(&op->list); 539 } 540 mutex_unlock(&text_mutex); 541 } 542 543 /* Reclaim all kprobes on the free_list */ 544 static void do_free_cleaned_kprobes(void) 545 { 546 struct optimized_kprobe *op, *tmp; 547 548 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 549 BUG_ON(!kprobe_unused(&op->kp)); 550 list_del_init(&op->list); 551 free_aggr_kprobe(&op->kp); 552 } 553 } 554 555 /* Start optimizer after OPTIMIZE_DELAY passed */ 556 static void kick_kprobe_optimizer(void) 557 { 558 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 559 } 560 561 /* Kprobe jump optimizer */ 562 static void kprobe_optimizer(struct work_struct *work) 563 { 564 mutex_lock(&kprobe_mutex); 565 cpus_read_lock(); 566 /* Lock modules while optimizing kprobes */ 567 mutex_lock(&module_mutex); 568 569 /* 570 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 571 * kprobes before waiting for quiesence period. 572 */ 573 do_unoptimize_kprobes(); 574 575 /* 576 * Step 2: Wait for quiesence period to ensure all running interrupts 577 * are done. Because optprobe may modify multiple instructions 578 * there is a chance that Nth instruction is interrupted. In that 579 * case, running interrupt can return to 2nd-Nth byte of jump 580 * instruction. This wait is for avoiding it. 581 */ 582 synchronize_sched(); 583 584 /* Step 3: Optimize kprobes after quiesence period */ 585 do_optimize_kprobes(); 586 587 /* Step 4: Free cleaned kprobes after quiesence period */ 588 do_free_cleaned_kprobes(); 589 590 mutex_unlock(&module_mutex); 591 cpus_read_unlock(); 592 mutex_unlock(&kprobe_mutex); 593 594 /* Step 5: Kick optimizer again if needed */ 595 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 596 kick_kprobe_optimizer(); 597 } 598 599 /* Wait for completing optimization and unoptimization */ 600 void wait_for_kprobe_optimizer(void) 601 { 602 mutex_lock(&kprobe_mutex); 603 604 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 605 mutex_unlock(&kprobe_mutex); 606 607 /* this will also make optimizing_work execute immmediately */ 608 flush_delayed_work(&optimizing_work); 609 /* @optimizing_work might not have been queued yet, relax */ 610 cpu_relax(); 611 612 mutex_lock(&kprobe_mutex); 613 } 614 615 mutex_unlock(&kprobe_mutex); 616 } 617 618 /* Optimize kprobe if p is ready to be optimized */ 619 static void optimize_kprobe(struct kprobe *p) 620 { 621 struct optimized_kprobe *op; 622 623 /* Check if the kprobe is disabled or not ready for optimization. */ 624 if (!kprobe_optready(p) || !kprobes_allow_optimization || 625 (kprobe_disabled(p) || kprobes_all_disarmed)) 626 return; 627 628 /* Both of break_handler and post_handler are not supported. */ 629 if (p->break_handler || p->post_handler) 630 return; 631 632 op = container_of(p, struct optimized_kprobe, kp); 633 634 /* Check there is no other kprobes at the optimized instructions */ 635 if (arch_check_optimized_kprobe(op) < 0) 636 return; 637 638 /* Check if it is already optimized. */ 639 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) 640 return; 641 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 642 643 if (!list_empty(&op->list)) 644 /* This is under unoptimizing. Just dequeue the probe */ 645 list_del_init(&op->list); 646 else { 647 list_add(&op->list, &optimizing_list); 648 kick_kprobe_optimizer(); 649 } 650 } 651 652 /* Short cut to direct unoptimizing */ 653 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 654 { 655 lockdep_assert_cpus_held(); 656 arch_unoptimize_kprobe(op); 657 if (kprobe_disabled(&op->kp)) 658 arch_disarm_kprobe(&op->kp); 659 } 660 661 /* Unoptimize a kprobe if p is optimized */ 662 static void unoptimize_kprobe(struct kprobe *p, bool force) 663 { 664 struct optimized_kprobe *op; 665 666 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 667 return; /* This is not an optprobe nor optimized */ 668 669 op = container_of(p, struct optimized_kprobe, kp); 670 if (!kprobe_optimized(p)) { 671 /* Unoptimized or unoptimizing case */ 672 if (force && !list_empty(&op->list)) { 673 /* 674 * Only if this is unoptimizing kprobe and forced, 675 * forcibly unoptimize it. (No need to unoptimize 676 * unoptimized kprobe again :) 677 */ 678 list_del_init(&op->list); 679 force_unoptimize_kprobe(op); 680 } 681 return; 682 } 683 684 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 685 if (!list_empty(&op->list)) { 686 /* Dequeue from the optimization queue */ 687 list_del_init(&op->list); 688 return; 689 } 690 /* Optimized kprobe case */ 691 if (force) 692 /* Forcibly update the code: this is a special case */ 693 force_unoptimize_kprobe(op); 694 else { 695 list_add(&op->list, &unoptimizing_list); 696 kick_kprobe_optimizer(); 697 } 698 } 699 700 /* Cancel unoptimizing for reusing */ 701 static void reuse_unused_kprobe(struct kprobe *ap) 702 { 703 struct optimized_kprobe *op; 704 705 BUG_ON(!kprobe_unused(ap)); 706 /* 707 * Unused kprobe MUST be on the way of delayed unoptimizing (means 708 * there is still a relative jump) and disabled. 709 */ 710 op = container_of(ap, struct optimized_kprobe, kp); 711 if (unlikely(list_empty(&op->list))) 712 printk(KERN_WARNING "Warning: found a stray unused " 713 "aggrprobe@%p\n", ap->addr); 714 /* Enable the probe again */ 715 ap->flags &= ~KPROBE_FLAG_DISABLED; 716 /* Optimize it again (remove from op->list) */ 717 BUG_ON(!kprobe_optready(ap)); 718 optimize_kprobe(ap); 719 } 720 721 /* Remove optimized instructions */ 722 static void kill_optimized_kprobe(struct kprobe *p) 723 { 724 struct optimized_kprobe *op; 725 726 op = container_of(p, struct optimized_kprobe, kp); 727 if (!list_empty(&op->list)) 728 /* Dequeue from the (un)optimization queue */ 729 list_del_init(&op->list); 730 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 731 732 if (kprobe_unused(p)) { 733 /* Enqueue if it is unused */ 734 list_add(&op->list, &freeing_list); 735 /* 736 * Remove unused probes from the hash list. After waiting 737 * for synchronization, this probe is reclaimed. 738 * (reclaiming is done by do_free_cleaned_kprobes().) 