1 /* 2 * Kernel Probes (KProbes) 3 * kernel/kprobes.c 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * Copyright (C) IBM Corporation, 2002, 2004 20 * 21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 22 * Probes initial implementation (includes suggestions from 23 * Rusty Russell). 24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 25 * hlists and exceptions notifier as suggested by Andi Kleen. 26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 27 * interface to access function arguments. 28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 29 * exceptions notifier to be first on the priority list. 30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 32 * <prasanna@in.ibm.com> added function-return probes. 33 */ 34 #include <linux/kprobes.h> 35 #include <linux/hash.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/stddef.h> 39 #include <linux/module.h> 40 #include <linux/moduleloader.h> 41 #include <linux/kallsyms.h> 42 #include <linux/freezer.h> 43 #include <linux/seq_file.h> 44 #include <linux/debugfs.h> 45 #include <linux/kdebug.h> 46 47 #include <asm-generic/sections.h> 48 #include <asm/cacheflush.h> 49 #include <asm/errno.h> 50 #include <asm/uaccess.h> 51 52 #define KPROBE_HASH_BITS 6 53 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 54 55 56 /* 57 * Some oddball architectures like 64bit powerpc have function descriptors 58 * so this must be overridable. 59 */ 60 #ifndef kprobe_lookup_name 61 #define kprobe_lookup_name(name, addr) \ 62 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name))) 63 #endif 64 65 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 66 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 67 68 /* NOTE: change this value only with kprobe_mutex held */ 69 static bool kprobe_enabled; 70 71 DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */ 72 DEFINE_SPINLOCK(kretprobe_lock); /* Protects kretprobe_inst_table */ 73 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 74 75 /* 76 * Normally, functions that we'd want to prohibit kprobes in, are marked 77 * __kprobes. But, there are cases where such functions already belong to 78 * a different section (__sched for preempt_schedule) 79 * 80 * For such cases, we now have a blacklist 81 */ 82 static struct kprobe_blackpoint kprobe_blacklist[] = { 83 {"preempt_schedule",}, 84 {NULL} /* Terminator */ 85 }; 86 87 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 88 /* 89 * kprobe->ainsn.insn points to the copy of the instruction to be 90 * single-stepped. x86_64, POWER4 and above have no-exec support and 91 * stepping on the instruction on a vmalloced/kmalloced/data page 92 * is a recipe for disaster 93 */ 94 #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) 95 96 struct kprobe_insn_page { 97 struct hlist_node hlist; 98 kprobe_opcode_t *insns; /* Page of instruction slots */ 99 char slot_used[INSNS_PER_PAGE]; 100 int nused; 101 int ngarbage; 102 }; 103 104 enum kprobe_slot_state { 105 SLOT_CLEAN = 0, 106 SLOT_DIRTY = 1, 107 SLOT_USED = 2, 108 }; 109 110 static struct hlist_head kprobe_insn_pages; 111 static int kprobe_garbage_slots; 112 static int collect_garbage_slots(void); 113 114 static int __kprobes check_safety(void) 115 { 116 int ret = 0; 117 #if defined(CONFIG_PREEMPT) && defined(CONFIG_PM) 118 ret = freeze_processes(); 119 if (ret == 0) { 120 struct task_struct *p, *q; 121 do_each_thread(p, q) { 122 if (p != current && p->state == TASK_RUNNING && 123 p->pid != 0) { 124 printk("Check failed: %s is running\n",p->comm); 125 ret = -1; 126 goto loop_end; 127 } 128 } while_each_thread(p, q); 129 } 130 loop_end: 131 thaw_processes(); 132 #else 133 synchronize_sched(); 134 #endif 135 return ret; 136 } 137 138 /** 139 * get_insn_slot() - Find a slot on an executable page for an instruction. 