xref: /openbmc/linux/kernel/kprobes.c (revision 6a108a14)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51 
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56 
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 
60 
61 /*
62  * Some oddball architectures like 64bit powerpc have function descriptors
63  * so this must be overridable.
64  */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69 
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73 
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76 
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81 	spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83 
84 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86 	return &(kretprobe_table_locks[hash].lock);
87 }
88 
89 /*
90  * Normally, functions that we'd want to prohibit kprobes in, are marked
91  * __kprobes. But, there are cases where such functions already belong to
92  * a different section (__sched for preempt_schedule)
93  *
94  * For such cases, we now have a blacklist
95  */
96 static struct kprobe_blackpoint kprobe_blacklist[] = {
97 	{"preempt_schedule",},
98 	{"native_get_debugreg",},
99 	{"irq_entries_start",},
100 	{"common_interrupt",},
101 	{"mcount",},	/* mcount can be called from everywhere */
102 	{NULL}    /* Terminator */
103 };
104 
105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106 /*
107  * kprobe->ainsn.insn points to the copy of the instruction to be
108  * single-stepped. x86_64, POWER4 and above have no-exec support and
109  * stepping on the instruction on a vmalloced/kmalloced/data page
110  * is a recipe for disaster
111  */
112 struct kprobe_insn_page {
113 	struct list_head list;
114 	kprobe_opcode_t *insns;		/* Page of instruction slots */
115 	int nused;
116 	int ngarbage;
117 	char slot_used[];
118 };
119 
120 #define KPROBE_INSN_PAGE_SIZE(slots)			\
121 	(offsetof(struct kprobe_insn_page, slot_used) +	\
122 	 (sizeof(char) * (slots)))
123 
124 struct kprobe_insn_cache {
125 	struct list_head pages;	/* list of kprobe_insn_page */
126 	size_t insn_size;	/* size of instruction slot */
127 	int nr_garbage;
128 };
129 
130 static int slots_per_page(struct kprobe_insn_cache *c)
131 {
132 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133 }
134 
135 enum kprobe_slot_state {
136 	SLOT_CLEAN = 0,
137 	SLOT_DIRTY = 1,
138 	SLOT_USED = 2,
139 };
140 
141 static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_slots */
142 static struct kprobe_insn_cache kprobe_insn_slots = {
143 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144 	.insn_size = MAX_INSN_SIZE,
145 	.nr_garbage = 0,
146 };
147 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148 
149 /**
150  * __get_insn_slot() - Find a slot on an executable page for an instruction.
151  * We allocate an executable page if there's no room on existing ones.
152  */
153 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154 {
155 	struct kprobe_insn_page *kip;
156 
157  retry:
158 	list_for_each_entry(kip, &c->pages, list) {
159 		if (kip->nused < slots_per_page(c)) {
160 			int i;
161 			for (i = 0; i < slots_per_page(c); i++) {
162 				if (kip->slot_used[i] == SLOT_CLEAN) {
163 					kip->slot_used[i] = SLOT_USED;
164 					kip->nused++;
165 					return kip->insns + (i * c->insn_size);
166 				}
167 			}
168 			/* kip->nused is broken. Fix it. */
169 			kip->nused = slots_per_page(c);
170 			WARN_ON(1);
171 		}
172 	}
173 
174 	/* If there are any garbage slots, collect it and try again. */
175 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
176 		goto retry;
177 
178 	/* All out of space.  Need to allocate a new page. */
179 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180 	if (!kip)
181 		return NULL;
182 
183 	/*
184 	 * Use module_alloc so this page is within +/- 2GB of where the
185 	 * kernel image and loaded module images reside. This is required
186 	 * so x86_64 can correctly handle the %rip-relative fixups.
187 	 */
188 	kip->insns = module_alloc(PAGE_SIZE);
189 	if (!kip->insns) {
190 		kfree(kip);
191 		return NULL;
192 	}
193 	INIT_LIST_HEAD(&kip->list);
194 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195 	kip->slot_used[0] = SLOT_USED;
196 	kip->nused = 1;
197 	kip->ngarbage = 0;
198 	list_add(&kip->list, &c->pages);
199 	return kip->insns;
200 }
201 
202 
203 kprobe_opcode_t __kprobes *get_insn_slot(void)
204 {
205 	kprobe_opcode_t *ret = NULL;
206 
207 	mutex_lock(&kprobe_insn_mutex);
208 	ret = __get_insn_slot(&kprobe_insn_slots);
209 	mutex_unlock(&kprobe_insn_mutex);
210 
211 	return ret;
212 }
213 
214 /* Return 1 if all garbages are collected, otherwise 0. */
215 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
216 {
217 	kip->slot_used[idx] = SLOT_CLEAN;
218 	kip->nused--;
219 	if (kip->nused == 0) {
220 		/*
221 		 * Page is no longer in use.  Free it unless
222 		 * it's the last one.  We keep the last one
223 		 * so as not to have to set it up again the
224 		 * next time somebody inserts a probe.
225 		 */
226 		if (!list_is_singular(&kip->list)) {
227 			list_del(&kip->list);
228 			module_free(NULL, kip->insns);
229 			kfree(kip);
230 		}
231 		return 1;
232 	}
233 	return 0;
234 }
235 
236 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237 {
238 	struct kprobe_insn_page *kip, *next;
239 
240 	/* Ensure no-one is interrupted on the garbages */
241 	synchronize_sched();
242 
243 	list_for_each_entry_safe(kip, next, &c->pages, list) {
244 		int i;
245 		if (kip->ngarbage == 0)
246 			continue;
247 		kip->ngarbage = 0;	/* we will collect all garbages */
248 		for (i = 0; i < slots_per_page(c); i++) {
249 			if (kip->slot_used[i] == SLOT_DIRTY &&
250 			    collect_one_slot(kip, i))
251 				break;
252 		}
253 	}
254 	c->nr_garbage = 0;
255 	return 0;
256 }
257 
258 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259 				       kprobe_opcode_t *slot, int dirty)
260 {
261 	struct kprobe_insn_page *kip;
262 
263 	list_for_each_entry(kip, &c->pages, list) {
264 		long idx = ((long)slot - (long)kip->insns) /
265 				(c->insn_size * sizeof(kprobe_opcode_t));
266 		if (idx >= 0 && idx < slots_per_page(c)) {
267 			WARN_ON(kip->slot_used[idx] != SLOT_USED);
268 			if (dirty) {
269 				kip->slot_used[idx] = SLOT_DIRTY;
270 				kip->ngarbage++;
271 				if (++c->nr_garbage > slots_per_page(c))
272 					collect_garbage_slots(c);
273 			} else
274 				collect_one_slot(kip, idx);
275 			return;
276 		}
277 	}
278 	/* Could not free this slot. */
279 	WARN_ON(1);
280 }
281 
282 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
283 {
284 	mutex_lock(&kprobe_insn_mutex);
285 	__free_insn_slot(&kprobe_insn_slots, slot, dirty);
286 	mutex_unlock(&kprobe_insn_mutex);
287 }
288 #ifdef CONFIG_OPTPROBES
289 /* For optimized_kprobe buffer */
290 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291 static struct kprobe_insn_cache kprobe_optinsn_slots = {
292 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293 	/* .insn_size is initialized later */
294 	.nr_garbage = 0,
295 };
296 /* Get a slot for optimized_kprobe buffer */
297 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
298 {
299 	kprobe_opcode_t *ret = NULL;
300 
301 	mutex_lock(&kprobe_optinsn_mutex);
302 	ret = __get_insn_slot(&kprobe_optinsn_slots);
303 	mutex_unlock(&kprobe_optinsn_mutex);
304 
305 	return ret;
306 }
307 
308 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
309 {
310 	mutex_lock(&kprobe_optinsn_mutex);
311 	__free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312 	mutex_unlock(&kprobe_optinsn_mutex);
313 }
314 #endif
315 #endif
316 
317 /* We have preemption disabled.. so it is safe to use __ versions */
318 static inline void set_kprobe_instance(struct kprobe *kp)
319 {
320 	__this_cpu_write(kprobe_instance, kp);
321 }
322 
323 static inline void reset_kprobe_instance(void)
324 {
325 	__this_cpu_write(kprobe_instance, NULL);
326 }
327 
328 /*
329  * This routine is called either:
330  * 	- under the kprobe_mutex - during kprobe_[un]register()
331  * 				OR
332  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
333  */
334 struct kprobe __kprobes *get_kprobe(void *addr)
335 {
336 	struct hlist_head *head;
337 	struct hlist_node *node;
338 	struct kprobe *p;
339 
340 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
341 	hlist_for_each_entry_rcu(p, node, head, hlist) {
342 		if (p->addr == addr)
343 			return p;
344 	}
345 
346 	return NULL;
347 }
348 
349 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
350 
351 /* Return true if the kprobe is an aggregator */
352 static inline int kprobe_aggrprobe(struct kprobe *p)
353 {
354 	return p->pre_handler == aggr_pre_handler;
355 }
356 
357 /* Return true(!0) if the kprobe is unused */
358 static inline int kprobe_unused(struct kprobe *p)
359 {
360 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
361 	       list_empty(&p->list);
362 }
363 
364 /*
365  * Keep all fields in the kprobe consistent
366  */
367 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
368 {
369 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
370 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
371 }
372 
373 #ifdef CONFIG_OPTPROBES
374 /* NOTE: change this value only with kprobe_mutex held */
375 static bool kprobes_allow_optimization;
376 
377 /*
378  * Call all pre_handler on the list, but ignores its return value.