739 */ 740 hlist_del_rcu(&op->kp.hlist); 741 } 742 743 /* Don't touch the code, because it is already freed. */ 744 arch_remove_optimized_kprobe(op); 745 } 746 747 static inline 748 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) 749 { 750 if (!kprobe_ftrace(p)) 751 arch_prepare_optimized_kprobe(op, p); 752 } 753 754 /* Try to prepare optimized instructions */ 755 static void prepare_optimized_kprobe(struct kprobe *p) 756 { 757 struct optimized_kprobe *op; 758 759 op = container_of(p, struct optimized_kprobe, kp); 760 __prepare_optimized_kprobe(op, p); 761 } 762 763 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 764 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 765 { 766 struct optimized_kprobe *op; 767 768 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 769 if (!op) 770 return NULL; 771 772 INIT_LIST_HEAD(&op->list); 773 op->kp.addr = p->addr; 774 __prepare_optimized_kprobe(op, p); 775 776 return &op->kp; 777 } 778 779 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 780 781 /* 782 * Prepare an optimized_kprobe and optimize it 783 * NOTE: p must be a normal registered kprobe 784 */ 785 static void try_to_optimize_kprobe(struct kprobe *p) 786 { 787 struct kprobe *ap; 788 struct optimized_kprobe *op; 789 790 /* Impossible to optimize ftrace-based kprobe */ 791 if (kprobe_ftrace(p)) 792 return; 793 794 /* For preparing optimization, jump_label_text_reserved() is called */ 795 cpus_read_lock(); 796 jump_label_lock(); 797 mutex_lock(&text_mutex); 798 799 ap = alloc_aggr_kprobe(p); 800 if (!ap) 801 goto out; 802 803 op = container_of(ap, struct optimized_kprobe, kp); 804 if (!arch_prepared_optinsn(&op->optinsn)) { 805 /* If failed to setup optimizing, fallback to kprobe */ 806 arch_remove_optimized_kprobe(op); 807 kfree(op); 808 goto out; 809 } 810 811 init_aggr_kprobe(ap, p); 812 optimize_kprobe(ap); /* This just kicks optimizer thread */ 813 814 out: 815 mutex_unlock(&text_mutex); 816 jump_label_unlock(); 817 cpus_read_unlock(); 818 } 819 820 #ifdef CONFIG_SYSCTL 821 static void optimize_all_kprobes(void) 822 { 823 struct hlist_head *head; 824 struct kprobe *p; 825 unsigned int i; 826 827 mutex_lock(&kprobe_mutex); 828 /* If optimization is already allowed, just return */ 829 if (kprobes_allow_optimization) 830 goto out; 831 832 cpus_read_lock(); 833 kprobes_allow_optimization = true; 834 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 835 head = &kprobe_table[i]; 836 hlist_for_each_entry_rcu(p, head, hlist) 837 if (!kprobe_disabled(p)) 838 optimize_kprobe(p); 839 } 840 cpus_read_unlock(); 841 printk(KERN_INFO "Kprobes globally optimized\n"); 842 out: 843 mutex_unlock(&kprobe_mutex); 844 } 845 846 static void unoptimize_all_kprobes(void) 847 { 848 struct hlist_head *head; 849 struct kprobe *p; 850 unsigned int i; 851 852 mutex_lock(&kprobe_mutex); 853 /* If optimization is already prohibited, just return */ 854 if (!kprobes_allow_optimization) { 855 mutex_unlock(&kprobe_mutex); 856 return; 857 } 858 859 cpus_read_lock(); 860 kprobes_allow_optimization = false; 861 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 862 head = &kprobe_table[i]; 863 hlist_for_each_entry_rcu(p, head, hlist) { 864 if (!kprobe_disabled(p)) 865 unoptimize_kprobe(p, false); 866 } 867 } 868 cpus_read_unlock(); 869 mutex_unlock(&kprobe_mutex); 870 871 /* Wait for unoptimizing completion */ 872 wait_for_kprobe_optimizer(); 873 printk(KERN_INFO "Kprobes globally unoptimized\n"); 874 } 875 876 static DEFINE_MUTEX(kprobe_sysctl_mutex); 877 int sysctl_kprobes_optimization; 878 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 879 void __user *buffer, size_t *length, 880 loff_t *ppos) 881 { 882 int ret; 883 884 mutex_lock(&kprobe_sysctl_mutex); 885 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 886 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 887 888 if (sysctl_kprobes_optimization) 889 optimize_all_kprobes(); 890 else 891 unoptimize_all_kprobes(); 892 mutex_unlock(&kprobe_sysctl_mutex); 893 894 return ret; 895 } 896 #endif /* CONFIG_SYSCTL */ 897 898 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 899 static void __arm_kprobe(struct kprobe *p) 900 { 901 struct kprobe *_p; 902 903 /* Check collision with other optimized kprobes */ 904 _p = get_optimized_kprobe((unsigned long)p->addr); 905 if (unlikely(_p)) 906 /* Fallback to unoptimized kprobe */ 907 unoptimize_kprobe(_p, true); 908 909 arch_arm_kprobe(p); 910 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 911 } 912 913 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 914 static void __disarm_kprobe(struct kprobe *p, bool reopt) 915 { 916 struct kprobe *_p; 917 918 /* Try to unoptimize */ 919 unoptimize_kprobe(p, kprobes_all_disarmed); 920 921 if (!kprobe_queued(p)) { 922 arch_disarm_kprobe(p); 923 /* If another kprobe was blocked, optimize it. */ 924 _p = get_optimized_kprobe((unsigned long)p->addr); 925 if (unlikely(_p) && reopt) 926 optimize_kprobe(_p); 927 } 928 /* TODO: reoptimize others after unoptimized this probe */ 929 } 930 931 #else /* !CONFIG_OPTPROBES */ 932 933 #define optimize_kprobe(p) do {} while (0) 934 #define unoptimize_kprobe(p, f) do {} while (0) 935 #define kill_optimized_kprobe(p) do {} while (0) 936 #define prepare_optimized_kprobe(p) do {} while (0) 937 #define try_to_optimize_kprobe(p) do {} while (0) 938 #define __arm_kprobe(p) arch_arm_kprobe(p) 939 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 940 #define kprobe_disarmed(p) kprobe_disabled(p) 941 #define wait_for_kprobe_optimizer() do {} while (0) 942 943 /* There should be no unused kprobes can be reused without optimization */ 944 static void reuse_unused_kprobe(struct kprobe *ap) 945 { 946 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 947 BUG_ON(kprobe_unused(ap)); 948 } 949 950 static void free_aggr_kprobe(struct kprobe *p) 951 { 952 arch_remove_kprobe(p); 953 kfree(p); 954 } 955 956 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 957 { 958 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 959 } 960 #endif /* CONFIG_OPTPROBES */ 961 962 #ifdef CONFIG_KPROBES_ON_FTRACE 963 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 964 .func = kprobe_ftrace_handler, 965 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 966 }; 967 static int kprobe_ftrace_enabled; 968 969 /* Must ensure p->addr is really on ftrace */ 970 static int prepare_kprobe(struct kprobe *p) 971 { 972 if (!kprobe_ftrace(p)) 973 return arch_prepare_kprobe(p); 974 975 return arch_prepare_kprobe_ftrace(p); 976 } 977 978 /* Caller must lock kprobe_mutex */ 979 static void arm_kprobe_ftrace(struct kprobe *p) 980 { 981 int ret; 982 983 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 984 (unsigned long)p->addr, 0, 0); 985 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret); 986 kprobe_ftrace_enabled++; 987 if (kprobe_ftrace_enabled == 1) { 988 ret = register_ftrace_function(&kprobe_ftrace_ops); 989 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret); 990 } 991 } 992 993 /* Caller must lock kprobe_mutex */ 994 static void disarm_kprobe_ftrace(struct kprobe *p) 995 { 996 int ret; 997 998 kprobe_ftrace_enabled--; 999 if (kprobe_ftrace_enabled == 0) { 1000 ret = unregister_ftrace_function(&kprobe_ftrace_ops); 1001 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret); 1002 } 1003 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 1004 (unsigned long)p->addr, 1, 0); 1005 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret); 1006 } 1007 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1008 #define prepare_kprobe(p) arch_prepare_kprobe(p) 1009 #define arm_kprobe_ftrace(p) do {} while (0) 1010 #define disarm_kprobe_ftrace(p) do {} while (0) 1011 #endif 1012 1013 /* Arm a kprobe with text_mutex */ 1014 static void arm_kprobe(struct kprobe *kp) 1015 { 1016 if (unlikely(kprobe_ftrace(kp))) { 1017 arm_kprobe_ftrace(kp); 1018 return; 1019 } 1020 cpus_read_lock(); 1021 mutex_lock(&text_mutex); 1022 __arm_kprobe(kp); 1023 mutex_unlock(&text_mutex); 1024 