1 /* 2 * Kernel Probes (KProbes) 3 * kernel/kprobes.c 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * Copyright (C) IBM Corporation, 2002, 2004 20 * 21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 22 * Probes initial implementation (includes suggestions from 23 * Rusty Russell). 24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 25 * hlists and exceptions notifier as suggested by Andi Kleen. 26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 27 * interface to access function arguments. 28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 29 * exceptions notifier to be first on the priority list. 30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 32 * <prasanna@in.ibm.com> added function-return probes. 33 */ 34 #include <linux/kprobes.h> 35 #include <linux/hash.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/stddef.h> 39 #include <linux/export.h> 40 #include <linux/moduleloader.h> 41 #include <linux/kallsyms.h> 42 #include <linux/freezer.h> 43 #include <linux/seq_file.h> 44 #include <linux/debugfs.h> 45 #include <linux/sysctl.h> 46 #include <linux/kdebug.h> 47 #include <linux/memory.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 #include <linux/jump_label.h> 51 52 #include <asm-generic/sections.h> 53 #include <asm/cacheflush.h> 54 #include <asm/errno.h> 55 #include <asm/uaccess.h> 56 57 #define KPROBE_HASH_BITS 6 58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 59 60 61 /* 62 * Some oddball architectures like 64bit powerpc have function descriptors 63 * so this must be overridable. 64 */ 65 #ifndef kprobe_lookup_name 66 #define kprobe_lookup_name(name, addr) \ 67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name))) 68 #endif 69 70 static int kprobes_initialized; 71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 73 74 /* NOTE: change this value only with kprobe_mutex held */ 75 static bool kprobes_all_disarmed; 76 77 /* This protects kprobe_table and optimizing_list */ 78 static DEFINE_MUTEX(kprobe_mutex); 79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 80 static struct { 81 raw_spinlock_t lock ____cacheline_aligned_in_smp; 82 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 83 84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 85 { 86 return &(kretprobe_table_locks[hash].lock); 87 } 88 89 /* 90 * Normally, functions that we'd want to prohibit kprobes in, are marked 91 * __kprobes. But, there are cases where such functions already belong to 92 * a different section (__sched for preempt_schedule) 93 * 94 * For such cases, we now have a blacklist 95 */ 96 static struct kprobe_blackpoint kprobe_blacklist[] = { 97 {"preempt_schedule",}, 98 {"native_get_debugreg",}, 99 {"irq_entries_start",}, 100 {"common_interrupt",}, 101 {"mcount",}, /* mcount can be called from everywhere */ 102 {NULL} /* Terminator */ 103 }; 104 105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 106 /* 107 * kprobe->ainsn.insn points to the copy of the instruction to be 108 * single-stepped. x86_64, POWER4 and above have no-exec support and 109 * stepping on the instruction on a vmalloced/kmalloced/data page 110 * is a recipe for disaster 111 */ 112 struct kprobe_insn_page { 113 struct list_head list; 114 kprobe_opcode_t *insns; /* Page of instruction slots */ 115 struct kprobe_insn_cache *cache; 116 int nused; 117 int ngarbage; 118 char slot_used[]; 119 }; 120 121 #define KPROBE_INSN_PAGE_SIZE(slots) \ 122 (offsetof(struct kprobe_insn_page, slot_used) + \ 123 (sizeof(char) * (slots))) 124 125 static int slots_per_page(struct kprobe_insn_cache *c) 126 { 127 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 128 } 129 130 enum kprobe_slot_state { 131 SLOT_CLEAN = 0, 132 SLOT_DIRTY = 1, 133 SLOT_USED = 2, 134 }; 135 136 static void *alloc_insn_page(void) 137 { 138 return module_alloc(PAGE_SIZE); 139 } 140 141 static void free_insn_page(void *page) 142 { 143 module_free(NULL, page); 144 } 145 146 struct kprobe_insn_cache kprobe_insn_slots = { 147 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 148 .alloc = alloc_insn_page, 149 .free = free_insn_page, 150 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 151 .insn_size = MAX_INSN_SIZE, 152 .nr_garbage = 0, 153 }; 154 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c); 155 156 /** 157 * __get_insn_slot() - Find a slot on an executable page for an instruction. 158 * We allocate an executable page if there's no room on existing ones. 159 */ 160 kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c) 161 { 162 struct kprobe_insn_page *kip; 163 kprobe_opcode_t *slot = NULL; 164 165 mutex_lock(&c->mutex); 166 retry: 167 list_for_each_entry(kip, &c->pages, list) { 168 if (kip->nused < slots_per_page(c)) { 169 int i; 170 for (i = 0; i < slots_per_page(c); i++) { 171 if (kip->slot_used[i] == SLOT_CLEAN) { 172 kip->slot_used[i] = SLOT_USED; 173 kip->nused++; 174 slot = kip->insns + (i * c->insn_size); 175 goto out; 176 } 177 } 178 /* kip->nused is broken. Fix it. */ 179 kip->nused = slots_per_page(c); 180 WARN_ON(1); 181 } 182 } 183 184 /* If there are any garbage slots, collect it and try again. */ 185 if (c->nr_garbage && collect_garbage_slots(c) == 0) 186 goto retry; 187 188 /* All out of space. Need to allocate a new page. */ 189 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 190 if (!kip) 191 goto out; 192 193 /* 194 * Use module_alloc so this page is within +/- 2GB of where the 195 * kernel image and loaded module images reside. This is required 196 * so x86_64 can correctly handle the %rip-relative fixups. 197 */ 198 kip->insns = c->alloc(); 199 if (!kip->insns) { 200 kfree(kip); 201 goto out; 202 } 203 INIT_LIST_HEAD(&kip->list); 204 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 205 kip->slot_used[0] = SLOT_USED; 206 kip->nused = 1; 207 kip->ngarbage = 0; 208 kip->cache = c; 209 list_add(&kip->list, &c->pages); 210 slot = kip->insns; 211 out: 212 mutex_unlock(&c->mutex); 213 return slot; 214 } 215 216 /* Return 1 if all garbages are collected, otherwise 0. */ 217 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx) 218 { 219 kip->slot_used[idx] = SLOT_CLEAN; 220 kip->nused--; 221 if (kip->nused == 0) { 222 /* 223 * Page is no longer in use. Free it unless 224 * it's the last one. We keep the last one 225 * so as not to have to set it up again the 226 * next time somebody inserts a probe. 227 */ 228 if (!list_is_singular(&kip->list)) { 229 list_del(&kip->list); 230 kip->cache->free(kip->insns); 231 kfree(kip); 232 } 233 return 1; 234 } 235 return 0; 236 } 237 238 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c) 239 { 240 struct kprobe_insn_page *kip, *next; 241 242 /* Ensure no-one is interrupted on the garbages */ 243 synchronize_sched(); 244 245 list_for_each_entry_safe(kip, next, &c->pages, list) { 246 int i; 247 if (kip->ngarbage == 0) 248 continue; 249 kip->ngarbage = 0; /* we will collect all garbages */ 250 for (i = 0; i < slots_per_page(c); i++) { 251 if (kip->slot_used[i] == SLOT_DIRTY && 252 collect_one_slot(kip, i)) 253 break; 254 } 255 } 256 c->nr_garbage = 0; 257 return 0; 258 } 259 260 void __kprobes __free_insn_slot(struct kprobe_insn_cache *c, 261 kprobe_opcode_t *slot, int dirty) 262 { 263 struct kprobe_insn_page *kip; 264 265 mutex_lock(&c->mutex); 266 list_for_each_entry(kip, &c->pages, list) { 267 long idx = ((long)slot - (long)kip->insns) / 268 (c->insn_size * sizeof(kprobe_opcode_t)); 269 if (idx >= 0 && idx < slots_per_page(c)) { 270 WARN_ON(kip->slot_used[idx] != SLOT_USED); 271 if (dirty) { 272 kip->slot_used[idx] = SLOT_DIRTY; 273 kip->ngarbage++; 274 if (++c->nr_garbage > slots_per_page(c)) 275 collect_garbage_slots(c); 276 } else 277 collect_one_slot(kip, idx); 278 goto out; 279 } 280 } 281 /* Could not free this slot. */ 282 WARN_ON(1); 283 out: 284 mutex_unlock(&c->mutex); 285 } 286 287 #ifdef CONFIG_OPTPROBES 288 /* For optimized_kprobe buffer */ 289 struct kprobe_insn_cache kprobe_optinsn_slots = { 290 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 291 .alloc = alloc_insn_page, 292 .free = free_insn_page, 293 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 294 /* .insn_size is initialized later */ 295 .nr_garbage = 0, 296 }; 297 #endif 298 #endif 299 300 /* We have preemption disabled.. so it is safe to use __ versions */ 301 static