xref: /openbmc/linux/kernel/kprobes.c (revision 643d1f7f)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/kdebug.h>
46 
47 #include <asm-generic/sections.h>
48 #include <asm/cacheflush.h>
49 #include <asm/errno.h>
50 #include <asm/uaccess.h>
51 
52 #define KPROBE_HASH_BITS 6
53 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
54 
55 
56 /*
57  * Some oddball architectures like 64bit powerpc have function descriptors
58  * so this must be overridable.
59  */
60 #ifndef kprobe_lookup_name
61 #define kprobe_lookup_name(name, addr) \
62 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
63 #endif
64 
65 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
66 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
67 
68 /* NOTE: change this value only with kprobe_mutex held */
69 static bool kprobe_enabled;
70 
71 DEFINE_MUTEX(kprobe_mutex);		/* Protects kprobe_table */
72 DEFINE_SPINLOCK(kretprobe_lock);	/* Protects kretprobe_inst_table */
73 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
74 
75 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
76 /*
77  * kprobe->ainsn.insn points to the copy of the instruction to be
78  * single-stepped. x86_64, POWER4 and above have no-exec support and
79  * stepping on the instruction on a vmalloced/kmalloced/data page
80  * is a recipe for disaster
81  */
82 #define INSNS_PER_PAGE	(PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
83 
84 struct kprobe_insn_page {
85 	struct hlist_node hlist;
86 	kprobe_opcode_t *insns;		/* Page of instruction slots */
87 	char slot_used[INSNS_PER_PAGE];
88 	int nused;
89 	int ngarbage;
90 };
91 
92 enum kprobe_slot_state {
93 	SLOT_CLEAN = 0,
94 	SLOT_DIRTY = 1,
95 	SLOT_USED = 2,
96 };
97 
98 static struct hlist_head kprobe_insn_pages;
99 static int kprobe_garbage_slots;
100 static int collect_garbage_slots(void);
101 
102 static int __kprobes check_safety(void)
103 {
104 	int ret = 0;
105 #if defined(CONFIG_PREEMPT) && defined(CONFIG_PM)
106 	ret = freeze_processes();
107 	if (ret == 0) {
108 		struct task_struct *p, *q;
109 		do_each_thread(p, q) {
110 			if (p != current && p->state == TASK_RUNNING &&
111 			    p->pid != 0) {
112 				printk("Check failed: %s is running\n",p->comm);
113 				ret = -1;
114 				goto loop_end;
115 			}
116 		} while_each_thread(p, q);
117 	}
118 loop_end:
119 	thaw_processes();
120 #else
121 	synchronize_sched();
122 #endif
123 	return ret;
124 }
125 
126 /**
127  * get_insn_slot() - Find a slot on an executable page for an instruction.
128  * We allocate an executable page if there's no room on existing ones.
129  */
130 kprobe_opcode_t __kprobes *get_insn_slot(void)
131 {
132 	struct kprobe_insn_page *kip;
133 	struct hlist_node *pos;
134 
135  retry:
136 	hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
137 		if (kip->nused < INSNS_PER_PAGE) {
138 			int i;
139 			for (i = 0; i < INSNS_PER_PAGE; i++) {
140 				if (kip->slot_used[i] == SLOT_CLEAN) {
141 					kip->slot_used[i] = SLOT_USED;
142 					kip->nused++;
143 					return kip->insns + (i * MAX_INSN_SIZE);
144 				}
145 			}
146 			/* Surprise!  No unused slots.  Fix kip->nused. */
147 			kip->nused = INSNS_PER_PAGE;
148 		}
149 	}
150 
151 	/* If there are any garbage slots, collect it and try again. */
152 	if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
153 		goto retry;
154 	}
155 	/* All out of space.  Need to allocate a new page. Use slot 0. */
156 	kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
157 	if (!kip)
158 		return NULL;
159 
160 	/*
161 	 * Use module_alloc so this page is within +/- 2GB of where the
162 	 * kernel image and loaded module images reside. This is required
163 	 * so x86_64 can correctly handle the %rip-relative fixups.