cpus_read_unlock(); 1025 } 1026 1027 /* Disarm a kprobe with text_mutex */ 1028 static void disarm_kprobe(struct kprobe *kp, bool reopt) 1029 { 1030 if (unlikely(kprobe_ftrace(kp))) { 1031 disarm_kprobe_ftrace(kp); 1032 return; 1033 } 1034 1035 cpus_read_lock(); 1036 mutex_lock(&text_mutex); 1037 __disarm_kprobe(kp, reopt); 1038 mutex_unlock(&text_mutex); 1039 cpus_read_unlock(); 1040 } 1041 1042 /* 1043 * Aggregate handlers for multiple kprobes support - these handlers 1044 * take care of invoking the individual kprobe handlers on p->list 1045 */ 1046 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1047 { 1048 struct kprobe *kp; 1049 1050 list_for_each_entry_rcu(kp, &p->list, list) { 1051 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1052 set_kprobe_instance(kp); 1053 if (kp->pre_handler(kp, regs)) 1054 return 1; 1055 } 1056 reset_kprobe_instance(); 1057 } 1058 return 0; 1059 } 1060 NOKPROBE_SYMBOL(aggr_pre_handler); 1061 1062 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1063 unsigned long flags) 1064 { 1065 struct kprobe *kp; 1066 1067 list_for_each_entry_rcu(kp, &p->list, list) { 1068 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1069 set_kprobe_instance(kp); 1070 kp->post_handler(kp, regs, flags); 1071 reset_kprobe_instance(); 1072 } 1073 } 1074 } 1075 NOKPROBE_SYMBOL(aggr_post_handler); 1076 1077 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 1078 int trapnr) 1079 { 1080 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1081 1082 /* 1083 * if we faulted "during" the execution of a user specified 1084 * probe handler, invoke just that probe's fault handler 1085 */ 1086 if (cur && cur->fault_handler) { 1087 if (cur->fault_handler(cur, regs, trapnr)) 1088 return 1; 1089 } 1090 return 0; 1091 } 1092 NOKPROBE_SYMBOL(aggr_fault_handler); 1093 1094 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs) 1095 { 1096 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1097 int ret = 0; 1098 1099 if (cur && cur->break_handler) { 1100 if (cur->break_handler(cur, regs)) 1101 ret = 1; 1102 } 1103 reset_kprobe_instance(); 1104 return ret; 1105 } 1106 NOKPROBE_SYMBOL(aggr_break_handler); 1107 1108 /* Walks the list and increments nmissed count for multiprobe case */ 1109 void kprobes_inc_nmissed_count(struct kprobe *p) 1110 { 1111 struct kprobe *kp; 1112 if (!kprobe_aggrprobe(p)) { 1113 p->nmissed++; 1114 } else { 1115 list_for_each_entry_rcu(kp, &p->list, list) 1116 kp->nmissed++; 1117 } 1118 return; 1119 } 1120 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1121 1122 void recycle_rp_inst(struct kretprobe_instance *ri, 1123 struct hlist_head *head) 1124 { 1125 struct kretprobe *rp = ri->rp; 1126 1127 /* remove rp inst off the rprobe_inst_table */ 1128 hlist_del(&ri->hlist); 1129 INIT_HLIST_NODE(&ri->hlist); 1130 if (likely(rp)) { 1131 raw_spin_lock(&rp->lock); 1132 hlist_add_head(&ri->hlist, &rp->free_instances); 1133 raw_spin_unlock(&rp->lock); 1134 } else 1135 /* Unregistering */ 1136 hlist_add_head(&ri->hlist, head); 1137 } 1138 NOKPROBE_SYMBOL(recycle_rp_inst); 1139 1140 void kretprobe_hash_lock(struct task_struct *tsk, 1141 struct hlist_head **head, unsigned long *flags) 1142 __acquires(hlist_lock) 1143 { 1144 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1145 raw_spinlock_t *hlist_lock; 1146 1147 *head = &kretprobe_inst_table[hash]; 1148 hlist_lock = kretprobe_table_lock_ptr(hash); 1149 raw_spin_lock_irqsave(hlist_lock, *flags); 1150 } 1151 NOKPROBE_SYMBOL(kretprobe_hash_lock); 1152 1153 static void kretprobe_table_lock(unsigned long hash, 1154 unsigned long *flags) 1155 __acquires(hlist_lock) 1156 { 1157 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1158 raw_spin_lock_irqsave(hlist_lock, *flags); 1159 } 1160 NOKPROBE_SYMBOL(kretprobe_table_lock); 1161 1162 void kretprobe_hash_unlock(struct task_struct *tsk, 1163 unsigned long *flags) 1164 __releases(hlist_lock) 1165 { 1166 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1167 raw_spinlock_t *hlist_lock; 1168 1169 hlist_lock = kretprobe_table_lock_ptr(hash); 1170 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1171 } 1172 NOKPROBE_SYMBOL(kretprobe_hash_unlock); 1173 1174 static void kretprobe_table_unlock(unsigned long hash, 1175 unsigned long *flags) 1176 __releases(hlist_lock) 1177 { 1178 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1179 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1180 } 1181 NOKPROBE_SYMBOL(kretprobe_table_unlock); 1182 1183 /* 1184 * This function is called from finish_task_switch when task tk becomes dead, 1185 * so that we can recycle any function-return probe instances associated 1186 * with this task. These left over instances represent probed functions 1187 * that have been called but will never return. 1188 */ 1189 void kprobe_flush_task(struct task_struct *tk) 1190 { 1191 struct kretprobe_instance *ri; 1192 struct hlist_head *head, empty_rp; 1193 struct hlist_node *tmp; 1194 unsigned long hash, flags = 0; 1195 1196 if (unlikely(!kprobes_initialized)) 1197 /* Early boot. kretprobe_table_locks not yet initialized. */ 1198 return; 1199 1200 INIT_HLIST_HEAD(&empty_rp); 1201 hash = hash_ptr(tk, KPROBE_HASH_BITS); 1202 head = &kretprobe_inst_table[hash]; 1203 kretprobe_table_lock(hash, &flags); 1204 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 1205 if (ri->task == tk) 1206 recycle_rp_inst(ri, &empty_rp); 1207 } 1208 kretprobe_table_unlock(hash, &flags); 1209 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 1210 hlist_del(&ri->hlist); 1211 kfree(ri); 1212 } 1213 } 1214 NOKPROBE_SYMBOL(kprobe_flush_task); 1215 1216 static inline void free_rp_inst(struct kretprobe *rp) 1217 { 1218 struct kretprobe_instance *ri; 1219 struct hlist_node *next; 1220 1221 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) { 1222 hlist_del(&ri->hlist); 1223 kfree(ri); 1224 } 1225 } 1226 1227 static void cleanup_rp_inst(struct kretprobe *rp) 1228 { 1229 unsigned long flags, hash; 1230 struct kretprobe_instance *ri; 1231 struct hlist_node *next; 1232 struct hlist_head *head; 1233 1234 /* No race here */ 1235 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 1236 kretprobe_table_lock(hash, &flags); 1237 head = &kretprobe_inst_table[hash]; 1238 hlist_for_each_entry_safe(ri, next, head, hlist) { 1239 if (ri->rp == rp) 1240 ri->rp = NULL; 1241 } 1242 kretprobe_table_unlock(hash, &flags); 1243 } 1244 free_rp_inst(rp); 1245 } 1246 NOKPROBE_SYMBOL(cleanup_rp_inst); 1247 1248 /* 1249 * Add the new probe to ap->list. Fail if this is the 1250 * second jprobe at the address - two jprobes can't coexist 1251 */ 1252 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1253 { 1254 BUG_ON(kprobe_gone(ap) || kprobe_gone(p)); 1255 1256 if (p->break_handler || p->post_handler) 1257 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1258 1259 if (p->break_handler) { 1260 if (ap->break_handler) 1261 return -EEXIST; 1262 list_add_tail_rcu(&p->list, &ap->list); 1263 ap->break_handler = aggr_break_handler; 1264 } else 1265 list_add_rcu(&p->list, &ap->list); 