inline void set_kprobe_instance(struct kprobe *kp) 302 { 303 __this_cpu_write(kprobe_instance, kp); 304 } 305 306 static inline void reset_kprobe_instance(void) 307 { 308 __this_cpu_write(kprobe_instance, NULL); 309 } 310 311 /* 312 * This routine is called either: 313 * - under the kprobe_mutex - during kprobe_[un]register() 314 * OR 315 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 316 */ 317 struct kprobe __kprobes *get_kprobe(void *addr) 318 { 319 struct hlist_head *head; 320 struct kprobe *p; 321 322 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 323 hlist_for_each_entry_rcu(p, head, hlist) { 324 if (p->addr == addr) 325 return p; 326 } 327 328 return NULL; 329 } 330 331 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 332 333 /* Return true if the kprobe is an aggregator */ 334 static inline int kprobe_aggrprobe(struct kprobe *p) 335 { 336 return p->pre_handler == aggr_pre_handler; 337 } 338 339 /* Return true(!0) if the kprobe is unused */ 340 static inline int kprobe_unused(struct kprobe *p) 341 { 342 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 343 list_empty(&p->list); 344 } 345 346 /* 347 * Keep all fields in the kprobe consistent 348 */ 349 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 350 { 351 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 352 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 353 } 354 355 #ifdef CONFIG_OPTPROBES 356 /* NOTE: change this value only with kprobe_mutex held */ 357 static bool kprobes_allow_optimization; 358 359 /* 360 * Call all pre_handler on the list, but ignores its return value. 361 * This must be called from arch-dep optimized caller. 362 */ 363 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 364 { 365 struct kprobe *kp; 366 367 list_for_each_entry_rcu(kp, &p->list, list) { 368 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 369 set_kprobe_instance(kp); 370 kp->pre_handler(kp, regs); 371 } 372 reset_kprobe_instance(); 373 } 374 } 375 376 /* Free optimized instructions and optimized_kprobe */ 377 static __kprobes void free_aggr_kprobe(struct kprobe *p) 378 { 379 struct optimized_kprobe *op; 380 381 op = container_of(p, struct optimized_kprobe, kp); 382 arch_remove_optimized_kprobe(op); 383 arch_remove_kprobe(p); 384 kfree(op); 385 } 386 387 /* Return true(!0) if the kprobe is ready for optimization. */ 388 static inline int kprobe_optready(struct kprobe *p) 389 { 390 struct optimized_kprobe *op; 391 392 if (kprobe_aggrprobe(p)) { 393 op = container_of(p, struct optimized_kprobe, kp); 394 return arch_prepared_optinsn(&op->optinsn); 395 } 396 397 return 0; 398 } 399 400 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 401 static inline int kprobe_disarmed(struct kprobe *p) 402 { 403 struct optimized_kprobe *op; 404 405 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 406 if (!kprobe_aggrprobe(p)) 407 return kprobe_disabled(p); 408 409 op = container_of(p, struct optimized_kprobe, kp); 410 411 return kprobe_disabled(p) && list_empty(&op->list); 412 } 413 414 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 415 static int __kprobes kprobe_queued(struct kprobe *p) 416 { 417 struct optimized_kprobe *op; 418 419 if (kprobe_aggrprobe(p)) { 420 op = container_of(p, struct optimized_kprobe, kp); 421 if (!list_empty(&op->list)) 422 return 1; 423 } 424 return 0; 425 } 426 427 /* 428 * Return an optimized kprobe whose optimizing code replaces 429 * instructions including addr (exclude breakpoint). 430 */ 431 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr) 432 { 433 int i; 434 struct kprobe *p = NULL; 435 struct optimized_kprobe *op; 436 437 /* Don't check i == 0, since that is a breakpoint case. */ 438 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 439 p = get_kprobe((void *)(addr - i)); 440 441 if (p && kprobe_optready(p)) { 442 op = container_of(p, struct optimized_kprobe, kp); 443 if (arch_within_optimized_kprobe(op, addr)) 444 return p; 445 } 446 447 return NULL; 448 } 449 450 /* Optimization staging list, protected by kprobe_mutex */ 451 static LIST_HEAD(optimizing_list); 452 static LIST_HEAD(unoptimizing_list); 453 static LIST_HEAD(freeing_list); 454 455 static void kprobe_optimizer(struct work_struct *work); 456 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 457 #define OPTIMIZE_DELAY 5 458 459 /* 460 * Optimize (replace a breakpoint with a jump) kprobes listed on 461 * optimizing_list. 462 */ 463 static __kprobes void do_optimize_kprobes(void) 464 { 465 /* Optimization never be done when disarmed */ 466 if (kprobes_all_disarmed || !kprobes_allow_optimization || 467 list_empty(&optimizing_list)) 468 return; 469 470 /* 471 * The optimization/unoptimization refers online_cpus via 472 * stop_machine() and cpu-hotplug modifies online_cpus. 473 * And same time, text_mutex will be held in cpu-hotplug and here. 474 * This combination can cause a deadlock (cpu-hotplug try to lock 475 * text_mutex but stop_machine can not be done because online_cpus 476 * has been changed) 477 * To avoid this deadlock, we need to call get_online_cpus() 478 * for preventing cpu-hotplug outside of text_mutex locking. 479 */ 480 get_online_cpus(); 481 mutex_lock(&text_mutex); 482 arch_optimize_kprobes(&optimizing_list); 483 mutex_unlock(&text_mutex); 484 put_online_cpus(); 485 } 486 487 /* 488 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 489 * if need) kprobes listed on unoptimizing_list. 490 */ 491 static __kprobes void do_unoptimize_kprobes(void) 492 { 493 struct optimized_kprobe *op, *tmp; 494 495 /* Unoptimization must be done anytime */ 496 if (list_empty(&unoptimizing_list)) 497 return; 498 499 /* Ditto to do_optimize_kprobes */ 500 get_online_cpus(); 501 mutex_lock(&text_mutex); 502 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 503 /* Loop free_list for disarming */ 504 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 505 /* Disarm probes if marked disabled */ 506 if (kprobe_disabled(&op->kp)) 507 arch_disarm_kprobe(&op->kp); 508 if (kprobe_unused(&op->kp)) { 509 /* 510 * Remove unused probes from hash list. After waiting 511 * for synchronization, these probes are reclaimed. 512 * (reclaiming is done by do_free_cleaned_kprobes.) 513 */ 514 hlist_del_rcu(&op->kp.hlist); 515 } else 516 list_del_init(&op->list); 517 } 518 mutex_unlock(&text_mutex); 519 put_online_cpus(); 520 } 521 522 /* Reclaim all kprobes on the free_list */ 523 static __kprobes void do_free_cleaned_kprobes(void) 524 { 525 struct optimized_kprobe *op, *tmp; 526 527 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 528 BUG_ON(!kprobe_unused(&op->kp)); 529 list_del_init(&op->list); 530 free_aggr_kprobe(&op->kp); 531 } 532 } 533 534 /* Start optimizer after OPTIMIZE_DELAY passed */ 535 static __kprobes void kick_kprobe_optimizer(void) 536 { 537 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 538 } 539 540 /* Kprobe jump optimizer */ 541 static __kprobes void kprobe_optimizer(struct work_struct *work) 542 { 543 mutex_lock(&kprobe_mutex); 544 /* Lock modules while optimizing kprobes */ 545 mutex_lock(&module_mutex); 546 547 /* 548 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 549 * kprobes before waiting for quiesence period. 