164 	 */
165 	kip->insns = module_alloc(PAGE_SIZE);
166 	if (!kip->insns) {
167 		kfree(kip);
168 		return NULL;
169 	}
170 	INIT_HLIST_NODE(&kip->hlist);
171 	hlist_add_head(&kip->hlist, &kprobe_insn_pages);
172 	memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
173 	kip->slot_used[0] = SLOT_USED;
174 	kip->nused = 1;
175 	kip->ngarbage = 0;
176 	return kip->insns;
177 }
178 
179 /* Return 1 if all garbages are collected, otherwise 0. */
180 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
181 {
182 	kip->slot_used[idx] = SLOT_CLEAN;
183 	kip->nused--;
184 	if (kip->nused == 0) {
185 		/*
186 		 * Page is no longer in use.  Free it unless
187 		 * it's the last one.  We keep the last one
188 		 * so as not to have to set it up again the
189 		 * next time somebody inserts a probe.
190 		 */
191 		hlist_del(&kip->hlist);
192 		if (hlist_empty(&kprobe_insn_pages)) {
193 			INIT_HLIST_NODE(&kip->hlist);
194 			hlist_add_head(&kip->hlist,
195 				       &kprobe_insn_pages);
196 		} else {
197 			module_free(NULL, kip->insns);
198 			kfree(kip);
199 		}
200 		return 1;
201 	}
202 	return 0;
203 }
204 
205 static int __kprobes collect_garbage_slots(void)
206 {
207 	struct kprobe_insn_page *kip;
208 	struct hlist_node *pos, *next;
209 
210 	/* Ensure no-one is preepmted on the garbages */
211 	if (check_safety() != 0)
212 		return -EAGAIN;
213 
214 	hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) {
215 		int i;
216 		if (kip->ngarbage == 0)
217 			continue;
218 		kip->ngarbage = 0;	/* we will collect all garbages */
219 		for (i = 0; i < INSNS_PER_PAGE; i++) {
220 			if (kip->slot_used[i] == SLOT_DIRTY &&
221 			    collect_one_slot(kip, i))
222 				break;
223 		}
224 	}
225 	kprobe_garbage_slots = 0;
226 	return 0;
227 }
228 
229 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
230 {
231 	struct kprobe_insn_page *kip;
232 	struct hlist_node *pos;
233 
234 	hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
235 		if (kip->insns <= slot &&
236 		    slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
237 			int i = (slot - kip->insns) / MAX_INSN_SIZE;
238 			if (dirty) {
239 				kip->slot_used[i] = SLOT_DIRTY;
240 				kip->ngarbage++;
241 			} else {
242 				collect_one_slot(kip, i);
243 			}
244 			break;
245 		}
246 	}
247 
248 	if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
249 		collect_garbage_slots();
250 }
251 #endif
252 
253 /* We have preemption disabled.. so it is safe to use __ versions */
254 static inline void set_kprobe_instance(struct kprobe *kp)
255 {
256 	__get_cpu_var(kprobe_instance) = kp;
257 }
258 
259 static inline void reset_kprobe_instance(void)
260 {
261 	__get_cpu_var(kprobe_instance) = NULL;
262 }
263 
264 /*
265  * This routine is called either:
266  * 	- under the kprobe_mutex - during kprobe_[un]register()
267  * 				OR
268  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
269  */
270 struct kprobe __kprobes *get_kprobe(void *addr)
271 {
272 	struct hlist_head *head;
273 	struct hlist_node *node;
274 	struct kprobe *p;
275 
276 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
277 	hlist_for_each_entry_rcu(p, node, head, hlist) {
278 		if (p->addr == addr)
279 			return p;
280 	}
281 	return NULL;
282 }
283 
284 /*
285  * Aggregate handlers for multiple kprobes support - these handlers
286  * take care of invoking the individual kprobe handlers on p->list
287  */
288 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
289 {
290 	struct kprobe *kp;
291 
292 	list_for_each_entry_rcu(kp, &p->list, list) {
