xref: /openbmc/linux/kernel/kprobes.c (revision 530e7a660fb795452357b36cce26b839a9a187a9)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51 
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56 
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 
60 
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64 
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67 
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74 
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 					unsigned int __unused)
77 {
78 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80 
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83 	return &(kretprobe_table_locks[hash].lock);
84 }
85 
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88 
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91  * kprobe->ainsn.insn points to the copy of the instruction to be
92  * single-stepped. x86_64, POWER4 and above have no-exec support and
93  * stepping on the instruction on a vmalloced/kmalloced/data page
94  * is a recipe for disaster
95  */
96 struct kprobe_insn_page {
97 	struct list_head list;
98 	kprobe_opcode_t *insns;		/* Page of instruction slots */
99 	struct kprobe_insn_cache *cache;
100 	int nused;
101 	int ngarbage;
102 	char slot_used[];
103 };
104 
105 #define KPROBE_INSN_PAGE_SIZE(slots)			\
106 	(offsetof(struct kprobe_insn_page, slot_used) +	\
107 	 (sizeof(char) * (slots)))
108 
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113 
114 enum kprobe_slot_state {
115 	SLOT_CLEAN = 0,
116 	SLOT_DIRTY = 1,
117 	SLOT_USED = 2,
118 };
119 
120 void __weak *alloc_insn_page(void)
121 {
122 	return module_alloc(PAGE_SIZE);
123 }
124 
125 void __weak free_insn_page(void *page)
126 {
127 	module_memfree(page);
128 }
129 
130 struct kprobe_insn_cache kprobe_insn_slots = {
131 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 	.alloc = alloc_insn_page,
133 	.free = free_insn_page,
134 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 	.insn_size = MAX_INSN_SIZE,
136 	.nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139 
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146 	struct kprobe_insn_page *kip;
147 	kprobe_opcode_t *slot = NULL;
148 
149 	/* Since the slot array is not protected by rcu, we need a mutex */
150 	mutex_lock(&c->mutex);
151  retry:
152 	rcu_read_lock();
153 	list_for_each_entry_rcu(kip, &c->pages, list) {
154 		if (kip->nused < slots_per_page(c)) {
155 			int i;
156 			for (i = 0; i < slots_per_page(c); i++) {
157 				if (kip->slot_used[i] == SLOT_CLEAN) {
158 					kip->slot_used[i] = SLOT_USED;
159 					kip->nused++;
160 					slot = kip->insns + (i * c->insn_size);
161 					rcu_read_unlock();
162 					goto out;
163 				}
164 			}
165 			/* kip->nused is broken. Fix it. */
166 			kip->nused = slots_per_page(c);
167 			WARN_ON(1);
168 		}
169 	}
170 	rcu_read_unlock();
171 
172 	/* If there are any garbage slots, collect it and try again. */
173 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 		goto retry;
175 
176 	/* All out of space.  Need to allocate a new page. */
177 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 	if (!kip)
179 		goto out;
180 
181 	/*
182 	 * Use module_alloc so this page is within +/- 2GB of where the
183 	 * kernel image and loaded module images reside. This is required
184 	 * so x86_64 can correctly handle the %rip-relative fixups.
185 	 */
186 	kip->insns = c->alloc();
187 	if (!kip->insns) {
188 		kfree(kip);
189 		goto out;
190 	}
191 	INIT_LIST_HEAD(&kip->list);
192 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 	kip->slot_used[0] = SLOT_USED;
194 	kip->nused = 1;
195 	kip->ngarbage = 0;
196 	kip->cache = c;
197 	list_add_rcu(&kip->list, &c->pages);
198 	slot = kip->insns;
199 out:
200 	mutex_unlock(&c->mutex);
201 	return slot;
202 }
203 
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207 	kip->slot_used[idx] = SLOT_CLEAN;
208 	kip->nused--;
209 	if (kip->nused == 0) {
210 		/*
211 		 * Page is no longer in use.  Free it unless
212 		 * it's the last one.  We keep the last one
213 		 * so as not to have to set it up again the
214 		 * next time somebody inserts a probe.