550 */ 551 do_unoptimize_kprobes(); 552 553 /* 554 * Step 2: Wait for quiesence period to ensure all running interrupts 555 * are done. Because optprobe may modify multiple instructions 556 * there is a chance that Nth instruction is interrupted. In that 557 * case, running interrupt can return to 2nd-Nth byte of jump 558 * instruction. This wait is for avoiding it. 559 */ 560 synchronize_sched(); 561 562 /* Step 3: Optimize kprobes after quiesence period */ 563 do_optimize_kprobes(); 564 565 /* Step 4: Free cleaned kprobes after quiesence period */ 566 do_free_cleaned_kprobes(); 567 568 mutex_unlock(&module_mutex); 569 mutex_unlock(&kprobe_mutex); 570 571 /* Step 5: Kick optimizer again if needed */ 572 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 573 kick_kprobe_optimizer(); 574 } 575 576 /* Wait for completing optimization and unoptimization */ 577 static __kprobes void wait_for_kprobe_optimizer(void) 578 { 579 mutex_lock(&kprobe_mutex); 580 581 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 582 mutex_unlock(&kprobe_mutex); 583 584 /* this will also make optimizing_work execute immmediately */ 585 flush_delayed_work(&optimizing_work); 586 /* @optimizing_work might not have been queued yet, relax */ 587 cpu_relax(); 588 589 mutex_lock(&kprobe_mutex); 590 } 591 592 mutex_unlock(&kprobe_mutex); 593 } 594 595 /* Optimize kprobe if p is ready to be optimized */ 596 static __kprobes void optimize_kprobe(struct kprobe *p) 597 { 598 struct optimized_kprobe *op; 599 600 /* Check if the kprobe is disabled or not ready for optimization. */ 601 if (!kprobe_optready(p) || !kprobes_allow_optimization || 602 (kprobe_disabled(p) || kprobes_all_disarmed)) 603 return; 604 605 /* Both of break_handler and post_handler are not supported. */ 606 if (p->break_handler || p->post_handler) 607 return; 608 609 op = container_of(p, struct optimized_kprobe, kp); 610 611 /* Check there is no other kprobes at the optimized instructions */ 612 if (arch_check_optimized_kprobe(op) < 0) 613 return; 614 615 /* Check if it is already optimized. */ 616 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) 617 return; 618 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 619 620 if (!list_empty(&op->list)) 621 /* This is under unoptimizing. Just dequeue the probe */ 622 list_del_init(&op->list); 623 else { 624 list_add(&op->list, &optimizing_list); 625 kick_kprobe_optimizer(); 626 } 627 } 628 629 /* Short cut to direct unoptimizing */ 630 static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op) 631 { 632 get_online_cpus(); 633 arch_unoptimize_kprobe(op); 634 put_online_cpus(); 635 if (kprobe_disabled(&op->kp)) 636 arch_disarm_kprobe(&op->kp); 637 } 638 639 /* Unoptimize a kprobe if p is optimized */ 640 static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force) 641 { 642 struct optimized_kprobe *op; 643 644 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 645 return; /* This is not an optprobe nor optimized */ 646 647 op = container_of(p, struct optimized_kprobe, kp); 648 if (!kprobe_optimized(p)) { 649 /* Unoptimized or unoptimizing case */ 650 if (force && !list_empty(&op->list)) { 651 /* 652 * Only if this is unoptimizing kprobe and forced, 653 * forcibly unoptimize it. (No need to unoptimize 654 * unoptimized kprobe again :) 655 */ 656 list_del_init(&op->list); 657 force_unoptimize_kprobe(op); 658 } 659 return; 660 } 661 662 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 663 if (!list_empty(&op->list)) { 664 /* Dequeue from the optimization queue */ 665 list_del_init(&op->list); 666 return; 667 } 668 /* Optimized kprobe case */ 669 if (force) 670 /* Forcibly update the code: this is a special case */ 671 force_unoptimize_kprobe(op); 672 else { 673 list_add(&op->list, &unoptimizing_list); 674 kick_kprobe_optimizer(); 675 } 676 } 677 678 /* Cancel unoptimizing for reusing */ 679 static void reuse_unused_kprobe(struct kprobe *ap) 680 { 681 struct optimized_kprobe *op; 682 683 BUG_ON(!kprobe_unused(ap)); 684 /* 685 * Unused kprobe MUST be on the way of delayed unoptimizing (means 686 * there is still a relative jump) and disabled. 687 */ 688 op = container_of(ap, struct optimized_kprobe, kp); 689 if (unlikely(list_empty(&op->list))) 690 printk(KERN_WARNING "Warning: found a stray unused " 691 "aggrprobe@%p\n", ap->addr); 692 /* Enable the probe again */ 693 ap->flags &= ~KPROBE_FLAG_DISABLED; 694 /* Optimize it again (remove from op->list) */ 695 BUG_ON(!kprobe_optready(ap)); 696 optimize_kprobe(ap); 697 } 698 699 /* Remove optimized instructions */ 700 static void __kprobes kill_optimized_kprobe(struct kprobe *p) 701 { 702 struct optimized_kprobe *op; 703 704 op = container_of(p, struct optimized_kprobe, kp); 705 if (!list_empty(&op->list)) 706 /* Dequeue from the (un)optimization queue */ 707 list_del_init(&op->list); 708 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 709 710 if (kprobe_unused(p)) { 711 /* Enqueue if it is unused */ 712 list_add(&op->list, &freeing_list); 713 /* 714 * Remove unused probes from the hash list. After waiting 715 * for synchronization, this probe is reclaimed. 716 * (reclaiming is done by do_free_cleaned_kprobes().) 717 */ 718 hlist_del_rcu(&op->kp.hlist); 719 } 720 721 /* Don't touch the code, because it is already freed. */ 722 arch_remove_optimized_kprobe(op); 723 } 724 725 /* Try to prepare optimized instructions */ 726 static __kprobes void prepare_optimized_kprobe(struct kprobe *p) 727 { 728 struct optimized_kprobe *op; 729 730 op = container_of(p, struct optimized_kprobe, kp); 731 arch_prepare_optimized_kprobe(op); 732 } 733 734 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 735 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 736 { 737 struct optimized_kprobe *op; 738 739 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 740 if (!op) 741 return NULL; 742 743 INIT_LIST_HEAD(&op->list); 744 op->kp.addr = p->addr; 745 arch_prepare_optimized_kprobe(op); 746 747 return &op->kp; 748 } 749 750 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 751 752 /* 753 * Prepare an optimized_kprobe and optimize it 754 * NOTE: p must be a normal registered kprobe 755 */ 756 static __kprobes void try_to_optimize_kprobe(struct kprobe *p) 757 { 758 struct kprobe *ap; 759 struct optimized_kprobe *op; 760 761 /* Impossible to optimize ftrace-based kprobe */ 762 if (kprobe_ftrace(p)) 763 return; 764 765 /* For preparing optimization, jump_label_text_reserved() is called */ 766 jump_label_lock(); 767 mutex_lock(&text_mutex); 768 769 ap = alloc_aggr_kprobe(p); 770 if (!ap) 771 goto out; 772 773 op = container_of(ap, struct optimized_kprobe, kp); 774 if (!arch_prepared_optinsn(&op->optinsn)) { 775 /* If failed to setup optimizing, fallback to kprobe */ 776 arch_remove_optimized_kprobe(op); 777 kfree(op); 778 goto out; 779 } 780 781 init_aggr_kprobe(ap, p); 782 optimize_kprobe(ap); /* This just kicks optimizer thread */ 783 784 out: 785 mutex_unlock(&text_mutex); 786 jump_label_unlock(); 787 } 788 789 #ifdef CONFIG_SYSCTL 790 static void __kprobes optimize_all_kprobes(void) 791 { 792 struct hlist_head *head; 793 struct kprobe *p; 794 unsigned int i; 795 796 mutex_lock(&kprobe_mutex); 797 /* If optimization is already allowed, just return */ 798 if (kprobes_allow_optimization) 799 goto out; 800 801 kprobes_allow_optimization = true; 802 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 803 head = &kprobe_table[i]; 804 hlist_for_each_entry_rcu(p, head, hlist) 805 if (!kprobe_disabled(p)) 806 optimize_kprobe(p); 807 } 808 printk(KERN_INFO "Kprobes globally optimized\n"); 809 out: 810 mutex_unlock(&kprobe_mutex); 811 } 812 813 static void __kprobes unoptimize_all_kprobes(void) 814 { 815 struct hlist_head *head; 816 struct kprobe *p; 817 unsigned int i; 818 819 mutex_lock(&kprobe_mutex); 820 /* If optimization is already prohibited, just return */ 821 if (!kprobes_allow_optimization) { 822 mutex_unlock(&kprobe_mutex); 823 return; 824 } 825 826 kprobes_allow_optimization = false; 827 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 828 head = &kprobe_table[i]; 829 hlist_for_each_entry_rcu(p, head, hlist) { 830 if (!kprobe_disabled(p)) 831 unoptimize_kprobe(p, false); 832 } 833 } 834 mutex_unlock(&kprobe_mutex); 835 836 /* Wait for unoptimizing completion */ 837 wait_for_kprobe_optimizer(); 838 printk(KERN_INFO "Kprobes globally unoptimized\n"); 839 } 840 841 static DEFINE_MUTEX(kprobe_sysctl_mutex); 842 int sysctl_kprobes_optimization; 843 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 844 void __user *buffer, size_t *length, 845 loff_t *ppos) 846 { 847 int ret; 848 849 mutex_lock(&kprobe_sysctl_mutex); 850 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 851 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 852 853 if (sysctl_kprobes_optimization) 854 optimize_all_kprobes(); 855 else 856 unoptimize_all_kprobes(); 857 mutex_unlock(&kprobe_sysctl_mutex); 858 859 return ret; 860 } 861 #endif /* CONFIG_SYSCTL */ 862 863 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 864 static void __kprobes __arm_kprobe(struct kprobe *p) 865 { 866 struct kprobe *_p; 867 868 /* Check collision with other optimized kprobes */ 869 _p = get_optimized_kprobe((unsigned long)p->addr); 870 if (unlikely(_p)) 871 /* Fallback to unoptimized kprobe */ 872 unoptimize_kprobe(_p, true); 873 874 arch_arm_kprobe(p); 875 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 