1 /* 2 * Kernel Probes (KProbes) 3 * kernel/kprobes.c 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * Copyright (C) IBM Corporation, 2002, 2004 20 * 21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 22 * Probes initial implementation (includes suggestions from 23 * Rusty Russell). 24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 25 * hlists and exceptions notifier as suggested by Andi Kleen. 26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 27 * interface to access function arguments. 28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 29 * exceptions notifier to be first on the priority list. 30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 32 * <prasanna@in.ibm.com> added function-return probes. 33 */ 34 #include <linux/kprobes.h> 35 #include <linux/hash.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/stddef.h> 39 #include <linux/export.h> 40 #include <linux/moduleloader.h> 41 #include <linux/kallsyms.h> 42 #include <linux/freezer.h> 43 #include <linux/seq_file.h> 44 #include <linux/debugfs.h> 45 #include <linux/sysctl.h> 46 #include <linux/kdebug.h> 47 #include <linux/memory.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 #include <linux/jump_label.h> 51 52 #include <asm/sections.h> 53 #include <asm/cacheflush.h> 54 #include <asm/errno.h> 55 #include <linux/uaccess.h> 56 57 #define KPROBE_HASH_BITS 6 58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 59 60 61 static int kprobes_initialized; 62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 64 65 /* NOTE: change this value only with kprobe_mutex held */ 66 static bool kprobes_all_disarmed; 67 68 /* This protects kprobe_table and optimizing_list */ 69 static DEFINE_MUTEX(kprobe_mutex); 70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 71 static struct { 72 raw_spinlock_t lock ____cacheline_aligned_in_smp; 73 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 74 75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, 76 unsigned int __unused) 77 { 78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); 79 } 80 81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 82 { 83 return &(kretprobe_table_locks[hash].lock); 84 } 85 86 /* Blacklist -- list of struct kprobe_blacklist_entry */ 87 static LIST_HEAD(kprobe_blacklist); 88 89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 90 /* 91 * kprobe->ainsn.insn points to the copy of the instruction to be 92 * single-stepped. x86_64, POWER4 and above have no-exec support and 93 * stepping on the instruction on a vmalloced/kmalloced/data page 94 * is a recipe for disaster 95 */ 96 struct kprobe_insn_page { 97 struct list_head list; 98 kprobe_opcode_t *insns; /* Page of instruction slots */ 99 struct kprobe_insn_cache *cache; 100 int nused; 101 int ngarbage; 102 char slot_used[]; 103 }; 104 105 #define KPROBE_INSN_PAGE_SIZE(slots) \ 106 (offsetof(struct kprobe_insn_page, slot_used) + \ 107 (sizeof(char) * (slots))) 108 109 static int slots_per_page(struct kprobe_insn_cache *c) 110 { 111 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 112 } 113 114 enum kprobe_slot_state { 115 SLOT_CLEAN = 0, 116 SLOT_DIRTY = 1, 117 SLOT_USED = 2, 118 }; 119 120 void __weak *alloc_insn_page(void) 121 { 122 return module_alloc(PAGE_SIZE); 123 } 124 125 void __weak free_insn_page(void *page) 126 { 127 module_memfree(page); 128 } 129 130 struct kprobe_insn_cache kprobe_insn_slots = { 131 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 132 .alloc = alloc_insn_page, 133 .free = free_insn_page, 134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 135 .insn_size = MAX_INSN_SIZE, 136 .nr_garbage = 0, 137 }; 138 static int collect_garbage_slots(struct kprobe_insn_cache *c); 139 140 /** 141 * __get_insn_slot() - Find a slot on an executable page for an instruction. 142 * We allocate an executable page if there's no room on existing ones. 143 */ 144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 145 { 146 struct kprobe_insn_page *kip; 147 kprobe_opcode_t *slot = NULL; 148 149 /* Since the slot array is not protected by rcu, we need a mutex */ 150 mutex_lock(&c->mutex); 151 retry: 152 rcu_read_lock(); 153 list_for_each_entry_rcu(kip, &c->pages, list) { 154 if (kip->nused < slots_per_page(c)) { 155 int i; 156 for (i = 0; i < slots_per_page(c); i++) { 157 if (kip->slot_used[i] == SLOT_CLEAN) { 158 kip->slot_used[i] = SLOT_USED; 159 kip->nused++; 160 slot = kip->insns + (i * c->insn_size); 161 rcu_read_unlock(); 162 goto out; 163 } 164 } 165 /* kip->nused is broken. Fix it. */ 166 kip->nused = slots_per_page(c); 167 WARN_ON(1); 168 } 169 } 170 rcu_read_unlock(); 171 172 /* If there are any garbage slots, collect it and try again. */ 173 if (c->nr_garbage && collect_garbage_slots(c) == 0) 174 goto retry; 175 176 /* All out of space. Need to allocate a new page. */ 177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 178 if (!kip) 179 goto out; 180 181 /* 182 * Use module_alloc so this page is within +/- 2GB of where the 183 * kernel image and loaded module images reside. This is required 184 * so x86_64 can correctly handle the %rip-relative fixups. 185 */ 186 kip->insns = c->alloc(); 187 if (!kip->insns) { 188 kfree(kip); 189 goto out; 190 } 191 INIT_LIST_HEAD(&kip->list); 192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 193 kip->slot_used[0] = SLOT_USED; 194 kip->nused = 1; 195 kip->ngarbage = 0; 196 kip->cache = c; 197 list_add_rcu(&kip->list, &c->pages); 198 slot = kip->insns; 199 out: 200 mutex_unlock(&c->mutex); 201 return slot; 202 } 203 204 /* Return 1 if all garbages are collected, otherwise 0. */ 205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx) 206 { 207 kip->slot_used[idx] = SLOT_CLEAN; 208 kip->nused--; 209 if (kip->nused == 0) { 210 /* 211 * Page is no longer in use. Free it unless 212 * it's the last one. We keep the last one 213 * so as not to have to set it up again the 214 * next time somebody inserts a probe. 215 */ 216 if (!list_is_singular(&kip->list)) { 217 list_del_rcu(&kip->list); 218 synchronize_rcu(); 219 kip->cache->free(kip->insns); 220 kfree(kip); 221 } 222 return 1; 223 } 224 return 0; 225 } 226 227 static int collect_garbage_slots(struct kprobe_insn_cache *c) 228 { 229 struct kprobe_insn_page *kip, *next; 230 231 /* Ensure no-one is interrupted on the garbages */ 232 synchronize_sched(); 233 234 list_for_each_entry_safe(kip, next, &c->pages, list) { 235 int i; 236 if (kip->ngarbage == 0) 237 continue; 238 kip->ngarbage = 0; /* we will collect all garbages */ 239 for (i = 0; i < slots_per_page(c); i++) { 240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 241 break; 242 } 243 } 244 c->nr_garbage = 0; 245 return 0; 246 } 247 248 void __free_insn_slot(struct kprobe_insn_cache *c, 249 kprobe_opcode_t *slot, int dirty) 250 { 251 struct kprobe_insn_page *kip; 252 long idx; 253 254 mutex_lock(&c->mutex); 255 rcu_read_lock(); 256 list_for_each_entry_rcu(kip, &c->pages, list) { 257 idx = ((long)slot - (long)kip->insns) / 258 (c->insn_size * sizeof(kprobe_opcode_t)); 259 if (idx >= 0 && idx < slots_per_page(c)) 260 goto out; 261 } 262 /* Could not find this slot. */ 263 WARN_ON(1); 264 kip = NULL; 265 out: 266 rcu_read_unlock(); 267 /* Mark and sweep: this may sleep */ 268 if (kip) { 269 /* Check double free */ 270 WARN_ON(kip->slot_used[idx] != SLOT_USED); 271 if (dirty) { 272 kip->slot_used[idx] = SLOT_DIRTY; 273 kip->ngarbage++; 274 if (++c->nr_garbage > slots_per_page(c)) 275 collect_garbage_slots(c); 276 } else { 277 collect_one_slot(kip, idx); 278 } 279 } 280 mutex_unlock(&c->mutex); 281 } 282 283 /* 284 * Check given address is on the page of kprobe instruction slots. 