1266 if (p->post_handler && !ap->post_handler) 1267 ap->post_handler = aggr_post_handler; 1268 1269 return 0; 1270 } 1271 1272 /* 1273 * Fill in the required fields of the "manager kprobe". Replace the 1274 * earlier kprobe in the hlist with the manager kprobe 1275 */ 1276 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1277 { 1278 /* Copy p's insn slot to ap */ 1279 copy_kprobe(p, ap); 1280 flush_insn_slot(ap); 1281 ap->addr = p->addr; 1282 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1283 ap->pre_handler = aggr_pre_handler; 1284 ap->fault_handler = aggr_fault_handler; 1285 /* We don't care the kprobe which has gone. */ 1286 if (p->post_handler && !kprobe_gone(p)) 1287 ap->post_handler = aggr_post_handler; 1288 if (p->break_handler && !kprobe_gone(p)) 1289 ap->break_handler = aggr_break_handler; 1290 1291 INIT_LIST_HEAD(&ap->list); 1292 INIT_HLIST_NODE(&ap->hlist); 1293 1294 list_add_rcu(&p->list, &ap->list); 1295 hlist_replace_rcu(&p->hlist, &ap->hlist); 1296 } 1297 1298 /* 1299 * This is the second or subsequent kprobe at the address - handle 1300 * the intricacies 1301 */ 1302 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1303 { 1304 int ret = 0; 1305 struct kprobe *ap = orig_p; 1306 1307 cpus_read_lock(); 1308 1309 /* For preparing optimization, jump_label_text_reserved() is called */ 1310 jump_label_lock(); 1311 mutex_lock(&text_mutex); 1312 1313 if (!kprobe_aggrprobe(orig_p)) { 1314 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1315 ap = alloc_aggr_kprobe(orig_p); 1316 if (!ap) { 1317 ret = -ENOMEM; 1318 goto out; 1319 } 1320 init_aggr_kprobe(ap, orig_p); 1321 } else if (kprobe_unused(ap)) 1322 /* This probe is going to die. Rescue it */ 1323 reuse_unused_kprobe(ap); 1324 1325 if (kprobe_gone(ap)) { 1326 /* 1327 * Attempting to insert new probe at the same location that 1328 * had a probe in the module vaddr area which already 1329 * freed. So, the instruction slot has already been 1330 * released. We need a new slot for the new probe. 1331 */ 1332 ret = arch_prepare_kprobe(ap); 1333 if (ret) 1334 /* 1335 * Even if fail to allocate new slot, don't need to 1336 * free aggr_probe. It will be used next time, or 1337 * freed by unregister_kprobe. 1338 */ 1339 goto out; 1340 1341 /* Prepare optimized instructions if possible. */ 1342 prepare_optimized_kprobe(ap); 1343 1344 /* 1345 * Clear gone flag to prevent allocating new slot again, and 1346 * set disabled flag because it is not armed yet. 1347 */ 1348 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1349 | KPROBE_FLAG_DISABLED; 1350 } 1351 1352 /* Copy ap's insn slot to p */ 1353 copy_kprobe(ap, p); 1354 ret = add_new_kprobe(ap, p); 1355 1356 out: 1357 mutex_unlock(&text_mutex); 1358 jump_label_unlock(); 1359 cpus_read_unlock(); 1360 1361 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1362 ap->flags &= ~KPROBE_FLAG_DISABLED; 1363 if (!kprobes_all_disarmed) 1364 /* Arm the breakpoint again. */ 1365 arm_kprobe(ap); 1366 } 1367 return ret; 1368 } 1369 1370 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1371 { 1372 /* The __kprobes marked functions and entry code must not be probed */ 1373 return addr >= (unsigned long)__kprobes_text_start && 1374 addr < (unsigned long)__kprobes_text_end; 1375 } 1376 1377 bool within_kprobe_blacklist(unsigned long addr) 1378 { 1379 struct kprobe_blacklist_entry *ent; 1380 1381 if (arch_within_kprobe_blacklist(addr)) 1382 return true; 1383 /* 1384 * If there exists a kprobe_blacklist, verify and 1385 * fail any probe registration in the prohibited area 1386 */ 1387 list_for_each_entry(ent, &kprobe_blacklist, list) { 1388 if (addr >= ent->start_addr && addr < ent->end_addr) 1389 return true; 1390 } 1391 1392 return false; 1393 } 1394 1395 /* 1396 * If we have a symbol_name argument, look it up and add the offset field 1397 * to it. This way, we can specify a relative address to a symbol. 1398 * This returns encoded errors if it fails to look up symbol or invalid 1399 * combination of parameters. 1400 */ 1401 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr, 1402 const char *symbol_name, unsigned int offset) 1403 { 1404 if ((symbol_name && addr) || (!symbol_name && !addr)) 1405 goto invalid; 1406 1407 if (symbol_name) { 1408 addr = kprobe_lookup_name(symbol_name, offset); 1409 if (!addr) 1410 return ERR_PTR(-ENOENT); 1411 } 1412 1413 addr = (kprobe_opcode_t *)(((char *)addr) + offset); 1414 if (addr) 1415 return addr; 1416 1417 invalid: 1418 return ERR_PTR(-EINVAL); 1419 } 1420 1421 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1422 { 1423 return _kprobe_addr(p->addr, p->symbol_name, p->offset); 1424 } 1425 1426 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1427 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1428 { 1429 struct kprobe *ap, *list_p; 1430 1431 ap = get_kprobe(p->addr); 1432 if (unlikely(!ap)) 1433 return NULL; 1434 1435 if (p != ap) { 1436 list_for_each_entry_rcu(list_p, &ap->list, list) 1437 if (list_p == p) 1438 /* kprobe p is a valid probe */ 1439 goto valid; 1440 return NULL; 1441 } 1442 valid: 1443 return ap; 1444 } 1445 1446 /* Return error if the kprobe is being re-registered */ 1447 static inline int check_kprobe_rereg(struct kprobe *p) 1448 { 1449 int ret = 0; 1450 1451 mutex_lock(&kprobe_mutex); 1452 if (__get_valid_kprobe(p)) 1453 ret = -EINVAL; 1454 mutex_unlock(&kprobe_mutex); 1455 1456 return ret; 1457 } 1458 1459 int __weak arch_check_ftrace_location(struct kprobe *p) 1460 { 1461 unsigned long ftrace_addr; 1462 1463 ftrace_addr = ftrace_location((unsigned long)p->addr); 1464 if (ftrace_addr) { 1465 #ifdef CONFIG_KPROBES_ON_FTRACE 1466 /* Given address is not on the instruction boundary */ 1467 if ((unsigned long)p->addr != ftrace_addr) 1468 return -EILSEQ; 1469 p->flags |= KPROBE_FLAG_FTRACE; 1470 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1471 return -EINVAL; 1472 #endif 1473 } 1474 return 0; 1475 } 1476 1477 static int check_kprobe_address_safe(struct kprobe *p, 1478 struct module **probed_mod) 1479 { 1480 int ret; 1481 1482 ret = arch_check_ftrace_location(p); 1483 if (ret) 1484 return ret; 1485 jump_label_lock(); 1486 preempt_disable(); 1487 1488 /* Ensure it is not in reserved area nor out of text */ 1489 if (!kernel_text_address((unsigned long) p->addr) || 1490 within_kprobe_blacklist((unsigned long) p->addr) || 1491 jump_label_text_reserved(p->addr, p->addr)) { 1492 ret = -EINVAL; 1493 goto out; 1494 } 1495 1496 /* Check if are we probing a module */ 1497 *probed_mod = __module_text_address((unsigned long) p->addr); 1498 if (*probed_mod) { 1499 /* 1500 * We must hold a refcount of the probed module while updating 1501 * its code to prohibit unexpected unloading. 1502 */ 1503 if (unlikely(!try_module_get(*probed_mod))) { 1504 ret = -ENOENT; 1505 goto out; 1506 } 1507 1508 /* 1509 * If the module freed .init.text, we couldn't insert 1510 * kprobes in there. 