140 * We allocate an executable page if there's no room on existing ones. 141 */ 142 kprobe_opcode_t __kprobes *get_insn_slot(void) 143 { 144 struct kprobe_insn_page *kip; 145 struct hlist_node *pos; 146 147 retry: 148 hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) { 149 if (kip->nused < INSNS_PER_PAGE) { 150 int i; 151 for (i = 0; i < INSNS_PER_PAGE; i++) { 152 if (kip->slot_used[i] == SLOT_CLEAN) { 153 kip->slot_used[i] = SLOT_USED; 154 kip->nused++; 155 return kip->insns + (i * MAX_INSN_SIZE); 156 } 157 } 158 /* Surprise! No unused slots. Fix kip->nused. */ 159 kip->nused = INSNS_PER_PAGE; 160 } 161 } 162 163 /* If there are any garbage slots, collect it and try again. */ 164 if (kprobe_garbage_slots && collect_garbage_slots() == 0) { 165 goto retry; 166 } 167 /* All out of space. Need to allocate a new page. Use slot 0. */ 168 kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL); 169 if (!kip) 170 return NULL; 171 172 /* 173 * Use module_alloc so this page is within +/- 2GB of where the 174 * kernel image and loaded module images reside. This is required 175 * so x86_64 can correctly handle the %rip-relative fixups. 176 */ 177 kip->insns = module_alloc(PAGE_SIZE); 178 if (!kip->insns) { 179 kfree(kip); 180 return NULL; 181 } 182 INIT_HLIST_NODE(&kip->hlist); 183 hlist_add_head(&kip->hlist, &kprobe_insn_pages); 184 memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE); 185 kip->slot_used[0] = SLOT_USED; 186 kip->nused = 1; 187 kip->ngarbage = 0; 188 return kip->insns; 189 } 190 191 /* Return 1 if all garbages are collected, otherwise 0. */ 192 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx) 193 { 194 kip->slot_used[idx] = SLOT_CLEAN; 195 kip->nused--; 196 if (kip->nused == 0) { 197 /* 198 * Page is no longer in use. Free it unless 199 * it's the last one. We keep the last one 200 * so as not to have to set it up again the 201 * next time somebody inserts a probe. 202 */ 203 hlist_del(&kip->hlist); 204 if (hlist_empty(&kprobe_insn_pages)) { 205 INIT_HLIST_NODE(&kip->hlist); 206 hlist_add_head(&kip->hlist, 207 &kprobe_insn_pages); 208 } else { 209 module_free(NULL, kip->insns); 210 kfree(kip); 211 } 212 return 1; 213 } 214 return 0; 215 } 216 217 static int __kprobes collect_garbage_slots(void) 218 { 219 struct kprobe_insn_page *kip; 220 struct hlist_node *pos, *next; 221 222 /* Ensure no-one is preepmted on the garbages */ 223 if (check_safety() != 0) 224 return -EAGAIN; 225 226 hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) { 227 int i; 228 if (kip->ngarbage == 0) 229 continue; 230 kip->ngarbage = 0; /* we will collect all garbages */ 231 for (i = 0; i < INSNS_PER_PAGE; i++) { 232 if (kip->slot_used[i] == SLOT_DIRTY && 233 collect_one_slot(kip, i)) 234 break; 235 } 236 } 237 kprobe_garbage_slots = 0; 238 return 0; 239 } 240 241 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty) 242 { 243 struct kprobe_insn_page *kip; 244 struct hlist_node *pos; 245 246 hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) { 247 if (kip->insns <= slot && 248 slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) { 249 int i = (slot - kip->insns) / MAX_INSN_SIZE; 250 if (dirty) { 251 kip->slot_used[i] = SLOT_DIRTY; 252 kip->ngarbage++; 253 } else { 254 collect_one_slot(kip, i); 255 } 256 break; 257 } 258 } 259 260 if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE) 261 collect_garbage_slots(); 262 } 263 #endif 264 265 /* We have preemption disabled.. so it is safe to use __ versions */ 266 static inline void set_kprobe_instance(struct kprobe *kp) 267 { 268 __get_cpu_var(kprobe_instance) = kp; 269 } 270 271 static inline void reset_kprobe_instance(void) 272 { 273 __get_cpu_var(kprobe_instance) = NULL; 274 } 275 276 /* 277 * This routine is called either: 278 * - under the kprobe_mutex - during kprobe_[un]register() 279 * OR 280 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 281 */ 282 struct kprobe __kprobes *get_kprobe(void *addr) 283 { 284 struct hlist_head *head; 285 struct hlist_node *node; 286 struct kprobe *p; 287 288 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 289 hlist_for_each_entry_rcu(p, node, head, hlist) { 290 if (p->addr == addr) 291 return p; 292 } 293 return NULL; 294 } 295 296 /* 297 * Aggregate handlers for multiple kprobes support - these handlers 298 * take care of invoking the individual kprobe handlers on p->list 299 */ 300 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 301 { 302 struct kprobe *kp; 303 304 list_for_each_entry_rcu(kp, &p->list, list) { 305 if (kp->pre_handler) { 306 set_kprobe_instance(kp); 307 if (kp->pre_handler(kp, regs)) 308 return 1; 309 } 310 reset_kprobe_instance(); 311 } 312 return 0; 313 } 314 315 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 316 unsigned