379  * This must be called from arch-dep optimized caller.
380  */
381 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
382 {
383 	struct kprobe *kp;
384 
385 	list_for_each_entry_rcu(kp, &p->list, list) {
386 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
387 			set_kprobe_instance(kp);
388 			kp->pre_handler(kp, regs);
389 		}
390 		reset_kprobe_instance();
391 	}
392 }
393 
394 /* Free optimized instructions and optimized_kprobe */
395 static __kprobes void free_aggr_kprobe(struct kprobe *p)
396 {
397 	struct optimized_kprobe *op;
398 
399 	op = container_of(p, struct optimized_kprobe, kp);
400 	arch_remove_optimized_kprobe(op);
401 	arch_remove_kprobe(p);
402 	kfree(op);
403 }
404 
405 /* Return true(!0) if the kprobe is ready for optimization. */
406 static inline int kprobe_optready(struct kprobe *p)
407 {
408 	struct optimized_kprobe *op;
409 
410 	if (kprobe_aggrprobe(p)) {
411 		op = container_of(p, struct optimized_kprobe, kp);
412 		return arch_prepared_optinsn(&op->optinsn);
413 	}
414 
415 	return 0;
416 }
417 
418 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
419 static inline int kprobe_disarmed(struct kprobe *p)
420 {
421 	struct optimized_kprobe *op;
422 
423 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
424 	if (!kprobe_aggrprobe(p))
425 		return kprobe_disabled(p);
426 
427 	op = container_of(p, struct optimized_kprobe, kp);
428 
429 	return kprobe_disabled(p) && list_empty(&op->list);
430 }
431 
432 /* Return true(!0) if the probe is queued on (un)optimizing lists */
433 static int __kprobes kprobe_queued(struct kprobe *p)
434 {
435 	struct optimized_kprobe *op;
436 
437 	if (kprobe_aggrprobe(p)) {
438 		op = container_of(p, struct optimized_kprobe, kp);
439 		if (!list_empty(&op->list))
440 			return 1;
441 	}
442 	return 0;
443 }
444 
445 /*
446  * Return an optimized kprobe whose optimizing code replaces
447  * instructions including addr (exclude breakpoint).
448  */
449 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
450 {
451 	int i;
452 	struct kprobe *p = NULL;
453 	struct optimized_kprobe *op;
454 
455 	/* Don't check i == 0, since that is a breakpoint case. */
456 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
457 		p = get_kprobe((void *)(addr - i));
458 
459 	if (p && kprobe_optready(p)) {
460 		op = container_of(p, struct optimized_kprobe, kp);
461 		if (arch_within_optimized_kprobe(op, addr))
462 			return p;
463 	}
464 
465 	return NULL;
466 }
467 
468 /* Optimization staging list, protected by kprobe_mutex */
469 static LIST_HEAD(optimizing_list);
470 static LIST_HEAD(unoptimizing_list);
471 
472 static void kprobe_optimizer(struct work_struct *work);
473 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
474 static DECLARE_COMPLETION(optimizer_comp);
475 #define OPTIMIZE_DELAY 5
476 
477 /*
478  * Optimize (replace a breakpoint with a jump) kprobes listed on
479  * optimizing_list.
480  */
481 static __kprobes void do_optimize_kprobes(void)
482 {
483 	/* Optimization never be done when disarmed */
484 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
485 	    list_empty(&optimizing_list))
486 		return;
487 
488 	/*
489 	 * The optimization/unoptimization refers online_cpus via
490 	 * stop_machine() and cpu-hotplug modifies online_cpus.
491 	 * And same time, text_mutex will be held in cpu-hotplug and here.
492 	 * This combination can cause a deadlock (cpu-hotplug try to lock
493 	 * text_mutex but stop_machine can not be done because online_cpus
494 	 * has been changed)
495 	 * To avoid this deadlock, we need to call get_online_cpus()
496 	 * for preventing cpu-hotplug outside of text_mutex locking.
497 	 */
498 	get_online_cpus();
499 	mutex_lock(&text_mutex);
500 	arch_optimize_kprobes(&optimizing_list);
501 	mutex_unlock(&text_mutex);
502 	put_online_cpus();
503 }
504 
505 /*
506  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
507  * if need) kprobes listed on unoptimizing_list.
508  */
509 static __kprobes void do_unoptimize_kprobes(struct list_head *free_list)
510 {
511 	struct optimized_kprobe *op, *tmp;
512 
513 	/* Unoptimization must be done anytime */
514 	if (list_empty(&unoptimizing_list))
515 		return;
516 
517 	/* Ditto to do_optimize_kprobes */
518 	get_online_cpus();
519 	mutex_lock(&text_mutex);
520 	arch_unoptimize_kprobes(&unoptimizing_list, free_list);
521 	/* Loop free_list for disarming */
522 	list_for_each_entry_safe(op, tmp, free_list, list) {
523 		/* Disarm probes if marked disabled */
524 		if (kprobe_disabled(&op->kp))
525 			arch_disarm_kprobe(&op->kp);
526 		if (kprobe_unused(&op->kp)) {
527 			/*
528 			 * Remove unused probes from hash list. After waiting
529 			 * for synchronization, these probes are reclaimed.
530 			 * (reclaiming is done by do_free_cleaned_kprobes.)
531 			 */
532 			hlist_del_rcu(&op->kp.hlist);
533 		} else
534 			list_del_init(&op->list);
535 	}
536 	mutex_unlock(&text_mutex);
537 	put_online_cpus();
538 }
539 
540 /* Reclaim all kprobes on the free_list */
541 static __kprobes void do_free_cleaned_kprobes(struct list_head *free_list)
542 {
543 	struct optimized_kprobe *op, *tmp;
544 
545 	list_for_each_entry_safe(op, tmp, free_list, list) {
546 		BUG_ON(!kprobe_unused(&op->kp));
547 		list_del_init(&op->list);
548 		free_aggr_kprobe(&op->kp);
549 	}
550 }
551 
552 /* Start optimizer after OPTIMIZE_DELAY passed */
553 static __kprobes void kick_kprobe_optimizer(void)
554 {
555 	if (!delayed_work_pending(&optimizing_work))
556 		schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
557 }
558 
559 /* Kprobe jump optimizer */
560 static __kprobes void kprobe_optimizer(struct work_struct *work)
561 {
562 	LIST_HEAD(free_list);
563 
564 	/* Lock modules while optimizing kprobes */
565 	mutex_lock(&module_mutex);
566 	mutex_lock(&kprobe_mutex);
567 
568 	/*
569 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
570 	 * kprobes before waiting for quiesence period.
571 	 */
572 	do_unoptimize_kprobes(&free_list);
573 
574 	/*
575 	 * Step 2: Wait for quiesence period to ensure all running interrupts
576 	 * are done. Because optprobe may modify multiple instructions
577 	 * there is a chance that Nth instruction is interrupted. In that
578 	 * case, running interrupt can return to 2nd-Nth byte of jump
579 	 * instruction. This wait is for avoiding it.