285 * This will be used for checking whether the address on a stack 286 * is on a text area or not. 287 */ 288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 289 { 290 struct kprobe_insn_page *kip; 291 bool ret = false; 292 293 rcu_read_lock(); 294 list_for_each_entry_rcu(kip, &c->pages, list) { 295 if (addr >= (unsigned long)kip->insns && 296 addr < (unsigned long)kip->insns + PAGE_SIZE) { 297 ret = true; 298 break; 299 } 300 } 301 rcu_read_unlock(); 302 303 return ret; 304 } 305 306 #ifdef CONFIG_OPTPROBES 307 /* For optimized_kprobe buffer */ 308 struct kprobe_insn_cache kprobe_optinsn_slots = { 309 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 310 .alloc = alloc_insn_page, 311 .free = free_insn_page, 312 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 313 /* .insn_size is initialized later */ 314 .nr_garbage = 0, 315 }; 316 #endif 317 #endif 318 319 /* We have preemption disabled.. so it is safe to use __ versions */ 320 static inline void set_kprobe_instance(struct kprobe *kp) 321 { 322 __this_cpu_write(kprobe_instance, kp); 323 } 324 325 static inline void reset_kprobe_instance(void) 326 { 327 __this_cpu_write(kprobe_instance, NULL); 328 } 329 330 /* 331 * This routine is called either: 332 * - under the kprobe_mutex - during kprobe_[un]register() 333 * OR 334 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 335 */ 336 struct kprobe *get_kprobe(void *addr) 337 { 338 struct hlist_head *head; 339 struct kprobe *p; 340 341 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 342 hlist_for_each_entry_rcu(p, head, hlist) { 343 if (p->addr == addr) 344 return p; 345 } 346 347 return NULL; 348 } 349 NOKPROBE_SYMBOL(get_kprobe); 350 351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 352 353 /* Return true if the kprobe is an aggregator */ 354 static inline int kprobe_aggrprobe(struct kprobe *p) 355 { 356 return p->pre_handler == aggr_pre_handler; 357 } 358 359 /* Return true(!0) if the kprobe is unused */ 360 static inline int kprobe_unused(struct kprobe *p) 361 { 362 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 363 list_empty(&p->list); 364 } 365 366 /* 367 * Keep all fields in the kprobe consistent 368 */ 369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 370 { 371 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 372 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 373 } 374 375 #ifdef CONFIG_OPTPROBES 376 /* NOTE: change this value only with kprobe_mutex held */ 377 static bool kprobes_allow_optimization; 378 379 /* 380 * Call all pre_handler on the list, but ignores its return value. 381 * This must be called from arch-dep optimized caller. 382 */ 383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 384 { 385 struct kprobe *kp; 386 387 list_for_each_entry_rcu(kp, &p->list, list) { 388 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 389 set_kprobe_instance(kp); 390 kp->pre_handler(kp, regs); 391 } 392 reset_kprobe_instance(); 393 } 394 } 395 NOKPROBE_SYMBOL(opt_pre_handler); 396 397 /* Free optimized instructions and optimized_kprobe */ 398 static void free_aggr_kprobe(struct kprobe *p) 399 { 400 struct optimized_kprobe *op; 401 402 op = container_of(p, struct optimized_kprobe, kp); 403 arch_remove_optimized_kprobe(op); 404 arch_remove_kprobe(p); 405 kfree(op); 406 } 407 408 /* Return true(!0) if the kprobe is ready for optimization. */ 409 static inline int kprobe_optready(struct kprobe *p) 410 { 411 struct optimized_kprobe *op; 412 413 if (kprobe_aggrprobe(p)) { 414 op = container_of(p, struct optimized_kprobe, kp); 415 return arch_prepared_optinsn(&op->optinsn); 416 } 417 418 return 0; 419 } 420 421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 422 static inline int kprobe_disarmed(struct kprobe *p) 423 { 424 struct optimized_kprobe *op; 425 426 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 427 if (!kprobe_aggrprobe(p)) 428 return kprobe_disabled(p); 429 430 op = container_of(p, struct optimized_kprobe, kp); 431 432 return kprobe_disabled(p) && list_empty(&op->list); 433 } 434 435 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 436 static int kprobe_queued(struct kprobe *p) 437 { 438 struct optimized_kprobe *op; 439 440 if (kprobe_aggrprobe(p)) { 441 op = container_of(p, struct optimized_kprobe, kp); 442 if (!list_empty(&op->list)) 443 return 1; 444 } 445 return 0; 446 } 447 448 /* 449 * Return an optimized kprobe whose optimizing code replaces 450 * instructions including addr (exclude breakpoint). 451 */ 452 static struct kprobe *get_optimized_kprobe(unsigned long addr) 453 { 454 int i; 455 struct kprobe *p = NULL; 456 struct optimized_kprobe *op; 457 458 /* Don't check i == 0, since that is a breakpoint case. */ 459 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 460 p = get_kprobe((void *)(addr - i)); 461 462 if (p && kprobe_optready(p)) { 463 op = container_of(p, struct optimized_kprobe, kp); 464 if (arch_within_optimized_kprobe(op, addr)) 465 return p; 466 } 467 468 return NULL; 469 } 470 471 /* Optimization staging list, protected by kprobe_mutex */ 472 static LIST_HEAD(optimizing_list); 473 static LIST_HEAD(unoptimizing_list); 474 static LIST_HEAD(freeing_list); 475 476 static void kprobe_optimizer(struct work_struct *work); 477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 478 #define OPTIMIZE_DELAY 5 479 480 /* 481 * Optimize (replace a breakpoint with a jump) kprobes listed on 482 * optimizing_list. 483 */ 484 static void do_optimize_kprobes(void) 485 { 486 /* 487 * The optimization/unoptimization refers online_cpus via 488 * stop_machine() and cpu-hotplug modifies online_cpus. 489 * And same time, text_mutex will be held in cpu-hotplug and here. 490 * This combination can cause a deadlock (cpu-hotplug try to lock 491 * text_mutex but stop_machine can not be done because online_cpus 492 * has been changed) 493 * To avoid this deadlock, caller must have locked cpu hotplug 494 * for preventing cpu-hotplug outside of text_mutex locking. 495 */ 496 lockdep_assert_cpus_held(); 497 498 /* Optimization never be done when disarmed */ 499 if (kprobes_all_disarmed || !kprobes_allow_optimization || 500 list_empty(&optimizing_list)) 501 return; 502 503 mutex_lock(&text_mutex); 504 arch_optimize_kprobes(&optimizing_list); 505 mutex_unlock(&text_mutex); 506 } 507 508 /* 509 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 510 * if need) kprobes listed on unoptimizing_list. 511 */ 512 static void do_unoptimize_kprobes(void) 513 { 514 struct optimized_kprobe *op, *tmp; 515 516 /* See comment in do_optimize_kprobes() */ 517 lockdep_assert_cpus_held(); 518 519 /* Unoptimization must be done anytime */ 520 if (list_empty(&unoptimizing_list)) 521 return; 522 523 mutex_lock(&text_mutex); 524 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 525 /* Loop free_list for disarming */ 526 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 527 /* Disarm probes if marked disabled */ 528 if (kprobe_disabled(&op->kp)) 529 arch_disarm_kprobe(&op->kp); 530 if (kprobe_unused(&op->kp)) { 531 /* 532 * Remove unused probes from hash list. After waiting 533 * for synchronization, these probes are reclaimed. 534 * (reclaiming is done by do_free_cleaned_kprobes.) 535 */ 536 hlist_del_rcu(&op->kp.hlist); 537 } else 538 list_del_init(&op->list); 539 } 540 mutex_unlock(&text_mutex); 541 } 542 543 /* Reclaim all kprobes on the free_list */ 544 static void do_free_cleaned_kprobes(void) 545 { 546 struct optimized_kprobe *op, *tmp; 547 548 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 549 BUG_ON(!kprobe_unused(&op->kp)); 550 list_del_init(&op->list); 551 free_aggr_kprobe(&op->kp); 552 } 553 } 554 555 /* Start optimizer after OPTIMIZE_DELAY passed */ 556 static void kick_kprobe_optimizer(void) 557 { 558 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 559 } 560 561 /* Kprobe jump optimizer */ 562 static void kprobe_optimizer(struct work_struct *work) 563 { 564 mutex_lock(&kprobe_mutex); 565 cpus_read_lock(); 566 /* Lock modules while optimizing kprobes */ 567 mutex_lock(&module_mutex); 568 569 /* 570 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 571 * kprobes before waiting for quiesence period. 572 */ 573 do_unoptimize_kprobes(); 574 575 /* 576 * Step 2: Wait for quiesence period to ensure all potentially 577 * preempted tasks to have normally scheduled. Because optprobe 578 * may modify multiple instructions, there is a chance that Nth 579 * instruction is preempted. In that case, such tasks can return 580 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. 581 * Note that on non-preemptive kernel, this is transparently converted 582 * to synchronoze_sched() to wait for all interrupts to have completed. 