long flags) 317 { 318 struct kprobe *kp; 319 320 list_for_each_entry_rcu(kp, &p->list, list) { 321 if (kp->post_handler) { 322 set_kprobe_instance(kp); 323 kp->post_handler(kp, regs, flags); 324 reset_kprobe_instance(); 325 } 326 } 327 } 328 329 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 330 int trapnr) 331 { 332 struct kprobe *cur = __get_cpu_var(kprobe_instance); 333 334 /* 335 * if we faulted "during" the execution of a user specified 336 * probe handler, invoke just that probe's fault handler 337 */ 338 if (cur && cur->fault_handler) { 339 if (cur->fault_handler(cur, regs, trapnr)) 340 return 1; 341 } 342 return 0; 343 } 344 345 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs) 346 { 347 struct kprobe *cur = __get_cpu_var(kprobe_instance); 348 int ret = 0; 349 350 if (cur && cur->break_handler) { 351 if (cur->break_handler(cur, regs)) 352 ret = 1; 353 } 354 reset_kprobe_instance(); 355 return ret; 356 } 357 358 /* Walks the list and increments nmissed count for multiprobe case */ 359 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p) 360 { 361 struct kprobe *kp; 362 if (p->pre_handler != aggr_pre_handler) { 363 p->nmissed++; 364 } else { 365 list_for_each_entry_rcu(kp, &p->list, list) 366 kp->nmissed++; 367 } 368 return; 369 } 370 371 /* Called with kretprobe_lock held */ 372 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri, 373 struct hlist_head *head) 374 { 375 /* remove rp inst off the rprobe_inst_table */ 376 hlist_del(&ri->hlist); 377 if (ri->rp) { 378 /* remove rp inst off the used list */ 379 hlist_del(&ri->uflist); 380 /* put rp inst back onto the free list */ 381 INIT_HLIST_NODE(&ri->uflist); 382 hlist_add_head(&ri->uflist, &ri->rp->free_instances); 383 } else 384 /* Unregistering */ 385 hlist_add_head(&ri->hlist, head); 386 } 387 388 struct hlist_head __kprobes *kretprobe_inst_table_head(struct task_struct *tsk) 389 { 390 return &kretprobe_inst_table[hash_ptr(tsk, KPROBE_HASH_BITS)]; 391 } 392 393 /* 394 * This function is called from finish_task_switch when task tk becomes dead, 395 * so that we can recycle any function-return probe instances associated 396 * with this task. These left over instances represent probed functions 397 * that have been called but will never return. 398 */ 399 void __kprobes kprobe_flush_task(struct task_struct *tk) 400 { 401 struct kretprobe_instance *ri; 402 struct hlist_head *head, empty_rp; 403 struct hlist_node *node, *tmp; 404 unsigned long flags = 0; 405 406 INIT_HLIST_HEAD(&empty_rp); 407 spin_lock_irqsave(&kretprobe_lock, flags); 408 head = kretprobe_inst_table_head(tk); 409 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 410 if (ri->task == tk) 411 recycle_rp_inst(ri, &empty_rp); 412 } 413 spin_unlock_irqrestore(&kretprobe_lock, flags); 414 415 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { 416 hlist_del(&ri->hlist); 417 kfree(ri); 418 } 419 } 420 421 static inline void free_rp_inst(struct kretprobe *rp) 422 { 423 struct kretprobe_instance *ri; 424 struct hlist_node *pos, *next; 425 426 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, uflist) { 427 hlist_del(&ri->uflist); 428 kfree(ri); 429 } 430 } 431 432 static void __kprobes cleanup_rp_inst(struct kretprobe *rp) 433 { 434 unsigned long flags; 435 struct kretprobe_instance *ri; 436 struct hlist_node *pos, *next; 437 /* No race here */ 438 spin_lock_irqsave(&kretprobe_lock, flags); 439 hlist_for_each_entry_safe(ri, pos, next, &rp->used_instances, uflist) { 440 ri->rp = NULL; 441 hlist_del(&ri->uflist); 442 } 443 spin_unlock_irqrestore(&kretprobe_lock, flags); 444 free_rp_inst(rp); 445 } 446 447 /* 448 * Keep all fields in the kprobe consistent 449 */ 450 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p) 451 { 452 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t)); 453 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn)); 454 } 455 456 /* 457 * Add the new probe to old_p->list. Fail if this is the 458 * second jprobe at the address - two jprobes can't coexist 459 */ 460 static int __kprobes add_new_kprobe(struct kprobe *old_p, struct kprobe *p) 461 { 462 if (p->break_handler) { 463 if (old_p->break_handler) 464 return -EEXIST; 465 list_add_tail_rcu(&p->list, &old_p->list); 466 old_p->break_handler = aggr_break_handler; 467 } else 468 list_add_rcu(&p->list, &old_p->list); 469 if (p->post_handler && !old_p->post_handler) 470 old_p->post_handler = aggr_post_handler; 471 return 0; 472 } 473 474 /* 475 * Fill in the required fields of the "manager kprobe". Replace the 476 * earlier kprobe in the hlist with the manager kprobe 477 */ 478 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 479 { 480 copy_kprobe(p, ap); 481 flush_insn_slot(ap); 482 ap->addr = p->addr; 483 ap->pre_handler = aggr_pre_handler; 484 ap->fault_handler = aggr_fault_handler; 485 if (p->post_handler) 486 ap->post_handler = aggr_post_handler; 487 if (p->break_handler) 488 ap->break_handler = aggr_break_handler; 489 490 INIT_LIST_HEAD(&ap->list); 491 list_add_rcu(&p->list, &ap->list); 492 493 hlist_replace_rcu(&p->hlist, &ap->hlist); 494 } 495 496 /* 497 * This is the second or subsequent kprobe at the address - handle 498 * the intricacies 499 */ 500 static int __kprobes register_aggr_kprobe(struct kprobe *old_p, 501 struct kprobe *p) 502 { 503 int ret = 0; 504 struct kprobe *ap; 505 506 if (old_p->pre_handler == aggr_pre_handler) { 507 copy_kprobe(old_p, p); 508 ret = add_new_kprobe(old_p, p); 509 } else { 510 ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL); 511 if (!ap) 512 return -ENOMEM; 513 add_aggr_kprobe(ap, old_p); 514 copy_kprobe(ap, p); 515 ret = add_new_kprobe(ap, p); 516 } 517 return ret; 518 } 519 520 static int __kprobes in_kprobes_functions(unsigned long addr) 521 { 522 struct kprobe_blackpoint *kb; 523 524 if (addr >= (unsigned long)__kprobes_text_start && 525 addr < (unsigned long)__kprobes_text_end) 526 return -EINVAL; 527 /* 528 * If there exists a kprobe_blacklist, verify and 529 * fail any probe registration in the prohibited area 530 */ 531 for (kb = kprobe_blacklist; kb->name != NULL; kb++) { 532 if (kb->start_addr) { 533 if (addr >= kb->start_addr && 534 addr < (kb->start_addr + kb->range)) 535 return -EINVAL; 536 } 537 } 538 return 0; 539 } 540 541 /* 542 * If we have a symbol_name argument, look it up and add the offset field 543 * to it. This way, we can specify a relative address to a symbol. 544 */ 545 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p) 546 { 547 kprobe_opcode_t *addr = p->addr; 548 if (p->symbol_name) { 549 if (addr) 550 return NULL; 551 kprobe_lookup_name(p->symbol_name, addr); 552 } 553 554 if (!addr) 555 return NULL; 556 return (kprobe_opcode_t *)(((char *)addr) + p->offset); 557 } 558 559 static int __kprobes __register_kprobe(struct kprobe *p, 560 unsigned long called_from) 561 { 562 int ret = 0; 563 struct kprobe *old_p; 564 struct module *probed_mod; 565 kprobe_opcode_t *addr; 566 567 addr = kprobe_addr(p); 568 if (!addr) 569 return -EINVAL; 570 p->addr = addr; 571 572 if (!kernel_text_address((unsigned long) p->addr) || 573 in_kprobes_functions((unsigned long) p->addr)) 574 return -EINVAL; 575 576 p->mod_refcounted = 0; 577 578 /* 579 * Check if are we probing a module. 580 */ 581 probed_mod = module_text_address((unsigned long) p->addr); 582 if (probed_mod) { 583 struct module *calling_mod = module_text_address(called_from); 584 /* 585 * We must allow modules to probe themself and in this case 586 * avoid incrementing the module refcount, so as to allow 587 * unloading of self probing modules. 588 */ 589 if (calling_mod && calling_mod != probed_mod) { 590 if (unlikely(!try_module_get(probed_mod))) 591 return -EINVAL; 592 p->mod_refcounted = 1; 593 } else 594 probed_mod = NULL; 595 } 596 597 p->nmissed = 0; 598 INIT_LIST_HEAD(&p->list); 599 mutex_lock(&kprobe_mutex); 600 old_p = get_kprobe(p->addr); 601 if (old_p) { 602 ret = register_aggr_kprobe(old_p, p); 603 goto out; 604 } 605 606 ret = arch_prepare_kprobe(p); 607 if (ret) 608 goto out; 609 610 INIT_HLIST_NODE(&p->hlist); 611 hlist_add_head_rcu(&p->hlist, 612 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 613 614 if (kprobe_enabled) 615 arch_arm_kprobe(p); 616 617 out: 618 mutex_unlock(&kprobe_mutex); 619 620 if (ret && probed_mod) 621 module_put(probed_mod); 622 return ret; 623 } 624 625 /* 626 * Unregister a kprobe without a scheduler synchronization. 