293 		if (kp->pre_handler) {
294 			set_kprobe_instance(kp);
295 			if (kp->pre_handler(kp, regs))
296 				return 1;
297 		}
298 		reset_kprobe_instance();
299 	}
300 	return 0;
301 }
302 
303 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
304 					unsigned long flags)
305 {
306 	struct kprobe *kp;
307 
308 	list_for_each_entry_rcu(kp, &p->list, list) {
309 		if (kp->post_handler) {
310 			set_kprobe_instance(kp);
311 			kp->post_handler(kp, regs, flags);
312 			reset_kprobe_instance();
313 		}
314 	}
315 }
316 
317 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
318 					int trapnr)
319 {
320 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
321 
322 	/*
323 	 * if we faulted "during" the execution of a user specified
324 	 * probe handler, invoke just that probe's fault handler
325 	 */
326 	if (cur && cur->fault_handler) {
327 		if (cur->fault_handler(cur, regs, trapnr))
328 			return 1;
329 	}
330 	return 0;
331 }
332 
333 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
334 {
335 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
336 	int ret = 0;
337 
338 	if (cur && cur->break_handler) {
339 		if (cur->break_handler(cur, regs))
340 			ret = 1;
341 	}
342 	reset_kprobe_instance();
343 	return ret;
344 }
345 
346 /* Walks the list and increments nmissed count for multiprobe case */
347 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
348 {
349 	struct kprobe *kp;
350 	if (p->pre_handler != aggr_pre_handler) {
351 		p->nmissed++;
352 	} else {
353 		list_for_each_entry_rcu(kp, &p->list, list)
354 			kp->nmissed++;
355 	}
356 	return;
357 }
358 
359 /* Called with kretprobe_lock held */
360 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
361 				struct hlist_head *head)
362 {
363 	/* remove rp inst off the rprobe_inst_table */
364 	hlist_del(&ri->hlist);
365 	if (ri->rp) {
366 		/* remove rp inst off the used list */
367 		hlist_del(&ri->uflist);
368 		/* put rp inst back onto the free list */
369 		INIT_HLIST_NODE(&ri->uflist);
370 		hlist_add_head(&ri->uflist, &ri->rp->free_instances);
371 	} else
372 		/* Unregistering */
373 		hlist_add_head(&ri->hlist, head);
374 }
375 
376 struct hlist_head __kprobes *kretprobe_inst_table_head(struct task_struct *tsk)
377 {
378 	return &kretprobe_inst_table[hash_ptr(tsk, KPROBE_HASH_BITS)];
379 }
380 
381 /*
382  * This function is called from finish_task_switch when task tk becomes dead,
383  * so that we can recycle any function-return probe instances associated
384  * with this task. These left over instances represent probed functions
385  * that have been called but will never return.
386  */
387 void __kprobes kprobe_flush_task(struct task_struct *tk)
388 {
389 	struct kretprobe_instance *ri;
390 	struct hlist_head *head, empty_rp;
391 	struct hlist_node *node, *tmp;
392 	unsigned long flags = 0;
393 
394 	INIT_HLIST_HEAD(&empty_rp);
395 	spin_lock_irqsave(&kretprobe_lock, flags);
396 	head = kretprobe_inst_table_head(tk);
397 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
398 		if (ri->task == tk)
399 			recycle_rp_inst(ri, &empty_rp);
400 	}
401 	spin_unlock_irqrestore(&kretprobe_lock, flags);
402 
403 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
404 		hlist_del(&ri->hlist);
405 		kfree(ri);
406 	}
407 }
408 
409 static inline void free_rp_inst(struct kretprobe *rp)
410 {
411 	struct kretprobe_instance *ri;
412 	struct hlist_node *pos, *next;
413 
414 	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, uflist) {
415 		hlist_del(&ri->uflist);
416 		kfree(ri);