583 */ 584 synchronize_rcu_tasks(); 585 586 /* Step 3: Optimize kprobes after quiesence period */ 587 do_optimize_kprobes(); 588 589 /* Step 4: Free cleaned kprobes after quiesence period */ 590 do_free_cleaned_kprobes(); 591 592 mutex_unlock(&module_mutex); 593 cpus_read_unlock(); 594 mutex_unlock(&kprobe_mutex); 595 596 /* Step 5: Kick optimizer again if needed */ 597 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 598 kick_kprobe_optimizer(); 599 } 600 601 /* Wait for completing optimization and unoptimization */ 602 void wait_for_kprobe_optimizer(void) 603 { 604 mutex_lock(&kprobe_mutex); 605 606 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 607 mutex_unlock(&kprobe_mutex); 608 609 /* this will also make optimizing_work execute immmediately */ 610 flush_delayed_work(&optimizing_work); 611 /* @optimizing_work might not have been queued yet, relax */ 612 cpu_relax(); 613 614 mutex_lock(&kprobe_mutex); 615 } 616 617 mutex_unlock(&kprobe_mutex); 618 } 619 620 /* Optimize kprobe if p is ready to be optimized */ 621 static void optimize_kprobe(struct kprobe *p) 622 { 623 struct optimized_kprobe *op; 624 625 /* Check if the kprobe is disabled or not ready for optimization. */ 626 if (!kprobe_optready(p) || !kprobes_allow_optimization || 627 (kprobe_disabled(p) || kprobes_all_disarmed)) 628 return; 629 630 /* kprobes with post_handler can not be optimized */ 631 if (p->post_handler) 632 return; 633 634 op = container_of(p, struct optimized_kprobe, kp); 635 636 /* Check there is no other kprobes at the optimized instructions */ 637 if (arch_check_optimized_kprobe(op) < 0) 638 return; 639 640 /* Check if it is already optimized. */ 641 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) 642 return; 643 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 644 645 if (!list_empty(&op->list)) 646 /* This is under unoptimizing. Just dequeue the probe */ 647 list_del_init(&op->list); 648 else { 649 list_add(&op->list, &optimizing_list); 650 kick_kprobe_optimizer(); 651 } 652 } 653 654 /* Short cut to direct unoptimizing */ 655 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 656 { 657 lockdep_assert_cpus_held(); 658 arch_unoptimize_kprobe(op); 659 if (kprobe_disabled(&op->kp)) 660 arch_disarm_kprobe(&op->kp); 661 } 662 663 /* Unoptimize a kprobe if p is optimized */ 664 static void unoptimize_kprobe(struct kprobe *p, bool force) 665 { 666 struct optimized_kprobe *op; 667 668 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 669 return; /* This is not an optprobe nor optimized */ 670 671 op = container_of(p, struct optimized_kprobe, kp); 672 if (!kprobe_optimized(p)) { 673 /* Unoptimized or unoptimizing case */ 674 if (force && !list_empty(&op->list)) { 675 /* 676 * Only if this is unoptimizing kprobe and forced, 677 * forcibly unoptimize it. (No need to unoptimize 678 * unoptimized kprobe again :) 679 */ 680 list_del_init(&op->list); 681 force_unoptimize_kprobe(op); 682 } 683 return; 684 } 685 686 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 687 if (!list_empty(&op->list)) { 688 /* Dequeue from the optimization queue */ 689 list_del_init(&op->list); 690 return; 691 } 692 /* Optimized kprobe case */ 693 if (force) 694 /* Forcibly update the code: this is a special case */ 695 force_unoptimize_kprobe(op); 696 else { 697 list_add(&op->list, &unoptimizing_list); 698 kick_kprobe_optimizer(); 699 } 700 } 701 702 /* Cancel unoptimizing for reusing */ 703 static void reuse_unused_kprobe(struct kprobe *ap) 704 { 705 struct optimized_kprobe *op; 706 707 BUG_ON(!kprobe_unused(ap)); 708 /* 709 * Unused kprobe MUST be on the way of delayed unoptimizing (means 710 * there is still a relative jump) and disabled. 711 */ 712 op = container_of(ap, struct optimized_kprobe, kp); 713 WARN_ON_ONCE(list_empty(&op->list)); 714 /* Enable the probe again */ 715 ap->flags &= ~KPROBE_FLAG_DISABLED; 716 /* Optimize it again (remove from op->list) */ 717 BUG_ON(!kprobe_optready(ap)); 718 optimize_kprobe(ap); 719 } 720 721 /* Remove optimized instructions */ 722 static void kill_optimized_kprobe(struct kprobe *p) 723 { 724 struct optimized_kprobe *op; 725 726 op = container_of(p, struct optimized_kprobe, kp); 727 if (!list_empty(&op->list)) 728 /* Dequeue from the (un)optimization queue */ 729 list_del_init(&op->list); 730 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 731 732 if (kprobe_unused(p)) { 733 /* Enqueue if it is unused */ 734 list_add(&op->list, &freeing_list); 735 /* 736 * Remove unused probes from the hash list. After waiting 737 * for synchronization, this probe is reclaimed. 738 * (reclaiming is done by do_free_cleaned_kprobes().) 739 */ 740 hlist_del_rcu(&op->kp.hlist); 741 } 742 743 /* Don't touch the code, because it is already freed. */ 744 arch_remove_optimized_kprobe(op); 745 } 746 747 static inline 748 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) 749 { 750 if (!kprobe_ftrace(p)) 751 arch_prepare_optimized_kprobe(op, p); 752 } 753 754 /* Try to prepare optimized instructions */ 755 static void prepare_optimized_kprobe(struct kprobe *p) 756 { 757 struct optimized_kprobe *op; 758 759 op = container_of(p, struct optimized_kprobe, kp); 760 __prepare_optimized_kprobe(op, p); 761 } 762 763 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 764 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 765 { 766 struct optimized_kprobe *op; 767 768 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 769 if (!op) 770 return NULL; 771 772 INIT_LIST_HEAD(&op->list); 773 op->kp.addr = p->addr; 774 __prepare_optimized_kprobe(op, p); 775 776 return &op->kp; 777 } 778 779 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 780 781 /* 782 * Prepare an optimized_kprobe and optimize it 783 * NOTE: p must be a normal registered kprobe 784 */ 785 static void try_to_optimize_kprobe(struct kprobe *p) 786 { 787 struct kprobe *ap; 788 struct optimized_kprobe *op; 789 790 /* Impossible to optimize ftrace-based kprobe */ 791 if (kprobe_ftrace(p)) 792 return; 793 794 /* For preparing optimization, jump_label_text_reserved() is called */ 795 cpus_read_lock(); 796 jump_label_lock(); 797 mutex_lock(&text_mutex); 798 799 ap = alloc_aggr_kprobe(p); 800 if (!ap) 801 goto out; 802 803 op = container_of(ap, struct optimized_kprobe, kp); 804 if (!arch_prepared_optinsn(&op->optinsn)) { 805 /* If failed to setup optimizing, fallback to kprobe */ 806 arch_remove_optimized_kprobe(op); 807 kfree(op); 808 goto out; 809 } 810 811 init_aggr_kprobe(ap, p); 812 optimize_kprobe(ap); /* This just kicks optimizer thread */ 813 814 out: 815 mutex_unlock(&text_mutex); 816 jump_label_unlock(); 817 cpus_read_unlock(); 818 } 819 820 #ifdef CONFIG_SYSCTL 821 static void optimize_all_kprobes(void) 822 { 823 struct hlist_head *head; 824 struct kprobe *p; 825 unsigned int i; 826 827 mutex_lock(&kprobe_mutex); 828 /* If optimization is already allowed, just return */ 829 if (kprobes_allow_optimization) 830 goto out; 831 832 cpus_read_lock(); 833 kprobes_allow_optimization = true; 834 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 835 head = &kprobe_table[i]; 836 hlist_for_each_entry_rcu(p, head, hlist) 837 if (!kprobe_disabled(p)) 838 optimize_kprobe(p); 839 } 840 cpus_read_unlock(); 841 printk(KERN_INFO "Kprobes globally optimized\n"); 842 out: 843 mutex_unlock(&kprobe_mutex); 844 } 845 846 static void unoptimize_all_kprobes(void) 847 { 848 struct hlist_head *head; 849 struct kprobe *p; 850 unsigned int i; 851 852 mutex_lock(&kprobe_mutex); 853 /* If optimization is already prohibited, just return */ 854 if (!kprobes_allow_optimization) { 855 mutex_unlock(&kprobe_mutex); 856 return; 857 } 858 859 cpus_read_lock(); 860 kprobes_allow_optimization = false; 861 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 862 head = &kprobe_table[i]; 863 hlist_for_each_entry_rcu(p, head, hlist) { 864 if (!kprobe_disabled(p)) 865 unoptimize_kprobe(p, false); 866 } 867 } 868 cpus_read_unlock(); 869 mutex_unlock(&kprobe_mutex); 870 871 /* Wait for unoptimizing completion */ 872 wait_for_kprobe_optimizer(); 873 printk(KERN_INFO "Kprobes globally unoptimized\n"); 874 } 875 876 static DEFINE_MUTEX(kprobe_sysctl_mutex); 877 int sysctl_kprobes_optimization; 878 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 879 void __user *buffer, size_t *length, 880 loff_t *ppos) 881 { 882 int ret; 883 884 mutex_lock(&kprobe_sysctl_mutex); 885 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 886 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 887 888 if (sysctl_kprobes_optimization) 889 optimize_all_kprobes(); 890 else 891 unoptimize_all_kprobes(); 892 mutex_unlock(&kprobe_sysctl_mutex); 893 894 return ret; 895 } 896 #endif /* CONFIG_SYSCTL */ 897 898 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 899 static void __arm_kprobe(struct kprobe *p) 900 { 901 struct kprobe *_p; 902 903 /* Check collision with other optimized kprobes */ 904 _p = get_optimized_kprobe((unsigned long)p->addr); 905 if (unlikely(_p)) 906 /* Fallback to unoptimized kprobe */ 907 unoptimize_kprobe(_p, true); 908 909 arch_arm_kprobe(p); 910 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 911 } 912 913 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 914 static void __disarm_kprobe(struct kprobe *p, bool reopt) 915 { 916 struct kprobe *_p; 917 918 /* Try to unoptimize */ 919 unoptimize_kprobe(p, kprobes_all_disarmed); 920 921 if (!kprobe_queued(p)) { 922 arch_disarm_kprobe(p); 923 /* If another kprobe was blocked, optimize it. */ 924 _p = get_optimized_kprobe((unsigned long)p->addr); 925 if (unlikely(_p) && reopt) 926 optimize_kprobe(_p); 927 } 928 /* TODO: reoptimize others after unoptimized this probe */ 929 } 930 931 #else /* !CONFIG_OPTPROBES */ 932 933 #define optimize_kprobe(p) do {} while (0) 934 #define unoptimize_kprobe(p, f) do {} while (0) 935 #define kill_optimized_kprobe(p) do {} while (0) 936 #define prepare_optimized_kprobe(p) do {} while (0) 937 #define try_to_optimize_kprobe(p) do {} while (0) 938 #define __arm_kprobe(p) arch_arm_kprobe(p) 939 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 