1511 */ 1512 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1513 (*probed_mod)->state != MODULE_STATE_COMING) { 1514 module_put(*probed_mod); 1515 *probed_mod = NULL; 1516 ret = -ENOENT; 1517 } 1518 } 1519 out: 1520 preempt_enable(); 1521 jump_label_unlock(); 1522 1523 return ret; 1524 } 1525 1526 int register_kprobe(struct kprobe *p) 1527 { 1528 int ret; 1529 struct kprobe *old_p; 1530 struct module *probed_mod; 1531 kprobe_opcode_t *addr; 1532 1533 /* Adjust probe address from symbol */ 1534 addr = kprobe_addr(p); 1535 if (IS_ERR(addr)) 1536 return PTR_ERR(addr); 1537 p->addr = addr; 1538 1539 ret = check_kprobe_rereg(p); 1540 if (ret) 1541 return ret; 1542 1543 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1544 p->flags &= KPROBE_FLAG_DISABLED; 1545 p->nmissed = 0; 1546 INIT_LIST_HEAD(&p->list); 1547 1548 ret = check_kprobe_address_safe(p, &probed_mod); 1549 if (ret) 1550 return ret; 1551 1552 mutex_lock(&kprobe_mutex); 1553 1554 old_p = get_kprobe(p->addr); 1555 if (old_p) { 1556 /* Since this may unoptimize old_p, locking text_mutex. */ 1557 ret = register_aggr_kprobe(old_p, p); 1558 goto out; 1559 } 1560 1561 cpus_read_lock(); 1562 /* Prevent text modification */ 1563 mutex_lock(&text_mutex); 1564 ret = prepare_kprobe(p); 1565 mutex_unlock(&text_mutex); 1566 cpus_read_unlock(); 1567 if (ret) 1568 goto out; 1569 1570 INIT_HLIST_NODE(&p->hlist); 1571 hlist_add_head_rcu(&p->hlist, 1572 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1573 1574 if (!kprobes_all_disarmed && !kprobe_disabled(p)) 1575 arm_kprobe(p); 1576 1577 /* Try to optimize kprobe */ 1578 try_to_optimize_kprobe(p); 1579 out: 1580 mutex_unlock(&kprobe_mutex); 1581 1582 if (probed_mod) 1583 module_put(probed_mod); 1584 1585 return ret; 1586 } 1587 EXPORT_SYMBOL_GPL(register_kprobe); 1588 1589 /* Check if all probes on the aggrprobe are disabled */ 1590 static int aggr_kprobe_disabled(struct kprobe *ap) 1591 { 1592 struct kprobe *kp; 1593 1594 list_for_each_entry_rcu(kp, &ap->list, list) 1595 if (!kprobe_disabled(kp)) 1596 /* 1597 * There is an active probe on the list. 1598 * We can't disable this ap. 1599 */ 1600 return 0; 1601 1602 return 1; 1603 } 1604 1605 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1606 static struct kprobe *__disable_kprobe(struct kprobe *p) 1607 { 1608 struct kprobe *orig_p; 1609 1610 /* Get an original kprobe for return */ 1611 orig_p = __get_valid_kprobe(p); 1612 if (unlikely(orig_p == NULL)) 1613 return NULL; 1614 1615 if (!kprobe_disabled(p)) { 1616 /* Disable probe if it is a child probe */ 1617 if (p != orig_p) 1618 p->flags |= KPROBE_FLAG_DISABLED; 1619 1620 /* Try to disarm and disable this/parent probe */ 1621 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1622 /* 1623 * If kprobes_all_disarmed is set, orig_p 1624 * should have already been disarmed, so 1625 * skip unneed disarming process. 1626 */ 1627 if (!kprobes_all_disarmed) 1628 disarm_kprobe(orig_p, true); 1629 orig_p->flags |= KPROBE_FLAG_DISABLED; 1630 } 1631 } 1632 1633 return orig_p; 1634 } 1635 1636 /* 1637 * Unregister a kprobe without a scheduler synchronization. 1638 */ 1639 static int __unregister_kprobe_top(struct kprobe *p) 1640 { 1641 struct kprobe *ap, *list_p; 1642 1643 /* Disable kprobe. This will disarm it if needed. */ 1644 ap = __disable_kprobe(p); 1645 if (ap == NULL) 1646 return -EINVAL; 1647 1648 if (ap == p) 1649 /* 1650 * This probe is an independent(and non-optimized) kprobe 1651 * (not an aggrprobe). Remove from the hash list. 1652 */ 1653 goto disarmed; 1654 1655 /* Following process expects this probe is an aggrprobe */ 1656 WARN_ON(!kprobe_aggrprobe(ap)); 1657 1658 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1659 /* 1660 * !disarmed could be happen if the probe is under delayed 1661 * unoptimizing. 1662 */ 1663 goto disarmed; 1664 else { 1665 /* If disabling probe has special handlers, update aggrprobe */ 1666 if (p->break_handler && !kprobe_gone(p)) 1667 ap->break_handler = NULL; 1668 if (p->post_handler && !kprobe_gone(p)) { 1669 list_for_each_entry_rcu(list_p, &ap->list, list) { 1670 if ((list_p != p) && (list_p->post_handler)) 1671 goto noclean; 1672 } 1673 ap->post_handler = NULL; 1674 } 1675 noclean: 1676 /* 1677 * Remove from the aggrprobe: this path will do nothing in 1678 * __unregister_kprobe_bottom(). 1679 */ 1680 list_del_rcu(&p->list); 1681 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1682 /* 1683 * Try to optimize this probe again, because post 1684 * handler may have been changed. 1685 */ 1686 optimize_kprobe(ap); 1687 } 1688 return 0; 1689 1690 disarmed: 1691 BUG_ON(!kprobe_disarmed(ap)); 1692 hlist_del_rcu(&ap->hlist); 1693 return 0; 1694 } 1695 1696 static void __unregister_kprobe_bottom(struct kprobe *p) 1697 { 1698 struct kprobe *ap; 1699 1700 if (list_empty(&p->list)) 1701 /* This is an independent kprobe */ 1702 arch_remove_kprobe(p); 1703 else if (list_is_singular(&p->list)) { 1704 /* This is the last child of an aggrprobe */ 1705 ap = list_entry(p->list.next, struct kprobe, list); 1706 list_del(&p->list); 1707 free_aggr_kprobe(ap); 1708 } 1709 /* Otherwise, do nothing. */ 1710 } 1711 1712 int register_kprobes(struct kprobe **kps, int num) 1713 { 1714 int i, ret = 0; 1715 1716 if (num <= 0) 1717 return -EINVAL; 1718 for (i = 0; i < num; i++) { 1719 ret = register_kprobe(kps[i]); 1720 if (ret < 0) { 1721 if (i > 0) 1722 unregister_kprobes(kps, i); 1723 break; 1724 } 1725 } 1726 return ret; 1727 } 1728 EXPORT_SYMBOL_GPL(register_kprobes); 1729 1730 void unregister_kprobe(struct kprobe *p) 1731 { 1732 unregister_kprobes(&p, 1); 1733 } 1734 EXPORT_SYMBOL_GPL(unregister_kprobe); 1735 1736 void unregister_kprobes(struct kprobe **kps, int num) 1737 { 1738 int i; 1739 1740 if (num <= 0) 1741 return; 1742 mutex_lock(&kprobe_mutex); 1743 for (i = 0; i < num; i++) 1744 if (__unregister_kprobe_top(kps[i]) < 0) 1745 kps[i]->addr = NULL; 1746 mutex_unlock(&kprobe_mutex); 1747 1748 synchronize_sched(); 1749 for (i = 0; i < num; i++) 1750 if (kps[i]->addr) 1751 __unregister_kprobe_bottom(kps[i]); 1752 } 1753 EXPORT_SYMBOL_GPL(unregister_kprobes); 1754 1755 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1756 unsigned long val, void *data) 1757 { 1758 return NOTIFY_DONE; 1759 } 1760 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1761 1762 static struct notifier_block kprobe_exceptions_nb = { 1763 .notifier_call = kprobe_exceptions_notify, 1764 .priority = 0x7fffffff /* we need to be notified first */ 1765 }; 1766 1767 unsigned long __weak arch_deref_entry_point(void *entry) 1768 { 1769 return (unsigned long)entry; 1770 } 1771 1772 int register_jprobes(struct jprobe **jps, int num) 1773 { 1774 int ret = 0, i; 1775 1776 if (num <= 0) 1777 return -EINVAL; 1778 1779 for (i = 0; i < num; i++) { 1780 ret = register_jprobe(jps[i]); 1781 1782 if (ret < 0) { 1783 if (i > 0) 1784 unregister_jprobes(jps, i); 1785 break; 1786 } 1787 } 1788 1789 return ret; 1790 } 1791 EXPORT_SYMBOL_GPL(register_jprobes); 1792 1793 int register_jprobe(struct jprobe *jp) 1794 { 1795 unsigned long addr, offset; 1796 struct kprobe *kp = &jp->kp; 1797 1798 /* 1799 * Verify probepoint as well as the jprobe handler are 1800 * valid function entry points. 