215 		 */
216 		if (!list_is_singular(&kip->list)) {
217 			list_del_rcu(&kip->list);
218 			synchronize_rcu();
219 			kip->cache->free(kip->insns);
220 			kfree(kip);
221 		}
222 		return 1;
223 	}
224 	return 0;
225 }
226 
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229 	struct kprobe_insn_page *kip, *next;
230 
231 	/* Ensure no-one is interrupted on the garbages */
232 	synchronize_sched();
233 
234 	list_for_each_entry_safe(kip, next, &c->pages, list) {
235 		int i;
236 		if (kip->ngarbage == 0)
237 			continue;
238 		kip->ngarbage = 0;	/* we will collect all garbages */
239 		for (i = 0; i < slots_per_page(c); i++) {
240 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 				break;
242 		}
243 	}
244 	c->nr_garbage = 0;
245 	return 0;
246 }
247 
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249 		      kprobe_opcode_t *slot, int dirty)
250 {
251 	struct kprobe_insn_page *kip;
252 	long idx;
253 
254 	mutex_lock(&c->mutex);
255 	rcu_read_lock();
256 	list_for_each_entry_rcu(kip, &c->pages, list) {
257 		idx = ((long)slot - (long)kip->insns) /
258 			(c->insn_size * sizeof(kprobe_opcode_t));
259 		if (idx >= 0 && idx < slots_per_page(c))
260 			goto out;
261 	}
262 	/* Could not find this slot. */
263 	WARN_ON(1);
264 	kip = NULL;
265 out:
266 	rcu_read_unlock();
267 	/* Mark and sweep: this may sleep */
268 	if (kip) {
269 		/* Check double free */
270 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 		if (dirty) {
272 			kip->slot_used[idx] = SLOT_DIRTY;
273 			kip->ngarbage++;
274 			if (++c->nr_garbage > slots_per_page(c))
275 				collect_garbage_slots(c);
276 		} else {
277 			collect_one_slot(kip, idx);
278 		}
279 	}
280 	mutex_unlock(&c->mutex);
281 }
282 
283 /*
284  * Check given address is on the page of kprobe instruction slots.
285  * This will be used for checking whether the address on a stack
286  * is on a text area or not.
287  */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290 	struct kprobe_insn_page *kip;
291 	bool ret = false;
292 
293 	rcu_read_lock();
294 	list_for_each_entry_rcu(kip, &c->pages, list) {
295 		if (addr >= (unsigned long)kip->insns &&
296 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 			ret = true;
298 			break;
299 		}
300 	}
301 	rcu_read_unlock();
302 
303 	return ret;
304 }
305 
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 	.alloc = alloc_insn_page,
311 	.free = free_insn_page,
312 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 	/* .insn_size is initialized later */
314 	.nr_garbage = 0,
315 };
316 #endif
317 #endif
318 
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322 	__this_cpu_write(kprobe_instance, kp);
323 }
324 
325 static inline void reset_kprobe_instance(void)
326 {
327 	__this_cpu_write(kprobe_instance, NULL);
328 }
329 
330 /*
331  * This routine is called either:
332  * 	- under the kprobe_mutex - during kprobe_[un]register()
333  * 				OR
334  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
335  */
336 struct kprobe *get_kprobe(void *addr)
337 {
338 	struct hlist_head *head;
339 	struct kprobe *p;
340 
341 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 	hlist_for_each_entry_rcu(p, head, hlist) {
343 		if (p->addr == addr)
344 			return p;
345 	}
346 
347 	return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350 
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352 
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356 	return p->pre_handler == aggr_pre_handler;
357 }
358 
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 	       list_empty(&p->list);
364 }
365 
366 /*
367  * Keep all fields in the kprobe consistent
368  */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374 
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378 
379 /*
380  * Call all pre_handler on the list, but ignores its return value.
381  * This must be called from arch-dep optimized caller.
382  */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385 	struct kprobe *kp;
386 
387 	list_for_each_entry_rcu(kp, &p->list, list) {
388 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 			set_kprobe_instance(kp);
390 			kp->pre_handler(kp, regs);
391 		}
392 		reset_kprobe_instance();
393 	}
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396 
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400 	struct optimized_kprobe *op;
401 
402 	op = container_of(p, struct optimized_kprobe, kp);
403 	arch_remove_optimized_kprobe(op);
404 	arch_remove_kprobe(p);
405 	kfree(op);
406 }
407 
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411 	struct optimized_kprobe *op;
412 
413 	if (kprobe_aggrprobe(p)) {
414 		op = container_of(p, struct optimized_kprobe, kp);
415 		return arch_prepared_optinsn(&op->optinsn);
416 	}
417 
418 	return 0;
419 }
420 
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424 	struct optimized_kprobe *op;
425 
426 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 	if (!kprobe_aggrprobe(p))
428 		return kprobe_disabled(p);
429 
430 	op = container_of(p, struct optimized_kprobe, kp);
431 
432 	return kprobe_disabled(p) && list_empty(&op->list);
433 }
434 
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438 	struct optimized_kprobe *op;
439 
440 	if (kprobe_aggrprobe(p)) {
441 		op = container_of(p, struct optimized_kprobe, kp);
442 		if (!list_empty(&op->list))
443 			return 1;
444 	}
445 	return 0;
446 }
447 
448 /*
449  * Return an optimized kprobe whose optimizing code replaces
450  * instructions including addr (exclude breakpoint).
451  */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454 	int i;
455 	struct kprobe *p = NULL;
456 	struct optimized_kprobe *op;
457 
458 	/* Don't check i == 0, since that is a breakpoint case. */
459 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 		p = get_kprobe((void *)(addr - i));
461 
462 	if (p && kprobe_optready(p)) {
463 		op = container_of(p, struct optimized_kprobe, kp);
464 		if (arch_within_optimized_kprobe(op, addr))
465 			return p;
466 	}
467 
468 	return NULL;
469 }
470 
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475 
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479 
480 /*
481  * Optimize (replace a breakpoint with a jump) kprobes listed on
482  * optimizing_list.