417 	}
418 }
419 
420 /*
421  * Keep all fields in the kprobe consistent
422  */
423 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
424 {
425 	memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
426 	memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
427 }
428 
429 /*
430 * Add the new probe to old_p->list. Fail if this is the
431 * second jprobe at the address - two jprobes can't coexist
432 */
433 static int __kprobes add_new_kprobe(struct kprobe *old_p, struct kprobe *p)
434 {
435 	if (p->break_handler) {
436 		if (old_p->break_handler)
437 			return -EEXIST;
438 		list_add_tail_rcu(&p->list, &old_p->list);
439 		old_p->break_handler = aggr_break_handler;
440 	} else
441 		list_add_rcu(&p->list, &old_p->list);
442 	if (p->post_handler && !old_p->post_handler)
443 		old_p->post_handler = aggr_post_handler;
444 	return 0;
445 }
446 
447 /*
448  * Fill in the required fields of the "manager kprobe". Replace the
449  * earlier kprobe in the hlist with the manager kprobe
450  */
451 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
452 {
453 	copy_kprobe(p, ap);
454 	flush_insn_slot(ap);
455 	ap->addr = p->addr;
456 	ap->pre_handler = aggr_pre_handler;
457 	ap->fault_handler = aggr_fault_handler;
458 	if (p->post_handler)
459 		ap->post_handler = aggr_post_handler;
460 	if (p->break_handler)
461 		ap->break_handler = aggr_break_handler;
462 
463 	INIT_LIST_HEAD(&ap->list);
464 	list_add_rcu(&p->list, &ap->list);
465 
466 	hlist_replace_rcu(&p->hlist, &ap->hlist);
467 }
468 
469 /*
470  * This is the second or subsequent kprobe at the address - handle
471  * the intricacies
472  */
473 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
474 					  struct kprobe *p)
475 {
476 	int ret = 0;
477 	struct kprobe *ap;
478 
479 	if (old_p->pre_handler == aggr_pre_handler) {
480 		copy_kprobe(old_p, p);
481 		ret = add_new_kprobe(old_p, p);
482 	} else {
483 		ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
484 		if (!ap)
485 			return -ENOMEM;
486 		add_aggr_kprobe(ap, old_p);
487 		copy_kprobe(ap, p);
488 		ret = add_new_kprobe(ap, p);
489 	}
490 	return ret;
491 }
492 
493 static int __kprobes in_kprobes_functions(unsigned long addr)
494 {
495 	if (addr >= (unsigned long)__kprobes_text_start &&
496 	    addr < (unsigned long)__kprobes_text_end)
497 		return -EINVAL;
498 	return 0;
499 }
500 
501 static int __kprobes __register_kprobe(struct kprobe *p,
502 	unsigned long called_from)
503 {
504 	int ret = 0;
505 	struct kprobe *old_p;
506 	struct module *probed_mod;
507 
508 	/*
509 	 * If we have a symbol_name argument look it up,
510 	 * and add it to the address.  That way the addr
511 	 * field can either be global or relative to a symbol.
512 	 */
513 	if (p->symbol_name) {
514 		if (p->addr)
515 			return -EINVAL;
516 		kprobe_lookup_name(p->symbol_name, p->addr);
517 	}
518 
519 	if (!p->addr)
520 		return -EINVAL;
521 	p->addr = (kprobe_opcode_t *)(((char *)p->addr)+ p->offset);
522 
523 	if (!kernel_text_address((unsigned long) p->addr) ||
524 	    in_kprobes_functions((unsigned long) p->addr))
525 		return -EINVAL;
526 
527 	p->mod_refcounted = 0;
528 
529 	/*
530 	 * Check if are we probing a module.
531 	 */
532 	probed_mod = module_text_address((unsigned long) p->addr);
533 	if (probed_mod) {
534 		struct module *calling_mod = module_text_address(called_from);
535 		/*
536 		 * We must allow modules to probe themself and in this case
537 		 * avoid incrementing the module refcount, so as to allow
538 		 * unloading of self probing modules.