627 */ 628 static int __kprobes __unregister_kprobe_top(struct kprobe *p) 629 { 630 struct kprobe *old_p, *list_p; 631 632 old_p = get_kprobe(p->addr); 633 if (unlikely(!old_p)) 634 return -EINVAL; 635 636 if (p != old_p) { 637 list_for_each_entry_rcu(list_p, &old_p->list, list) 638 if (list_p == p) 639 /* kprobe p is a valid probe */ 640 goto valid_p; 641 return -EINVAL; 642 } 643 valid_p: 644 if (old_p == p || 645 (old_p->pre_handler == aggr_pre_handler && 646 list_is_singular(&old_p->list))) { 647 /* 648 * Only probe on the hash list. Disarm only if kprobes are 649 * enabled - otherwise, the breakpoint would already have 650 * been removed. We save on flushing icache. 651 */ 652 if (kprobe_enabled) 653 arch_disarm_kprobe(p); 654 hlist_del_rcu(&old_p->hlist); 655 } else { 656 if (p->break_handler) 657 old_p->break_handler = NULL; 658 if (p->post_handler) { 659 list_for_each_entry_rcu(list_p, &old_p->list, list) { 660 if ((list_p != p) && (list_p->post_handler)) 661 goto noclean; 662 } 663 old_p->post_handler = NULL; 664 } 665 noclean: 666 list_del_rcu(&p->list); 667 } 668 return 0; 669 } 670 671 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p) 672 { 673 struct module *mod; 674 struct kprobe *old_p; 675 676 if (p->mod_refcounted) { 677 mod = module_text_address((unsigned long)p->addr); 678 if (mod) 679 module_put(mod); 680 } 681 682 if (list_empty(&p->list) || list_is_singular(&p->list)) { 683 if (!list_empty(&p->list)) { 684 /* "p" is the last child of an aggr_kprobe */ 685 old_p = list_entry(p->list.next, struct kprobe, list); 686 list_del(&p->list); 687 kfree(old_p); 688 } 689 arch_remove_kprobe(p); 690 } 691 } 692 693 static int __register_kprobes(struct kprobe **kps, int num, 694 unsigned long called_from) 695 { 696 int i, ret = 0; 697 698 if (num <= 0) 699 return -EINVAL; 700 for (i = 0; i < num; i++) { 701 ret = __register_kprobe(kps[i], called_from); 702 if (ret < 0) { 703 if (i > 0) 704 unregister_kprobes(kps, i); 705 break; 706 } 707 } 708 return ret; 709 } 710 711 /* 712 * Registration and unregistration functions for kprobe. 713 */ 714 int __kprobes register_kprobe(struct kprobe *p) 715 { 716 return __register_kprobes(&p, 1, 717 (unsigned long)__builtin_return_address(0)); 718 } 719 720 void __kprobes unregister_kprobe(struct kprobe *p) 721 { 722 unregister_kprobes(&p, 1); 723 } 724 725 int __kprobes register_kprobes(struct kprobe **kps, int num) 726 { 727 return __register_kprobes(kps, num, 728 (unsigned long)__builtin_return_address(0)); 729 } 730 731 void __kprobes unregister_kprobes(struct kprobe **kps, int num) 732 { 733 int i; 734 735 if (num <= 0) 736 return; 737 mutex_lock(&kprobe_mutex); 738 for (i = 0; i < num; i++) 739 if (__unregister_kprobe_top(kps[i]) < 0) 740 kps[i]->addr = NULL; 741 mutex_unlock(&kprobe_mutex); 742 743 synchronize_sched(); 744 for (i = 0; i < num; i++) 745 if (kps[i]->addr) 746 __unregister_kprobe_bottom(kps[i]); 747 } 748 749 static struct notifier_block kprobe_exceptions_nb = { 750 .notifier_call = kprobe_exceptions_notify, 751 .priority = 0x7fffffff /* we need to be notified first */ 752 }; 753 754 unsigned long __weak arch_deref_entry_point(void *entry) 755 { 756 return (unsigned long)entry; 757 } 758 759 static int __register_jprobes(struct jprobe **jps, int num, 760 unsigned long called_from) 761 { 762 struct jprobe *jp; 763 int ret = 0, i; 764 765 if (num <= 0) 766 return -EINVAL; 767 for (i = 0; i < num; i++) { 768 unsigned long addr; 769 jp = jps[i]; 770 addr = arch_deref_entry_point(jp->entry); 771 772 if (!kernel_text_address(addr)) 773 ret = -EINVAL; 774 else { 775 /* Todo: Verify probepoint is a function entry point */ 776 jp->kp.pre_handler = setjmp_pre_handler; 777 jp->kp.break_handler = longjmp_break_handler; 778 ret = __register_kprobe(&jp->kp, called_from); 779 } 780 if (ret < 0) { 781 if (i > 0) 782 unregister_jprobes(jps, i); 783 break; 784 } 785 } 786 return ret; 787 } 788 789 int __kprobes register_jprobe(struct jprobe *jp) 790 { 791 return __register_jprobes(&jp, 1, 792 (unsigned long)__builtin_return_address(0)); 793 } 794 795 void __kprobes unregister_jprobe(struct jprobe *jp) 796 { 797 unregister_jprobes(&jp, 1); 798 } 799 800 int __kprobes register_jprobes(struct jprobe **jps, int num) 801 { 802 return __register_jprobes(jps, num, 803 (unsigned long)__builtin_return_address(0)); 804 } 805 806 void __kprobes unregister_jprobes(struct jprobe **jps, int num) 807 { 808 int i; 809 810 if (num <= 0) 811 return; 812 mutex_lock(&kprobe_mutex); 813 for (i = 0; i < num; i++) 814 if (__unregister_kprobe_top(&jps[i]->kp) < 0) 815 jps[i]->kp.addr = NULL; 816 mutex_unlock(&kprobe_mutex); 817 818 synchronize_sched(); 819 for (i = 0; i < num; i++) { 820 if (jps[i]->kp.addr) 821 __unregister_kprobe_bottom(&jps[i]->kp); 822 } 823 } 824 825 #ifdef CONFIG_KRETPROBES 826 /* 827 * This kprobe pre_handler is registered with every kretprobe. When probe 828 * hits it will set up the return probe. 