876 } 877 878 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 879 static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt) 880 { 881 struct kprobe *_p; 882 883 unoptimize_kprobe(p, false); /* Try to unoptimize */ 884 885 if (!kprobe_queued(p)) { 886 arch_disarm_kprobe(p); 887 /* If another kprobe was blocked, optimize it. */ 888 _p = get_optimized_kprobe((unsigned long)p->addr); 889 if (unlikely(_p) && reopt) 890 optimize_kprobe(_p); 891 } 892 /* TODO: reoptimize others after unoptimized this probe */ 893 } 894 895 #else /* !CONFIG_OPTPROBES */ 896 897 #define optimize_kprobe(p) do {} while (0) 898 #define unoptimize_kprobe(p, f) do {} while (0) 899 #define kill_optimized_kprobe(p) do {} while (0) 900 #define prepare_optimized_kprobe(p) do {} while (0) 901 #define try_to_optimize_kprobe(p) do {} while (0) 902 #define __arm_kprobe(p) arch_arm_kprobe(p) 903 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 904 #define kprobe_disarmed(p) kprobe_disabled(p) 905 #define wait_for_kprobe_optimizer() do {} while (0) 906 907 /* There should be no unused kprobes can be reused without optimization */ 908 static void reuse_unused_kprobe(struct kprobe *ap) 909 { 910 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 911 BUG_ON(kprobe_unused(ap)); 912 } 913 914 static __kprobes void free_aggr_kprobe(struct kprobe *p) 915 { 916 arch_remove_kprobe(p); 917 kfree(p); 918 } 919 920 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 921 { 922 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 923 } 924 #endif /* CONFIG_OPTPROBES */ 925 926 #ifdef CONFIG_KPROBES_ON_FTRACE 927 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 928 .func = kprobe_ftrace_handler, 929 .flags = FTRACE_OPS_FL_SAVE_REGS, 930 }; 931 static int kprobe_ftrace_enabled; 932 933 /* Must ensure p->addr is really on ftrace */ 934 static int __kprobes prepare_kprobe(struct kprobe *p) 935 { 936 if (!kprobe_ftrace(p)) 937 return arch_prepare_kprobe(p); 938 939 return arch_prepare_kprobe_ftrace(p); 940 } 941 942 /* Caller must lock kprobe_mutex */ 943 static void __kprobes arm_kprobe_ftrace(struct kprobe *p) 944 { 945 int ret; 946 947 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 948 (unsigned long)p->addr, 0, 0); 949 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret); 950 kprobe_ftrace_enabled++; 951 if (kprobe_ftrace_enabled == 1) { 952 ret = register_ftrace_function(&kprobe_ftrace_ops); 953 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret); 954 } 955 } 956 957 /* Caller must lock kprobe_mutex */ 958 static void __kprobes disarm_kprobe_ftrace(struct kprobe *p) 959 { 960 int ret; 961 962 kprobe_ftrace_enabled--; 963 if (kprobe_ftrace_enabled == 0) { 964 ret = unregister_ftrace_function(&kprobe_ftrace_ops); 965 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret); 966 } 967 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 968 (unsigned long)p->addr, 1, 0); 969 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret); 970 } 971 #else /* !CONFIG_KPROBES_ON_FTRACE */ 972 #define prepare_kprobe(p) arch_prepare_kprobe(p) 973 #define arm_kprobe_ftrace(p) do {} while (0) 974 #define disarm_kprobe_ftrace(p) do {} while (0) 975 #endif 976 977 /* Arm a kprobe with text_mutex */ 978 static void __kprobes arm_kprobe(struct kprobe *kp) 979 { 980 if (unlikely(kprobe_ftrace(kp))) { 981 arm_kprobe_ftrace(kp); 982 return; 983 } 984 /* 985 * Here, since __arm_kprobe() doesn't use stop_machine(), 986 * this doesn't cause deadlock on text_mutex. So, we don't 987 * need get_online_cpus(). 988 */ 989 mutex_lock(&text_mutex); 990 __arm_kprobe(kp); 991 mutex_unlock(&text_mutex); 992 } 993 994 /* Disarm a kprobe with text_mutex */ 995 static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt) 996 { 997 if (unlikely(kprobe_ftrace(kp))) { 998 disarm_kprobe_ftrace(kp); 999 return; 1000 } 1001 /* Ditto */ 1002 mutex_lock(&text_mutex); 1003 __disarm_kprobe(kp, reopt); 1004 mutex_unlock(&text_mutex); 1005 } 1006 1007 /* 1008 * Aggregate handlers for multiple kprobes support - these handlers 1009 * take care of invoking the individual kprobe handlers on p->list 1010 */ 1011 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1012 { 1013 struct kprobe *kp; 1014 1015 list_for_each_entry_rcu(kp, &p->list, list) { 1016 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1017 set_kprobe_instance(kp); 1018 if (kp->pre_handler(kp, regs)) 1019 return 1; 1020 } 1021 reset_kprobe_instance(); 1022 } 1023 return 0; 1024 } 1025 1026 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1027 unsigned long flags) 1028 { 1029 struct kprobe *kp; 1030 1031 list_for_each_entry_rcu(kp, &p->list, list) { 1032 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1033 set_kprobe_instance(kp); 1034 kp->post_handler(kp, regs, flags); 1035 reset_kprobe_instance(); 1036 } 1037 } 1038 } 1039 1040 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 1041 int trapnr) 1042 { 1043 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1044 1045 /* 1046 * if we faulted "during" the execution of a user specified 1047 * probe handler, invoke just that probe's fault handler 1048 */ 1049 if (cur && cur->fault_handler) { 1050 if (cur->fault_handler(cur, regs, trapnr)) 1051 return 1; 1052 } 1053 return 0; 1054 } 1055 1056 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs) 1057 { 1058 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1059 int ret = 0; 1060 1061 if (cur && cur->break_handler) { 1062 if (cur->break_handler(cur, regs)) 1063 ret = 1; 1064 } 1065 reset_kprobe_instance(); 1066 return ret; 1067 } 1068 1069 /* Walks the list and increments nmissed count for multiprobe case */ 1070 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p) 1071 { 1072 struct kprobe *kp; 1073 if (!kprobe_aggrprobe(p)) { 1074 p->nmissed++; 1075 } else { 1076 list_for_each_entry_rcu(kp, &p->list, list) 1077 kp->nmissed++; 1078 } 1079 return; 1080 } 1081 1082 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri, 1083 struct hlist_head *head) 1084 { 1085 struct kretprobe *rp = ri->rp; 1086 1087 /* remove rp inst off the rprobe_inst_table */ 1088 hlist_del(&ri->hlist); 1089 INIT_HLIST_NODE(&ri->hlist); 1090 if (likely(rp)) { 1091 raw_spin_lock(&rp->lock); 1092 hlist_add_head(&ri->hlist, &rp->free_instances); 1093 raw_spin_unlock(&rp->lock); 1094 } else 1095 /* Unregistering */ 1096 hlist_add_head(&ri->hlist, head); 1097 } 1098 1099 void __kprobes kretprobe_hash_lock(struct task_struct *tsk, 1100 struct hlist_head **head, unsigned long *flags) 1101 __acquires(hlist_lock) 1102 { 1103 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1104 raw_spinlock_t *hlist_lock; 1105 1106 *head = &kretprobe_inst_table[hash]; 1107 hlist_lock = kretprobe_table_lock_ptr(hash); 1108 raw_spin_lock_irqsave(hlist_lock, *flags); 1109 } 1110 1111 static void __kprobes kretprobe_table_lock(unsigned long hash, 1112 unsigned long *flags) 1113 __acquires(hlist_lock) 1114 { 1115 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1116 raw_spin_lock_irqsave(hlist_lock, *flags); 1117 } 1118 1119 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk, 1120 unsigned long *flags) 1121 __releases(hlist_lock) 1122 { 1123 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1124 raw_spinlock_t *hlist_lock; 1125 1126 hlist_lock = kretprobe_table_lock_ptr(hash); 1127 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1128 } 1129 1130 static void __kprobes kretprobe_table_unlock(unsigned long hash, 1131 unsigned long *flags) 1132 __releases(hlist_lock) 1133 { 1134 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1135 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1136 } 1137 1138 /* 1139 * This function is called from finish_task_switch when task tk becomes dead, 1140 * so that we can recycle any function-return probe instances associated 1141 * with this task. These left over instances represent probed functions 1142 * that have been called but will never return. 