539 		 */
540 		if (calling_mod && calling_mod != probed_mod) {
541 			if (unlikely(!try_module_get(probed_mod)))
542 				return -EINVAL;
543 			p->mod_refcounted = 1;
544 		} else
545 			probed_mod = NULL;
546 	}
547 
548 	p->nmissed = 0;
549 	mutex_lock(&kprobe_mutex);
550 	old_p = get_kprobe(p->addr);
551 	if (old_p) {
552 		ret = register_aggr_kprobe(old_p, p);
553 		goto out;
554 	}
555 
556 	ret = arch_prepare_kprobe(p);
557 	if (ret)
558 		goto out;
559 
560 	INIT_HLIST_NODE(&p->hlist);
561 	hlist_add_head_rcu(&p->hlist,
562 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
563 
564 	if (kprobe_enabled)
565 		arch_arm_kprobe(p);
566 
567 out:
568 	mutex_unlock(&kprobe_mutex);
569 
570 	if (ret && probed_mod)
571 		module_put(probed_mod);
572 	return ret;
573 }
574 
575 int __kprobes register_kprobe(struct kprobe *p)
576 {
577 	return __register_kprobe(p, (unsigned long)__builtin_return_address(0));
578 }
579 
580 void __kprobes unregister_kprobe(struct kprobe *p)
581 {
582 	struct module *mod;
583 	struct kprobe *old_p, *list_p;
584 	int cleanup_p;
585 
586 	mutex_lock(&kprobe_mutex);
587 	old_p = get_kprobe(p->addr);
588 	if (unlikely(!old_p)) {
589 		mutex_unlock(&kprobe_mutex);
590 		return;
591 	}
592 	if (p != old_p) {
593 		list_for_each_entry_rcu(list_p, &old_p->list, list)
594 			if (list_p == p)
595 			/* kprobe p is a valid probe */
596 				goto valid_p;
597 		mutex_unlock(&kprobe_mutex);
598 		return;
599 	}
600 valid_p:
601 	if (old_p == p ||
602 	    (old_p->pre_handler == aggr_pre_handler &&
603 	     p->list.next == &old_p->list && p->list.prev == &old_p->list)) {
604 		/*
605 		 * Only probe on the hash list. Disarm only if kprobes are
606 		 * enabled - otherwise, the breakpoint would already have
607 		 * been removed. We save on flushing icache.
608 		 */
609 		if (kprobe_enabled)
610 			arch_disarm_kprobe(p);
611 		hlist_del_rcu(&old_p->hlist);
612 		cleanup_p = 1;
613 	} else {
614 		list_del_rcu(&p->list);
615 		cleanup_p = 0;
616 	}
617 
618 	mutex_unlock(&kprobe_mutex);
619 
620 	synchronize_sched();
621 	if (p->mod_refcounted) {
622 		mod = module_text_address((unsigned long)p->addr);
623 		if (mod)
624 			module_put(mod);
625 	}
626 
627 	if (cleanup_p) {
628 		if (p != old_p) {
629 			list_del_rcu(&p->list);
630 			kfree(old_p);
631 		}
632 		arch_remove_kprobe(p);
633 	} else {
634 		mutex_lock(&kprobe_mutex);
635 		if (p->break_handler)
636 			old_p->break_handler = NULL;
637 		if (p->post_handler){
638 			list_for_each_entry_rcu(list_p, &old_p->list, list){
639 				if (list_p->post_handler){
640 					cleanup_p = 2;
641 					break;
642 				}
643 			}
644 			if (cleanup_p == 0)
645 				old_p->post_handler = NULL;
646 		}
647 		mutex_unlock(&kprobe_mutex);
648 	}
649 }
650 
651 static struct notifier_block kprobe_exceptions_nb = {
652 	.notifier_call = kprobe_exceptions_notify,
653 	.priority = 0x7fffffff /* we need to be notified first */
654 };
655 
656 unsigned long __weak arch_deref_entry_point(void *entry)
657 {
658 	return (unsigned long)entry;
659 }
660 
661 int __kprobes register_jprobe(struct jprobe *jp)
662 {
663 	unsigned long addr = arch_deref_entry_point(jp->entry);
664 
665 	if (!kernel_text_address(addr))
666 		return -EINVAL;
667 
668 	/* Todo: Verify probepoint is a function entry point */
669 	jp->kp.pre_handler = setjmp_pre_handler;
670 	jp->kp.break_handler = longjmp_break_handler;
671 
672 	return __register_kprobe(&jp->kp,
673 		(unsigned long)__builtin_return_address(0));
674 }
675 
676 void __kprobes unregister_jprobe(struct jprobe *jp)
677 {
678 	unregister_kprobe(&jp->kp);
679 }
680 
681 #ifdef ARCH_SUPPORTS_KRETPROBES
682 
683 /*
684  * This kprobe pre_handler is registered with every kretprobe. When probe
685  * hits it will set up the return probe.