940 #define kprobe_disarmed(p) kprobe_disabled(p) 941 #define wait_for_kprobe_optimizer() do {} while (0) 942 943 /* There should be no unused kprobes can be reused without optimization */ 944 static void reuse_unused_kprobe(struct kprobe *ap) 945 { 946 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 947 BUG_ON(kprobe_unused(ap)); 948 } 949 950 static void free_aggr_kprobe(struct kprobe *p) 951 { 952 arch_remove_kprobe(p); 953 kfree(p); 954 } 955 956 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 957 { 958 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 959 } 960 #endif /* CONFIG_OPTPROBES */ 961 962 #ifdef CONFIG_KPROBES_ON_FTRACE 963 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 964 .func = kprobe_ftrace_handler, 965 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 966 }; 967 static int kprobe_ftrace_enabled; 968 969 /* Must ensure p->addr is really on ftrace */ 970 static int prepare_kprobe(struct kprobe *p) 971 { 972 if (!kprobe_ftrace(p)) 973 return arch_prepare_kprobe(p); 974 975 return arch_prepare_kprobe_ftrace(p); 976 } 977 978 /* Caller must lock kprobe_mutex */ 979 static int arm_kprobe_ftrace(struct kprobe *p) 980 { 981 int ret = 0; 982 983 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 984 (unsigned long)p->addr, 0, 0); 985 if (ret) { 986 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n", 987 p->addr, ret); 988 return ret; 989 } 990 991 if (kprobe_ftrace_enabled == 0) { 992 ret = register_ftrace_function(&kprobe_ftrace_ops); 993 if (ret) { 994 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret); 995 goto err_ftrace; 996 } 997 } 998 999 kprobe_ftrace_enabled++; 1000 return ret; 1001 1002 err_ftrace: 1003 /* 1004 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a 1005 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental 1006 * empty filter_hash which would undesirably trace all functions. 1007 */ 1008 ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0); 1009 return ret; 1010 } 1011 1012 /* Caller must lock kprobe_mutex */ 1013 static int disarm_kprobe_ftrace(struct kprobe *p) 1014 { 1015 int ret = 0; 1016 1017 if (kprobe_ftrace_enabled == 1) { 1018 ret = unregister_ftrace_function(&kprobe_ftrace_ops); 1019 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret)) 1020 return ret; 1021 } 1022 1023 kprobe_ftrace_enabled--; 1024 1025 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 1026 (unsigned long)p->addr, 1, 0); 1027 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n", 1028 p->addr, ret); 1029 return ret; 1030 } 1031 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1032 #define prepare_kprobe(p) arch_prepare_kprobe(p) 1033 #define arm_kprobe_ftrace(p) (-ENODEV) 1034 #define disarm_kprobe_ftrace(p) (-ENODEV) 1035 #endif 1036 1037 /* Arm a kprobe with text_mutex */ 1038 static int arm_kprobe(struct kprobe *kp) 1039 { 1040 if (unlikely(kprobe_ftrace(kp))) 1041 return arm_kprobe_ftrace(kp); 1042 1043 cpus_read_lock(); 1044 mutex_lock(&text_mutex); 1045 __arm_kprobe(kp); 1046 mutex_unlock(&text_mutex); 1047 cpus_read_unlock(); 1048 1049 return 0; 1050 } 1051 1052 /* Disarm a kprobe with text_mutex */ 1053 static int disarm_kprobe(struct kprobe *kp, bool reopt) 1054 { 1055 if (unlikely(kprobe_ftrace(kp))) 1056 return disarm_kprobe_ftrace(kp); 1057 1058 cpus_read_lock(); 1059 mutex_lock(&text_mutex); 1060 __disarm_kprobe(kp, reopt); 1061 mutex_unlock(&text_mutex); 1062 cpus_read_unlock(); 1063 1064 return 0; 1065 } 1066 1067 /* 1068 * Aggregate handlers for multiple kprobes support - these handlers 1069 * take care of invoking the individual kprobe handlers on p->list 1070 */ 1071 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1072 { 1073 struct kprobe *kp; 1074 1075 list_for_each_entry_rcu(kp, &p->list, list) { 1076 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1077 set_kprobe_instance(kp); 1078 if (kp->pre_handler(kp, regs)) 1079 return 1; 1080 } 1081 reset_kprobe_instance(); 1082 } 1083 return 0; 1084 } 1085 NOKPROBE_SYMBOL(aggr_pre_handler); 1086 1087 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1088 unsigned long flags) 1089 { 1090 struct kprobe *kp; 1091 1092 list_for_each_entry_rcu(kp, &p->list, list) { 1093 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1094 set_kprobe_instance(kp); 1095 kp->post_handler(kp, regs, flags); 1096 reset_kprobe_instance(); 1097 } 1098 } 1099 } 1100 NOKPROBE_SYMBOL(aggr_post_handler); 1101 1102 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 1103 int trapnr) 1104 { 1105 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1106 1107 /* 1108 * if we faulted "during" the execution of a user specified 1109 * probe handler, invoke just that probe's fault handler 1110 */ 1111 if (cur && cur->fault_handler) { 1112 if (cur->fault_handler(cur, regs, trapnr)) 1113 return 1; 1114 } 1115 return 0; 1116 } 1117 NOKPROBE_SYMBOL(aggr_fault_handler); 1118 1119 /* Walks the list and increments nmissed count for multiprobe case */ 1120 void kprobes_inc_nmissed_count(struct kprobe *p) 1121 { 1122 struct kprobe *kp; 1123 if (!kprobe_aggrprobe(p)) { 1124 p->nmissed++; 1125 } else { 1126 list_for_each_entry_rcu(kp, &p->list, list) 1127 kp->nmissed++; 1128 } 1129 return; 1130 } 1131 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1132 1133 void recycle_rp_inst(struct kretprobe_instance *ri, 1134 struct hlist_head *head) 1135 { 1136 struct kretprobe *rp = ri->rp; 1137 1138 /* remove rp inst off the rprobe_inst_table */ 1139 hlist_del(&ri->hlist); 1140 INIT_HLIST_NODE(&ri->hlist); 1141 if (likely(rp)) { 1142 raw_spin_lock(&rp->lock); 1143 hlist_add_head(&ri->hlist, &rp->free_instances); 1144 raw_spin_unlock(&rp->lock); 1145 } else 1146 /* Unregistering */ 1147 hlist_add_head(&ri->hlist, head); 1148 } 1149 NOKPROBE_SYMBOL(recycle_rp_inst); 1150 1151 void kretprobe_hash_lock(struct task_struct *tsk, 1152 struct hlist_head **head, unsigned long *flags) 1153 __acquires(hlist_lock) 1154 { 1155 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1156 raw_spinlock_t *hlist_lock; 1157 1158 *head = &kretprobe_inst_table[hash]; 1159 hlist_lock = kretprobe_table_lock_ptr(hash); 1160 raw_spin_lock_irqsave(hlist_lock, *flags); 1161 } 1162 NOKPROBE_SYMBOL(kretprobe_hash_lock); 1163 1164 static void kretprobe_table_lock(unsigned long hash, 1165 unsigned long *flags) 1166 __acquires(hlist_lock) 1167 { 1168 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1169 raw_spin_lock_irqsave(hlist_lock, *flags); 1170 } 1171 NOKPROBE_SYMBOL(kretprobe_table_lock); 1172 1173 void kretprobe_hash_unlock(struct task_struct *tsk, 1174 unsigned long *flags) 1175 __releases(hlist_lock) 1176 { 1177 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1178 raw_spinlock_t *hlist_lock; 1179 1180 hlist_lock = kretprobe_table_lock_ptr(hash); 1181 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1182 } 1183 NOKPROBE_SYMBOL(kretprobe_hash_unlock); 1184 1185 static void kretprobe_table_unlock(unsigned long hash, 1186 unsigned long *flags) 1187 __releases(hlist_lock) 1188 { 1189 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1190 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1191 } 1192 NOKPROBE_SYMBOL(kretprobe_table_unlock); 1193 1194 /* 1195 * This function is called from finish_task_switch when task tk becomes dead, 1196 * so that we can recycle any function-return probe instances associated 1197 * with this task. These left over instances represent probed functions 1198 * that have been called but will never return. 