580 	 */
581 	synchronize_sched();
582 
583 	/* Step 3: Optimize kprobes after quiesence period */
584 	do_optimize_kprobes();
585 
586 	/* Step 4: Free cleaned kprobes after quiesence period */
587 	do_free_cleaned_kprobes(&free_list);
588 
589 	mutex_unlock(&kprobe_mutex);
590 	mutex_unlock(&module_mutex);
591 
592 	/* Step 5: Kick optimizer again if needed */
593 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
594 		kick_kprobe_optimizer();
595 	else
596 		/* Wake up all waiters */
597 		complete_all(&optimizer_comp);
598 }
599 
600 /* Wait for completing optimization and unoptimization */
601 static __kprobes void wait_for_kprobe_optimizer(void)
602 {
603 	if (delayed_work_pending(&optimizing_work))
604 		wait_for_completion(&optimizer_comp);
605 }
606 
607 /* Optimize kprobe if p is ready to be optimized */
608 static __kprobes void optimize_kprobe(struct kprobe *p)
609 {
610 	struct optimized_kprobe *op;
611 
612 	/* Check if the kprobe is disabled or not ready for optimization. */
613 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
614 	    (kprobe_disabled(p) || kprobes_all_disarmed))
615 		return;
616 
617 	/* Both of break_handler and post_handler are not supported. */
618 	if (p->break_handler || p->post_handler)
619 		return;
620 
621 	op = container_of(p, struct optimized_kprobe, kp);
622 
623 	/* Check there is no other kprobes at the optimized instructions */
624 	if (arch_check_optimized_kprobe(op) < 0)
625 		return;
626 
627 	/* Check if it is already optimized. */
628 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
629 		return;
630 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
631 
632 	if (!list_empty(&op->list))
633 		/* This is under unoptimizing. Just dequeue the probe */
634 		list_del_init(&op->list);
635 	else {
636 		list_add(&op->list, &optimizing_list);
637 		kick_kprobe_optimizer();
638 	}
639 }
640 
641 /* Short cut to direct unoptimizing */
642 static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
643 {
644 	get_online_cpus();
645 	arch_unoptimize_kprobe(op);
646 	put_online_cpus();
647 	if (kprobe_disabled(&op->kp))
648 		arch_disarm_kprobe(&op->kp);
649 }
650 
651 /* Unoptimize a kprobe if p is optimized */
652 static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
653 {
654 	struct optimized_kprobe *op;
655 
656 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
657 		return; /* This is not an optprobe nor optimized */
658 
659 	op = container_of(p, struct optimized_kprobe, kp);
660 	if (!kprobe_optimized(p)) {
661 		/* Unoptimized or unoptimizing case */
662 		if (force && !list_empty(&op->list)) {
663 			/*
664 			 * Only if this is unoptimizing kprobe and forced,
665 			 * forcibly unoptimize it. (No need to unoptimize
666 			 * unoptimized kprobe again :)
667 			 */
668 			list_del_init(&op->list);
669 			force_unoptimize_kprobe(op);
670 		}
671 		return;
672 	}
673 
674 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
675 	if (!list_empty(&op->list)) {
676 		/* Dequeue from the optimization queue */
677 		list_del_init(&op->list);
678 		return;
679 	}
680 	/* Optimized kprobe case */
681 	if (force)
682 		/* Forcibly update the code: this is a special case */
683 		force_unoptimize_kprobe(op);
684 	else {
685 		list_add(&op->list, &unoptimizing_list);
686 		kick_kprobe_optimizer();
687 	}
688 }
689 
690 /* Cancel unoptimizing for reusing */
691 static void reuse_unused_kprobe(struct kprobe *ap)
692 {
693 	struct optimized_kprobe *op;
694 
695 	BUG_ON(!kprobe_unused(ap));
696 	/*
697 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
698 	 * there is still a relative jump) and disabled.
699 	 */
700 	op = container_of(ap, struct optimized_kprobe, kp);
701 	if (unlikely(list_empty(&op->list)))
702 		printk(KERN_WARNING "Warning: found a stray unused "
703 			"aggrprobe@%p\n", ap->addr);
704 	/* Enable the probe again */
705 	ap->flags &= ~KPROBE_FLAG_DISABLED;
706 	/* Optimize it again (remove from op->list) */
707 	BUG_ON(!kprobe_optready(ap));
708 	optimize_kprobe(ap);
709 }
710 
711 /* Remove optimized instructions */
712 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
713 {
714 	struct optimized_kprobe *op;
715 
716 	op = container_of(p, struct optimized_kprobe, kp);
717 	if (!list_empty(&op->list))
718 		/* Dequeue from the (un)optimization queue */
719 		list_del_init(&op->list);
720 
721 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
722 	/* Don't touch the code, because it is already freed. */
723 	arch_remove_optimized_kprobe(op);
724 }
725 
726 /* Try to prepare optimized instructions */
727 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
728 {
729 	struct optimized_kprobe *op;
730 
731 	op = container_of(p, struct optimized_kprobe, kp);
732 	arch_prepare_optimized_kprobe(op);
733 }
734 
735 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
736 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
737 {
738 	struct optimized_kprobe *op;
739 
740 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
741 	if (!op)
742 		return NULL;
743 
744 	INIT_LIST_HEAD(&op->list);
745 	op->kp.addr = p->addr;
746 	arch_prepare_optimized_kprobe(op);
747 
748 	return &op->kp;
749 }
750 
751 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
752 
753 /*
754  * Prepare an optimized_kprobe and optimize it
755  * NOTE: p must be a normal registered kprobe
756  */
757 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
758 {
759 	struct kprobe *ap;
760 	struct optimized_kprobe *op;
761 
762 	ap = alloc_aggr_kprobe(p);
763 	if (!ap)
764 		return;
765 
766 	op = container_of(ap, struct optimized_kprobe, kp);
767 	if (!arch_prepared_optinsn(&op->optinsn)) {
768 		/* If failed to setup optimizing, fallback to kprobe */
769 		arch_remove_optimized_kprobe(op);
770 		kfree(op);
771 		return;
772 	}
773 
774 	init_aggr_kprobe(ap, p);
775 	optimize_kprobe(ap);
776 }
777 
778 #ifdef CONFIG_SYSCTL
779 /* This should be called with kprobe_mutex locked */
780 static void __kprobes optimize_all_kprobes(void)
781 {
782 	struct hlist_head *head;
783 	struct hlist_node *node;
784 	struct kprobe *p;
785 	unsigned int i;
786 
787 	/* If optimization is already allowed, just return */
788 	if (kprobes_allow_optimization)
789 		return;
790 
791 	kprobes_allow_optimization = true;
792 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
793 		head = &kprobe_table[i];
794 		hlist_for_each_entry_rcu(p, node, head, hlist)
795 			if (!kprobe_disabled(p))
796 				optimize_kprobe(p);
797 	}
798 	printk(KERN_INFO "Kprobes globally optimized\n");
799 }
800 
801 /* This should be called with kprobe_mutex locked */
802 static void __kprobes unoptimize_all_kprobes(void)
803 {
804 	struct hlist_head *head;
805 	struct hlist_node *node;
806 	struct kprobe *p;
807 	unsigned int i;
808 
809 	/* If optimization is already prohibited, just return */
810 	if (!kprobes_allow_optimization)
811 		return;
812 
813 	kprobes_allow_optimization = false;
814 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
815 		head = &kprobe_table[i];
816 		hlist_for_each_entry_rcu(p, node, head, hlist) {
817 			if (!kprobe_disabled(p))
818 				unoptimize_kprobe(p, false);
819 		}
820 	}
821 	/* Wait for unoptimizing completion */
822 	wait_for_kprobe_optimizer();
823 	printk(KERN_INFO "Kprobes globally unoptimized\n");
824 }
825 
826 int sysctl_kprobes_optimization;
827 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
828 				      void __user *buffer, size_t *length,
829 				      loff_t *ppos)
830 {
831 	int ret;
832 
833 	mutex_lock(&kprobe_mutex);
834 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
835 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
836 
837 	if (sysctl_kprobes_optimization)
838 		optimize_all_kprobes();
839 	else
840 		unoptimize_all_kprobes();
841 	mutex_unlock(&kprobe_mutex);
842 
843 	return ret;
844 }
845 #endif /* CONFIG_SYSCTL */
846 
847 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
848 static void __kprobes __arm_kprobe(struct kprobe *p)
849 {
850 	struct kprobe *_p;
851 
852 	/* Check collision with other optimized kprobes */
853 	_p = get_optimized_kprobe((unsigned long)p->addr);
854 	if (unlikely(_p))
855 		/* Fallback to unoptimized kprobe */
856 		unoptimize_kprobe(_p, true);
857 
858 	arch_arm_kprobe(p);
859 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
860 }
861 
862 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
863 static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
864 {
865 	struct kprobe *_p;
866 
867 	unoptimize_kprobe(p, false);	/* Try to unoptimize */
868 
869 	if (!kprobe_queued(p)) {
870 		arch_disarm_kprobe(p);
871 		/* If another kprobe was blocked, optimize it. */
872 		_p = get_optimized_kprobe((unsigned long)p->addr);
873 		if (unlikely(_p) && reopt)
874 			optimize_kprobe(_p);
875 	}
876 	/* TODO: reoptimize others after unoptimized this probe */
877 }
878 
879 #else /* !CONFIG_OPTPROBES */
880 
881 #define optimize_kprobe(p)			do {} while (0)
882 #define unoptimize_kprobe(p, f)			do {} while (0)
883 #define kill_optimized_kprobe(p)		do {} while (0)
884 #define prepare_optimized_kprobe(p)		do {} while (0)
885 #define try_to_optimize_kprobe(p)		do {} while (0)
886 #define __arm_kprobe(p)				arch_arm_kprobe(p)
887 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
888 #define kprobe_disarmed(p)			kprobe_disabled(p)
889 #define wait_for_kprobe_optimizer()		do {} while (0)
890 
891 /* There should be no unused kprobes can be reused without optimization */
892 static void reuse_unused_kprobe(struct kprobe *ap)
893 {
894 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
895 	BUG_ON(kprobe_unused(ap));
896 }
897 
898 static __kprobes void free_aggr_kprobe(struct kprobe *p)
899 {
900 	arch_remove_kprobe(p);
901 	kfree(p);
902 }
903 
904 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
905 {
906 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
907 }
908 #endif /* CONFIG_OPTPROBES */
909 
910 /* Arm a kprobe with text_mutex */
911 static void __kprobes arm_kprobe(struct kprobe *kp)
912 {
913 	/*
914 	 * Here, since __arm_kprobe() doesn't use stop_machine(),
915 	 * this doesn't cause deadlock on text_mutex. So, we don't
916 	 * need get_online_cpus().