1143 */ 1144 void __kprobes kprobe_flush_task(struct task_struct *tk) 1145 { 1146 struct kretprobe_instance *ri; 1147 struct hlist_head *head, empty_rp; 1148 struct hlist_node *tmp; 1149 unsigned long hash, flags = 0; 1150 1151 if (unlikely(!kprobes_initialized)) 1152 /* Early boot. kretprobe_table_locks not yet initialized. */ 1153 return; 1154 1155 INIT_HLIST_HEAD(&empty_rp); 1156 hash = hash_ptr(tk, KPROBE_HASH_BITS); 1157 head = &kretprobe_inst_table[hash]; 1158 kretprobe_table_lock(hash, &flags); 1159 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 1160 if (ri->task == tk) 1161 recycle_rp_inst(ri, &empty_rp); 1162 } 1163 kretprobe_table_unlock(hash, &flags); 1164 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 1165 hlist_del(&ri->hlist); 1166 kfree(ri); 1167 } 1168 } 1169 1170 static inline void free_rp_inst(struct kretprobe *rp) 1171 { 1172 struct kretprobe_instance *ri; 1173 struct hlist_node *next; 1174 1175 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) { 1176 hlist_del(&ri->hlist); 1177 kfree(ri); 1178 } 1179 } 1180 1181 static void __kprobes cleanup_rp_inst(struct kretprobe *rp) 1182 { 1183 unsigned long flags, hash; 1184 struct kretprobe_instance *ri; 1185 struct hlist_node *next; 1186 struct hlist_head *head; 1187 1188 /* No race here */ 1189 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 1190 kretprobe_table_lock(hash, &flags); 1191 head = &kretprobe_inst_table[hash]; 1192 hlist_for_each_entry_safe(ri, next, head, hlist) { 1193 if (ri->rp == rp) 1194 ri->rp = NULL; 1195 } 1196 kretprobe_table_unlock(hash, &flags); 1197 } 1198 free_rp_inst(rp); 1199 } 1200 1201 /* 1202 * Add the new probe to ap->list. Fail if this is the 1203 * second jprobe at the address - two jprobes can't coexist 1204 */ 1205 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1206 { 1207 BUG_ON(kprobe_gone(ap) || kprobe_gone(p)); 1208 1209 if (p->break_handler || p->post_handler) 1210 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1211 1212 if (p->break_handler) { 1213 if (ap->break_handler) 1214 return -EEXIST; 1215 list_add_tail_rcu(&p->list, &ap->list); 1216 ap->break_handler = aggr_break_handler; 1217 } else 1218 list_add_rcu(&p->list, &ap->list); 1219 if (p->post_handler && !ap->post_handler) 1220 ap->post_handler = aggr_post_handler; 1221 1222 return 0; 1223 } 1224 1225 /* 1226 * Fill in the required fields of the "manager kprobe". Replace the 1227 * earlier kprobe in the hlist with the manager kprobe 1228 */ 1229 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1230 { 1231 /* Copy p's insn slot to ap */ 1232 copy_kprobe(p, ap); 1233 flush_insn_slot(ap); 1234 ap->addr = p->addr; 1235 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1236 ap->pre_handler = aggr_pre_handler; 1237 ap->fault_handler = aggr_fault_handler; 1238 /* We don't care the kprobe which has gone. */ 1239 if (p->post_handler && !kprobe_gone(p)) 1240 ap->post_handler = aggr_post_handler; 1241 if (p->break_handler && !kprobe_gone(p)) 1242 ap->break_handler = aggr_break_handler; 1243 1244 INIT_LIST_HEAD(&ap->list); 1245 INIT_HLIST_NODE(&ap->hlist); 1246 1247 list_add_rcu(&p->list, &ap->list); 1248 hlist_replace_rcu(&p->hlist, &ap->hlist); 1249 } 1250 1251 /* 1252 * This is the second or subsequent kprobe at the address - handle 1253 * the intricacies 1254 */ 1255 static int __kprobes register_aggr_kprobe(struct kprobe *orig_p, 1256 struct kprobe *p) 1257 { 1258 int ret = 0; 1259 struct kprobe *ap = orig_p; 1260 1261 /* For preparing optimization, jump_label_text_reserved() is called */ 1262 jump_label_lock(); 1263 /* 1264 * Get online CPUs to avoid text_mutex deadlock.with stop machine, 1265 * which is invoked by unoptimize_kprobe() in add_new_kprobe() 1266 */ 1267 get_online_cpus(); 1268 mutex_lock(&text_mutex); 1269 1270 if (!kprobe_aggrprobe(orig_p)) { 1271 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1272 ap = alloc_aggr_kprobe(orig_p); 1273 if (!ap) { 1274 ret = -ENOMEM; 1275 goto out; 1276 } 1277 init_aggr_kprobe(ap, orig_p); 1278 } else if (kprobe_unused(ap)) 1279 /* This probe is going to die. Rescue it */ 1280 reuse_unused_kprobe(ap); 1281 1282 if (kprobe_gone(ap)) { 1283 /* 1284 * Attempting to insert new probe at the same location that 1285 * had a probe in the module vaddr area which already 1286 * freed. So, the instruction slot has already been 1287 * released. We need a new slot for the new probe. 1288 */ 1289 ret = arch_prepare_kprobe(ap); 1290 if (ret) 1291 /* 1292 * Even if fail to allocate new slot, don't need to 1293 * free aggr_probe. It will be used next time, or 1294 * freed by unregister_kprobe. 1295 */ 1296 goto out; 1297 1298 /* Prepare optimized instructions if possible. */ 1299 prepare_optimized_kprobe(ap); 1300 1301 /* 1302 * Clear gone flag to prevent allocating new slot again, and 1303 * set disabled flag because it is not armed yet. 1304 */ 1305 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1306 | KPROBE_FLAG_DISABLED; 1307 } 1308 1309 /* Copy ap's insn slot to p */ 1310 copy_kprobe(ap, p); 1311 ret = add_new_kprobe(ap, p); 1312 1313 out: 1314 mutex_unlock(&text_mutex); 1315 put_online_cpus(); 1316 jump_label_unlock(); 1317 1318 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1319 ap->flags &= ~KPROBE_FLAG_DISABLED; 1320 if (!kprobes_all_disarmed) 1321 /* Arm the breakpoint again. */ 1322 arm_kprobe(ap); 1323 } 1324 return ret; 1325 } 1326 1327 static int __kprobes in_kprobes_functions(unsigned long addr) 1328 { 1329 struct kprobe_blackpoint *kb; 1330 1331 if (addr >= (unsigned long)__kprobes_text_start && 1332 addr < (unsigned long)__kprobes_text_end) 1333 return -EINVAL; 1334 /* 1335 * If there exists a kprobe_blacklist, verify and 1336 * fail any probe registration in the prohibited area 1337 */ 1338 for (kb = kprobe_blacklist; kb->name != NULL; kb++) { 1339 if (kb->start_addr) { 1340 if (addr >= kb->start_addr && 1341 addr < (kb->start_addr + kb->range)) 1342 return -EINVAL; 1343 } 1344 } 1345 return 0; 1346 } 1347 1348 /* 1349 * If we have a symbol_name argument, look it up and add the offset field 1350 * to it. This way, we can specify a relative address to a symbol. 1351 * This returns encoded errors if it fails to look up symbol or invalid 1352 * combination of parameters. 1353 */ 1354 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p) 1355 { 1356 kprobe_opcode_t *addr = p->addr; 1357 1358 if ((p->symbol_name && p->addr) || 1359 (!p->symbol_name && !p->addr)) 1360 goto invalid; 1361 1362 if (p->symbol_name) { 1363 kprobe_lookup_name(p->symbol_name, addr); 1364 if (!addr) 1365 return ERR_PTR(-ENOENT); 1366 } 1367 1368 addr = (kprobe_opcode_t *)(((char *)addr) + p->offset); 1369 if (addr) 1370 return addr; 1371 1372 invalid: 1373 return ERR_PTR(-EINVAL); 1374 } 1375 1376 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1377 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p) 1378 { 1379 struct kprobe *ap, *list_p; 1380 1381 ap = get_kprobe(p->addr); 1382 if (unlikely(!ap)) 1383 return NULL; 1384 1385 if (p != ap) { 1386 list_for_each_entry_rcu(list_p, &ap->list, list) 1387 if (list_p == p) 1388 /* kprobe p is a valid probe */ 1389 goto valid; 1390 return NULL; 1391 } 1392 valid: 1393 return ap; 1394 } 1395 1396 /* Return error if the kprobe is being re-registered */ 1397 static inline int check_kprobe_rereg(struct kprobe *p) 1398 { 1399 int ret = 0; 1400 1401 mutex_lock(&kprobe_mutex); 1402 if (__get_valid_kprobe(p)) 1403 ret = -EINVAL; 1404 mutex_unlock(&kprobe_mutex); 1405 1406 return ret; 1407 } 1408 1409 static __kprobes int check_kprobe_address_safe(struct kprobe *p, 1410 struct module **probed_mod) 1411 { 1412 int ret = 0; 1413 unsigned long ftrace_addr; 1414 1415 /* 1416 * If the address is located on a ftrace nop, set the 1417 * breakpoint to the following instruction. 1418 */ 1419 ftrace_addr = ftrace_location((unsigned long)p->addr); 1420 if (ftrace_addr) { 1421 #ifdef CONFIG_KPROBES_ON_FTRACE 1422 /* Given address is not on the instruction boundary */ 1423 if ((unsigned long)p->addr != ftrace_addr) 1424 return -EILSEQ; 1425 p->flags |= KPROBE_FLAG_FTRACE; 1426 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1427 return -EINVAL; 1428 #endif 1429 } 1430 1431 jump_label_lock(); 1432 preempt_disable(); 1433 1434 /* Ensure it is not in reserved area nor out of text */ 1435 if (!kernel_text_address((unsigned long) p->addr) || 1436 in_kprobes_functions((unsigned long) p->addr) || 1437 jump_label_text_reserved(p->addr, p->addr)) { 1438 ret = -EINVAL; 1439 goto out; 1440 } 1441 1442 /* Check if are we probing a module */ 1443 *probed_mod = __module_text_address((unsigned long) p->addr); 1444 if (*probed_mod) { 1445 /* 1446 * We must hold a refcount of the probed module while updating 1447 * its code to prohibit unexpected unloading. 