1199 */ 1200 void kprobe_flush_task(struct task_struct *tk) 1201 { 1202 struct kretprobe_instance *ri; 1203 struct hlist_head *head, empty_rp; 1204 struct hlist_node *tmp; 1205 unsigned long hash, flags = 0; 1206 1207 if (unlikely(!kprobes_initialized)) 1208 /* Early boot. kretprobe_table_locks not yet initialized. */ 1209 return; 1210 1211 INIT_HLIST_HEAD(&empty_rp); 1212 hash = hash_ptr(tk, KPROBE_HASH_BITS); 1213 head = &kretprobe_inst_table[hash]; 1214 kretprobe_table_lock(hash, &flags); 1215 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 1216 if (ri->task == tk) 1217 recycle_rp_inst(ri, &empty_rp); 1218 } 1219 kretprobe_table_unlock(hash, &flags); 1220 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 1221 hlist_del(&ri->hlist); 1222 kfree(ri); 1223 } 1224 } 1225 NOKPROBE_SYMBOL(kprobe_flush_task); 1226 1227 static inline void free_rp_inst(struct kretprobe *rp) 1228 { 1229 struct kretprobe_instance *ri; 1230 struct hlist_node *next; 1231 1232 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) { 1233 hlist_del(&ri->hlist); 1234 kfree(ri); 1235 } 1236 } 1237 1238 static void cleanup_rp_inst(struct kretprobe *rp) 1239 { 1240 unsigned long flags, hash; 1241 struct kretprobe_instance *ri; 1242 struct hlist_node *next; 1243 struct hlist_head *head; 1244 1245 /* No race here */ 1246 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 1247 kretprobe_table_lock(hash, &flags); 1248 head = &kretprobe_inst_table[hash]; 1249 hlist_for_each_entry_safe(ri, next, head, hlist) { 1250 if (ri->rp == rp) 1251 ri->rp = NULL; 1252 } 1253 kretprobe_table_unlock(hash, &flags); 1254 } 1255 free_rp_inst(rp); 1256 } 1257 NOKPROBE_SYMBOL(cleanup_rp_inst); 1258 1259 /* Add the new probe to ap->list */ 1260 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1261 { 1262 BUG_ON(kprobe_gone(ap) || kprobe_gone(p)); 1263 1264 if (p->post_handler) 1265 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1266 1267 list_add_rcu(&p->list, &ap->list); 1268 if (p->post_handler && !ap->post_handler) 1269 ap->post_handler = aggr_post_handler; 1270 1271 return 0; 1272 } 1273 1274 /* 1275 * Fill in the required fields of the "manager kprobe". Replace the 1276 * earlier kprobe in the hlist with the manager kprobe 1277 */ 1278 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1279 { 1280 /* Copy p's insn slot to ap */ 1281 copy_kprobe(p, ap); 1282 flush_insn_slot(ap); 1283 ap->addr = p->addr; 1284 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1285 ap->pre_handler = aggr_pre_handler; 1286 ap->fault_handler = aggr_fault_handler; 1287 /* We don't care the kprobe which has gone. */ 1288 if (p->post_handler && !kprobe_gone(p)) 1289 ap->post_handler = aggr_post_handler; 1290 1291 INIT_LIST_HEAD(&ap->list); 1292 INIT_HLIST_NODE(&ap->hlist); 1293 1294 list_add_rcu(&p->list, &ap->list); 1295 hlist_replace_rcu(&p->hlist, &ap->hlist); 1296 } 1297 1298 /* 1299 * This is the second or subsequent kprobe at the address - handle 1300 * the intricacies 1301 */ 1302 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1303 { 1304 int ret = 0; 1305 struct kprobe *ap = orig_p; 1306 1307 cpus_read_lock(); 1308 1309 /* For preparing optimization, jump_label_text_reserved() is called */ 1310 jump_label_lock(); 1311 mutex_lock(&text_mutex); 1312 1313 if (!kprobe_aggrprobe(orig_p)) { 1314 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1315 ap = alloc_aggr_kprobe(orig_p); 1316 if (!ap) { 1317 ret = -ENOMEM; 1318 goto out; 1319 } 1320 init_aggr_kprobe(ap, orig_p); 1321 } else if (kprobe_unused(ap)) 1322 /* This probe is going to die. Rescue it */ 1323 reuse_unused_kprobe(ap); 1324 1325 if (kprobe_gone(ap)) { 1326 /* 1327 * Attempting to insert new probe at the same location that 1328 * had a probe in the module vaddr area which already 1329 * freed. So, the instruction slot has already been 1330 * released. We need a new slot for the new probe. 1331 */ 1332 ret = arch_prepare_kprobe(ap); 1333 if (ret) 1334 /* 1335 * Even if fail to allocate new slot, don't need to 1336 * free aggr_probe. It will be used next time, or 1337 * freed by unregister_kprobe. 1338 */ 1339 goto out; 1340 1341 /* Prepare optimized instructions if possible. */ 1342 prepare_optimized_kprobe(ap); 1343 1344 /* 1345 * Clear gone flag to prevent allocating new slot again, and 1346 * set disabled flag because it is not armed yet. 1347 */ 1348 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1349 | KPROBE_FLAG_DISABLED; 1350 } 1351 1352 /* Copy ap's insn slot to p */ 1353 copy_kprobe(ap, p); 1354 ret = add_new_kprobe(ap, p); 1355 1356 out: 1357 mutex_unlock(&text_mutex); 1358 jump_label_unlock(); 1359 cpus_read_unlock(); 1360 1361 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1362 ap->flags &= ~KPROBE_FLAG_DISABLED; 1363 if (!kprobes_all_disarmed) { 1364 /* Arm the breakpoint again. */ 1365 ret = arm_kprobe(ap); 1366 if (ret) { 1367 ap->flags |= KPROBE_FLAG_DISABLED; 1368 list_del_rcu(&p->list); 1369 synchronize_sched(); 1370 } 1371 } 1372 } 1373 return ret; 1374 } 1375 1376 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1377 { 1378 /* The __kprobes marked functions and entry code must not be probed */ 1379 return addr >= (unsigned long)__kprobes_text_start && 1380 addr < (unsigned long)__kprobes_text_end; 1381 } 1382 1383 bool within_kprobe_blacklist(unsigned long addr) 1384 { 1385 struct kprobe_blacklist_entry *ent; 1386 1387 if (arch_within_kprobe_blacklist(addr)) 1388 return true; 1389 /* 1390 * If there exists a kprobe_blacklist, verify and 1391 * fail any probe registration in the prohibited area 1392 */ 1393 list_for_each_entry(ent, &kprobe_blacklist, list) { 1394 if (addr >= ent->start_addr && addr < ent->end_addr) 1395 return true; 1396 } 1397 1398 return false; 1399 } 1400 1401 /* 1402 * If we have a symbol_name argument, look it up and add the offset field 1403 * to it. This way, we can specify a relative address to a symbol. 1404 * This returns encoded errors if it fails to look up symbol or invalid 1405 * combination of parameters. 1406 */ 1407 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr, 1408 const char *symbol_name, unsigned int offset) 1409 { 1410 if ((symbol_name && addr) || (!symbol_name && !addr)) 1411 goto invalid; 1412 1413 if (symbol_name) { 1414 addr = kprobe_lookup_name(symbol_name, offset); 1415 if (!addr) 1416 return ERR_PTR(-ENOENT); 1417 } 1418 1419 addr = (kprobe_opcode_t *)(((char *)addr) + offset); 1420 if (addr) 1421 return addr; 1422 1423 invalid: 1424 return ERR_PTR(-EINVAL); 1425 } 1426 1427 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1428 { 1429 return _kprobe_addr(p->addr, p->symbol_name, p->offset); 1430 } 1431 1432 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1433 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1434 { 1435 struct kprobe *ap, *list_p; 1436 1437 ap = get_kprobe(p->addr); 1438 if (unlikely(!ap)) 1439 return NULL; 1440 1441 if (p != ap) { 1442 list_for_each_entry_rcu(list_p, &ap->list, list) 1443 if (list_p == p) 1444 /* kprobe p is a valid probe */ 1445 goto valid; 1446 return NULL; 1447 } 1448 valid: 1449 return ap; 1450 } 1451 1452 /* Return error if the kprobe is being re-registered */ 1453 static inline int check_kprobe_rereg(struct kprobe *p) 1454 { 1455 int ret = 0; 1456 1457 mutex_lock(&kprobe_mutex); 1458 if (__get_valid_kprobe(p)) 1459 ret = -EINVAL; 1460 mutex_unlock(&kprobe_mutex); 1461 1462 return ret; 1463 } 1464 1465 int __weak arch_check_ftrace_location(struct kprobe *p) 1466 { 1467 unsigned long ftrace_addr; 1468 1469 ftrace_addr = ftrace_location((unsigned long)p->addr); 1470 if (ftrace_addr) { 1471 #ifdef CONFIG_KPROBES_ON_FTRACE 1472 /* Given address is not on the instruction boundary */ 1473 if ((unsigned long)p->addr != ftrace_addr) 1474 return -EILSEQ; 1475 p->flags |= KPROBE_FLAG_FTRACE; 1476 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1477 return -EINVAL; 1478 #endif 1479 } 1480 return 0; 1481 } 1482 1483 static int check_kprobe_address_safe(struct kprobe *p, 1484 struct module **probed_mod) 1485 { 1486 int ret; 1487 1488 ret = arch_check_ftrace_location(p); 1489 if (ret) 1490 return ret; 1491 jump_label_lock(); 1492 preempt_disable(); 1493 1494 /* Ensure it is not in reserved area nor out of text */ 1495 if (!kernel_text_address((unsigned long) p->addr) || 1496 within_kprobe_blacklist((unsigned long) p->addr) || 1497 jump_label_text_reserved(p->addr, p->addr)) { 1498 ret = -EINVAL; 1499 goto out; 1500 } 1501 1502 /* Check if are we probing a module */ 1503 *probed_mod = __module_text_address((unsigned long) p->addr); 1504 if (*probed_mod) { 1505 /* 1506 * We must hold a refcount of the probed module while updating 1507 * its code to prohibit unexpected unloading. 1508 */ 1509 if (unlikely(!try_module_get(*probed_mod))) { 1510 ret = -ENOENT; 1511 goto out; 1512 } 1513 1514 /* 1515 * If the module freed .init.text, we couldn't insert 1516 * kprobes in there. 