829 */ 830 static int __kprobes pre_handler_kretprobe(struct kprobe *p, 831 struct pt_regs *regs) 832 { 833 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 834 unsigned long flags = 0; 835 836 /*TODO: consider to only swap the RA after the last pre_handler fired */ 837 spin_lock_irqsave(&kretprobe_lock, flags); 838 if (!hlist_empty(&rp->free_instances)) { 839 struct kretprobe_instance *ri; 840 841 ri = hlist_entry(rp->free_instances.first, 842 struct kretprobe_instance, uflist); 843 ri->rp = rp; 844 ri->task = current; 845 846 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 847 spin_unlock_irqrestore(&kretprobe_lock, flags); 848 return 0; 849 } 850 851 arch_prepare_kretprobe(ri, regs); 852 853 /* XXX(hch): why is there no hlist_move_head? */ 854 hlist_del(&ri->uflist); 855 hlist_add_head(&ri->uflist, &ri->rp->used_instances); 856 hlist_add_head(&ri->hlist, kretprobe_inst_table_head(ri->task)); 857 } else 858 rp->nmissed++; 859 spin_unlock_irqrestore(&kretprobe_lock, flags); 860 return 0; 861 } 862 863 static int __kprobes __register_kretprobe(struct kretprobe *rp, 864 unsigned long called_from) 865 { 866 int ret = 0; 867 struct kretprobe_instance *inst; 868 int i; 869 void *addr; 870 871 if (kretprobe_blacklist_size) { 872 addr = kprobe_addr(&rp->kp); 873 if (!addr) 874 return -EINVAL; 875 876 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 877 if (kretprobe_blacklist[i].addr == addr) 878 return -EINVAL; 879 } 880 } 881 882 rp->kp.pre_handler = pre_handler_kretprobe; 883 rp->kp.post_handler = NULL; 884 rp->kp.fault_handler = NULL; 885 rp->kp.break_handler = NULL; 886 887 /* Pre-allocate memory for max kretprobe instances */ 888 if (rp->maxactive <= 0) { 889 #ifdef CONFIG_PREEMPT 890 rp->maxactive = max(10, 2 * NR_CPUS); 891 #else 892 rp->maxactive = NR_CPUS; 893 #endif 894 } 895 INIT_HLIST_HEAD(&rp->used_instances); 896 INIT_HLIST_HEAD(&rp->free_instances); 897 for (i = 0; i < rp->maxactive; i++) { 898 inst = kmalloc(sizeof(struct kretprobe_instance) + 899 rp->data_size, GFP_KERNEL); 900 if (inst == NULL) { 901 free_rp_inst(rp); 902 return -ENOMEM; 903 } 904 INIT_HLIST_NODE(&inst->uflist); 905 hlist_add_head(&inst->uflist, &rp->free_instances); 906 } 907 908 rp->nmissed = 0; 909 /* Establish function entry probe point */ 910 ret = __register_kprobe(&rp->kp, called_from); 911 if (ret != 0) 912 free_rp_inst(rp); 913 return ret; 914 } 915 916 static int __register_kretprobes(struct kretprobe **rps, int num, 917 unsigned long called_from) 918 { 919 int ret = 0, i; 920 921 if (num <= 0) 922 return -EINVAL; 923 for (i = 0; i < num; i++) { 924 ret = __register_kretprobe(rps[i], called_from); 925 if (ret < 0) { 926 if (i > 0) 927 unregister_kretprobes(rps, i); 928 break; 929 } 930 } 931 return ret; 932 } 933 934 int __kprobes register_kretprobe(struct kretprobe *rp) 935 { 936 return __register_kretprobes(&rp, 1, 937 (unsigned long)__builtin_return_address(0)); 938 } 939 940 void __kprobes unregister_kretprobe(struct kretprobe *rp) 941 { 942 unregister_kretprobes(&rp, 1); 943 } 944 945 int __kprobes register_kretprobes(struct kretprobe **rps, int num) 946 { 947 return __register_kretprobes(rps, num, 948 (unsigned long)__builtin_return_address(0)); 949 } 950 951 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) 952 { 953 int i; 954 955 if (num <= 0) 956 return; 957 mutex_lock(&kprobe_mutex); 958 for (i = 0; i < num; i++) 959 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 960 rps[i]->kp.addr = NULL; 961 mutex_unlock(&kprobe_mutex); 962 963 synchronize_sched(); 964 for (i = 0; i < num; i++) { 965 if (rps[i]->kp.addr) { 966 __unregister_kprobe_bottom(&rps[i]->kp); 967 cleanup_rp_inst(rps[i]); 968 } 969 } 970 } 971 972 #else /* CONFIG_KRETPROBES */ 973 int __kprobes register_kretprobe(struct