483  */
484 static void do_optimize_kprobes(void)
485 {
486 	/*
487 	 * The optimization/unoptimization refers online_cpus via
488 	 * stop_machine() and cpu-hotplug modifies online_cpus.
489 	 * And same time, text_mutex will be held in cpu-hotplug and here.
490 	 * This combination can cause a deadlock (cpu-hotplug try to lock
491 	 * text_mutex but stop_machine can not be done because online_cpus
492 	 * has been changed)
493 	 * To avoid this deadlock, caller must have locked cpu hotplug
494 	 * for preventing cpu-hotplug outside of text_mutex locking.
495 	 */
496 	lockdep_assert_cpus_held();
497 
498 	/* Optimization never be done when disarmed */
499 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
500 	    list_empty(&optimizing_list))
501 		return;
502 
503 	mutex_lock(&text_mutex);
504 	arch_optimize_kprobes(&optimizing_list);
505 	mutex_unlock(&text_mutex);
506 }
507 
508 /*
509  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510  * if need) kprobes listed on unoptimizing_list.
511  */
512 static void do_unoptimize_kprobes(void)
513 {
514 	struct optimized_kprobe *op, *tmp;
515 
516 	/* See comment in do_optimize_kprobes() */
517 	lockdep_assert_cpus_held();
518 
519 	/* Unoptimization must be done anytime */
520 	if (list_empty(&unoptimizing_list))
521 		return;
522 
523 	mutex_lock(&text_mutex);
524 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
525 	/* Loop free_list for disarming */
526 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
527 		/* Disarm probes if marked disabled */
528 		if (kprobe_disabled(&op->kp))
529 			arch_disarm_kprobe(&op->kp);
530 		if (kprobe_unused(&op->kp)) {
531 			/*
532 			 * Remove unused probes from hash list. After waiting
533 			 * for synchronization, these probes are reclaimed.
534 			 * (reclaiming is done by do_free_cleaned_kprobes.)
535 			 */
536 			hlist_del_rcu(&op->kp.hlist);
537 		} else
538 			list_del_init(&op->list);
539 	}
540 	mutex_unlock(&text_mutex);
541 }
542 
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546 	struct optimized_kprobe *op, *tmp;
547 
548 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 		BUG_ON(!kprobe_unused(&op->kp));
550 		list_del_init(&op->list);
551 		free_aggr_kprobe(&op->kp);
552 	}
553 }
554 
555 /* Start optimizer after OPTIMIZE_DELAY passed */
556 static void kick_kprobe_optimizer(void)
557 {
558 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
559 }
560 
561 /* Kprobe jump optimizer */
562 static void kprobe_optimizer(struct work_struct *work)
563 {
564 	mutex_lock(&kprobe_mutex);
565 	cpus_read_lock();
566 	/* Lock modules while optimizing kprobes */
567 	mutex_lock(&module_mutex);
568 
569 	/*
570 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
571 	 * kprobes before waiting for quiesence period.
572 	 */
573 	do_unoptimize_kprobes();
574 
575 	/*
576 	 * Step 2: Wait for quiesence period to ensure all potentially
577 	 * preempted tasks to have normally scheduled. Because optprobe
578 	 * may modify multiple instructions, there is a chance that Nth
579 	 * instruction is preempted. In that case, such tasks can return
580 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
581 	 * Note that on non-preemptive kernel, this is transparently converted
582 	 * to synchronoze_sched() to wait for all interrupts to have completed.