1448 */ 1449 if (unlikely(!try_module_get(*probed_mod))) { 1450 ret = -ENOENT; 1451 goto out; 1452 } 1453 1454 /* 1455 * If the module freed .init.text, we couldn't insert 1456 * kprobes in there. 1457 */ 1458 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1459 (*probed_mod)->state != MODULE_STATE_COMING) { 1460 module_put(*probed_mod); 1461 *probed_mod = NULL; 1462 ret = -ENOENT; 1463 } 1464 } 1465 out: 1466 preempt_enable(); 1467 jump_label_unlock(); 1468 1469 return ret; 1470 } 1471 1472 int __kprobes register_kprobe(struct kprobe *p) 1473 { 1474 int ret; 1475 struct kprobe *old_p; 1476 struct module *probed_mod; 1477 kprobe_opcode_t *addr; 1478 1479 /* Adjust probe address from symbol */ 1480 addr = kprobe_addr(p); 1481 if (IS_ERR(addr)) 1482 return PTR_ERR(addr); 1483 p->addr = addr; 1484 1485 ret = check_kprobe_rereg(p); 1486 if (ret) 1487 return ret; 1488 1489 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1490 p->flags &= KPROBE_FLAG_DISABLED; 1491 p->nmissed = 0; 1492 INIT_LIST_HEAD(&p->list); 1493 1494 ret = check_kprobe_address_safe(p, &probed_mod); 1495 if (ret) 1496 return ret; 1497 1498 mutex_lock(&kprobe_mutex); 1499 1500 old_p = get_kprobe(p->addr); 1501 if (old_p) { 1502 /* Since this may unoptimize old_p, locking text_mutex. */ 1503 ret = register_aggr_kprobe(old_p, p); 1504 goto out; 1505 } 1506 1507 mutex_lock(&text_mutex); /* Avoiding text modification */ 1508 ret = prepare_kprobe(p); 1509 mutex_unlock(&text_mutex); 1510 if (ret) 1511 goto out; 1512 1513 INIT_HLIST_NODE(&p->hlist); 1514 hlist_add_head_rcu(&p->hlist, 1515 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1516 1517 if (!kprobes_all_disarmed && !kprobe_disabled(p)) 1518 arm_kprobe(p); 1519 1520 /* Try to optimize kprobe */ 1521 try_to_optimize_kprobe(p); 1522 1523 out: 1524 mutex_unlock(&kprobe_mutex); 1525 1526 if (probed_mod) 1527 module_put(probed_mod); 1528 1529 return ret; 1530 } 1531 EXPORT_SYMBOL_GPL(register_kprobe); 1532 1533 /* Check if all probes on the aggrprobe are disabled */ 1534 static int __kprobes aggr_kprobe_disabled(struct kprobe *ap) 1535 { 1536 struct kprobe *kp; 1537 1538 list_for_each_entry_rcu(kp, &ap->list, list) 1539 if (!kprobe_disabled(kp)) 1540 /* 1541 * There is an active probe on the list. 1542 * We can't disable this ap. 1543 */ 1544 return 0; 1545 1546 return 1; 1547 } 1548 1549 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1550 static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p) 1551 { 1552 struct kprobe *orig_p; 1553 1554 /* Get an original kprobe for return */ 1555 orig_p = __get_valid_kprobe(p); 1556 if (unlikely(orig_p == NULL)) 1557 return NULL; 1558 1559 if (!kprobe_disabled(p)) { 1560 /* Disable probe if it is a child probe */ 1561 if (p != orig_p) 1562 p->flags |= KPROBE_FLAG_DISABLED; 1563 1564 /* Try to disarm and disable this/parent probe */ 1565 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1566 disarm_kprobe(orig_p, true); 1567 orig_p->flags |= KPROBE_FLAG_DISABLED; 1568 } 1569 } 1570 1571 return orig_p; 1572 } 1573 1574 /* 1575 * Unregister a kprobe without a scheduler synchronization. 1576 */ 1577 static int __kprobes __unregister_kprobe_top(struct kprobe *p) 1578 { 1579 struct kprobe *ap, *list_p; 1580 1581 /* Disable kprobe. This will disarm it if needed. */ 1582 ap = __disable_kprobe(p); 1583 if (ap == NULL) 1584 return -EINVAL; 1585 1586 if (ap == p) 1587 /* 1588 * This probe is an independent(and non-optimized) kprobe 1589 * (not an aggrprobe). Remove from the hash list. 1590 */ 1591 goto disarmed; 1592 1593 /* Following process expects this probe is an aggrprobe */ 1594 WARN_ON(!kprobe_aggrprobe(ap)); 1595 1596 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1597 /* 1598 * !disarmed could be happen if the probe is under delayed 1599 * unoptimizing. 1600 */ 1601 goto disarmed; 1602 else { 1603 /* If disabling probe has special handlers, update aggrprobe */ 1604 if (p->break_handler && !kprobe_gone(p)) 1605 ap->break_handler = NULL; 1606 if (p->post_handler && !kprobe_gone(p)) { 1607 list_for_each_entry_rcu(list_p, &ap->list, list) { 1608 if ((list_p != p) && (list_p->post_handler)) 1609 goto noclean; 1610 } 1611 ap->post_handler = NULL; 1612 } 1613 noclean: 1614 /* 1615 * Remove from the aggrprobe: this path will do nothing in 1616 * __unregister_kprobe_bottom(). 1617 */ 1618 list_del_rcu(&p->list); 1619 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1620 /* 1621 * Try to optimize this probe again, because post 1622 * handler may have been changed. 1623 */ 1624 optimize_kprobe(ap); 1625 } 1626 return 0; 1627 1628 disarmed: 1629 BUG_ON(!kprobe_disarmed(ap)); 1630 hlist_del_rcu(&ap->hlist); 1631 return 0; 1632 } 1633 1634 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p) 1635 { 1636 struct kprobe *ap; 1637 1638 if (list_empty(&p->list)) 1639 /* This is an independent kprobe */ 1640 arch_remove_kprobe(p); 1641 else if (list_is_singular(&p->list)) { 1642 /* This is the last child of an aggrprobe */ 1643 ap = list_entry(p->list.next, struct kprobe, list); 1644 list_del(&p->list); 1645 free_aggr_kprobe(ap); 1646 } 1647 /* Otherwise, do nothing. */ 1648 } 1649 1650 int __kprobes register_kprobes(struct kprobe **kps, int num) 1651 { 1652 int i, ret = 0; 1653 1654 if (num <= 0) 1655 return -EINVAL; 1656 for (i = 0; i < num; i++) { 1657 ret = register_kprobe(kps[i]); 1658 if (ret < 0) { 1659 if (i > 0) 1660 unregister_kprobes(kps, i); 1661 break; 1662 } 1663 } 1664 return ret; 1665 } 1666 EXPORT_SYMBOL_GPL(register_kprobes); 1667 1668 void __kprobes unregister_kprobe(struct kprobe *p) 1669 { 1670 unregister_kprobes(&p, 1); 1671 } 1672 EXPORT_SYMBOL_GPL(unregister_kprobe); 1673 1674 void __kprobes unregister_kprobes(struct kprobe **kps, int num) 1675 { 1676 int i; 1677 1678 if (num <= 0) 1679 return; 1680 mutex_lock(&kprobe_mutex); 1681 for (i = 0; i < num; i++) 1682 if (__unregister_kprobe_top(kps[i]) < 0) 1683 kps[i]->addr = NULL; 1684 mutex_unlock(&kprobe_mutex); 1685 1686 synchronize_sched(); 1687 for (i = 0; i < num; i++) 1688 if (kps[i]->addr) 1689 __unregister_kprobe_bottom(kps[i]); 1690 } 1691 EXPORT_SYMBOL_GPL(unregister_kprobes); 1692 1693 static struct notifier_block kprobe_exceptions_nb = { 1694 .notifier_call = kprobe_exceptions_notify, 1695 .priority = 0x7fffffff /* we need to be notified first */ 1696 }; 1697 1698 unsigned long __weak arch_deref_entry_point(void *entry) 1699 { 1700 return (unsigned long)entry; 1701 } 1702 1703 int __kprobes register_jprobes(struct jprobe **jps, int num) 1704 { 1705 struct jprobe *jp; 1706 int ret = 0, i; 1707 1708 if (num <= 0) 1709 return -EINVAL; 1710 for (i = 0; i < num; i++) { 1711 unsigned long addr, offset; 1712 jp = jps[i]; 1713 addr = arch_deref_entry_point(jp->entry); 1714 1715 /* Verify probepoint is a function entry point */ 1716 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && 1717 offset == 0) { 1718 jp->kp.pre_handler = setjmp_pre_handler; 1719 jp->kp.break_handler = longjmp_break_handler; 1720 ret = register_kprobe(&jp->kp); 1721 } else 1722 ret = -EINVAL; 1723 1724 if (ret < 0) { 1725 if (i > 0) 1726 unregister_jprobes(jps, i); 1727 break; 1728 } 1729 } 1730 return ret; 1731 } 1732 EXPORT_SYMBOL_GPL(register_jprobes); 1733 1734 int __kprobes register_jprobe(struct jprobe *jp) 1735 { 1736 return register_jprobes(&jp, 1); 1737 } 1738 EXPORT_SYMBOL_GPL(register_jprobe); 1739 1740 void __kprobes unregister_jprobe(struct jprobe *jp) 1741 { 1742 unregister_jprobes(&jp, 1); 1743 } 1744 EXPORT_SYMBOL_GPL(unregister_jprobe); 1745 1746 void __kprobes unregister_jprobes(struct jprobe **jps, int num) 1747 { 1748 int i; 1749 1750 if (num <= 0) 1751 return; 1752 mutex_lock(&kprobe_mutex); 1753 for (i = 0; i < num; i++) 1754 if (__unregister_kprobe_top(&jps[i]->kp) < 0) 1755 jps[i]->kp.addr = NULL; 1756 mutex_unlock(&kprobe_mutex); 1757 1758 synchronize_sched(); 1759 for (i = 0; i < num; i++) { 1760 if (jps[i]->kp.addr) 1761 __unregister_kprobe_bottom(&jps[i]->kp); 1762 } 1763 } 1764 EXPORT_SYMBOL_GPL(unregister_jprobes); 1765 1766 #ifdef CONFIG_KRETPROBES 1767 /* 1768 * This kprobe pre_handler is registered with every kretprobe. When probe 1769 * hits it will set up the return probe. 