1517 */ 1518 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1519 (*probed_mod)->state != MODULE_STATE_COMING) { 1520 module_put(*probed_mod); 1521 *probed_mod = NULL; 1522 ret = -ENOENT; 1523 } 1524 } 1525 out: 1526 preempt_enable(); 1527 jump_label_unlock(); 1528 1529 return ret; 1530 } 1531 1532 int register_kprobe(struct kprobe *p) 1533 { 1534 int ret; 1535 struct kprobe *old_p; 1536 struct module *probed_mod; 1537 kprobe_opcode_t *addr; 1538 1539 /* Adjust probe address from symbol */ 1540 addr = kprobe_addr(p); 1541 if (IS_ERR(addr)) 1542 return PTR_ERR(addr); 1543 p->addr = addr; 1544 1545 ret = check_kprobe_rereg(p); 1546 if (ret) 1547 return ret; 1548 1549 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1550 p->flags &= KPROBE_FLAG_DISABLED; 1551 p->nmissed = 0; 1552 INIT_LIST_HEAD(&p->list); 1553 1554 ret = check_kprobe_address_safe(p, &probed_mod); 1555 if (ret) 1556 return ret; 1557 1558 mutex_lock(&kprobe_mutex); 1559 1560 old_p = get_kprobe(p->addr); 1561 if (old_p) { 1562 /* Since this may unoptimize old_p, locking text_mutex. */ 1563 ret = register_aggr_kprobe(old_p, p); 1564 goto out; 1565 } 1566 1567 cpus_read_lock(); 1568 /* Prevent text modification */ 1569 mutex_lock(&text_mutex); 1570 ret = prepare_kprobe(p); 1571 mutex_unlock(&text_mutex); 1572 cpus_read_unlock(); 1573 if (ret) 1574 goto out; 1575 1576 INIT_HLIST_NODE(&p->hlist); 1577 hlist_add_head_rcu(&p->hlist, 1578 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1579 1580 if (!kprobes_all_disarmed && !kprobe_disabled(p)) { 1581 ret = arm_kprobe(p); 1582 if (ret) { 1583 hlist_del_rcu(&p->hlist); 1584 synchronize_sched(); 1585 goto out; 1586 } 1587 } 1588 1589 /* Try to optimize kprobe */ 1590 try_to_optimize_kprobe(p); 1591 out: 1592 mutex_unlock(&kprobe_mutex); 1593 1594 if (probed_mod) 1595 module_put(probed_mod); 1596 1597 return ret; 1598 } 1599 EXPORT_SYMBOL_GPL(register_kprobe); 1600 1601 /* Check if all probes on the aggrprobe are disabled */ 1602 static int aggr_kprobe_disabled(struct kprobe *ap) 1603 { 1604 struct kprobe *kp; 1605 1606 list_for_each_entry_rcu(kp, &ap->list, list) 1607 if (!kprobe_disabled(kp)) 1608 /* 1609 * There is an active probe on the list. 1610 * We can't disable this ap. 1611 */ 1612 return 0; 1613 1614 return 1; 1615 } 1616 1617 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1618 static struct kprobe *__disable_kprobe(struct kprobe *p) 1619 { 1620 struct kprobe *orig_p; 1621 int ret; 1622 1623 /* Get an original kprobe for return */ 1624 orig_p = __get_valid_kprobe(p); 1625 if (unlikely(orig_p == NULL)) 1626 return ERR_PTR(-EINVAL); 1627 1628 if (!kprobe_disabled(p)) { 1629 /* Disable probe if it is a child probe */ 1630 if (p != orig_p) 1631 p->flags |= KPROBE_FLAG_DISABLED; 1632 1633 /* Try to disarm and disable this/parent probe */ 1634 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1635 /* 1636 * If kprobes_all_disarmed is set, orig_p 1637 * should have already been disarmed, so 1638 * skip unneed disarming process. 1639 */ 1640 if (!kprobes_all_disarmed) { 1641 ret = disarm_kprobe(orig_p, true); 1642 if (ret) { 1643 p->flags &= ~KPROBE_FLAG_DISABLED; 1644 return ERR_PTR(ret); 1645 } 1646 } 1647 orig_p->flags |= KPROBE_FLAG_DISABLED; 1648 } 1649 } 1650 1651 return orig_p; 1652 } 1653 1654 /* 1655 * Unregister a kprobe without a scheduler synchronization. 1656 */ 1657 static int __unregister_kprobe_top(struct kprobe *p) 1658 { 1659 struct kprobe *ap, *list_p; 1660 1661 /* Disable kprobe. This will disarm it if needed. */ 1662 ap = __disable_kprobe(p); 1663 if (IS_ERR(ap)) 1664 return PTR_ERR(ap); 1665 1666 if (ap == p) 1667 /* 1668 * This probe is an independent(and non-optimized) kprobe 1669 * (not an aggrprobe). Remove from the hash list. 1670 */ 1671 goto disarmed; 1672 1673 /* Following process expects this probe is an aggrprobe */ 1674 WARN_ON(!kprobe_aggrprobe(ap)); 1675 1676 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1677 /* 1678 * !disarmed could be happen if the probe is under delayed 1679 * unoptimizing. 1680 */ 1681 goto disarmed; 1682 else { 1683 /* If disabling probe has special handlers, update aggrprobe */ 1684 if (p->post_handler && !kprobe_gone(p)) { 1685 list_for_each_entry_rcu(list_p, &ap->list, list) { 1686 if ((list_p != p) && (list_p->post_handler)) 1687 goto noclean; 1688 } 1689 ap->post_handler = NULL; 1690 } 1691 noclean: 1692 /* 1693 * Remove from the aggrprobe: this path will do nothing in 1694 * __unregister_kprobe_bottom(). 1695 */ 1696 list_del_rcu(&p->list); 1697 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1698 /* 1699 * Try to optimize this probe again, because post 1700 * handler may have been changed. 1701 */ 1702 optimize_kprobe(ap); 1703 } 1704 return 0; 1705 1706 disarmed: 1707 BUG_ON(!kprobe_disarmed(ap)); 1708 hlist_del_rcu(&ap->hlist); 1709 return 0; 1710 } 1711 1712 static void __unregister_kprobe_bottom(struct kprobe *p) 1713 { 1714 struct kprobe *ap; 1715 1716 if (list_empty(&p->list)) 1717 /* This is an independent kprobe */ 1718 arch_remove_kprobe(p); 1719 else if (list_is_singular(&p->list)) { 1720 /* This is the last child of an aggrprobe */ 1721 ap = list_entry(p->list.next, struct kprobe, list); 1722 list_del(&p->list); 1723 free_aggr_kprobe(ap); 1724 } 1725 /* Otherwise, do nothing. */ 1726 } 1727 1728 int register_kprobes(struct kprobe **kps, int num) 1729 { 1730 int i, ret = 0; 1731 1732 if (num <= 0) 1733 return -EINVAL; 1734 for (i = 0; i < num; i++) { 1735 ret = register_kprobe(kps[i]); 1736 if (ret < 0) { 1737 if (i > 0) 1738 unregister_kprobes(kps, i); 1739 break; 1740 } 1741 } 1742 return ret; 1743 } 1744 EXPORT_SYMBOL_GPL(register_kprobes); 1745 1746 void unregister_kprobe(struct kprobe *p) 1747 { 1748 unregister_kprobes(&p, 1); 1749 } 1750 EXPORT_SYMBOL_GPL(unregister_kprobe); 1751 1752 void unregister_kprobes(struct kprobe **kps, int num) 1753 { 1754 int i; 1755 1756 if (num <= 0) 1757 return; 1758 mutex_lock(&kprobe_mutex); 1759 for (i = 0; i < num; i++) 1760 if (__unregister_kprobe_top(kps[i]) < 0) 1761 kps[i]->addr = NULL; 1762 mutex_unlock(&kprobe_mutex); 1763 1764 synchronize_sched(); 1765 for (i = 0; i < num; i++) 1766 if (kps[i]->addr) 1767 __unregister_kprobe_bottom(kps[i]); 1768 } 1769 EXPORT_SYMBOL_GPL(unregister_kprobes); 1770 1771 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1772 unsigned long val, void *data) 1773 { 1774 return NOTIFY_DONE; 1775 } 1776 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1777 1778 static struct notifier_block kprobe_exceptions_nb = { 1779 .notifier_call = kprobe_exceptions_notify, 1780 .priority = 0x7fffffff /* we need to be notified first */ 1781 }; 1782 1783 unsigned long __weak arch_deref_entry_point(void *entry) 1784 { 1785 return (unsigned long)entry; 1786 } 1787 1788 #ifdef CONFIG_KRETPROBES 1789 /* 1790 * This kprobe pre_handler is registered with every kretprobe. When probe 1791 * hits it will set up the return probe. 1792 */ 1793 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 1794 { 1795 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1796 unsigned long hash, flags = 0; 1797 struct kretprobe_instance *ri; 1798 1799 /* 1800 * To avoid deadlocks, prohibit return probing in NMI contexts, 1801 * just skip the probe and increase the (inexact) 'nmissed' 1802 * statistical counter, so that the user is informed that 1803 * something happened: 1804 */ 1805 if (unlikely(in_nmi())) { 1806 rp->nmissed++; 1807 return 0; 1808 } 1809 1810 /* TODO: consider to only swap the RA after the last pre_handler fired */ 1811 hash = hash_ptr(current, KPROBE_HASH_BITS); 1812 raw_spin_lock_irqsave(&rp->lock, flags); 1813 if (!hlist_empty(&rp->free_instances)) { 1814 ri = hlist_entry(rp->free_instances.first, 1815 struct kretprobe_instance, hlist); 1816 hlist_del(&ri->hlist); 1817 raw_spin_unlock_irqrestore(&rp->lock, flags); 1818 1819 ri->rp = rp; 1820 ri->task = current; 1821 1822 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 1823 raw_spin_lock_irqsave(&rp->lock, flags); 1824 hlist_add_head(&ri->hlist, &rp->free_instances); 1825 raw_spin_unlock_irqrestore(&rp->lock, flags); 1826 return 0; 1827 } 1828 1829 arch_prepare_kretprobe(ri, regs); 1830 1831 /* XXX(hch): why is there no hlist_move_head? */ 1832 INIT_HLIST_NODE(&ri->hlist); 1833 kretprobe_table_lock(hash, &flags); 1834 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 1835 kretprobe_table_unlock(hash, &flags); 1836 } else { 1837 rp->nmissed++; 1838 raw_spin_unlock_irqrestore(&rp->lock, flags); 1839 } 1840 return 0; 1841 } 1842 NOKPROBE_SYMBOL(pre_handler_kretprobe); 1843 1844 bool __weak arch_kprobe_on_func_entry(unsigned long offset) 1845 { 1846 return !offset; 1847 } 1848 1849 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 1850 { 1851 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset); 1852 1853 if (IS_ERR(kp_addr)) 1854 return false; 1855 1856 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) || 1857 !arch_kprobe_on_func_entry(offset)) 1858 return false; 1859 1860 return true; 1861 } 1862 1863 int register_kretprobe(struct kretprobe *rp) 1864 { 1865 int ret = 0; 1866 struct kretprobe_instance *inst; 1867 int i; 1868 void *addr; 1869 1870 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset)) 1871 return -EINVAL; 1872 1873 if (kretprobe_blacklist_size) { 1874 addr = kprobe_addr(&rp->kp); 1875 if (IS_ERR(addr)) 1876 return PTR_ERR(addr); 1877 1878 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1879 if (kretprobe_blacklist[i].addr == addr) 1880 return -EINVAL; 1881 } 1882 } 1883 1884 rp->kp.pre_handler = pre_handler_kretprobe; 1885 rp->kp.post_handler = NULL; 1886 rp->kp.fault_handler = NULL; 1887 1888 /* Pre-allocate memory for max kretprobe instances */ 1889 if (rp->maxactive <= 0) { 1890 #ifdef CONFIG_PREEMPT 1891 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 1892 #else 1893 rp->maxactive = num_possible_cpus(); 1894 #endif 1895 } 1896 raw_spin_lock_init(&rp->lock); 1897 INIT_HLIST_HEAD(&rp->free_instances); 1898 