583 	 */
584 	synchronize_rcu_tasks();
585 
586 	/* Step 3: Optimize kprobes after quiesence period */
587 	do_optimize_kprobes();
588 
589 	/* Step 4: Free cleaned kprobes after quiesence period */
590 	do_free_cleaned_kprobes();
591 
592 	mutex_unlock(&module_mutex);
593 	cpus_read_unlock();
594 	mutex_unlock(&kprobe_mutex);
595 
596 	/* Step 5: Kick optimizer again if needed */
597 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
598 		kick_kprobe_optimizer();
599 }
600 
601 /* Wait for completing optimization and unoptimization */
602 void wait_for_kprobe_optimizer(void)
603 {
604 	mutex_lock(&kprobe_mutex);
605 
606 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
607 		mutex_unlock(&kprobe_mutex);
608 
609 		/* this will also make optimizing_work execute immmediately */
610 		flush_delayed_work(&optimizing_work);
611 		/* @optimizing_work might not have been queued yet, relax */
612 		cpu_relax();
613 
614 		mutex_lock(&kprobe_mutex);
615 	}
616 
617 	mutex_unlock(&kprobe_mutex);
618 }
619 
620 /* Optimize kprobe if p is ready to be optimized */
621 static void optimize_kprobe(struct kprobe *p)
622 {
623 	struct optimized_kprobe *op;
624 
625 	/* Check if the kprobe is disabled or not ready for optimization. */
626 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
627 	    (kprobe_disabled(p) || kprobes_all_disarmed))
628 		return;
629 
630 	/* Both of break_handler and post_handler are not supported. */
631 	if (p->break_handler || p->post_handler)
632 		return;
633 
634 	op = container_of(p, struct optimized_kprobe, kp);
635 
636 	/* Check there is no other kprobes at the optimized instructions */
637 	if (arch_check_optimized_kprobe(op) < 0)
638 		return;
639 
640 	/* Check if it is already optimized. */
641 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
642 		return;
643 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
644 
645 	if (!list_empty(&op->list))
646 		/* This is under unoptimizing. Just dequeue the probe */
647 		list_del_init(&op->list);
648 	else {
649 		list_add(&op->list, &optimizing_list);
650 		kick_kprobe_optimizer();
651 	}
652 }
653 
654 /* Short cut to direct unoptimizing */
655 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
656 {
657 	lockdep_assert_cpus_held();
658 	arch_unoptimize_kprobe(op);
659 	if (kprobe_disabled(&op->kp))
660 		arch_disarm_kprobe(&op->kp);
661 }
662 
663 /* Unoptimize a kprobe if p is optimized */
664 static void unoptimize_kprobe(struct kprobe *p, bool force)
665 {
666 	struct optimized_kprobe *op;
667 
668 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
669 		return; /* This is not an optprobe nor optimized */
670 
671 	op = container_of(p, struct optimized_kprobe, kp);
672 	if (!kprobe_optimized(p)) {
673 		/* Unoptimized or unoptimizing case */
674 		if (force && !list_empty(&op->list)) {
675 			/*
676 			 * Only if this is unoptimizing kprobe and forced,
677 			 * forcibly unoptimize it. (No need to unoptimize
678 			 * unoptimized kprobe again :)
679 			 */
680 			list_del_init(&op->list);
681 			force_unoptimize_kprobe(op);
682 		}
683 		return;
684 	}
685 
686 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
687 	if (!list_empty(&op->list)) {
688 		/* Dequeue from the optimization queue */
689 		list_del_init(&op->list);
690 		return;
691 	}
692 	/* Optimized kprobe case */
693 	if (force)
694 		/* Forcibly update the code: this is a special case */
695 		force_unoptimize_kprobe(op);
696 	else {
697 		list_add(&op->list, &unoptimizing_list);
698 		kick_kprobe_optimizer();
699 	}
700 }
701 
702 /* Cancel unoptimizing for reusing */
703 static void reuse_unused_kprobe(struct kprobe *ap)
704 {
705 	struct optimized_kprobe *op;
706 
707 	BUG_ON(!kprobe_unused(ap));
708 	/*
709 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
710 	 * there is still a relative jump) and disabled.
711 	 */
712 	op = container_of(ap, struct optimized_kprobe, kp);
713 	if (unlikely(list_empty(&op->list)))
714 		printk(KERN_WARNING "Warning: found a stray unused "
715 			"aggrprobe@%p\n", ap->addr);
716 	/* Enable the probe again */
717 	ap->flags &= ~KPROBE_FLAG_DISABLED;
718 	/* Optimize it again (remove from op->list) */
719 	BUG_ON(!kprobe_optready(ap));
720 	optimize_kprobe(ap);
721 }
722 
723 /* Remove optimized instructions */
724 static void kill_optimized_kprobe(struct kprobe *p)
725 {
726 	struct optimized_kprobe *op;
727 
728 	op = container_of(p, struct optimized_kprobe, kp);
729 	if (!list_empty(&op->list))
730 		/* Dequeue from the (un)optimization queue */
731 		list_del_init(&op->list);
732 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
733 
734 	if (kprobe_unused(p)) {
735 		/* Enqueue if it is unused */
736 		list_add(&op->list, &freeing_list);
737 		/*
738 		 * Remove unused probes from the hash list. After waiting
739 		 * for synchronization, this probe is reclaimed.
740 		 * (reclaiming is done by do_free_cleaned_kprobes().)