1801 */ 1802 addr = arch_deref_entry_point(jp->entry); 1803 1804 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0 && 1805 kprobe_on_func_entry(kp->addr, kp->symbol_name, kp->offset)) { 1806 kp->pre_handler = setjmp_pre_handler; 1807 kp->break_handler = longjmp_break_handler; 1808 return register_kprobe(kp); 1809 } 1810 1811 return -EINVAL; 1812 } 1813 EXPORT_SYMBOL_GPL(register_jprobe); 1814 1815 void unregister_jprobe(struct jprobe *jp) 1816 { 1817 unregister_jprobes(&jp, 1); 1818 } 1819 EXPORT_SYMBOL_GPL(unregister_jprobe); 1820 1821 void unregister_jprobes(struct jprobe **jps, int num) 1822 { 1823 int i; 1824 1825 if (num <= 0) 1826 return; 1827 mutex_lock(&kprobe_mutex); 1828 for (i = 0; i < num; i++) 1829 if (__unregister_kprobe_top(&jps[i]->kp) < 0) 1830 jps[i]->kp.addr = NULL; 1831 mutex_unlock(&kprobe_mutex); 1832 1833 synchronize_sched(); 1834 for (i = 0; i < num; i++) { 1835 if (jps[i]->kp.addr) 1836 __unregister_kprobe_bottom(&jps[i]->kp); 1837 } 1838 } 1839 EXPORT_SYMBOL_GPL(unregister_jprobes); 1840 1841 #ifdef CONFIG_KRETPROBES 1842 /* 1843 * This kprobe pre_handler is registered with every kretprobe. When probe 1844 * hits it will set up the return probe. 1845 */ 1846 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 1847 { 1848 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1849 unsigned long hash, flags = 0; 1850 struct kretprobe_instance *ri; 1851 1852 /* 1853 * To avoid deadlocks, prohibit return probing in NMI contexts, 1854 * just skip the probe and increase the (inexact) 'nmissed' 1855 * statistical counter, so that the user is informed that 1856 * something happened: 1857 */ 1858 if (unlikely(in_nmi())) { 1859 rp->nmissed++; 1860 return 0; 1861 } 1862 1863 /* TODO: consider to only swap the RA after the last pre_handler fired */ 1864 hash = hash_ptr(current, KPROBE_HASH_BITS); 1865 raw_spin_lock_irqsave(&rp->lock, flags); 1866 if (!hlist_empty(&rp->free_instances)) { 1867 ri = hlist_entry(rp->free_instances.first, 1868 struct kretprobe_instance, hlist); 1869 hlist_del(&ri->hlist); 1870 raw_spin_unlock_irqrestore(&rp->lock, flags); 1871 1872 ri->rp = rp; 1873 ri->task = current; 1874 1875 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 1876 raw_spin_lock_irqsave(&rp->lock, flags); 1877 hlist_add_head(&ri->hlist, &rp->free_instances); 1878 raw_spin_unlock_irqrestore(&rp->lock, flags); 1879 return 0; 1880 } 1881 1882 arch_prepare_kretprobe(ri, regs); 1883 1884 /* XXX(hch): why is there no hlist_move_head? */ 1885 INIT_HLIST_NODE(&ri->hlist); 1886 kretprobe_table_lock(hash, &flags); 1887 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 1888 kretprobe_table_unlock(hash, &flags); 1889 } else { 1890 rp->nmissed++; 1891 raw_spin_unlock_irqrestore(&rp->lock, flags); 1892 } 1893 return 0; 1894 } 1895 NOKPROBE_SYMBOL(pre_handler_kretprobe); 1896 1897 bool __weak arch_kprobe_on_func_entry(unsigned long offset) 1898 { 1899 return !offset; 1900 } 1901 1902 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 1903 { 1904 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset); 1905 1906 if (IS_ERR(kp_addr)) 1907 return false; 1908 1909 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) || 1910 !arch_kprobe_on_func_entry(offset)) 1911 return false; 1912 1913 return true; 1914 } 1915 1916 int register_kretprobe(struct kretprobe *rp) 1917 { 1918 int ret = 0; 1919 struct kretprobe_instance *inst; 1920 int i; 1921 void *addr; 1922 1923 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset)) 1924 return -EINVAL; 1925 1926 if (kretprobe_blacklist_size) { 1927 addr = kprobe_addr(&rp->kp); 1928 if (IS_ERR(addr)) 1929 return PTR_ERR(addr); 1930 1931 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1932 if (kretprobe_blacklist[i].addr == addr) 1933 return -EINVAL; 1934 } 1935 } 1936 1937 rp->kp.pre_handler = pre_handler_kretprobe; 1938 rp->kp.post_handler = NULL; 1939 rp->kp.fault_handler = NULL; 1940 rp->kp.break_handler = NULL; 1941 1942 /* Pre-allocate memory for max kretprobe instances */ 1943 if (rp->maxactive <= 0) { 1944 #ifdef CONFIG_PREEMPT 1945 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 1946 #else 1947 rp->maxactive = num_possible_cpus(); 1948 #endif 1949 } 1950 raw_spin_lock_init(&rp->lock); 1951 INIT_HLIST_HEAD(&rp->free_instances); 1952 for (i = 0; i < rp->maxactive; i++) { 1953 inst = kmalloc(sizeof(struct kretprobe_instance) + 1954 rp->data_size, GFP_KERNEL); 1955 if (inst == NULL) { 1956 free_rp_inst(rp); 1957 return -ENOMEM; 1958 } 1959 INIT_HLIST_NODE(&inst->hlist); 1960 hlist_add_head(&inst->hlist, &rp->free_instances); 1961 } 1962 1963 rp->nmissed = 0; 1964 /* Establish function entry probe point */ 1965 ret = register_kprobe(&rp->kp); 1966 if (ret != 0) 1967 free_rp_inst(rp); 1968 return ret; 1969 } 1970 EXPORT_SYMBOL_GPL(register_kretprobe); 1971 1972 int register_kretprobes(struct kretprobe **rps, int num) 1973 { 1974 int ret = 0, i; 1975 1976 if (num <= 0) 1977 return -EINVAL; 1978 for (i = 0; i < num; i++) { 1979 ret = register_kretprobe(rps[i]); 1980 if (ret < 0) { 1981 if (i > 0) 1982 unregister_kretprobes(rps, i); 1983 break; 1984 } 1985 } 1986 return ret; 1987 } 1988 EXPORT_SYMBOL_GPL(register_kretprobes); 1989 1990 void unregister_kretprobe(struct kretprobe *rp) 1991 { 1992 unregister_kretprobes(&rp, 1); 1993 } 1994 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1995 1996 void unregister_kretprobes(struct kretprobe **rps, int num) 1997 { 1998 int i; 1999 2000 if (num <= 0) 2001 return; 2002 mutex_lock(&kprobe_mutex); 2003 for (i = 0; i < num; i++) 2004 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 2005 rps[i]->kp.addr = NULL; 2006 mutex_unlock(&kprobe_mutex); 2007 2008 synchronize_sched(); 2009 for (i = 0; i < num; i++) { 2010 if (rps[i]->kp.addr) { 2011 __unregister_kprobe_bottom(&rps[i]->kp); 2012 cleanup_rp_inst(rps[i]); 2013 } 2014 } 2015 } 2016 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2017 2018 #else /* CONFIG_KRETPROBES */ 2019 int register_kretprobe(struct kretprobe *rp) 2020 { 2021 return -ENOSYS; 2022 } 2023 EXPORT_SYMBOL_GPL(register_kretprobe); 2024 2025 int register_kretprobes(struct kretprobe **rps, int num) 2026 { 2027 return -ENOSYS; 2028 } 2029 EXPORT_SYMBOL_GPL(register_kretprobes); 2030 2031 void unregister_kretprobe(struct kretprobe *rp) 2032 { 2033 } 2034 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2035 2036 void unregister_kretprobes(struct kretprobe **rps, int num) 2037 { 2038 } 2039 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2040 2041 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2042 { 2043 return 0; 2044 } 2045 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2046 2047 #endif /* CONFIG_KRETPROBES */ 2048 2049 /* Set the kprobe gone and remove its instruction buffer. */ 2050 static void kill_kprobe(struct kprobe *p) 2051 { 2052 struct kprobe *kp; 2053 2054 p->flags |= KPROBE_FLAG_GONE; 2055 if (kprobe_aggrprobe(p)) { 2056 /* 2057 * If this is an