917 	 */
918 	mutex_lock(&text_mutex);
919 	__arm_kprobe(kp);
920 	mutex_unlock(&text_mutex);
921 }
922 
923 /* Disarm a kprobe with text_mutex */
924 static void __kprobes disarm_kprobe(struct kprobe *kp)
925 {
926 	/* Ditto */
927 	mutex_lock(&text_mutex);
928 	__disarm_kprobe(kp, true);
929 	mutex_unlock(&text_mutex);
930 }
931 
932 /*
933  * Aggregate handlers for multiple kprobes support - these handlers
934  * take care of invoking the individual kprobe handlers on p->list
935  */
936 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
937 {
938 	struct kprobe *kp;
939 
940 	list_for_each_entry_rcu(kp, &p->list, list) {
941 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
942 			set_kprobe_instance(kp);
943 			if (kp->pre_handler(kp, regs))
944 				return 1;
945 		}
946 		reset_kprobe_instance();
947 	}
948 	return 0;
949 }
950 
951 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
952 					unsigned long flags)
953 {
954 	struct kprobe *kp;
955 
956 	list_for_each_entry_rcu(kp, &p->list, list) {
957 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
958 			set_kprobe_instance(kp);
959 			kp->post_handler(kp, regs, flags);
960 			reset_kprobe_instance();
961 		}
962 	}
963 }
964 
965 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
966 					int trapnr)
967 {
968 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
969 
970 	/*
971 	 * if we faulted "during" the execution of a user specified
972 	 * probe handler, invoke just that probe's fault handler
973 	 */
974 	if (cur && cur->fault_handler) {
975 		if (cur->fault_handler(cur, regs, trapnr))
976 			return 1;
977 	}
978 	return 0;
979 }
980 
981 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
982 {
983 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
984 	int ret = 0;
985 
986 	if (cur && cur->break_handler) {
987 		if (cur->break_handler(cur, regs))
988 			ret = 1;
989 	}
990 	reset_kprobe_instance();
991 	return ret;
992 }
993 
994 /* Walks the list and increments nmissed count for multiprobe case */
995 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
996 {
997 	struct kprobe *kp;
998 	if (!kprobe_aggrprobe(p)) {
999 		p->nmissed++;
1000 	} else {
1001 		list_for_each_entry_rcu(kp, &p->list, list)
1002 			kp->nmissed++;
1003 	}
1004 	return;
1005 }
1006 
1007 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1008 				struct hlist_head *head)
1009 {
1010 	struct kretprobe *rp = ri->rp;
1011 
1012 	/* remove rp inst off the rprobe_inst_table */
1013 	hlist_del(&ri->hlist);
1014 	INIT_HLIST_NODE(&ri->hlist);
1015 	if (likely(rp)) {
1016 		spin_lock(&rp->lock);
1017 		hlist_add_head(&ri->hlist, &rp->free_instances);
1018 		spin_unlock(&rp->lock);
1019 	} else
1020 		/* Unregistering */
1021 		hlist_add_head(&ri->hlist, head);
1022 }
1023 
1024 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1025 			 struct hlist_head **head, unsigned long *flags)
1026 __acquires(hlist_lock)
1027 {
1028 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1029 	spinlock_t *hlist_lock;
1030 
1031 	*head = &kretprobe_inst_table[hash];
1032 	hlist_lock = kretprobe_table_lock_ptr(hash);
1033 	spin_lock_irqsave(hlist_lock, *flags);
1034 }
1035 
1036 static void __kprobes kretprobe_table_lock(unsigned long hash,
1037 	unsigned long *flags)
1038 __acquires(hlist_lock)
1039 {
1040 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1041 	spin_lock_irqsave(hlist_lock, *flags);
1042 }
1043 
1044 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1045 	unsigned long *flags)
1046 __releases(hlist_lock)
1047 {
1048 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1049 	spinlock_t *hlist_lock;
1050 
1051 	hlist_lock = kretprobe_table_lock_ptr(hash);
1052 	spin_unlock_irqrestore(hlist_lock, *flags);
1053 }
1054 
1055 static void __kprobes kretprobe_table_unlock(unsigned long hash,
1056        unsigned long *flags)
1057 __releases(hlist_lock)
1058 {
1059 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1060 	spin_unlock_irqrestore(hlist_lock, *flags);
1061 }
1062 
1063 /*
1064  * This function is called from finish_task_switch when task tk becomes dead,
1065  * so that we can recycle any function-return probe instances associated
1066  * with this task. These left over instances represent probed functions
1067  * that have been called but will never return.
1068  */
1069 void __kprobes kprobe_flush_task(struct task_struct *tk)
1070 {
1071 	struct kretprobe_instance *ri;
1072 	struct hlist_head *head, empty_rp;
1073 	struct hlist_node *node, *tmp;
1074 	unsigned long hash, flags = 0;
1075 
1076 	if (unlikely(!kprobes_initialized))
1077 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1078 		return;
1079 
1080 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1081 	head = &kretprobe_inst_table[hash];
1082 	kretprobe_table_lock(hash, &flags);
1083 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
1084 		if (ri->task == tk)
1085 			recycle_rp_inst(ri, &empty_rp);
1086 	}
1087 	kretprobe_table_unlock(hash, &flags);
1088 	INIT_HLIST_HEAD(&empty_rp);
1089 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
1090 		hlist_del(&ri->hlist);
1091 		kfree(ri);
1092 	}
1093 }
1094 
1095 static inline void free_rp_inst(struct kretprobe *rp)
1096 {
1097 	struct kretprobe_instance *ri;
1098 	struct hlist_node *pos, *next;
1099 
1100 	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
1101 		hlist_del(&ri->hlist);
1102 		kfree(ri);
1103 	}
1104 }
1105 
1106 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1107 {
1108 	unsigned long flags, hash;
1109 	struct kretprobe_instance *ri;
1110 	struct hlist_node *pos, *next;
1111 	struct hlist_head *head;
1112 
1113 	/* No race here */
1114 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1115 		kretprobe_table_lock(hash, &flags);
1116 		head = &kretprobe_inst_table[hash];
1117 		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
1118 			if (ri->rp == rp)
1119 				ri->rp = NULL;
1120 		}
1121 		kretprobe_table_unlock(hash, &flags);
1122 	}
1123 	free_rp_inst(rp);
1124 }
1125 
1126 /*
1127 * Add the new probe to ap->list. Fail if this is the
1128 * second jprobe at the address - two jprobes can't coexist
1129 */
1130 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1131 {
1132 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1133 
1134 	if (p->break_handler || p->post_handler)
1135 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1136 
1137 	if (p->break_handler) {
1138 		if (ap->break_handler)
1139 			return -EEXIST;
1140 		list_add_tail_rcu(&p->list, &ap->list);
1141 		ap->break_handler = aggr_break_handler;
1142 	} else
1143 		list_add_rcu(&p->list, &ap->list);
1144 	if (p->post_handler && !ap->post_handler)
1145 		ap->post_handler = aggr_post_handler;
1146 
1147 	if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
1148 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1149 		if (!kprobes_all_disarmed)
1150 			/* Arm the breakpoint again. */
1151 			__arm_kprobe(ap);
1152 	}
1153 	return 0;
1154 }
1155 
1156 /*
1157  * Fill in the required fields of the "manager kprobe". Replace the
1158  * earlier kprobe in the hlist with the manager kprobe
1159  */
1160 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1161 {
1162 	/* Copy p's insn slot to ap */
1163 	copy_kprobe(p, ap);
1164 	flush_insn_slot(ap);
1165 	ap->addr = p->addr;
1166 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1167 	ap->pre_handler = aggr_pre_handler;
1168 	ap->fault_handler = aggr_fault_handler;
1169 	/* We don't care the kprobe which has gone. */
1170 	if (p->post_handler && !kprobe_gone(p))
1171 		ap->post_handler = aggr_post_handler;
1172 	if (p->break_handler && !kprobe_gone(p))
1173 		ap->break_handler = aggr_break_handler;
1174 
1175 	INIT_LIST_HEAD(&ap->list);
1176 	INIT_HLIST_NODE(&ap->hlist);
1177 
1178 	list_add_rcu(&p->list, &ap->list);
1179 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1180 }
1181 
1182 /*
1183  * This is the second or subsequent kprobe at the address - handle
1184  * the intricacies
1185  */
1186 static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1187 					  struct kprobe *p)
1188 {
1189 	int ret = 0;
1190 	struct kprobe *ap = orig_p;
1191 
1192 	if (!kprobe_aggrprobe(orig_p)) {
1193 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1194 		ap = alloc_aggr_kprobe(orig_p);
1195 		if (!ap)
1196 			return -ENOMEM;
1197 		init_aggr_kprobe(ap, orig_p);
1198 	} else if (kprobe_unused(ap))
1199 		/* This probe is going to die. Rescue it */
1200 		reuse_unused_kprobe(ap);
1201 
1202 	if (kprobe_gone(ap)) {
1203 		/*
1204 		 * Attempting to insert new probe at the same location that
1205 		 * had a probe in the module vaddr area which already
1206 		 * freed. So, the instruction slot has already been
1207 		 * released. We need a new slot for the new probe.