741 		 */
742 		hlist_del_rcu(&op->kp.hlist);
743 	}
744 
745 	/* Don't touch the code, because it is already freed. */
746 	arch_remove_optimized_kprobe(op);
747 }
748 
749 static inline
750 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
751 {
752 	if (!kprobe_ftrace(p))
753 		arch_prepare_optimized_kprobe(op, p);
754 }
755 
756 /* Try to prepare optimized instructions */
757 static void prepare_optimized_kprobe(struct kprobe *p)
758 {
759 	struct optimized_kprobe *op;
760 
761 	op = container_of(p, struct optimized_kprobe, kp);
762 	__prepare_optimized_kprobe(op, p);
763 }
764 
765 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
766 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
767 {
768 	struct optimized_kprobe *op;
769 
770 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
771 	if (!op)
772 		return NULL;
773 
774 	INIT_LIST_HEAD(&op->list);
775 	op->kp.addr = p->addr;
776 	__prepare_optimized_kprobe(op, p);
777 
778 	return &op->kp;
779 }
780 
781 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
782 
783 /*
784  * Prepare an optimized_kprobe and optimize it
785  * NOTE: p must be a normal registered kprobe
786  */
787 static void try_to_optimize_kprobe(struct kprobe *p)
788 {
789 	struct kprobe *ap;
790 	struct optimized_kprobe *op;
791 
792 	/* Impossible to optimize ftrace-based kprobe */
793 	if (kprobe_ftrace(p))
794 		return;
795 
796 	/* For preparing optimization, jump_label_text_reserved() is called */
797 	cpus_read_lock();
798 	jump_label_lock();
799 	mutex_lock(&text_mutex);
800 
801 	ap = alloc_aggr_kprobe(p);
802 	if (!ap)
803 		goto out;
804 
805 	op = container_of(ap, struct optimized_kprobe, kp);
806 	if (!arch_prepared_optinsn(&op->optinsn)) {
807 		/* If failed to setup optimizing, fallback to kprobe */
808 		arch_remove_optimized_kprobe(op);
809 		kfree(op);
810 		goto out;
811 	}
812 
813 	init_aggr_kprobe(ap, p);
814 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
815 
816 out:
817 	mutex_unlock(&text_mutex);
818 	jump_label_unlock();
819 	cpus_read_unlock();
820 }
821 
822 #ifdef CONFIG_SYSCTL
823 static void optimize_all_kprobes(void)
824 {
825 	struct hlist_head *head;
826 	struct kprobe *p;
827 	unsigned int i;
828 
829 	mutex_lock(&kprobe_mutex);
830 	/* If optimization is already allowed, just return */
831 	if (kprobes_allow_optimization)
832 		goto out;
833 
834 	cpus_read_lock();
835 	kprobes_allow_optimization = true;
836 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
837 		head = &kprobe_table[i];
838 		hlist_for_each_entry_rcu(p, head, hlist)
839 			if (!kprobe_disabled(p))
840 				optimize_kprobe(p);
841 	}
842 	cpus_read_unlock();
843 	printk(KERN_INFO "Kprobes globally optimized\n");
844 out:
845 	mutex_unlock(&kprobe_mutex);
846 }
847 
848 static void unoptimize_all_kprobes(void)
849 {
850 	struct hlist_head *head;
851 	struct kprobe *p;
852 	unsigned int i;
853 
854 	mutex_lock(&kprobe_mutex);
855 	/* If optimization is already prohibited, just return */
856 	if (!kprobes_allow_optimization) {
857 		mutex_unlock(&kprobe_mutex);
858 		return;
859 	}
860 
861 	cpus_read_lock();
862 	kprobes_allow_optimization = false;
863 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
864 		head = &kprobe_table[i];
865 		hlist_for_each_entry_rcu(p, head, hlist) {
866 			if (!kprobe_disabled(p))
867 				unoptimize_kprobe(p, false);
868 		}
869 	}
870 	cpus_read_unlock();
871 	mutex_unlock(&kprobe_mutex);
872 
873 	/* Wait for unoptimizing completion */
874 	wait_for_kprobe_optimizer();
875 	printk(KERN_INFO "Kprobes globally unoptimized\n");
876 }
877 
878 static DEFINE_MUTEX(kprobe_sysctl_mutex);
879 int sysctl_kprobes_optimization;
880 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
881 				      void __user *buffer, size_t *length,
882 				      loff_t *ppos)
883 {
884 	int ret;
885 
886 	mutex_lock(&kprobe_sysctl_mutex);
887 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
888 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
889 
890 	if (sysctl_kprobes_optimization)
891 		optimize_all_kprobes();
892 	else
893 		unoptimize_all_kprobes();
894 	mutex_unlock(&kprobe_sysctl_mutex);
895 
896 	return ret;
897 }
898 #endif /* CONFIG_SYSCTL */
899 
900 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
901 static void __arm_kprobe(struct kprobe *p)
902 {
903 	struct kprobe *_p;
904 
905 	/* Check collision with other optimized kprobes */
906 	_p = get_optimized_kprobe((unsigned long)p->addr);
907 	if (unlikely(_p))
908 		/* Fallback to unoptimized kprobe */
909 		unoptimize_kprobe(_p, true);
910 