kretprobe *rp) 974 { 975 return -ENOSYS; 976 } 977 978 int __kprobes register_kretprobes(struct kretprobe **rps, int num) 979 { 980 return -ENOSYS; 981 } 982 void __kprobes unregister_kretprobe(struct kretprobe *rp) 983 { 984 } 985 986 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) 987 { 988 } 989 990 static int __kprobes pre_handler_kretprobe(struct kprobe *p, 991 struct pt_regs *regs) 992 { 993 return 0; 994 } 995 996 #endif /* CONFIG_KRETPROBES */ 997 998 static int __init init_kprobes(void) 999 { 1000 int i, err = 0; 1001 unsigned long offset = 0, size = 0; 1002 char *modname, namebuf[128]; 1003 const char *symbol_name; 1004 void *addr; 1005 struct kprobe_blackpoint *kb; 1006 1007 /* FIXME allocate the probe table, currently defined statically */ 1008 /* initialize all list heads */ 1009 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1010 INIT_HLIST_HEAD(&kprobe_table[i]); 1011 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 1012 } 1013 1014 /* 1015 * Lookup and populate the kprobe_blacklist. 1016 * 1017 * Unlike the kretprobe blacklist, we'll need to determine 1018 * the range of addresses that belong to the said functions, 1019 * since a kprobe need not necessarily be at the beginning 1020 * of a function. 1021 */ 1022 for (kb = kprobe_blacklist; kb->name != NULL; kb++) { 1023 kprobe_lookup_name(kb->name, addr); 1024 if (!addr) 1025 continue; 1026 1027 kb->start_addr = (unsigned long)addr; 1028 symbol_name = kallsyms_lookup(kb->start_addr, 1029 &size, &offset, &modname, namebuf); 1030 if (!symbol_name) 1031 kb->range = 0; 1032 else 1033 kb->range = size; 1034 } 1035 1036 if (kretprobe_blacklist_size) { 1037 /* lookup the function address from its name */ 1038 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1039 kprobe_lookup_name(kretprobe_blacklist[i].name, 1040 kretprobe_blacklist[i].addr); 1041 if (!kretprobe_blacklist[i].addr) 1042 printk("kretprobe: lookup failed: %s\n", 1043 kretprobe_blacklist[i].name); 1044 } 1045 } 1046 1047 /* By default, kprobes are enabled */ 1048 kprobe_enabled = true; 1049 1050 err = arch_init_kprobes(); 1051 if (!err) 1052 err = register_die_notifier(&kprobe_exceptions_nb); 1053 1054 if (!err) 1055 init_test_probes(); 1056 return err; 1057 } 1058 1059 #ifdef CONFIG_DEBUG_FS 1060 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p, 1061 const char *sym, int offset,char *modname) 1062 { 1063 char *kprobe_type; 1064 1065 if (p->pre_handler == pre_handler_kretprobe) 1066 kprobe_type = "r"; 1067 else if (p->pre_handler == setjmp_pre_handler) 1068 kprobe_type = "j"; 1069 else 1070 kprobe_type = "k"; 1071 if (sym) 1072 seq_printf(pi, "%p %s %s+0x%x %s\n", p->addr, kprobe_type, 1073 sym, offset, (modname ? modname : " ")); 1074 else 1075 seq_printf(pi, "%p %s %p\n", p->addr, kprobe_type, p->addr); 1076 } 1077 1078 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos) 1079 { 1080 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 1081 } 1082 1083 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 1084 { 1085 (*pos)++; 1086 if (*pos >= KPROBE_TABLE_SIZE) 1087 return NULL; 1088 return pos; 1089 } 1090 1091 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v) 1092 { 1093 /* Nothing to do */ 1094 } 1095 1096 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v) 1097 { 1098 struct hlist_head *head; 1099 struct hlist_node *node; 1100 struct kprobe *p, *kp; 1101 const char *sym = NULL; 1102 unsigned int i = *(loff_t *) v; 1103 unsigned long offset = 0; 1104 char *modname, namebuf[128]; 1105 1106 head = &kprobe_table[i]; 1107 preempt_disable(); 1108 hlist_for_each_entry_rcu(p, node, head, hlist) { 1109 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 1110 &offset, &modname, namebuf); 1111 if (p->pre_handler == aggr_pre_handler) { 1112 list_for_each_entry_rcu(kp, &p->list, list) 1113 report_probe(pi, kp, sym, offset, modname); 1114 } else 1115 report_probe(pi, p, sym, offset, modname); 1116 } 1117 preempt_enable(); 1118 return 0; 1119 } 1120 1121 static struct seq_operations kprobes_seq_ops = { 1122 .start = kprobe_seq_start, 1123 .next = kprobe_seq_next, 1124 .stop = kprobe_seq_stop, 1125 .show = show_kprobe_addr 1126 }; 1127 1128 static int __kprobes kprobes_open(struct inode *inode, struct file *filp) 1129 { 1130 return