1770 */ 1771 static int __kprobes pre_handler_kretprobe(struct kprobe *p, 1772 struct pt_regs *regs) 1773 { 1774 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1775 unsigned long hash, flags = 0; 1776 struct kretprobe_instance *ri; 1777 1778 /*TODO: consider to only swap the RA after the last pre_handler fired */ 1779 hash = hash_ptr(current, KPROBE_HASH_BITS); 1780 raw_spin_lock_irqsave(&rp->lock, flags); 1781 if (!hlist_empty(&rp->free_instances)) { 1782 ri = hlist_entry(rp->free_instances.first, 1783 struct kretprobe_instance, hlist); 1784 hlist_del(&ri->hlist); 1785 raw_spin_unlock_irqrestore(&rp->lock, flags); 1786 1787 ri->rp = rp; 1788 ri->task = current; 1789 1790 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 1791 raw_spin_lock_irqsave(&rp->lock, flags); 1792 hlist_add_head(&ri->hlist, &rp->free_instances); 1793 raw_spin_unlock_irqrestore(&rp->lock, flags); 1794 return 0; 1795 } 1796 1797 arch_prepare_kretprobe(ri, regs); 1798 1799 /* XXX(hch): why is there no hlist_move_head? */ 1800 INIT_HLIST_NODE(&ri->hlist); 1801 kretprobe_table_lock(hash, &flags); 1802 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 1803 kretprobe_table_unlock(hash, &flags); 1804 } else { 1805 rp->nmissed++; 1806 raw_spin_unlock_irqrestore(&rp->lock, flags); 1807 } 1808 return 0; 1809 } 1810 1811 int __kprobes register_kretprobe(struct kretprobe *rp) 1812 { 1813 int ret = 0; 1814 struct kretprobe_instance *inst; 1815 int i; 1816 void *addr; 1817 1818 if (kretprobe_blacklist_size) { 1819 addr = kprobe_addr(&rp->kp); 1820 if (IS_ERR(addr)) 1821 return PTR_ERR(addr); 1822 1823 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1824 if (kretprobe_blacklist[i].addr == addr) 1825 return -EINVAL; 1826 } 1827 } 1828 1829 rp->kp.pre_handler = pre_handler_kretprobe; 1830 rp->kp.post_handler = NULL; 1831 rp->kp.fault_handler = NULL; 1832 rp->kp.break_handler = NULL; 1833 1834 /* Pre-allocate memory for max kretprobe instances */ 1835 if (rp->maxactive <= 0) { 1836 #ifdef CONFIG_PREEMPT 1837 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 1838 #else 1839 rp->maxactive = num_possible_cpus(); 1840 #endif 1841 } 1842 raw_spin_lock_init(&rp->lock); 1843 INIT_HLIST_HEAD(&rp->free_instances); 1844 for (i = 0; i < rp->maxactive; i++) { 1845 inst = kmalloc(sizeof(struct kretprobe_instance) + 1846 rp->data_size, GFP_KERNEL); 1847 if (inst == NULL) { 1848 free_rp_inst(rp); 1849 return -ENOMEM; 1850 } 1851 INIT_HLIST_NODE(&inst->hlist); 1852 hlist_add_head(&inst->hlist, &rp->free_instances); 1853 } 1854 1855 rp->nmissed = 0; 1856 /* Establish function entry probe point */ 1857 ret = register_kprobe(&rp->kp); 1858 if (ret != 0) 1859 free_rp_inst(rp); 1860 return ret; 1861 } 1862 EXPORT_SYMBOL_GPL(register_kretprobe); 1863 1864 int __kprobes register_kretprobes(struct kretprobe **rps, int num) 1865 { 1866 int ret = 0, i; 1867 1868 if (num <= 0) 1869 return -EINVAL; 1870 for (i = 0; i < num; i++) { 1871 ret = register_kretprobe(rps[i]); 1872 if (ret < 0) { 1873 if (i > 0) 1874 unregister_kretprobes(rps, i); 1875 break; 1876 } 1877 } 1878 return ret; 1879 } 1880 EXPORT_SYMBOL_GPL(register_kretprobes); 1881 1882 void __kprobes unregister_kretprobe(struct kretprobe *rp) 1883 { 1884 unregister_kretprobes(&rp, 1); 1885 } 1886 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1887 1888 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) 1889 { 1890 int i; 1891 1892 if (num <= 0) 1893 return; 1894 mutex_lock(&kprobe_mutex); 1895 for (i = 0; i < num; i++) 1896 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 1897 rps[i]->kp.addr = NULL; 1898 mutex_unlock(&kprobe_mutex); 1899 1900 synchronize_sched(); 1901 for (i = 0; i < num; i++) { 1902 if (rps[i]->kp.addr) { 1903 __unregister_kprobe_bottom(&rps[i]->kp); 1904 cleanup_rp_inst(rps[i]); 1905 } 1906 } 1907 } 1908 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1909 1910 #else /* CONFIG_KRETPROBES */ 1911 int __kprobes register_kretprobe(struct kretprobe *rp) 1912 { 1913 return -ENOSYS; 1914 } 1915 EXPORT_SYMBOL_GPL(register_kretprobe); 1916 1917 int __kprobes register_kretprobes(struct kretprobe **rps, int num) 1918 { 1919 return -ENOSYS; 1920 } 1921 EXPORT_SYMBOL_GPL(register_kretprobes); 1922 1923 void __kprobes unregister_kretprobe(struct kretprobe *rp) 1924 { 1925 } 1926 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1927 1928 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) 1929 { 1930 } 1931 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1932 1933 static int __kprobes pre_handler_kretprobe(struct kprobe *p, 1934 struct pt_regs *regs) 1935 { 1936 return 0; 1937 } 1938 1939 #endif /* CONFIG_KRETPROBES */ 1940 1941 /* Set the kprobe gone and remove its instruction buffer. */ 1942 static void __kprobes kill_kprobe(struct kprobe *p) 1943 { 1944 struct kprobe *kp; 1945 1946 p->flags |= KPROBE_FLAG_GONE; 1947 if (kprobe_aggrprobe(p)) { 1948 /* 1949 * If this is an aggr_kprobe, we have to list all the 1950 * chained probes and mark them GONE. 1951 */ 1952 list_for_each_entry_rcu(kp, &p->list, list) 1953 kp->flags |= KPROBE_FLAG_GONE; 1954 p->post_handler = NULL; 1955 p->break_handler = NULL; 1956 kill_optimized_kprobe(p); 1957 } 1958 /* 1959 * Here, we can remove insn_slot safely, because no thread calls 1960 * the original probed function (which will be freed soon) any more. 1961 */ 1962 arch_remove_kprobe(p); 1963 } 1964 1965 /* Disable one kprobe */ 1966 int __kprobes disable_kprobe(struct kprobe *kp) 1967 { 1968 int ret = 0; 1969 1970 mutex_lock(&kprobe_mutex); 1971 1972 /* Disable this kprobe */ 1973 if (__disable_kprobe(kp) == NULL) 1974 ret = -EINVAL; 1975 1976 mutex_unlock(&kprobe_mutex); 1977 return ret; 1978 } 1979 EXPORT_SYMBOL_GPL(disable_kprobe); 1980 1981 /* Enable one kprobe */ 1982 int __kprobes enable_kprobe(struct kprobe *kp) 1983 { 1984 int ret = 0; 1985 struct kprobe *p; 1986 1987 mutex_lock(&kprobe_mutex); 1988 1989 /* Check whether specified probe is valid. */ 1990 p = __get_valid_kprobe(kp); 1991 if (unlikely(p == NULL)) { 1992 ret = -EINVAL; 1993 goto out; 1994 } 1995 1996 if (kprobe_gone(kp)) { 1997 /* This kprobe has gone, we couldn't enable it. */ 1998 ret = -EINVAL; 1999 goto out; 2000 } 2001 2002 if (p != kp) 2003 kp->flags &= ~KPROBE_FLAG_DISABLED; 2004 2005 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2006 p->flags &= ~KPROBE_FLAG_DISABLED; 2007 arm_kprobe(p); 2008 } 2009 out: 2010 mutex_unlock(&kprobe_mutex); 2011 return ret; 2012 } 2013 EXPORT_SYMBOL_GPL(enable_kprobe); 2014 2015 void __kprobes dump_kprobe(struct kprobe *kp) 2016 { 2017 printk(KERN_WARNING "Dumping kprobe:\n"); 2018 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n", 2019 kp->symbol_name, kp->addr, kp->offset); 2020 } 2021 2022 /* Module notifier call back, checking kprobes on the module */ 2023 static int __kprobes kprobes_module_callback(struct notifier_block *nb, 2024 unsigned long val, void *data) 2025 { 2026 struct module *mod = data; 2027 struct hlist_head *head; 2028 struct kprobe *p; 2029 unsigned int i; 2030 int checkcore = (val == MODULE_STATE_GOING); 2031 2032 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2033 return NOTIFY_DONE; 2034 2035 /* 2036 * When MODULE_STATE_GOING was notified, both of module .text and 2037 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2038 * notified, only .init.text section would be freed. We need to 2039 * disable kprobes which have been inserted in the sections. 2040 */ 2041 mutex_lock(&kprobe_mutex); 2042 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2043 head = &kprobe_table[i]; 2044 hlist_for_each_entry_rcu(p, head, hlist) 2045 if (within_module_init((unsigned long)p->addr, mod) || 2046 (checkcore && 2047 within_module_core((unsigned long)p->addr, mod))) { 2048 /* 2049 * The vaddr this probe is installed will soon 2050 * be vfreed buy not synced to disk. Hence, 2051 * disarming the breakpoint isn't needed. 