911 	arch_arm_kprobe(p);
912 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
913 }
914 
915 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
916 static void __disarm_kprobe(struct kprobe *p, bool reopt)
917 {
918 	struct kprobe *_p;
919 
920 	/* Try to unoptimize */
921 	unoptimize_kprobe(p, kprobes_all_disarmed);
922 
923 	if (!kprobe_queued(p)) {
924 		arch_disarm_kprobe(p);
925 		/* If another kprobe was blocked, optimize it. */
926 		_p = get_optimized_kprobe((unsigned long)p->addr);
927 		if (unlikely(_p) && reopt)
928 			optimize_kprobe(_p);
929 	}
930 	/* TODO: reoptimize others after unoptimized this probe */
931 }
932 
933 #else /* !CONFIG_OPTPROBES */
934 
935 #define optimize_kprobe(p)			do {} while (0)
936 #define unoptimize_kprobe(p, f)			do {} while (0)
937 #define kill_optimized_kprobe(p)		do {} while (0)
938 #define prepare_optimized_kprobe(p)		do {} while (0)
939 #define try_to_optimize_kprobe(p)		do {} while (0)
940 #define __arm_kprobe(p)				arch_arm_kprobe(p)
941 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
942 #define kprobe_disarmed(p)			kprobe_disabled(p)
943 #define wait_for_kprobe_optimizer()		do {} while (0)
944 
945 /* There should be no unused kprobes can be reused without optimization */
946 static void reuse_unused_kprobe(struct kprobe *ap)
947 {
948 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
949 	BUG_ON(kprobe_unused(ap));
950 }
951 
952 static void free_aggr_kprobe(struct kprobe *p)
953 {
954 	arch_remove_kprobe(p);
955 	kfree(p);
956 }
957 
958 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
959 {
960 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
961 }
962 #endif /* CONFIG_OPTPROBES */
963 
964 #ifdef CONFIG_KPROBES_ON_FTRACE
965 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
966 	.func = kprobe_ftrace_handler,
967 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
968 };
969 static int kprobe_ftrace_enabled;
970 
971 /* Must ensure p->addr is really on ftrace */
972 static int prepare_kprobe(struct kprobe *p)
973 {
974 	if (!kprobe_ftrace(p))
975 		return arch_prepare_kprobe(p);
976 
977 	return arch_prepare_kprobe_ftrace(p);
978 }
979 
980 /* Caller must lock kprobe_mutex */
981 static int arm_kprobe_ftrace(struct kprobe *p)
982 {
983 	int ret = 0;
984 
985 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
986 				   (unsigned long)p->addr, 0, 0);
987 	if (ret) {
988 		pr_debug("Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
989 		return ret;
990 	}
991 
992 	if (kprobe_ftrace_enabled == 0) {
993 		ret = register_ftrace_function(&kprobe_ftrace_ops);
994 		if (ret) {
995 			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
996 			goto err_ftrace;
997 		}
998 	}
999 
1000 	kprobe_ftrace_enabled++;
1001 	return ret;
1002 
1003 err_ftrace:
1004 	/*
1005 	 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1006 	 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1007 	 * empty filter_hash which would undesirably trace all functions.
1008 	 */
1009 	ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1010 	return ret;
1011 }
1012 
1013 /* Caller must lock kprobe_mutex */
1014 static int disarm_kprobe_ftrace(struct kprobe *p)
1015 {
1016 	int ret = 0;
1017 
1018 	if (kprobe_ftrace_enabled == 1) {
1019 		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1020 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1021 			return ret;
1022 	}
1023 
1024 	kprobe_ftrace_enabled--;
1025 
1026 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1027 			   (unsigned long)p->addr, 1, 0);
1028 	WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
1029 	return ret;
1030 }
1031 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1032 #define prepare_kprobe(p)	arch_prepare_kprobe(p)
1033 #define arm_kprobe_ftrace(p)	(-ENODEV)
1034 #define disarm_kprobe_ftrace(p)	(-ENODEV)
1035 #endif
1036 
1037 /* Arm a kprobe with text_mutex */
1038 static int arm_kprobe(struct kprobe *kp)
1039 {
1040 	if (unlikely(kprobe_ftrace(kp)))
1041 		return arm_kprobe_ftrace(kp);
1042 
1043 	cpus_read_lock();
1044 	mutex_lock(&text_mutex);
1045 	__arm_kprobe(kp);
1046 	mutex_unlock(&text_mutex);
1047 	cpus_read_unlock();
1048 
1049 	return 0;
1050 }
1051 
1052 /* Disarm a kprobe with text_mutex */
1053 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1054 {
1055 	if (unlikely(kprobe_ftrace(kp)))
1056 		return disarm_kprobe_ftrace(kp);
1057 
1058 	cpus_read_lock();
1059 	mutex_lock(&text_mutex);
1060 	__disarm_kprobe(kp, reopt);
1061 	mutex_unlock(&text_mutex);
1062 	cpus_read_unlock();
1063 
1064 	return 0;