seq_open(filp, &kprobes_seq_ops); 1131 } 1132 1133 static struct file_operations debugfs_kprobes_operations = { 1134 .open = kprobes_open, 1135 .read = seq_read, 1136 .llseek = seq_lseek, 1137 .release = seq_release, 1138 }; 1139 1140 static void __kprobes enable_all_kprobes(void) 1141 { 1142 struct hlist_head *head; 1143 struct hlist_node *node; 1144 struct kprobe *p; 1145 unsigned int i; 1146 1147 mutex_lock(&kprobe_mutex); 1148 1149 /* If kprobes are already enabled, just return */ 1150 if (kprobe_enabled) 1151 goto already_enabled; 1152 1153 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1154 head = &kprobe_table[i]; 1155 hlist_for_each_entry_rcu(p, node, head, hlist) 1156 arch_arm_kprobe(p); 1157 } 1158 1159 kprobe_enabled = true; 1160 printk(KERN_INFO "Kprobes globally enabled\n"); 1161 1162 already_enabled: 1163 mutex_unlock(&kprobe_mutex); 1164 return; 1165 } 1166 1167 static void __kprobes disable_all_kprobes(void) 1168 { 1169 struct hlist_head *head; 1170 struct hlist_node *node; 1171 struct kprobe *p; 1172 unsigned int i; 1173 1174 mutex_lock(&kprobe_mutex); 1175 1176 /* If kprobes are already disabled, just return */ 1177 if (!kprobe_enabled) 1178 goto already_disabled; 1179 1180 kprobe_enabled = false; 1181 printk(KERN_INFO "Kprobes globally disabled\n"); 1182 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1183 head = &kprobe_table[i]; 1184 hlist_for_each_entry_rcu(p, node, head, hlist) { 1185 if (!arch_trampoline_kprobe(p)) 1186 arch_disarm_kprobe(p); 1187 } 1188 } 1189 1190 mutex_unlock(&kprobe_mutex); 1191 /* Allow all currently running kprobes to complete */ 1192 synchronize_sched(); 1193 return; 1194 1195 already_disabled: 1196 mutex_unlock(&kprobe_mutex); 1197 return; 1198 } 1199 1200 /* 1201 * XXX: The debugfs bool file interface doesn't allow for callbacks 1202 * when the bool state is switched. We can reuse that facility when 1203 * available 1204 */ 1205 static ssize_t read_enabled_file_bool(struct file *file, 1206 char __user *user_buf, size_t count, loff_t *ppos) 1207 { 1208 char buf[3]; 1209 1210 if (kprobe_enabled) 1211 buf[0] = '1'; 1212 else 1213 buf[0] = '0'; 1214 buf[1] = '\n'; 1215 buf[2] = 0x00; 1216 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 1217 } 1218 1219 static ssize_t write_enabled_file_bool(struct file *file, 1220 const char __user *user_buf, size_t count, loff_t *ppos) 1221 { 1222 char buf[32]; 1223 int buf_size; 1224 1225 buf_size = min(count, (sizeof(buf)-1)); 1226 if (copy_from_user(buf, user_buf, buf_size)) 1227 return -EFAULT; 1228 1229 switch (buf[0]) { 1230 case 'y': 1231 case 'Y': 1232 case '1': 1233 enable_all_kprobes(); 1234 break; 1235 case 'n': 1236 case 'N': 1237 case '0': 1238 disable_all_kprobes(); 1239 break; 1240 } 1241 1242 return count; 1243 } 1244 1245 static struct file_operations fops_kp = { 1246 .read = read_enabled_file_bool, 1247 .write = write_enabled_file_bool, 1248 }; 1249 1250 static int __kprobes debugfs_kprobe_init(void) 1251 { 1252 struct dentry *dir, *file; 1253 unsigned int value = 1; 1254 1255 dir = debugfs_create_dir("kprobes", NULL); 1256 if (!dir) 1257 return -ENOMEM; 1258 1259 file = debugfs_create_file("list", 0444, dir, NULL, 1260 &debugfs_kprobes_operations); 1261 if (!file) { 1262 debugfs_remove(dir); 1263 return -ENOMEM; 1264 } 1265 1266 file = debugfs_create_file("enabled", 0600, dir, 1267 &value, &fops_kp); 1268 if (!file) { 1269 debugfs_remove(dir); 1270 return -ENOMEM; 1271 } 1272 1273 return 0; 1274 } 1275 1276 late_initcall(debugfs_kprobe_init); 1277 #endif /* CONFIG_DEBUG_FS */ 1278 1279 module_init(init_kprobes); 1280 1281 EXPORT_SYMBOL_GPL(register_kprobe); 1282 EXPORT_SYMBOL_GPL(unregister_kprobe); 1283 EXPORT_SYMBOL_GPL(register_kprobes); 1284 EXPORT_SYMBOL_GPL(unregister_kprobes); 1285 EXPORT_SYMBOL_GPL(register_jprobe); 1286 EXPORT_SYMBOL_GPL(unregister_jprobe); 1287 EXPORT_SYMBOL_GPL(register_jprobes); 1288 EXPORT_SYMBOL_GPL(unregister_jprobes); 1289 #ifdef CONFIG_KPROBES 1290 EXPORT_SYMBOL_GPL(jprobe_return); 1291 #endif 1292 1293 #ifdef CONFIG_KPROBES 1294 EXPORT_SYMBOL_GPL(register_kretprobe); 1295 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1296 EXPORT_SYMBOL_GPL(register_kretprobes); 1297 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1298 #endif 1299