aggr_kprobe, we have to list all the 2058 * chained probes and mark them GONE. 2059 */ 2060 list_for_each_entry_rcu(kp, &p->list, list) 2061 kp->flags |= KPROBE_FLAG_GONE; 2062 p->post_handler = NULL; 2063 p->break_handler = NULL; 2064 kill_optimized_kprobe(p); 2065 } 2066 /* 2067 * Here, we can remove insn_slot safely, because no thread calls 2068 * the original probed function (which will be freed soon) any more. 2069 */ 2070 arch_remove_kprobe(p); 2071 } 2072 2073 /* Disable one kprobe */ 2074 int disable_kprobe(struct kprobe *kp) 2075 { 2076 int ret = 0; 2077 2078 mutex_lock(&kprobe_mutex); 2079 2080 /* Disable this kprobe */ 2081 if (__disable_kprobe(kp) == NULL) 2082 ret = -EINVAL; 2083 2084 mutex_unlock(&kprobe_mutex); 2085 return ret; 2086 } 2087 EXPORT_SYMBOL_GPL(disable_kprobe); 2088 2089 /* Enable one kprobe */ 2090 int enable_kprobe(struct kprobe *kp) 2091 { 2092 int ret = 0; 2093 struct kprobe *p; 2094 2095 mutex_lock(&kprobe_mutex); 2096 2097 /* Check whether specified probe is valid. */ 2098 p = __get_valid_kprobe(kp); 2099 if (unlikely(p == NULL)) { 2100 ret = -EINVAL; 2101 goto out; 2102 } 2103 2104 if (kprobe_gone(kp)) { 2105 /* This kprobe has gone, we couldn't enable it. */ 2106 ret = -EINVAL; 2107 goto out; 2108 } 2109 2110 if (p != kp) 2111 kp->flags &= ~KPROBE_FLAG_DISABLED; 2112 2113 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2114 p->flags &= ~KPROBE_FLAG_DISABLED; 2115 arm_kprobe(p); 2116 } 2117 out: 2118 mutex_unlock(&kprobe_mutex); 2119 return ret; 2120 } 2121 EXPORT_SYMBOL_GPL(enable_kprobe); 2122 2123 void dump_kprobe(struct kprobe *kp) 2124 { 2125 printk(KERN_WARNING "Dumping kprobe:\n"); 2126 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n", 2127 kp->symbol_name, kp->addr, kp->offset); 2128 } 2129 NOKPROBE_SYMBOL(dump_kprobe); 2130 2131 /* 2132 * Lookup and populate the kprobe_blacklist. 2133 * 2134 * Unlike the kretprobe blacklist, we'll need to determine 2135 * the range of addresses that belong to the said functions, 2136 * since a kprobe need not necessarily be at the beginning 2137 * of a function. 2138 */ 2139 static int __init populate_kprobe_blacklist(unsigned long *start, 2140 unsigned long *end) 2141 { 2142 unsigned long *iter; 2143 struct kprobe_blacklist_entry *ent; 2144 unsigned long entry, offset = 0, size = 0; 2145 2146 for (iter = start; iter < end; iter++) { 2147 entry = arch_deref_entry_point((void *)*iter); 2148 2149 if (!kernel_text_address(entry) || 2150 !kallsyms_lookup_size_offset(entry, &size, &offset)) { 2151 pr_err("Failed to find blacklist at %p\n", 2152 (void *)entry); 2153 continue; 2154 } 2155 2156 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2157 if (!ent) 2158 return -ENOMEM; 2159 ent->start_addr = entry; 2160 ent->end_addr = entry + size; 2161 INIT_LIST_HEAD(&ent->list); 2162 list_add_tail(&ent->list, &kprobe_blacklist); 2163 } 2164 return 0; 2165 } 2166 2167 /* Module notifier call back, checking kprobes on the module */ 2168 static int kprobes_module_callback(struct notifier_block *nb, 2169 unsigned long val, void *data) 2170 { 2171 struct module *mod = data; 2172 struct hlist_head *head; 2173 struct kprobe *p; 2174 unsigned int i; 2175 int checkcore = (val == MODULE_STATE_GOING); 2176 2177 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2178 return NOTIFY_DONE; 2179 2180 /* 2181 * When MODULE_STATE_GOING was notified, both of module .text and 2182 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2183 * notified, only .init.text section would be freed. We need to 2184 * disable kprobes which have been inserted in the sections. 2185 */ 2186 mutex_lock(&kprobe_mutex); 2187 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2188 head = &kprobe_table[i]; 2189 hlist_for_each_entry_rcu(p, head, hlist) 2190 if (within_module_init((unsigned long)p->addr, mod) || 2191 (checkcore && 2192 within_module_core((unsigned long)p->addr, mod))) { 2193 /* 2194 * The vaddr this probe is installed will soon 2195 * be vfreed buy not synced to disk. Hence, 2196 * disarming the breakpoint isn't needed. 2197 * 2198 * Note, this will also move any optimized probes 2199 * that are pending to be removed from their 2200 * corresponding lists to the freeing_list and 2201 * will not be touched by the delayed 2202 * kprobe_optimizer work handler. 2203 */ 2204 kill_kprobe(p); 2205 } 2206 } 2207 mutex_unlock(&kprobe_mutex); 2208 return NOTIFY_DONE; 2209 } 2210 2211 static struct notifier_block kprobe_module_nb = { 2212 .notifier_call = kprobes_module_callback, 2213 .priority = 0 2214 }; 2215 2216 /* Markers of _kprobe_blacklist section */ 2217 extern unsigned long __start_kprobe_blacklist[]; 2218 extern unsigned long __stop_kprobe_blacklist[]; 2219 2220 static int __init init_kprobes(void) 2221 { 2222 int i, err = 0; 2223 2224 /* FIXME allocate the probe table, currently defined statically */ 2225 /* initialize all list heads */ 2226 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2227 INIT_HLIST_HEAD(&kprobe_table[i]); 2228 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 2229 raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); 2230 } 2231 2232 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2233 __stop_kprobe_blacklist); 2234 if (err) { 2235 pr_err("kprobes: failed to populate blacklist: %d\n", err); 2236 pr_err("Please take care of using kprobes.\n"); 2237 } 2238 2239 if (kretprobe_blacklist_size) { 2240 /* lookup the function address from its name */ 2241 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2242 kretprobe_blacklist[i].addr = 2243 kprobe_lookup_name(kretprobe_blacklist[i].name, 0); 2244 if (!kretprobe_blacklist[i].addr) 2245 printk("kretprobe: lookup failed: %s\n", 2246 kretprobe_blacklist[i].name); 2247 } 2248 } 2249 2250 #if defined(CONFIG_OPTPROBES) 2251 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2252 /* Init kprobe_optinsn_slots */ 2253 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2254 #endif 2255 /* By default, kprobes can be optimized */ 2256 kprobes_allow_optimization = true; 2257 #endif 2258 2259 /* By default, kprobes are armed */ 2260 kprobes_all_disarmed = false; 2261 2262 err = arch_init_kprobes(); 2263 if (!err) 2264 err = register_die_notifier(&kprobe_exceptions_nb); 2265 if (!err) 2266 err = register_module_notifier(&kprobe_module_nb); 2267 2268 kprobes_initialized = (err == 0); 2269 2270 if (!err) 2271 init_test_probes(); 2272 return err; 2273 } 2274 2275 #ifdef CONFIG_DEBUG_FS 2276 static void report_probe(struct seq_file *pi, struct kprobe *p, 2277 const char *sym, int offset, char *modname, struct kprobe *pp) 2278 { 2279 char *kprobe_type; 2280 2281 if (p->pre_handler == pre_handler_kretprobe) 2282 kprobe_type = "r"; 2283 else if (p->pre_handler == setjmp_pre_handler) 2284 kprobe_type = "j"; 2285 else 2286 kprobe_type = "k"; 2287 2288 if (sym) 2289 seq_printf(pi, "%p %s %s+0x%x %s ", 2290 p->addr, kprobe_type, sym, offset, 2291 (modname ? modname : " ")); 2292 else 2293 seq_printf(pi, "%p %s %p ", 2294 p->addr, kprobe_type, p->addr); 