1065 }
1066 
1067 /*
1068  * Aggregate handlers for multiple kprobes support - these handlers
1069  * take care of invoking the individual kprobe handlers on p->list
1070  */
1071 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1072 {
1073 	struct kprobe *kp;
1074 
1075 	list_for_each_entry_rcu(kp, &p->list, list) {
1076 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1077 			set_kprobe_instance(kp);
1078 			if (kp->pre_handler(kp, regs))
1079 				return 1;
1080 		}
1081 		reset_kprobe_instance();
1082 	}
1083 	return 0;
1084 }
1085 NOKPROBE_SYMBOL(aggr_pre_handler);
1086 
1087 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1088 			      unsigned long flags)
1089 {
1090 	struct kprobe *kp;
1091 
1092 	list_for_each_entry_rcu(kp, &p->list, list) {
1093 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1094 			set_kprobe_instance(kp);
1095 			kp->post_handler(kp, regs, flags);
1096 			reset_kprobe_instance();
1097 		}
1098 	}
1099 }
1100 NOKPROBE_SYMBOL(aggr_post_handler);
1101 
1102 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1103 			      int trapnr)
1104 {
1105 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1106 
1107 	/*
1108 	 * if we faulted "during" the execution of a user specified
1109 	 * probe handler, invoke just that probe's fault handler
1110 	 */
1111 	if (cur && cur->fault_handler) {
1112 		if (cur->fault_handler(cur, regs, trapnr))
1113 			return 1;
1114 	}
1115 	return 0;
1116 }
1117 NOKPROBE_SYMBOL(aggr_fault_handler);
1118 
1119 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1120 {
1121 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1122 	int ret = 0;
1123 
1124 	if (cur && cur->break_handler) {
1125 		if (cur->break_handler(cur, regs))
1126 			ret = 1;
1127 	}
1128 	reset_kprobe_instance();
1129 	return ret;
1130 }
1131 NOKPROBE_SYMBOL(aggr_break_handler);
1132 
1133 /* Walks the list and increments nmissed count for multiprobe case */
1134 void kprobes_inc_nmissed_count(struct kprobe *p)
1135 {
1136 	struct kprobe *kp;
1137 	if (!kprobe_aggrprobe(p)) {
1138 		p->nmissed++;
1139 	} else {
1140 		list_for_each_entry_rcu(kp, &p->list, list)
1141 			kp->nmissed++;
1142 	}
1143 	return;
1144 }
1145 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1146 
1147 void recycle_rp_inst(struct kretprobe_instance *ri,
1148 		     struct hlist_head *head)
1149 {
1150 	struct kretprobe *rp = ri->rp;
1151 
1152 	/* remove rp inst off the rprobe_inst_table */
1153 	hlist_del(&ri->hlist);
1154 	INIT_HLIST_NODE(&ri->hlist);
1155 	if (likely(rp)) {
1156 		raw_spin_lock(&rp->lock);
1157 		hlist_add_head(&ri->hlist, &rp->free_instances);
1158 		raw_spin_unlock(&rp->lock);
1159 	} else
1160 		/* Unregistering */
1161 		hlist_add_head(&ri->hlist, head);
1162 }
1163 NOKPROBE_SYMBOL(recycle_rp_inst);
1164 
1165 void kretprobe_hash_lock(struct task_struct *tsk,
1166 			 struct hlist_head **head, unsigned long *flags)
1167 __acquires(hlist_lock)
1168 {
1169 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1170 	raw_spinlock_t *hlist_lock;
1171 
1172 	*head = &kretprobe_inst_table[hash];
1173 	hlist_lock = kretprobe_table_lock_ptr(hash);
1174 	raw_spin_lock_irqsave(hlist_lock, *flags);
1175 }
1176 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1177 
1178 static void kretprobe_table_lock(unsigned long hash,
1179 				 unsigned long *flags)
1180 __acquires(hlist_lock)
1181 {
1182 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1183 	raw_spin_lock_irqsave(hlist_lock, *flags);
1184 }
1185 NOKPROBE_SYMBOL(kretprobe_table_lock);
1186 
1187 void kretprobe_hash_unlock(struct task_struct *tsk,
1188 			   unsigned long *flags)
1189 __releases(hlist_lock)
1190 {
1191 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1192 	raw_spinlock_t *hlist_lock;
1193 
1194 	hlist_lock = kretprobe_table_lock_ptr(hash);
1195 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1196 }
1197 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1198 
1199 static void kretprobe_table_unlock(unsigned long hash,
1200 				   unsigned long *flags)
1201 __releases(hlist_lock)
1202 {
1203 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1204 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1205 }
1206 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1207 
1208 /*
1209  * This function is called from finish_task_switch when task tk becomes dead,
1210  * so that we can recycle any function-return probe instances associated
1211  * with this task. These left over instances represent probed functions
1212  * that have been called but will never return.