1208 		 */
1209 		ret = arch_prepare_kprobe(ap);
1210 		if (ret)
1211 			/*
1212 			 * Even if fail to allocate new slot, don't need to
1213 			 * free aggr_probe. It will be used next time, or
1214 			 * freed by unregister_kprobe.
1215 			 */
1216 			return ret;
1217 
1218 		/* Prepare optimized instructions if possible. */
1219 		prepare_optimized_kprobe(ap);
1220 
1221 		/*
1222 		 * Clear gone flag to prevent allocating new slot again, and
1223 		 * set disabled flag because it is not armed yet.
1224 		 */
1225 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1226 			    | KPROBE_FLAG_DISABLED;
1227 	}
1228 
1229 	/* Copy ap's insn slot to p */
1230 	copy_kprobe(ap, p);
1231 	return add_new_kprobe(ap, p);
1232 }
1233 
1234 static int __kprobes in_kprobes_functions(unsigned long addr)
1235 {
1236 	struct kprobe_blackpoint *kb;
1237 
1238 	if (addr >= (unsigned long)__kprobes_text_start &&
1239 	    addr < (unsigned long)__kprobes_text_end)
1240 		return -EINVAL;
1241 	/*
1242 	 * If there exists a kprobe_blacklist, verify and
1243 	 * fail any probe registration in the prohibited area
1244 	 */
1245 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1246 		if (kb->start_addr) {
1247 			if (addr >= kb->start_addr &&
1248 			    addr < (kb->start_addr + kb->range))
1249 				return -EINVAL;
1250 		}
1251 	}
1252 	return 0;
1253 }
1254 
1255 /*
1256  * If we have a symbol_name argument, look it up and add the offset field
1257  * to it. This way, we can specify a relative address to a symbol.
1258  */
1259 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1260 {
1261 	kprobe_opcode_t *addr = p->addr;
1262 	if (p->symbol_name) {
1263 		if (addr)
1264 			return NULL;
1265 		kprobe_lookup_name(p->symbol_name, addr);
1266 	}
1267 
1268 	if (!addr)
1269 		return NULL;
1270 	return (kprobe_opcode_t *)(((char *)addr) + p->offset);
1271 }
1272 
1273 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1274 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1275 {
1276 	struct kprobe *ap, *list_p;
1277 
1278 	ap = get_kprobe(p->addr);
1279 	if (unlikely(!ap))
1280 		return NULL;
1281 
1282 	if (p != ap) {
1283 		list_for_each_entry_rcu(list_p, &ap->list, list)
1284 			if (list_p == p)
1285 			/* kprobe p is a valid probe */
1286 				goto valid;
1287 		return NULL;
1288 	}
1289 valid:
1290 	return ap;
1291 }
1292 
1293 /* Return error if the kprobe is being re-registered */
1294 static inline int check_kprobe_rereg(struct kprobe *p)
1295 {
1296 	int ret = 0;
1297 
1298 	mutex_lock(&kprobe_mutex);
1299 	if (__get_valid_kprobe(p))
1300 		ret = -EINVAL;
1301 	mutex_unlock(&kprobe_mutex);
1302 
1303 	return ret;
1304 }
1305 
1306 int __kprobes register_kprobe(struct kprobe *p)
1307 {
1308 	int ret = 0;
1309 	struct kprobe *old_p;
1310 	struct module *probed_mod;
1311 	kprobe_opcode_t *addr;
1312 
1313 	addr = kprobe_addr(p);
1314 	if (!addr)
1315 		return -EINVAL;
1316 	p->addr = addr;
1317 
1318 	ret = check_kprobe_rereg(p);
1319 	if (ret)
1320 		return ret;
1321 
1322 	jump_label_lock();
1323 	preempt_disable();
1324 	if (!kernel_text_address((unsigned long) p->addr) ||
1325 	    in_kprobes_functions((unsigned long) p->addr) ||
1326 	    ftrace_text_reserved(p->addr, p->addr) ||
1327 	    jump_label_text_reserved(p->addr, p->addr))
1328 		goto fail_with_jump_label;
1329 
1330 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1331 	p->flags &= KPROBE_FLAG_DISABLED;
1332 
1333 	/*
1334 	 * Check if are we probing a module.
1335 	 */
1336 	probed_mod = __module_text_address((unsigned long) p->addr);
1337 	if (probed_mod) {
1338 		/*
1339 		 * We must hold a refcount of the probed module while updating
1340 		 * its code to prohibit unexpected unloading.
1341 		 */
1342 		if (unlikely(!try_module_get(probed_mod)))
1343 			goto fail_with_jump_label;
1344 
1345 		/*
1346 		 * If the module freed .init.text, we couldn't insert
1347 		 * kprobes in there.
1348 		 */
1349 		if (within_module_init((unsigned long)p->addr, probed_mod) &&
1350 		    probed_mod->state != MODULE_STATE_COMING) {
1351 			module_put(probed_mod);
1352 			goto fail_with_jump_label;
1353 		}
1354 	}
1355 	preempt_enable();
1356 	jump_label_unlock();
1357 
1358 	p->nmissed = 0;
1359 	INIT_LIST_HEAD(&p->list);
1360 	mutex_lock(&kprobe_mutex);
1361 
1362 	jump_label_lock(); /* needed to call jump_label_text_reserved() */
1363 
1364 	get_online_cpus();	/* For avoiding text_mutex deadlock. */
1365 	mutex_lock(&text_mutex);
1366 
1367 	old_p = get_kprobe(p->addr);
1368 	if (old_p) {
1369 		/* Since this may unoptimize old_p, locking text_mutex. */
1370 		ret = register_aggr_kprobe(old_p, p);
1371 		goto out;
1372 	}
1373 
1374 	ret = arch_prepare_kprobe(p);
1375 	if (ret)
1376 		goto out;
1377 
1378 	INIT_HLIST_NODE(&p->hlist);
1379 	hlist_add_head_rcu(&p->hlist,
1380 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1381 
1382 	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1383 		__arm_kprobe(p);
1384 
1385 	/* Try to optimize kprobe */
1386 	try_to_optimize_kprobe(p);
1387 
1388 out:
1389 	mutex_unlock(&text_mutex);
1390 	put_online_cpus();
1391 	jump_label_unlock();
1392 	mutex_unlock(&kprobe_mutex);
1393 
1394 	if (probed_mod)
1395 		module_put(probed_mod);
1396 
1397 	return ret;
1398 
1399 fail_with_jump_label:
1400 	preempt_enable();
1401 	jump_label_unlock();
1402 	return -EINVAL;
1403 }
1404 EXPORT_SYMBOL_GPL(register_kprobe);
1405 
1406 /* Check if all probes on the aggrprobe are disabled */
1407 static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1408 {
1409 	struct kprobe *kp;
1410 
1411 	list_for_each_entry_rcu(kp, &ap->list, list)
1412 		if (!kprobe_disabled(kp))
1413 			/*
1414 			 * There is an active probe on the list.
1415 			 * We can't disable this ap.
1416 			 */
1417 			return 0;
1418 
1419 	return 1;
1420 }
1421 
1422 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1423 static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1424 {
1425 	struct kprobe *orig_p;
1426 
1427 	/* Get an original kprobe for return */
1428 	orig_p = __get_valid_kprobe(p);
1429 	if (unlikely(orig_p == NULL))
1430 		return NULL;
1431 
1432 	if (!kprobe_disabled(p)) {
1433 		/* Disable probe if it is a child probe */
1434 		if (p != orig_p)
1435 			p->flags |= KPROBE_FLAG_DISABLED;
1436 
1437 		/* Try to disarm and disable this/parent probe */
1438 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1439 			disarm_kprobe(orig_p);
1440 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1441 		}
1442 	}
1443 
1444 	return orig_p;
1445 }
1446 
1447 /*
1448  * Unregister a kprobe without a scheduler synchronization.