for (i = 0; i < rp->maxactive; i++) { 1899 inst = kmalloc(sizeof(struct kretprobe_instance) + 1900 rp->data_size, GFP_KERNEL); 1901 if (inst == NULL) { 1902 free_rp_inst(rp); 1903 return -ENOMEM; 1904 } 1905 INIT_HLIST_NODE(&inst->hlist); 1906 hlist_add_head(&inst->hlist, &rp->free_instances); 1907 } 1908 1909 rp->nmissed = 0; 1910 /* Establish function entry probe point */ 1911 ret = register_kprobe(&rp->kp); 1912 if (ret != 0) 1913 free_rp_inst(rp); 1914 return ret; 1915 } 1916 EXPORT_SYMBOL_GPL(register_kretprobe); 1917 1918 int register_kretprobes(struct kretprobe **rps, int num) 1919 { 1920 int ret = 0, i; 1921 1922 if (num <= 0) 1923 return -EINVAL; 1924 for (i = 0; i < num; i++) { 1925 ret = register_kretprobe(rps[i]); 1926 if (ret < 0) { 1927 if (i > 0) 1928 unregister_kretprobes(rps, i); 1929 break; 1930 } 1931 } 1932 return ret; 1933 } 1934 EXPORT_SYMBOL_GPL(register_kretprobes); 1935 1936 void unregister_kretprobe(struct kretprobe *rp) 1937 { 1938 unregister_kretprobes(&rp, 1); 1939 } 1940 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1941 1942 void unregister_kretprobes(struct kretprobe **rps, int num) 1943 { 1944 int i; 1945 1946 if (num <= 0) 1947 return; 1948 mutex_lock(&kprobe_mutex); 1949 for (i = 0; i < num; i++) 1950 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 1951 rps[i]->kp.addr = NULL; 1952 mutex_unlock(&kprobe_mutex); 1953 1954 synchronize_sched(); 1955 for (i = 0; i < num; i++) { 1956 if (rps[i]->kp.addr) { 1957 __unregister_kprobe_bottom(&rps[i]->kp); 1958 cleanup_rp_inst(rps[i]); 1959 } 1960 } 1961 } 1962 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1963 1964 #else /* CONFIG_KRETPROBES */ 1965 int register_kretprobe(struct kretprobe *rp) 1966 { 1967 return -ENOSYS; 1968 } 1969 EXPORT_SYMBOL_GPL(register_kretprobe); 1970 1971 int register_kretprobes(struct kretprobe **rps, int num) 1972 { 1973 return -ENOSYS; 1974 } 1975 EXPORT_SYMBOL_GPL(register_kretprobes); 1976 1977 void unregister_kretprobe(struct kretprobe *rp) 1978 { 1979 } 1980 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1981 1982 void unregister_kretprobes(struct kretprobe **rps, int num) 1983 { 1984 } 1985 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1986 1987 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 1988 { 1989 return 0; 1990 } 1991 NOKPROBE_SYMBOL(pre_handler_kretprobe); 1992 1993 #endif /* CONFIG_KRETPROBES */ 1994 1995 /* Set the kprobe gone and remove its instruction buffer. */ 1996 static void kill_kprobe(struct kprobe *p) 1997 { 1998 struct kprobe *kp; 1999 2000 p->flags |= KPROBE_FLAG_GONE; 2001 if (kprobe_aggrprobe(p)) { 2002 /* 2003 * If this is an aggr_kprobe, we have to list all the 2004 * chained probes and mark them GONE. 2005 */ 2006 list_for_each_entry_rcu(kp, &p->list, list) 2007 kp->flags |= KPROBE_FLAG_GONE; 2008 p->post_handler = NULL; 2009 kill_optimized_kprobe(p); 2010 } 2011 /* 2012 * Here, we can remove insn_slot safely, because no thread calls 2013 * the original probed function (which will be freed soon) any more. 2014 */ 2015 arch_remove_kprobe(p); 2016 } 2017 2018 /* Disable one kprobe */ 2019 int disable_kprobe(struct kprobe *kp) 2020 { 2021 int ret = 0; 2022 struct kprobe *p; 2023 2024 mutex_lock(&kprobe_mutex); 2025 2026 /* Disable this kprobe */ 2027 p = __disable_kprobe(kp); 2028 if (IS_ERR(p)) 2029 ret = PTR_ERR(p); 2030 2031 mutex_unlock(&kprobe_mutex); 2032 return ret; 2033 } 2034 EXPORT_SYMBOL_GPL(disable_kprobe); 2035 2036 /* Enable one kprobe */ 2037 int enable_kprobe(struct kprobe *kp) 2038 { 2039 int ret = 0; 2040 struct kprobe *p; 2041 2042 mutex_lock(&kprobe_mutex); 2043 2044 /* Check whether specified probe is valid. */ 2045 p = __get_valid_kprobe(kp); 2046 if (unlikely(p == NULL)) { 2047 ret = -EINVAL; 2048 goto out; 2049 } 2050 2051 if (kprobe_gone(kp)) { 2052 /* This kprobe has gone, we couldn't enable it. */ 2053 ret = -EINVAL; 2054 goto out; 2055 } 2056 2057 if (p != kp) 2058 kp->flags &= ~KPROBE_FLAG_DISABLED; 2059 2060 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2061 p->flags &= ~KPROBE_FLAG_DISABLED; 2062 ret = arm_kprobe(p); 2063 if (ret) 2064 p->flags |= KPROBE_FLAG_DISABLED; 2065 } 2066 out: 2067 mutex_unlock(&kprobe_mutex); 2068 return ret; 2069 } 2070 EXPORT_SYMBOL_GPL(enable_kprobe); 2071 2072 /* Caller must NOT call this in usual path. This is only for critical case */ 2073 void dump_kprobe(struct kprobe *kp) 2074 { 2075 pr_err("Dumping kprobe:\n"); 2076 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n", 2077 kp->symbol_name, kp->offset, kp->addr); 2078 } 2079 NOKPROBE_SYMBOL(dump_kprobe); 2080 2081 /* 2082 * Lookup and populate the kprobe_blacklist. 2083 * 2084 * Unlike the kretprobe blacklist, we'll need to determine 2085 * the range of addresses that belong to the said functions, 2086 * since a kprobe need not necessarily be at the beginning 2087 * of a function. 2088 */ 2089 static int __init populate_kprobe_blacklist(unsigned long *start, 2090 unsigned long *end) 2091 { 2092 unsigned long *iter; 2093 struct kprobe_blacklist_entry *ent; 2094 unsigned long entry, offset = 0, size = 0; 2095 2096 for (iter = start; iter < end; iter++) { 2097 entry = arch_deref_entry_point((void *)*iter); 2098 2099 if (!kernel_text_address(entry) || 2100 !kallsyms_lookup_size_offset(entry, &size, &offset)) 2101 continue; 2102 2103 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2104 if (!ent) 2105 return -ENOMEM; 2106 ent->start_addr = entry; 2107 ent->end_addr = entry + size; 2108 INIT_LIST_HEAD(&ent->list); 2109 list_add_tail(&ent->list, &kprobe_blacklist); 2110 } 2111 return 0; 2112 } 2113 2114 /* Module notifier call back, checking kprobes on the module */ 2115 static int kprobes_module_callback(struct notifier_block *nb, 2116 unsigned long val, void *data) 2117 { 2118 struct module *mod = data; 2119 struct hlist_head *head; 2120 struct kprobe *p; 2121 unsigned int i; 2122 int checkcore = (val == MODULE_STATE_GOING); 2123 2124 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2125 return NOTIFY_DONE; 2126 2127 /* 2128 * When MODULE_STATE_GOING was notified, both of module .text and 2129 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2130 * notified, only .init.text section would be freed. We need to 2131 * disable kprobes which have been inserted in the sections. 2132 */ 2133 mutex_lock(&kprobe_mutex); 2134 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2135 head = &kprobe_table[i]; 2136 hlist_for_each_entry_rcu(p, head, hlist) 2137 if (within_module_init((unsigned long)p->addr, mod) || 2138 (checkcore && 2139 within_module_core((unsigned long)p->addr, mod))) { 2140 /* 2141 * The vaddr this probe is installed will soon 2142 * be vfreed buy not synced to disk. Hence, 2143 * disarming the breakpoint isn't needed. 2144 * 2145 * Note, this will also move any optimized probes 2146 * that are pending to be removed from their 2147 * corresponding lists to the freeing_list and 2148 * will not be touched by the delayed 2149 * kprobe_optimizer work handler. 2150 */ 2151 kill_kprobe(p); 2152 } 2153 } 2154 mutex_unlock(&kprobe_mutex); 2155 return NOTIFY_DONE; 2156 } 2157 2158 static struct notifier_block kprobe_module_nb = { 2159 .notifier_call = kprobes_module_callback, 2160 .priority = 0 2161 }; 2162 2163 /* Markers of _kprobe_blacklist section */ 2164 extern unsigned long __start_kprobe_blacklist[]; 2165 extern unsigned long __stop_kprobe_blacklist[]; 2166 2167 static int __init init_kprobes(void) 2168 { 2169 int i, err = 0; 2170 2171 /* FIXME allocate the probe table, currently defined statically */ 2172 /* initialize all list heads */ 2173 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2174 INIT_HLIST_HEAD(&kprobe_table[i]); 2175 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 2176 raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); 2177 } 2178 2179 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2180 __stop_kprobe_blacklist); 2181 if (err) { 2182 pr_err("kprobes: failed to populate blacklist: %d\n", err); 2183 pr_err("Please take care of using kprobes.