686  */
687 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
688 					   struct pt_regs *regs)
689 {
690 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
691 	unsigned long flags = 0;
692 
693 	/*TODO: consider to only swap the RA after the last pre_handler fired */
694 	spin_lock_irqsave(&kretprobe_lock, flags);
695 	if (!hlist_empty(&rp->free_instances)) {
696 		struct kretprobe_instance *ri;
697 
698 		ri = hlist_entry(rp->free_instances.first,
699 				 struct kretprobe_instance, uflist);
700 		ri->rp = rp;
701 		ri->task = current;
702 		arch_prepare_kretprobe(ri, regs);
703 
704 		/* XXX(hch): why is there no hlist_move_head? */
705 		hlist_del(&ri->uflist);
706 		hlist_add_head(&ri->uflist, &ri->rp->used_instances);
707 		hlist_add_head(&ri->hlist, kretprobe_inst_table_head(ri->task));
708 	} else
709 		rp->nmissed++;
710 	spin_unlock_irqrestore(&kretprobe_lock, flags);
711 	return 0;
712 }
713 
714 int __kprobes register_kretprobe(struct kretprobe *rp)
715 {
716 	int ret = 0;
717 	struct kretprobe_instance *inst;
718 	int i;
719 	void *addr = rp->kp.addr;
720 
721 	if (kretprobe_blacklist_size) {
722 		if (addr == NULL)
723 			kprobe_lookup_name(rp->kp.symbol_name, addr);
724 		addr += rp->kp.offset;
725 
726 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
727 			if (kretprobe_blacklist[i].addr == addr)
728 				return -EINVAL;
729 		}
730 	}
731 
732 	rp->kp.pre_handler = pre_handler_kretprobe;
733 	rp->kp.post_handler = NULL;
734 	rp->kp.fault_handler = NULL;
735 	rp->kp.break_handler = NULL;
736 
737 	/* Pre-allocate memory for max kretprobe instances */
738 	if (rp->maxactive <= 0) {
739 #ifdef CONFIG_PREEMPT
740 		rp->maxactive = max(10, 2 * NR_CPUS);
741 #else
742 		rp->maxactive = NR_CPUS;
743 #endif
744 	}
745 	INIT_HLIST_HEAD(&rp->used_instances);
746 	INIT_HLIST_HEAD(&rp->free_instances);
747 	for (i = 0; i < rp->maxactive; i++) {
748 		inst = kmalloc(sizeof(struct kretprobe_instance), GFP_KERNEL);
749 		if (inst == NULL) {
750 			free_rp_inst(rp);
751 			return -ENOMEM;
752 		}
753 		INIT_HLIST_NODE(&inst->uflist);
754 		hlist_add_head(&inst->uflist, &rp->free_instances);
755 	}
756 
757 	rp->nmissed = 0;
758 	/* Establish function entry probe point */
759 	if ((ret = __register_kprobe(&rp->kp,
760 		(unsigned long)__builtin_return_address(0))) != 0)
761 		free_rp_inst(rp);
762 	return ret;
763 }
764 
765 #else /* ARCH_SUPPORTS_KRETPROBES */
766 
767 int __kprobes register_kretprobe(struct kretprobe *rp)
768 {
769 	return -ENOSYS;
770 }
771 
772 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
773 					   struct pt_regs *regs)
774 {
775 	return 0;
776 }
777 
778 #endif /* ARCH_SUPPORTS_KRETPROBES */
779 
780 void __kprobes unregister_kretprobe(struct kretprobe *rp)
781 {
782 	unsigned long flags;
783 	struct kretprobe_instance *ri;
784 	struct hlist_node *pos, *next;
785 
786 	unregister_kprobe(&rp->kp);
787 
788 	/* No race here */
789 	spin_lock_irqsave(&kretprobe_lock, flags);
790 	hlist_for_each_entry_safe(ri, pos, next, &rp->used_instances, uflist) {
791 		ri->rp = NULL;
792 		hlist_del(&ri->uflist);
793 	}
794 	spin_unlock_irqrestore(&kretprobe_lock, flags);
795 	free_rp_inst(rp);
796 }
797 
798 static int __init init_kprobes(void)
799 {
800 	int i, err = 0;
801 
802 	/* FIXME allocate the probe table, currently defined statically */
803 	/* initialize all list heads */
804 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