1449  */
1450 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1451 {
1452 	struct kprobe *ap, *list_p;
1453 
1454 	/* Disable kprobe. This will disarm it if needed. */
1455 	ap = __disable_kprobe(p);
1456 	if (ap == NULL)
1457 		return -EINVAL;
1458 
1459 	if (ap == p)
1460 		/*
1461 		 * This probe is an independent(and non-optimized) kprobe
1462 		 * (not an aggrprobe). Remove from the hash list.
1463 		 */
1464 		goto disarmed;
1465 
1466 	/* Following process expects this probe is an aggrprobe */
1467 	WARN_ON(!kprobe_aggrprobe(ap));
1468 
1469 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1470 		/*
1471 		 * !disarmed could be happen if the probe is under delayed
1472 		 * unoptimizing.
1473 		 */
1474 		goto disarmed;
1475 	else {
1476 		/* If disabling probe has special handlers, update aggrprobe */
1477 		if (p->break_handler && !kprobe_gone(p))
1478 			ap->break_handler = NULL;
1479 		if (p->post_handler && !kprobe_gone(p)) {
1480 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1481 				if ((list_p != p) && (list_p->post_handler))
1482 					goto noclean;
1483 			}
1484 			ap->post_handler = NULL;
1485 		}
1486 noclean:
1487 		/*
1488 		 * Remove from the aggrprobe: this path will do nothing in
1489 		 * __unregister_kprobe_bottom().
1490 		 */
1491 		list_del_rcu(&p->list);
1492 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1493 			/*
1494 			 * Try to optimize this probe again, because post
1495 			 * handler may have been changed.
1496 			 */
1497 			optimize_kprobe(ap);
1498 	}
1499 	return 0;
1500 
1501 disarmed:
1502 	BUG_ON(!kprobe_disarmed(ap));
1503 	hlist_del_rcu(&ap->hlist);
1504 	return 0;
1505 }
1506 
1507 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1508 {
1509 	struct kprobe *ap;
1510 
1511 	if (list_empty(&p->list))
1512 		/* This is an independent kprobe */
1513 		arch_remove_kprobe(p);
1514 	else if (list_is_singular(&p->list)) {
1515 		/* This is the last child of an aggrprobe */
1516 		ap = list_entry(p->list.next, struct kprobe, list);
1517 		list_del(&p->list);
1518 		free_aggr_kprobe(ap);
1519 	}
1520 	/* Otherwise, do nothing. */
1521 }
1522 
1523 int __kprobes register_kprobes(struct kprobe **kps, int num)
1524 {
1525 	int i, ret = 0;
1526 
1527 	if (num <= 0)
1528 		return -EINVAL;
1529 	for (i = 0; i < num; i++) {
1530 		ret = register_kprobe(kps[i]);
1531 		if (ret < 0) {
1532 			if (i > 0)
1533 				unregister_kprobes(kps, i);
1534 			break;
1535 		}
1536 	}
1537 	return ret;
1538 }
1539 EXPORT_SYMBOL_GPL(register_kprobes);
1540 
1541 void __kprobes unregister_kprobe(struct kprobe *p)
1542 {
1543 	unregister_kprobes(&p, 1);
1544 }
1545 EXPORT_SYMBOL_GPL(unregister_kprobe);
1546 
1547 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1548 {
1549 	int i;
1550 
1551 	if (num <= 0)
1552 		return;
1553 	mutex_lock(&kprobe_mutex);
1554 	for (i = 0; i < num; i++)
1555 		if (__unregister_kprobe_top(kps[i]) < 0)
1556 			kps[i]->addr = NULL;
1557 	mutex_unlock(&kprobe_mutex);
1558 
1559 	synchronize_sched();
1560 	for (i = 0; i < num; i++)
1561 		if (kps[i]->addr)
1562 			__unregister_kprobe_bottom(kps[i]);
1563 }
1564 EXPORT_SYMBOL_GPL(unregister_kprobes);
1565 
1566 static struct notifier_block kprobe_exceptions_nb = {
1567 	.notifier_call = kprobe_exceptions_notify,
1568 	.priority = 0x7fffffff /* we need to be notified first */
1569 };
1570 
1571 unsigned long __weak arch_deref_entry_point(void *entry)
1572 {
1573 	return (unsigned long)entry;
1574 }
1575 
1576 int __kprobes register_jprobes(struct jprobe **jps, int num)
1577 {
1578 	struct jprobe *jp;
1579 	int ret = 0, i;
1580 
1581 	if (num <= 0)
1582 		return -EINVAL;
1583 	for (i = 0; i < num; i++) {
1584 		unsigned long addr, offset;
1585 		jp = jps[i];
1586 		addr = arch_deref_entry_point(jp->entry);
1587 
1588 		/* Verify probepoint is a function entry point */
1589 		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1590 		    offset == 0) {
1591 			jp->kp.pre_handler = setjmp_pre_handler;
1592 			jp->kp.break_handler = longjmp_break_handler;
1593 			ret = register_kprobe(&jp->kp);
1594 		} else
1595 			ret = -EINVAL;
1596 
1597 		if (ret < 0) {
1598 			if (i > 0)
1599 				unregister_jprobes(jps, i);
1600 			break;
1601 		}
1602 	}
1603 	return ret;
1604 }
1605 EXPORT_SYMBOL_GPL(register_jprobes);
1606 
1607 int __kprobes register_jprobe(struct jprobe *jp)
1608 {
1609 	return register_jprobes(&jp, 1);
1610 }
1611 EXPORT_SYMBOL_GPL(register_jprobe);
1612 
1613 void __kprobes unregister_jprobe(struct jprobe *jp)
1614 {
1615 	unregister_jprobes(&jp, 1);
1616 }
1617 EXPORT_SYMBOL_GPL(unregister_jprobe);
1618 
1619 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1620 {
1621 	int i;
1622 
1623 	if (num <= 0)
1624 		return;
1625 	mutex_lock(&kprobe_mutex);
1626 	for (i = 0; i < num; i++)
1627 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1628 			jps[i]->kp.addr = NULL;
1629 	mutex_unlock(&kprobe_mutex);
1630 
1631 	synchronize_sched();
1632 	for (i = 0; i < num; i++) {
1633 		if (jps[i]->kp.addr)
1634 			__unregister_kprobe_bottom(&jps[i]->kp);
1635 	}
1636 }
1637 EXPORT_SYMBOL_GPL(unregister_jprobes);
1638 
1639 #ifdef CONFIG_KRETPROBES
1640 /*
1641  * This kprobe pre_handler is registered with every kretprobe. When probe
1642  * hits it will set up the return probe.