2052 */ 2053 kill_kprobe(p); 2054 } 2055 } 2056 mutex_unlock(&kprobe_mutex); 2057 return NOTIFY_DONE; 2058 } 2059 2060 static struct notifier_block kprobe_module_nb = { 2061 .notifier_call = kprobes_module_callback, 2062 .priority = 0 2063 }; 2064 2065 static int __init init_kprobes(void) 2066 { 2067 int i, err = 0; 2068 unsigned long offset = 0, size = 0; 2069 char *modname, namebuf[128]; 2070 const char *symbol_name; 2071 void *addr; 2072 struct kprobe_blackpoint *kb; 2073 2074 /* FIXME allocate the probe table, currently defined statically */ 2075 /* initialize all list heads */ 2076 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2077 INIT_HLIST_HEAD(&kprobe_table[i]); 2078 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 2079 raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); 2080 } 2081 2082 /* 2083 * Lookup and populate the kprobe_blacklist. 2084 * 2085 * Unlike the kretprobe blacklist, we'll need to determine 2086 * the range of addresses that belong to the said functions, 2087 * since a kprobe need not necessarily be at the beginning 2088 * of a function. 2089 */ 2090 for (kb = kprobe_blacklist; kb->name != NULL; kb++) { 2091 kprobe_lookup_name(kb->name, addr); 2092 if (!addr) 2093 continue; 2094 2095 kb->start_addr = (unsigned long)addr; 2096 symbol_name = kallsyms_lookup(kb->start_addr, 2097 &size, &offset, &modname, namebuf); 2098 if (!symbol_name) 2099 kb->range = 0; 2100 else 2101 kb->range = size; 2102 } 2103 2104 if (kretprobe_blacklist_size) { 2105 /* lookup the function address from its name */ 2106 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2107 kprobe_lookup_name(kretprobe_blacklist[i].name, 2108 kretprobe_blacklist[i].addr); 2109 if (!kretprobe_blacklist[i].addr) 2110 printk("kretprobe: lookup failed: %s\n", 2111 kretprobe_blacklist[i].name); 2112 } 2113 } 2114 2115 #if defined(CONFIG_OPTPROBES) 2116 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2117 /* Init kprobe_optinsn_slots */ 2118 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2119 #endif 2120 /* By default, kprobes can be optimized */ 2121 kprobes_allow_optimization = true; 2122 #endif 2123 2124 /* By default, kprobes are armed */ 2125 kprobes_all_disarmed = false; 2126 2127 err = arch_init_kprobes(); 2128 if (!err) 2129 err = register_die_notifier(&kprobe_exceptions_nb); 2130 if (!err) 2131 err = register_module_notifier(&kprobe_module_nb); 2132 2133 kprobes_initialized = (err == 0); 2134 2135 if (!err) 2136 init_test_probes(); 2137 return err; 2138 } 2139 2140 #ifdef CONFIG_DEBUG_FS 2141 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p, 2142 const char *sym, int offset, char *modname, struct kprobe *pp) 2143 { 2144 char *kprobe_type; 2145 2146 if (p->pre_handler == pre_handler_kretprobe) 2147 kprobe_type = "r"; 2148 else if (p->pre_handler == setjmp_pre_handler) 2149 kprobe_type = "j"; 2150 else 2151 kprobe_type = "k"; 2152 2153 if (sym) 2154 seq_printf(pi, "%p %s %s+0x%x %s ", 2155 p->addr, kprobe_type, sym, offset, 2156 (modname ? modname : " ")); 2157 else 2158 seq_printf(pi, "%p %s %p ", 2159 p->addr, kprobe_type, p->addr); 2160 2161 if (!pp) 2162 pp = p; 2163 seq_printf(pi, "%s%s%s%s\n", 2164 (kprobe_gone(p) ? "[GONE]" : ""), 2165 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2166 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2167 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2168 } 2169 2170 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2171 { 2172 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2173 } 2174 2175 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2176 { 2177 (*pos)++; 2178 if (*pos >= KPROBE_TABLE_SIZE) 2179 return NULL; 2180 return pos; 2181 } 2182 2183 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v) 2184 { 2185 /* Nothing to do */ 2186 } 2187 2188 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v) 2189 { 2190 struct hlist_head *head; 2191 struct kprobe *p, *kp; 2192 const char *sym = NULL; 2193 unsigned int i = *(loff_t *) v; 2194 unsigned long offset = 0; 2195 char *modname, namebuf[128]; 2196 2197 head = &kprobe_table[i]; 2198 preempt_disable(); 2199 hlist_for_each_entry_rcu(p, head, hlist) { 2200 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2201 &offset, &modname, namebuf); 2202 if (kprobe_aggrprobe(p)) { 2203 list_for_each_entry_rcu(kp, &p->list, list) 2204 report_probe(pi, kp, sym, offset, modname, p); 2205 } else 2206 report_probe(pi, p, sym, offset, modname, NULL); 2207 } 2208 preempt_enable(); 2209 return 0; 2210 } 2211 2212 static const struct seq_operations kprobes_seq_ops = { 2213 .start = kprobe_seq_start, 2214 .next = kprobe_seq_next, 2215 .stop = kprobe_seq_stop, 2216 .show = show_kprobe_addr 2217 }; 2218 2219 static int __kprobes kprobes_open(struct inode *inode, struct file *filp) 2220 { 2221 return seq_open(filp, &kprobes_seq_ops); 2222 } 2223 2224 static const struct file_operations debugfs_kprobes_operations = { 2225 .open = kprobes_open, 2226 .read = seq_read, 2227 .llseek = seq_lseek, 2228 .release = seq_release, 2229 }; 2230 2231 static void __kprobes arm_all_kprobes(void) 2232 { 2233 struct hlist_head *head; 2234 struct kprobe *p; 2235 unsigned int i; 2236 2237 mutex_lock(&kprobe_mutex); 2238 2239 /* If kprobes are armed, just return */ 2240 if (!kprobes_all_disarmed) 2241 goto already_enabled; 2242 2243 /* Arming kprobes doesn't optimize kprobe itself */ 2244 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2245 head = &kprobe_table[i]; 2246 hlist_for_each_entry_rcu(p, head, hlist) 2247 if (!kprobe_disabled(p)) 2248 arm_kprobe(p); 2249 } 2250 2251 kprobes_all_disarmed = false; 2252 printk(KERN_INFO "Kprobes globally enabled\n"); 2253 2254 already_enabled: 2255 mutex_unlock(&kprobe_mutex); 2256 return; 2257 } 2258 2259 static void __kprobes disarm_all_kprobes(void) 2260 { 2261 struct hlist_head *head; 2262 struct kprobe *p; 2263 unsigned int i; 2264 2265 mutex_lock(&kprobe_mutex); 2266 2267 /* If kprobes are already disarmed, just return */ 2268 if (kprobes_all_disarmed) { 2269 mutex_unlock(&kprobe_mutex); 2270 return; 2271 } 2272 2273 kprobes_all_disarmed = true; 2274 printk(KERN_INFO "Kprobes globally disabled\n"); 2275 2276 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2277 head = &kprobe_table[i]; 2278 hlist_for_each_entry_rcu(p, head, hlist) { 2279 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) 2280 disarm_kprobe(p, false); 2281 } 2282 } 2283 mutex_unlock(&kprobe_mutex); 2284 2285 /* Wait for disarming all kprobes by optimizer */ 2286 wait_for_kprobe_optimizer(); 2287 } 2288 2289 /* 2290 * XXX: The debugfs bool file interface doesn't allow for callbacks 2291 * when the bool state is switched. We can reuse that facility when 2292 * available 2293 */ 2294 static ssize_t read_enabled_file_bool(struct file *file, 2295 char __user *user_buf, size_t count, loff_t *ppos) 2296 { 2297 char buf[3]; 2298 2299 if (!kprobes_all_disarmed) 2300 buf[0] = '1'; 2301 else 2302 buf[0] = '0'; 2303 buf[1] = '\n'; 2304 buf[2] = 0x00; 2305 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2306 } 2307 2308 static ssize_t write_enabled_file_bool(struct file *file, 2309 const char __user *user_buf, size_t count, loff_t *ppos) 2310 { 2311 char buf[32]; 2312 size_t buf_size; 2313 2314 buf_size = min(count, (sizeof(buf)-1)); 2315 if (copy_from_user(buf, user_buf, buf_size)) 2316 return -EFAULT; 2317 2318 buf[buf_size] = '\0'; 2319 switch (buf[0]) { 2320 case 'y': 2321 case 'Y': 2322 case '1': 2323 arm_all_kprobes(); 2324 break; 2325 case 'n': 2326 case 'N': 2327 case '0': 2328 disarm_all_kprobes(); 2329 break; 2330 default: 2331 return -EINVAL; 2332 } 2333 2334 return count; 2335 } 2336 2337 static const struct file_operations fops_kp = { 2338 .read = read_enabled_file_bool, 2339 .write = write_enabled_file_bool, 2340 .llseek = default_llseek, 2341 }; 2342 2343 static int __kprobes debugfs_kprobe_init(void) 2344 { 2345 struct dentry *dir, *file; 2346 unsigned int value = 1; 2347 2348 dir = debugfs_create_dir("kprobes", NULL); 2349 if (!dir) 2350 return -ENOMEM; 2351 2352 file = debugfs_create_file("list", 0444, dir, NULL, 2353 &debugfs_kprobes_operations); 2354 if (!file) { 2355 debugfs_remove(dir); 2356 return -ENOMEM; 2357 } 2358 2359 file = debugfs_create_file("enabled", 0600, dir, 2360 &value, &fops_kp); 2361 if (!file) { 2362 debugfs_remove(dir); 2363 return -ENOMEM; 2364 } 2365 2366 return 0; 2367 } 2368 2369 late_initcall(debugfs_kprobe_init); 2370 #endif /* CONFIG_DEBUG_FS */ 2371 2372 module_init(init_kprobes); 2373 2374 /* defined in arch/.../kernel/kprobes.c */ 2375 EXPORT_SYMBOL_GPL(jprobe_return); 2376