2295 2296 if (!pp) 2297 pp = p; 2298 seq_printf(pi, "%s%s%s%s\n", 2299 (kprobe_gone(p) ? "[GONE]" : ""), 2300 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2301 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2302 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2303 } 2304 2305 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2306 { 2307 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2308 } 2309 2310 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2311 { 2312 (*pos)++; 2313 if (*pos >= KPROBE_TABLE_SIZE) 2314 return NULL; 2315 return pos; 2316 } 2317 2318 static void kprobe_seq_stop(struct seq_file *f, void *v) 2319 { 2320 /* Nothing to do */ 2321 } 2322 2323 static int show_kprobe_addr(struct seq_file *pi, void *v) 2324 { 2325 struct hlist_head *head; 2326 struct kprobe *p, *kp; 2327 const char *sym = NULL; 2328 unsigned int i = *(loff_t *) v; 2329 unsigned long offset = 0; 2330 char *modname, namebuf[KSYM_NAME_LEN]; 2331 2332 head = &kprobe_table[i]; 2333 preempt_disable(); 2334 hlist_for_each_entry_rcu(p, head, hlist) { 2335 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2336 &offset, &modname, namebuf); 2337 if (kprobe_aggrprobe(p)) { 2338 list_for_each_entry_rcu(kp, &p->list, list) 2339 report_probe(pi, kp, sym, offset, modname, p); 2340 } else 2341 report_probe(pi, p, sym, offset, modname, NULL); 2342 } 2343 preempt_enable(); 2344 return 0; 2345 } 2346 2347 static const struct seq_operations kprobes_seq_ops = { 2348 .start = kprobe_seq_start, 2349 .next = kprobe_seq_next, 2350 .stop = kprobe_seq_stop, 2351 .show = show_kprobe_addr 2352 }; 2353 2354 static int kprobes_open(struct inode *inode, struct file *filp) 2355 { 2356 return seq_open(filp, &kprobes_seq_ops); 2357 } 2358 2359 static const struct file_operations debugfs_kprobes_operations = { 2360 .open = kprobes_open, 2361 .read = seq_read, 2362 .llseek = seq_lseek, 2363 .release = seq_release, 2364 }; 2365 2366 /* kprobes/blacklist -- shows which functions can not be probed */ 2367 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2368 { 2369 return seq_list_start(&kprobe_blacklist, *pos); 2370 } 2371 2372 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2373 { 2374 return seq_list_next(v, &kprobe_blacklist, pos); 2375 } 2376 2377 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2378 { 2379 struct kprobe_blacklist_entry *ent = 2380 list_entry(v, struct kprobe_blacklist_entry, list); 2381 2382 seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr, 2383 (void *)ent->end_addr, (void *)ent->start_addr); 2384 return 0; 2385 } 2386 2387 static const struct seq_operations kprobe_blacklist_seq_ops = { 2388 .start = kprobe_blacklist_seq_start, 2389 .next = kprobe_blacklist_seq_next, 2390 .stop = kprobe_seq_stop, /* Reuse void function */ 2391 .show = kprobe_blacklist_seq_show, 2392 }; 2393 2394 static int kprobe_blacklist_open(struct inode *inode, struct file *filp) 2395 { 2396 return seq_open(filp, &kprobe_blacklist_seq_ops); 2397 } 2398 2399 static const struct file_operations debugfs_kprobe_blacklist_ops = { 2400 .open = kprobe_blacklist_open, 2401 .read = seq_read, 2402 .llseek = seq_lseek, 2403 .release = seq_release, 2404 }; 2405 2406 static void arm_all_kprobes(void) 2407 { 2408 struct hlist_head *head; 2409 struct kprobe *p; 2410 unsigned int i; 2411 2412 mutex_lock(&kprobe_mutex); 2413 2414 /* If kprobes are armed, just return */ 2415 if (!kprobes_all_disarmed) 2416 goto already_enabled; 2417 2418 /* 2419 * optimize_kprobe() called by arm_kprobe() checks 2420 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2421 * arm_kprobe. 2422 */ 2423 kprobes_all_disarmed = false; 2424 /* Arming kprobes doesn't optimize kprobe itself */ 2425 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2426 head = &kprobe_table[i]; 2427 hlist_for_each_entry_rcu(p, head, hlist) 2428 if (!kprobe_disabled(p)) 2429 arm_kprobe(p); 2430 } 2431 2432 printk(KERN_INFO "Kprobes globally enabled\n"); 2433 2434 already_enabled: 2435 mutex_unlock(&kprobe_mutex); 2436 return; 2437 } 2438 2439 static void disarm_all_kprobes(void) 2440 { 2441 struct hlist_head *head; 2442 struct kprobe *p; 2443 unsigned int i; 2444 2445 mutex_lock(&kprobe_mutex); 2446 2447 /* If kprobes are already disarmed, just return */ 2448 if (kprobes_all_disarmed) { 2449 mutex_unlock(&kprobe_mutex); 2450 return; 2451 } 2452 2453 kprobes_all_disarmed = true; 2454 printk(KERN_INFO "Kprobes globally disabled\n"); 2455 2456 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2457 head = &kprobe_table[i]; 2458 hlist_for_each_entry_rcu(p, head, hlist) { 2459 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) 2460 disarm_kprobe(p, false); 2461 } 2462 } 2463 mutex_unlock(&kprobe_mutex); 2464 2465 /* Wait for disarming all kprobes by optimizer */ 2466 wait_for_kprobe_optimizer(); 2467 } 2468 2469 /* 2470 * XXX: The debugfs bool file interface doesn't allow for callbacks 2471 * when the bool state is switched. We can reuse that facility when 2472 * available 2473 */ 2474 static ssize_t read_enabled_file_bool(struct file *file, 2475 char __user *user_buf, size_t count, loff_t *ppos) 2476 { 2477 char buf[3]; 2478 2479 if (!kprobes_all_disarmed) 2480 buf[0] = '1'; 2481 else 2482 buf[0] = '0'; 2483 buf[1] = '\n'; 2484 buf[2] = 0x00; 2485 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2486 } 2487 2488 static ssize_t write_enabled_file_bool(struct file *file, 2489 const char __user *user_buf, size_t count, loff_t *ppos) 2490 { 2491 char buf[32]; 2492 size_t buf_size; 2493 2494 buf_size = min(count, (sizeof(buf)-1)); 2495 if (copy_from_user(buf, user_buf, buf_size)) 2496 return -EFAULT; 2497 2498 buf[buf_size] = '\0'; 2499 switch (buf[0]) { 2500 case 'y': 2501 case 'Y': 2502 case '1': 2503 arm_all_kprobes(); 2504 break; 2505 case 'n': 2506 case 'N': 2507 case '0': 2508 disarm_all_kprobes(); 2509 break; 2510 default: 2511 return -EINVAL; 2512 } 2513 2514 return count; 2515 } 2516 2517 static const struct file_operations fops_kp = { 2518 .read = read_enabled_file_bool, 2519 .write = write_enabled_file_bool, 2520 .llseek = default_llseek, 2521 }; 2522 2523 static int __init debugfs_kprobe_init(void) 2524 { 2525 struct dentry *dir, *file; 2526 unsigned int value = 1; 2527 2528 dir = debugfs_create_dir("kprobes", NULL); 2529 if (!dir) 2530 return -ENOMEM; 2531 2532 file = debugfs_create_file("list", 0444, dir, NULL, 2533 &debugfs_kprobes_operations); 2534 if (!file) 2535 goto error; 2536 2537 file = debugfs_create_file("enabled", 0600, dir, 2538 &value, &fops_kp); 2539 if (!file) 2540 goto error; 2541 2542 file = debugfs_create_file("blacklist", 0444, dir, NULL, 2543 &debugfs_kprobe_blacklist_ops); 2544 if (!file) 2545 goto error; 2546 2547 return 0; 2548 2549 error: 2550 debugfs_remove(dir); 2551 return -ENOMEM; 2552 } 2553 2554 late_initcall(debugfs_kprobe_init); 2555 #endif /* CONFIG_DEBUG_FS */ 2556 2557 module_init(init_kprobes); 2558 2559 /* defined in arch/.../kernel/kprobes.c */ 2560 EXPORT_SYMBOL_GPL(jprobe_return); 2561