805 		INIT_HLIST_HEAD(&kprobe_table[i]);
806 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
807 	}
808 
809 	if (kretprobe_blacklist_size) {
810 		/* lookup the function address from its name */
811 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
812 			kprobe_lookup_name(kretprobe_blacklist[i].name,
813 					   kretprobe_blacklist[i].addr);
814 			if (!kretprobe_blacklist[i].addr)
815 				printk("kretprobe: lookup failed: %s\n",
816 				       kretprobe_blacklist[i].name);
817 		}
818 	}
819 
820 	/* By default, kprobes are enabled */
821 	kprobe_enabled = true;
822 
823 	err = arch_init_kprobes();
824 	if (!err)
825 		err = register_die_notifier(&kprobe_exceptions_nb);
826 
827 	if (!err)
828 		init_test_probes();
829 	return err;
830 }
831 
832 #ifdef CONFIG_DEBUG_FS
833 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
834 		const char *sym, int offset,char *modname)
835 {
836 	char *kprobe_type;
837 
838 	if (p->pre_handler == pre_handler_kretprobe)
839 		kprobe_type = "r";
840 	else if (p->pre_handler == setjmp_pre_handler)
841 		kprobe_type = "j";
842 	else
843 		kprobe_type = "k";
844 	if (sym)
845 		seq_printf(pi, "%p  %s  %s+0x%x  %s\n", p->addr, kprobe_type,
846 			sym, offset, (modname ? modname : " "));
847 	else
848 		seq_printf(pi, "%p  %s  %p\n", p->addr, kprobe_type, p->addr);
849 }
850 
851 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
852 {
853 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
854 }
855 
856 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
857 {
858 	(*pos)++;
859 	if (*pos >= KPROBE_TABLE_SIZE)
860 		return NULL;
861 	return pos;
862 }
863 
864 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
865 {
866 	/* Nothing to do */
867 }
868 
869 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
870 {
871 	struct hlist_head *head;
872 	struct hlist_node *node;
873 	struct kprobe *p, *kp;
874 	const char *sym = NULL;
875 	unsigned int i = *(loff_t *) v;
876 	unsigned long offset = 0;
877 	char *modname, namebuf[128];
878 
879 	head = &kprobe_table[i];
880 	preempt_disable();
881 	hlist_for_each_entry_rcu(p, node, head, hlist) {
882 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
883 					&offset, &modname, namebuf);
884 		if (p->pre_handler == aggr_pre_handler) {
885 			list_for_each_entry_rcu(kp, &p->list, list)
886 				report_probe(pi, kp, sym, offset, modname);
887 		} else
888 			report_probe(pi, p, sym, offset, modname);
889 	}
890 	preempt_enable();
891 	return 0;
892 }
893 
894 static struct seq_operations kprobes_seq_ops = {
895 	.start = kprobe_seq_start,
896 	.next  = kprobe_seq_next,
897 	.stop  = kprobe_seq_stop,
898 	.show  = show_kprobe_addr
899 };
900 
901 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
902 {
903 	return seq_open(filp, &kprobes_seq_ops);
904 }
905 
906 static struct file_operations debugfs_kprobes_operations = {
907 	.open           = kprobes_open,
908 	.read           = seq_read,
909 	.llseek         = seq_lseek,
910 	.release        = seq_release,
911 };
912 
913 static void __kprobes enable_all_kprobes(void)
914 {
915 	struct hlist_head *head;
916 	struct hlist_node *node;
917 	struct kprobe *p;
918 	unsigned int i;
919 
920 	mutex_lock(&kprobe_mutex);
921 
922 	/* If kprobes are already enabled, just return */
923 	if (kprobe_enabled)
924 		goto already_enabled;
925 
926 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
927 		head = &kprobe_table[i];