1643  */
1644 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1645 					   struct pt_regs *regs)
1646 {
1647 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1648 	unsigned long hash, flags = 0;
1649 	struct kretprobe_instance *ri;
1650 
1651 	/*TODO: consider to only swap the RA after the last pre_handler fired */
1652 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1653 	spin_lock_irqsave(&rp->lock, flags);
1654 	if (!hlist_empty(&rp->free_instances)) {
1655 		ri = hlist_entry(rp->free_instances.first,
1656 				struct kretprobe_instance, hlist);
1657 		hlist_del(&ri->hlist);
1658 		spin_unlock_irqrestore(&rp->lock, flags);
1659 
1660 		ri->rp = rp;
1661 		ri->task = current;
1662 
1663 		if (rp->entry_handler && rp->entry_handler(ri, regs))
1664 			return 0;
1665 
1666 		arch_prepare_kretprobe(ri, regs);
1667 
1668 		/* XXX(hch): why is there no hlist_move_head? */
1669 		INIT_HLIST_NODE(&ri->hlist);
1670 		kretprobe_table_lock(hash, &flags);
1671 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1672 		kretprobe_table_unlock(hash, &flags);
1673 	} else {
1674 		rp->nmissed++;
1675 		spin_unlock_irqrestore(&rp->lock, flags);
1676 	}
1677 	return 0;
1678 }
1679 
1680 int __kprobes register_kretprobe(struct kretprobe *rp)
1681 {
1682 	int ret = 0;
1683 	struct kretprobe_instance *inst;
1684 	int i;
1685 	void *addr;
1686 
1687 	if (kretprobe_blacklist_size) {
1688 		addr = kprobe_addr(&rp->kp);
1689 		if (!addr)
1690 			return -EINVAL;
1691 
1692 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1693 			if (kretprobe_blacklist[i].addr == addr)
1694 				return -EINVAL;
1695 		}
1696 	}
1697 
1698 	rp->kp.pre_handler = pre_handler_kretprobe;
1699 	rp->kp.post_handler = NULL;
1700 	rp->kp.fault_handler = NULL;
1701 	rp->kp.break_handler = NULL;
1702 
1703 	/* Pre-allocate memory for max kretprobe instances */
1704 	if (rp->maxactive <= 0) {
1705 #ifdef CONFIG_PREEMPT
1706 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1707 #else
1708 		rp->maxactive = num_possible_cpus();
1709 #endif
1710 	}
1711 	spin_lock_init(&rp->lock);
1712 	INIT_HLIST_HEAD(&rp->free_instances);
1713 	for (i = 0; i < rp->maxactive; i++) {
1714 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1715 			       rp->data_size, GFP_KERNEL);
1716 		if (inst == NULL) {
1717 			free_rp_inst(rp);
1718 			return -ENOMEM;
1719 		}
1720 		INIT_HLIST_NODE(&inst->hlist);
1721 		hlist_add_head(&inst->hlist, &rp->free_instances);
1722 	}
1723 
1724 	rp->nmissed = 0;
1725 	/* Establish function entry probe point */
1726 	ret = register_kprobe(&rp->kp);
1727 	if (ret != 0)
1728 		free_rp_inst(rp);
1729 	return ret;
1730 }
1731 EXPORT_SYMBOL_GPL(register_kretprobe);
1732 
1733 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1734 {
1735 	int ret = 0, i;
1736 
1737 	if (num <= 0)
1738 		return -EINVAL;
1739 	for (i = 0; i < num; i++) {
1740 		ret = register_kretprobe(rps[i]);
1741 		if (ret < 0) {
1742 			if (i > 0)
1743 				unregister_kretprobes(rps, i);
1744 			break;
1745 		}
1746 	}
1747 	return ret;
1748 }
1749 EXPORT_SYMBOL_GPL(register_kretprobes);
1750 
1751 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1752 {
1753 	unregister_kretprobes(&rp, 1);
1754 }
1755 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1756 
1757 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1758 {
1759 	int i;
1760 
1761 	if (num <= 0)
1762 		return;
1763 	mutex_lock(&kprobe_mutex);
1764 	for (i = 0; i < num; i++)
1765 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1766 			rps[i]->kp.addr = NULL;
1767 	mutex_unlock(&kprobe_mutex);
1768 
1769 	synchronize_sched();
1770 	for (i = 0; i < num; i++) {
1771 		if (rps[i]->kp.addr) {
1772 			__unregister_kprobe_bottom(&rps[i]->kp);
1773 			cleanup_rp_inst(rps[i]);
1774 		}
1775 	}
1776 }
1777 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1778 
1779 #else /* CONFIG_KRETPROBES */
1780 int __kprobes register_kretprobe(struct kretprobe *rp)
1781 {
1782 	return -ENOSYS;
1783 }
1784 EXPORT_SYMBOL_GPL(register_kretprobe);
1785 
1786 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1787 {
1788 	return -ENOSYS;
1789 }
1790 EXPORT_SYMBOL_GPL(register_kretprobes);
1791 
1792 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1793 {
1794 }
1795 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1796 
1797 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1798 {
1799 }
1800 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1801 
1802 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1803 					   struct pt_regs *regs)
1804 {
1805 	return 0;
1806 }
1807 
1808 #endif /* CONFIG_KRETPROBES */
1809 
1810 /* Set the kprobe gone and remove its instruction buffer. */
1811 static void __kprobes kill_kprobe(struct kprobe *p)
1812 {
1813 	struct kprobe *kp;
1814 
1815 	p->flags |= KPROBE_FLAG_GONE;
1816 	if (kprobe_aggrprobe(p)) {
1817 		/*
1818 		 * If this is an aggr_kprobe, we have to list all the
1819 		 * chained probes and mark them GONE.
1820 		 */
1821 		list_for_each_entry_rcu(kp, &p->list, list)
1822 			kp->flags |= KPROBE_FLAG_GONE;
1823 		p->post_handler = NULL;
1824 		p->break_handler = NULL;
1825 		kill_optimized_kprobe(p);
1826 	}
1827 	/*
1828 	 * Here, we can remove insn_slot safely, because no thread calls
1829 	 * the original probed function (which will be freed soon) any more.
1830 	 */
1831 	arch_remove_kprobe(p);
1832 }
1833 
1834 /* Disable one kprobe */
1835 int __kprobes disable_kprobe(struct kprobe *kp)
1836 {
1837 	int ret = 0;
1838 
1839 	mutex_lock(&kprobe_mutex);
1840 
1841 	/* Disable this kprobe */
1842 	if (__disable_kprobe(kp) == NULL)
1843 		ret = -EINVAL;
1844 
1845 	mutex_unlock(&kprobe_mutex);
1846 	return ret;
1847 }
1848 EXPORT_SYMBOL_GPL(disable_kprobe);
1849 
1850 /* Enable one kprobe */
1851 int __kprobes enable_kprobe(struct kprobe *kp)
1852 {
1853 	int ret = 0;
1854 	struct kprobe *p;
1855 
1856 	mutex_lock(&kprobe_mutex);
1857 
1858 	/* Check whether specified probe is valid. */
1859 	p = __get_valid_kprobe(kp);
1860 	if (unlikely(p == NULL)) {
1861 		ret = -EINVAL;
1862 		goto out;
1863 	}
1864 
1865 	if (kprobe_gone(kp)) {
1866 		/* This kprobe has gone, we couldn't enable it. */
1867 		ret = -EINVAL;
1868 		goto out;
1869 	}
1870 
1871 	if (p != kp)
1872 		kp->flags &= ~KPROBE_FLAG_DISABLED;
1873 
1874 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1875 		p->flags &= ~KPROBE_FLAG_DISABLED;
1876 		arm_kprobe(p);
1877 	}
1878 out:
1879 	mutex_unlock(&kprobe_mutex);
1880 	return ret;
1881 }
1882 EXPORT_SYMBOL_GPL(enable_kprobe);
1883 
1884 void __kprobes dump_kprobe(struct kprobe *kp)
1885 {
1886 	printk(KERN_WARNING "Dumping kprobe:\n");
1887 	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1888 	       kp->symbol_name, kp->addr, kp->offset);
1889 }
1890 
1891 /* Module notifier call back, checking kprobes on the module */
1892 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1893 					     unsigned long val, void *data)
1894 {
1895 	struct module *mod = data;
1896 	struct hlist_head *head;
1897 	struct hlist_node *node;
1898 	struct kprobe *p;
1899 	unsigned int i;
1900 	int checkcore = (val == MODULE_STATE_GOING);
1901 
1902 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1903 		return NOTIFY_DONE;
1904 
1905 	/*
1906 	 * When MODULE_STATE_GOING was notified, both of module .text and
1907 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1908 	 * notified, only .init.text section would be freed. We need to
1909 	 * disable kprobes which have been inserted in the sections.
1910 	 */
1911 	mutex_lock(&kprobe_mutex);
1912 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1913 		head = &kprobe_table[i];
1914 		hlist_for_each_entry_rcu(p, node, head, hlist)
1915 			if (within_module_init((unsigned long)p->addr, mod) ||
1916 			    (checkcore &&
1917 			     within_module_core((unsigned long)p->addr, mod))) {
1918 				/*
1919 				 * The vaddr this probe is installed will soon
1920 				 * be vfreed buy not synced to disk. Hence,
1921 				 * disarming the breakpoint isn't needed.
1922 				 */
1923 				kill_kprobe(p);
1924 			}
1925 	}
1926 	mutex_unlock(&kprobe_mutex);
1927 	return NOTIFY_DONE;
1928 }
1929 
1930 static struct notifier_block kprobe_module_nb = {
1931 	.notifier_call = kprobes_module_callback,
1932 	.priority = 0
1933 };
1934 
1935 static int __init init_kprobes(void)
1936 {
1937 	int i, err = 0;
1938 	unsigned long offset = 0, size = 0;
1939 	char *modname, namebuf[128];
1940 	const char *symbol_name;
1941 	void *addr;
1942 	struct kprobe_blackpoint *kb;
1943 
1944 	/* FIXME allocate the probe table, currently defined statically */
1945 	/* initialize all list heads */
1946 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1947 		INIT_HLIST_HEAD(&kprobe_table[i]);
1948 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1949 		spin_lock_init(&(kretprobe_table_locks[i].lock));
1950 	}
1951 
1952 	/*
1953 	 * Lookup and populate the kprobe_blacklist.
1954 	 *
1955 	 * Unlike the kretprobe blacklist, we'll need to determine
1956 	 * the range of addresses that belong to the said functions,
1957 	 * since a kprobe need not necessarily be at the beginning
1958 	 * of a function.