\n"); 2184 } 2185 2186 if (kretprobe_blacklist_size) { 2187 /* lookup the function address from its name */ 2188 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2189 kretprobe_blacklist[i].addr = 2190 kprobe_lookup_name(kretprobe_blacklist[i].name, 0); 2191 if (!kretprobe_blacklist[i].addr) 2192 printk("kretprobe: lookup failed: %s\n", 2193 kretprobe_blacklist[i].name); 2194 } 2195 } 2196 2197 #if defined(CONFIG_OPTPROBES) 2198 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2199 /* Init kprobe_optinsn_slots */ 2200 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2201 #endif 2202 /* By default, kprobes can be optimized */ 2203 kprobes_allow_optimization = true; 2204 #endif 2205 2206 /* By default, kprobes are armed */ 2207 kprobes_all_disarmed = false; 2208 2209 err = arch_init_kprobes(); 2210 if (!err) 2211 err = register_die_notifier(&kprobe_exceptions_nb); 2212 if (!err) 2213 err = register_module_notifier(&kprobe_module_nb); 2214 2215 kprobes_initialized = (err == 0); 2216 2217 if (!err) 2218 init_test_probes(); 2219 return err; 2220 } 2221 2222 #ifdef CONFIG_DEBUG_FS 2223 static void report_probe(struct seq_file *pi, struct kprobe *p, 2224 const char *sym, int offset, char *modname, struct kprobe *pp) 2225 { 2226 char *kprobe_type; 2227 void *addr = p->addr; 2228 2229 if (p->pre_handler == pre_handler_kretprobe) 2230 kprobe_type = "r"; 2231 else 2232 kprobe_type = "k"; 2233 2234 if (!kallsyms_show_value()) 2235 addr = NULL; 2236 2237 if (sym) 2238 seq_printf(pi, "%px %s %s+0x%x %s ", 2239 addr, kprobe_type, sym, offset, 2240 (modname ? modname : " ")); 2241 else /* try to use %pS */ 2242 seq_printf(pi, "%px %s %pS ", 2243 addr, kprobe_type, p->addr); 2244 2245 if (!pp) 2246 pp = p; 2247 seq_printf(pi, "%s%s%s%s\n", 2248 (kprobe_gone(p) ? "[GONE]" : ""), 2249 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2250 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2251 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2252 } 2253 2254 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2255 { 2256 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2257 } 2258 2259 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2260 { 2261 (*pos)++; 2262 if (*pos >= KPROBE_TABLE_SIZE) 2263 return NULL; 2264 return pos; 2265 } 2266 2267 static void kprobe_seq_stop(struct seq_file *f, void *v) 2268 { 2269 /* Nothing to do */ 2270 } 2271 2272 static int show_kprobe_addr(struct seq_file *pi, void *v) 2273 { 2274 struct hlist_head *head; 2275 struct kprobe *p, *kp; 2276 const char *sym = NULL; 2277 unsigned int i = *(loff_t *) v; 2278 unsigned long offset = 0; 2279 char *modname, namebuf[KSYM_NAME_LEN]; 2280 2281 head = &kprobe_table[i]; 2282 preempt_disable(); 2283 hlist_for_each_entry_rcu(p, head, hlist) { 2284 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2285 &offset, &modname, namebuf); 2286 if (kprobe_aggrprobe(p)) { 2287 list_for_each_entry_rcu(kp, &p->list, list) 2288 report_probe(pi, kp, sym, offset, modname, p); 2289 } else 2290 report_probe(pi, p, sym, offset, modname, NULL); 2291 } 2292 preempt_enable(); 2293 return 0; 2294 } 2295 2296 static const struct seq_operations kprobes_seq_ops = { 2297 .start = kprobe_seq_start, 2298 .next = kprobe_seq_next, 2299 .stop = kprobe_seq_stop, 2300 .show = show_kprobe_addr 2301 }; 2302 2303 static int kprobes_open(struct inode *inode, struct file *filp) 2304 { 2305 return seq_open(filp, &kprobes_seq_ops); 2306 } 2307 2308 static const struct file_operations debugfs_kprobes_operations = { 2309 .open = kprobes_open, 2310 .read = seq_read, 2311 .llseek = seq_lseek, 2312 .release = seq_release, 2313 }; 2314 2315 /* kprobes/blacklist -- shows which functions can not be probed */ 2316 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2317 { 2318 return seq_list_start(&kprobe_blacklist, *pos); 2319 } 2320 2321 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2322 { 2323 return seq_list_next(v, &kprobe_blacklist, pos); 2324 } 2325 2326 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2327 { 2328 struct kprobe_blacklist_entry *ent = 2329 list_entry(v, struct kprobe_blacklist_entry, list); 2330 2331 /* 2332 * If /proc/kallsyms is not showing kernel address, we won't 2333 * show them here either. 2334 */ 2335 if (!kallsyms_show_value()) 2336 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL, 2337 (void *)ent->start_addr); 2338 else 2339 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr, 2340 (void *)ent->end_addr, (void *)ent->start_addr); 2341 return 0; 2342 } 2343 2344 static const struct seq_operations kprobe_blacklist_seq_ops = { 2345 .start = kprobe_blacklist_seq_start, 2346 .next = kprobe_blacklist_seq_next, 2347 .stop = kprobe_seq_stop, /* Reuse void function */ 2348 .show = kprobe_blacklist_seq_show, 2349 }; 2350 2351 static int kprobe_blacklist_open(struct inode *inode, struct file *filp) 2352 { 2353 return seq_open(filp, &kprobe_blacklist_seq_ops); 2354 } 2355 2356 static const struct file_operations debugfs_kprobe_blacklist_ops = { 2357 .open = kprobe_blacklist_open, 2358 .read = seq_read, 2359 .llseek = seq_lseek, 2360 .release = seq_release, 2361 }; 2362 2363 static int arm_all_kprobes(void) 2364 { 2365 struct hlist_head *head; 2366 struct kprobe *p; 2367 unsigned int i, total = 0, errors = 0; 2368 int err, ret = 0; 2369 2370 mutex_lock(&kprobe_mutex); 2371 2372 /* If kprobes are armed, just return */ 2373 if (!kprobes_all_disarmed) 2374 goto already_enabled; 2375 2376 /* 2377 * optimize_kprobe() called by arm_kprobe() checks 2378 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2379 * arm_kprobe. 2380 */ 2381 kprobes_all_disarmed = false; 2382 /* Arming kprobes doesn't optimize kprobe itself */ 2383 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2384 head = &kprobe_table[i]; 2385 /* Arm all kprobes on a best-effort basis */ 2386 hlist_for_each_entry_rcu(p, head, hlist) { 2387 if (!kprobe_disabled(p)) { 2388 err = arm_kprobe(p); 2389 if (err) { 2390 errors++; 2391 ret = err; 2392 } 2393 total++; 2394 } 2395 } 2396 } 2397 2398 if (errors) 2399 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n", 2400 errors, total); 2401 else 2402 pr_info("Kprobes globally enabled\n"); 2403 2404 already_enabled: 2405 mutex_unlock(&kprobe_mutex); 2406 return ret; 2407 } 2408 2409 static int disarm_all_kprobes(void) 2410 { 2411 struct hlist_head *head; 2412 struct kprobe *p; 2413 unsigned int i, total = 0, errors = 0; 2414 int err, ret = 0; 2415 2416 mutex_lock(&kprobe_mutex); 2417 2418 /* If kprobes are already disarmed, just return */ 2419 if (kprobes_all_disarmed) { 2420 mutex_unlock(&kprobe_mutex); 2421 return 0; 2422 } 2423 2424 kprobes_all_disarmed = true; 2425 2426 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2427 head = &kprobe_table[i]; 2428 /* Disarm all kprobes on a best-effort basis */ 2429 hlist_for_each_entry_rcu(p, head, hlist) { 2430 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { 2431 err = disarm_kprobe(p, false); 2432 if (err) { 2433 errors++; 2434 ret = err; 2435 } 2436 total++; 2437 } 2438 } 2439 } 2440 2441 if (errors) 2442 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n", 2443 errors, total); 2444 else 2445 pr_info("Kprobes globally disabled\n"); 2446 2447 mutex_unlock(&kprobe_mutex); 2448 2449 /* Wait for disarming all kprobes by optimizer */ 2450 wait_for_kprobe_optimizer(); 2451 2452 return ret; 2453 } 2454 2455 /* 2456 * XXX: The debugfs bool file interface doesn't allow for callbacks 2457 * when the bool state is switched. We can reuse that facility when 2458 * available 2459 */ 2460 static ssize_t read_enabled_file_bool(struct file *file, 2461 char __user *user_buf, size_t count, loff_t *ppos) 2462 { 2463 char buf[3]; 2464 2465 if (!kprobes_all_disarmed) 2466 buf[0] = '1'; 2467 else 2468 buf[0] = '0'; 2469 buf[1] = '\n'; 2470 buf[2] = 0x00; 2471 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2472 } 2473 2474 static ssize_t write_enabled_file_bool(struct file *file, 2475 const char __user *user_buf, size_t count, loff_t *ppos) 2476 { 2477 char buf[32]; 2478 size_t buf_size; 2479 int ret = 0; 2480 2481 buf_size = min(count, (sizeof(buf)-1)); 2482 if (copy_from_user(buf, user_buf, buf_size)) 2483 return -EFAULT; 2484 2485 buf[buf_size] = '\0'; 2486 switch (buf[0]) { 2487 case 'y': 2488 case 'Y': 2489 case '1': 2490 ret = arm_all_kprobes(); 2491 break; 2492 case 'n': 2493 case 'N': 2494 case '0': 2495 ret = disarm_all_kprobes(); 2496 break; 2497 default: 2498 return -EINVAL; 2499 } 2500 2501 if (ret) 2502 return ret; 2503 2504 return count; 2505 } 2506 2507 static const struct file_operations fops_kp = { 2508 .read = read_enabled_file_bool, 2509 .write = write_enabled_file_bool, 2510 .llseek = default_llseek, 2511 }; 2512 2513 static int __init debugfs_kprobe_init(void) 2514 { 2515 struct dentry *dir, *file; 2516 unsigned int value = 1; 2517 2518 dir = debugfs_create_dir("kprobes", NULL); 2519 if (!dir) 2520 return -ENOMEM; 2521 2522 file = debugfs_create_file("list", 0400, dir, NULL, 2523 &debugfs_kprobes_operations); 2524 if (!file) 2525 goto error; 2526 2527 file = debugfs_create_file("enabled", 0600, dir, 2528 &value, &fops_kp); 2529 if (!file) 2530 goto error; 2531 2532 file = debugfs_create_file("blacklist", 0400, dir, NULL, 2533 &debugfs_kprobe_blacklist_ops); 2534 if (!file) 2535 goto error; 2536 2537 return 0; 2538 2539 error: 2540 debugfs_remove(dir); 2541 return -ENOMEM; 2542 } 2543 2544 late_initcall(debugfs_kprobe_init); 2545 #endif /* CONFIG_DEBUG_FS */ 2546 2547 module_init(init_kprobes); 2548