928 		hlist_for_each_entry_rcu(p, node, head, hlist)
929 			arch_arm_kprobe(p);
930 	}
931 
932 	kprobe_enabled = true;
933 	printk(KERN_INFO "Kprobes globally enabled\n");
934 
935 already_enabled:
936 	mutex_unlock(&kprobe_mutex);
937 	return;
938 }
939 
940 static void __kprobes disable_all_kprobes(void)
941 {
942 	struct hlist_head *head;
943 	struct hlist_node *node;
944 	struct kprobe *p;
945 	unsigned int i;
946 
947 	mutex_lock(&kprobe_mutex);
948 
949 	/* If kprobes are already disabled, just return */
950 	if (!kprobe_enabled)
951 		goto already_disabled;
952 
953 	kprobe_enabled = false;
954 	printk(KERN_INFO "Kprobes globally disabled\n");
955 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
956 		head = &kprobe_table[i];
957 		hlist_for_each_entry_rcu(p, node, head, hlist) {
958 			if (!arch_trampoline_kprobe(p))
959 				arch_disarm_kprobe(p);
960 		}
961 	}
962 
963 	mutex_unlock(&kprobe_mutex);
964 	/* Allow all currently running kprobes to complete */
965 	synchronize_sched();
966 	return;
967 
968 already_disabled:
969 	mutex_unlock(&kprobe_mutex);
970 	return;
971 }
972 
973 /*
974  * XXX: The debugfs bool file interface doesn't allow for callbacks
975  * when the bool state is switched. We can reuse that facility when
976  * available
977  */
978 static ssize_t read_enabled_file_bool(struct file *file,
979 	       char __user *user_buf, size_t count, loff_t *ppos)
980 {
981 	char buf[3];
982 
983 	if (kprobe_enabled)
984 		buf[0] = '1';
985 	else
986 		buf[0] = '0';
987 	buf[1] = '\n';
988 	buf[2] = 0x00;
989 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
990 }
991 
992 static ssize_t write_enabled_file_bool(struct file *file,
993 	       const char __user *user_buf, size_t count, loff_t *ppos)
994 {
995 	char buf[32];
996 	int buf_size;
997 
998 	buf_size = min(count, (sizeof(buf)-1));
999 	if (copy_from_user(buf, user_buf, buf_size))
1000 		return -EFAULT;
1001 
1002 	switch (buf[0]) {
1003 	case 'y':
1004 	case 'Y':
1005 	case '1':
1006 		enable_all_kprobes();
1007 		break;
1008 	case 'n':
1009 	case 'N':
1010 	case '0':
1011 		disable_all_kprobes();
1012 		break;
1013 	}
1014 
1015 	return count;
1016 }
1017 
1018 static struct file_operations fops_kp = {
1019 	.read =         read_enabled_file_bool,
1020 	.write =        write_enabled_file_bool,
1021 };
1022 
1023 static int __kprobes debugfs_kprobe_init(void)
1024 {
1025 	struct dentry *dir, *file;
1026 	unsigned int value = 1;
1027 
1028 	dir = debugfs_create_dir("kprobes", NULL);
1029 	if (!dir)
1030 		return -ENOMEM;
1031 
1032 	file = debugfs_create_file("list", 0444, dir, NULL,
1033 				&debugfs_kprobes_operations);
1034 	if (!file) {
1035 		debugfs_remove(dir);
1036 		return -ENOMEM;
1037 	}
1038 
1039 	file = debugfs_create_file("enabled", 0600, dir,
1040 					&value, &fops_kp);
1041 	if (!file) {
1042 		debugfs_remove(dir);
1043 		return -ENOMEM;
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 late_initcall(debugfs_kprobe_init);
1050 #endif /* CONFIG_DEBUG_FS */
1051 
1052 module_init(init_kprobes);
1053 
1054 EXPORT_SYMBOL_GPL(register_kprobe);
1055 EXPORT_SYMBOL_GPL(unregister_kprobe);
1056 EXPORT_SYMBOL_GPL(register_jprobe);
1057 EXPORT_SYMBOL_GPL(unregister_jprobe);
1058 #ifdef CONFIG_KPROBES
1059 EXPORT_SYMBOL_GPL(jprobe_return);
1060 #endif
1061 
1062 #ifdef CONFIG_KPROBES
1063 EXPORT_SYMBOL_GPL(register_kretprobe);
1064 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1065 #endif
1066