1959 	 */
1960 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1961 		kprobe_lookup_name(kb->name, addr);
1962 		if (!addr)
1963 			continue;
1964 
1965 		kb->start_addr = (unsigned long)addr;
1966 		symbol_name = kallsyms_lookup(kb->start_addr,
1967 				&size, &offset, &modname, namebuf);
1968 		if (!symbol_name)
1969 			kb->range = 0;
1970 		else
1971 			kb->range = size;
1972 	}
1973 
1974 	if (kretprobe_blacklist_size) {
1975 		/* lookup the function address from its name */
1976 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1977 			kprobe_lookup_name(kretprobe_blacklist[i].name,
1978 					   kretprobe_blacklist[i].addr);
1979 			if (!kretprobe_blacklist[i].addr)
1980 				printk("kretprobe: lookup failed: %s\n",
1981 				       kretprobe_blacklist[i].name);
1982 		}
1983 	}
1984 
1985 #if defined(CONFIG_OPTPROBES)
1986 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
1987 	/* Init kprobe_optinsn_slots */
1988 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
1989 #endif
1990 	/* By default, kprobes can be optimized */
1991 	kprobes_allow_optimization = true;
1992 #endif
1993 
1994 	/* By default, kprobes are armed */
1995 	kprobes_all_disarmed = false;
1996 
1997 	err = arch_init_kprobes();
1998 	if (!err)
1999 		err = register_die_notifier(&kprobe_exceptions_nb);
2000 	if (!err)
2001 		err = register_module_notifier(&kprobe_module_nb);
2002 
2003 	kprobes_initialized = (err == 0);
2004 
2005 	if (!err)
2006 		init_test_probes();
2007 	return err;
2008 }
2009 
2010 #ifdef CONFIG_DEBUG_FS
2011 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2012 		const char *sym, int offset, char *modname, struct kprobe *pp)
2013 {
2014 	char *kprobe_type;
2015 
2016 	if (p->pre_handler == pre_handler_kretprobe)
2017 		kprobe_type = "r";
2018 	else if (p->pre_handler == setjmp_pre_handler)
2019 		kprobe_type = "j";
2020 	else
2021 		kprobe_type = "k";
2022 
2023 	if (sym)
2024 		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2025 			p->addr, kprobe_type, sym, offset,
2026 			(modname ? modname : " "));
2027 	else
2028 		seq_printf(pi, "%p  %s  %p ",
2029 			p->addr, kprobe_type, p->addr);
2030 
2031 	if (!pp)
2032 		pp = p;
2033 	seq_printf(pi, "%s%s%s\n",
2034 		(kprobe_gone(p) ? "[GONE]" : ""),
2035 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2036 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
2037 }
2038 
2039 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2040 {
2041 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2042 }
2043 
2044 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2045 {
2046 	(*pos)++;
2047 	if (*pos >= KPROBE_TABLE_SIZE)
2048 		return NULL;
2049 	return pos;
2050 }
2051 
2052 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2053 {
2054 	/* Nothing to do */
2055 }
2056 
2057 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2058 {
2059 	struct hlist_head *head;
2060 	struct hlist_node *node;
2061 	struct kprobe *p, *kp;
2062 	const char *sym = NULL;
2063 	unsigned int i = *(loff_t *) v;
2064 	unsigned long offset = 0;
2065 	char *modname, namebuf[128];
2066 
2067 	head = &kprobe_table[i];
2068 	preempt_disable();
2069 	hlist_for_each_entry_rcu(p, node, head, hlist) {
2070 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2071 					&offset, &modname, namebuf);
2072 		if (kprobe_aggrprobe(p)) {
2073 			list_for_each_entry_rcu(kp, &p->list, list)
2074 				report_probe(pi, kp, sym, offset, modname, p);
2075 		} else
2076 			report_probe(pi, p, sym, offset, modname, NULL);
2077 	}
2078 	preempt_enable();
2079 	return 0;
2080 }
2081 
2082 static const struct seq_operations kprobes_seq_ops = {
2083 	.start = kprobe_seq_start,
2084 	.next  = kprobe_seq_next,
2085 	.stop  = kprobe_seq_stop,
2086 	.show  = show_kprobe_addr
2087 };
2088 
2089 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2090 {
2091 	return seq_open(filp, &kprobes_seq_ops);
2092 }
2093 
2094 static const struct file_operations debugfs_kprobes_operations = {
2095 	.open           = kprobes_open,
2096 	.read           = seq_read,
2097 	.llseek         = seq_lseek,
2098 	.release        = seq_release,
2099 };
2100 
2101 static void __kprobes arm_all_kprobes(void)
2102 {
2103 	struct hlist_head *head;
2104 	struct hlist_node *node;
2105 	struct kprobe *p;
2106 	unsigned int i;
2107 
2108 	mutex_lock(&kprobe_mutex);
2109 
2110 	/* If kprobes are armed, just return */
2111 	if (!kprobes_all_disarmed)
2112 		goto already_enabled;
2113 
2114 	/* Arming kprobes doesn't optimize kprobe itself */
2115 	mutex_lock(&text_mutex);
2116 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2117 		head = &kprobe_table[i];
2118 		hlist_for_each_entry_rcu(p, node, head, hlist)
2119 			if (!kprobe_disabled(p))
2120 				__arm_kprobe(p);
2121 	}
2122 	mutex_unlock(&text_mutex);
2123 
2124 	kprobes_all_disarmed = false;
2125 	printk(KERN_INFO "Kprobes globally enabled\n");
2126 
2127 already_enabled:
2128 	mutex_unlock(&kprobe_mutex);
2129 	return;
2130 }
2131 
2132 static void __kprobes disarm_all_kprobes(void)
2133 {
2134 	struct hlist_head *head;
2135 	struct hlist_node *node;
2136 	struct kprobe *p;
2137 	unsigned int i;
2138 
2139 	mutex_lock(&kprobe_mutex);
2140 
2141 	/* If kprobes are already disarmed, just return */
2142 	if (kprobes_all_disarmed) {
2143 		mutex_unlock(&kprobe_mutex);
2144 		return;
2145 	}
2146 
2147 	kprobes_all_disarmed = true;
2148 	printk(KERN_INFO "Kprobes globally disabled\n");
2149 
2150 	mutex_lock(&text_mutex);
2151 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2152 		head = &kprobe_table[i];
2153 		hlist_for_each_entry_rcu(p, node, head, hlist) {
2154 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2155 				__disarm_kprobe(p, false);
2156 		}
2157 	}
2158 	mutex_unlock(&text_mutex);
2159 	mutex_unlock(&kprobe_mutex);
2160 
2161 	/* Wait for disarming all kprobes by optimizer */
2162 	wait_for_kprobe_optimizer();
2163 }
2164 
2165 /*
2166  * XXX: The debugfs bool file interface doesn't allow for callbacks
2167  * when the bool state is switched. We can reuse that facility when
2168  * available
2169  */
2170 static ssize_t read_enabled_file_bool(struct file *file,
2171 	       char __user *user_buf, size_t count, loff_t *ppos)
2172 {
2173 	char buf[3];
2174 
2175 	if (!kprobes_all_disarmed)
2176 		buf[0] = '1';
2177 	else
2178 		buf[0] = '0';
2179 	buf[1] = '\n';
2180 	buf[2] = 0x00;
2181 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2182 }
2183 
2184 static ssize_t write_enabled_file_bool(struct file *file,
2185 	       const char __user *user_buf, size_t count, loff_t *ppos)
2186 {
2187 	char buf[32];
2188 	int buf_size;
2189 
2190 	buf_size = min(count, (sizeof(buf)-1));
2191 	if (copy_from_user(buf, user_buf, buf_size))
2192 		return -EFAULT;
2193 
2194 	switch (buf[0]) {
2195 	case 'y':
2196 	case 'Y':
2197 	case '1':
2198 		arm_all_kprobes();
2199 		break;
2200 	case 'n':
2201 	case 'N':
2202 	case '0':
2203 		disarm_all_kprobes();
2204 		break;
2205 	}
2206 
2207 	return count;
2208 }
2209 
2210 static const struct file_operations fops_kp = {
2211 	.read =         read_enabled_file_bool,
2212 	.write =        write_enabled_file_bool,
2213 	.llseek =	default_llseek,
2214 };
2215 
2216 static int __kprobes debugfs_kprobe_init(void)
2217 {
2218 	struct dentry *dir, *file;
2219 	unsigned int value = 1;
2220 
2221 	dir = debugfs_create_dir("kprobes", NULL);
2222 	if (!dir)
2223 		return -ENOMEM;
2224 
2225 	file = debugfs_create_file("list", 0444, dir, NULL,
2226 				&debugfs_kprobes_operations);
2227 	if (!file) {
2228 		debugfs_remove(dir);
2229 		return -ENOMEM;
2230 	}
2231 
2232 	file = debugfs_create_file("enabled", 0600, dir,
2233 					&value, &fops_kp);
2234 	if (!file) {
2235 		debugfs_remove(dir);
2236 		return -ENOMEM;
2237 	}
2238 
2239 	return 0;
2240 }
2241 
2242 late_initcall(debugfs_kprobe_init);
2243 #endif /* CONFIG_DEBUG_FS */
2244 
2245 module_init(init_kprobes);
2246 
2247 /* defined in arch/.../kernel/kprobes.c */
2248 EXPORT_SYMBOL_GPL(jprobe_return);
2249