1213  */
1214 void kprobe_flush_task(struct task_struct *tk)
1215 {
1216 	struct kretprobe_instance *ri;
1217 	struct hlist_head *head, empty_rp;
1218 	struct hlist_node *tmp;
1219 	unsigned long hash, flags = 0;
1220 
1221 	if (unlikely(!kprobes_initialized))
1222 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1223 		return;
1224 
1225 	INIT_HLIST_HEAD(&empty_rp);
1226 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1227 	head = &kretprobe_inst_table[hash];
1228 	kretprobe_table_lock(hash, &flags);
1229 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1230 		if (ri->task == tk)
1231 			recycle_rp_inst(ri, &empty_rp);
1232 	}
1233 	kretprobe_table_unlock(hash, &flags);
1234 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1235 		hlist_del(&ri->hlist);
1236 		kfree(ri);
1237 	}
1238 }
1239 NOKPROBE_SYMBOL(kprobe_flush_task);
1240 
1241 static inline void free_rp_inst(struct kretprobe *rp)
1242 {
1243 	struct kretprobe_instance *ri;
1244 	struct hlist_node *next;
1245 
1246 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1247 		hlist_del(&ri->hlist);
1248 		kfree(ri);
1249 	}
1250 }
1251 
1252 static void cleanup_rp_inst(struct kretprobe *rp)
1253 {
1254 	unsigned long flags, hash;
1255 	struct kretprobe_instance *ri;
1256 	struct hlist_node *next;
1257 	struct hlist_head *head;
1258 
1259 	/* No race here */
1260 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1261 		kretprobe_table_lock(hash, &flags);
1262 		head = &kretprobe_inst_table[hash];
1263 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1264 			if (ri->rp == rp)
1265 				ri->rp = NULL;
1266 		}
1267 		kretprobe_table_unlock(hash, &flags);
1268 	}
1269 	free_rp_inst(rp);
1270 }
1271 NOKPROBE_SYMBOL(cleanup_rp_inst);
1272 
1273 /*
1274 * Add the new probe to ap->list. Fail if this is the
1275 * second jprobe at the address - two jprobes can't coexist
1276 */
1277 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1278 {
1279 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1280 
1281 	if (p->break_handler || p->post_handler)
1282 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1283 
1284 	if (p->break_handler) {
1285 		if (ap->break_handler)
1286 			return -EEXIST;
1287 		list_add_tail_rcu(&p->list, &ap->list);
1288 		ap->break_handler = aggr_break_handler;
1289 	} else
1290 		list_add_rcu(&p->list, &ap->list);
1291 	if (p->post_handler && !ap->post_handler)
1292 		ap->post_handler = aggr_post_handler;
1293 
1294 	return 0;
1295 }
1296 
1297 /*
1298  * Fill in the required fields of the "manager kprobe". Replace the
1299  * earlier kprobe in the hlist with the manager kprobe
1300  */
1301 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1302 {
1303 	/* Copy p's insn slot to ap */
1304 	copy_kprobe(p, ap);
1305 	flush_insn_slot(ap);
1306 	ap->addr = p->addr;
1307 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1308 	ap->pre_handler = aggr_pre_handler;
1309 	ap->fault_handler = aggr_fault_handler;
1310 	/* We don't care the kprobe which has gone. */
1311 	if (p->post_handler && !kprobe_gone(p))
1312 		ap->post_handler = aggr_post_handler;
1313 	if (p->break_handler && !kprobe_gone(p))
1314 		ap->break_handler = aggr_break_handler;
1315 
1316 	INIT_LIST_HEAD(&ap->list);
1317 	INIT_HLIST_NODE(&ap->hlist);
1318 
1319 	list_add_rcu(&p->list, &ap->list);
1320 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1321 }
1322 
1323 /*
1324  * This is the second or subsequent kprobe at the address - handle
1325  * the intricacies
1326  */
1327 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1328 {
1329 	int ret = 0;
1330 	struct kprobe *ap = orig_p;
1331 
1332 	cpus_read_lock();
1333 
1334 	/* For preparing optimization, jump_label_text_reserved() is called */
1335 	jump_label_lock();
1336 	mutex_lock(&text_mutex);
1337 
1338 	if (!kprobe_aggrprobe(orig_p)) {
1339 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1340 		ap = alloc_aggr_kprobe(orig_p);
1341 		if (!ap) {
1342 			ret = -ENOMEM;
1343 			goto out;
1344 		}
1345 		init_aggr_kprobe(ap, orig_p);
1346 	} else if (kprobe_unused(ap))
1347 		/* This probe is going to die. Rescue it */
1348 		reuse_unused_kprobe(ap);
1349 
1350 	if (kprobe_gone(ap)) {
1351 		/*
1352 		 * Attempting to insert new probe at the same location that
1353 		 * had a probe in the module vaddr area which already
1354 		 * freed. So, the instruction slot has already been
1355 		 * released. We need a new slot for the new probe.
1356 		 */
1357 		ret = arch_prepare_kprobe(ap);
1358 		if (ret)
1359 			/*
1360 			 * Even if fail to allocate new slot, don't need to
1361 			 * free aggr_probe. It will be used next time, or
1362 			 * freed by unregister_kprobe.
1363 			 */
1364 			goto out;
1365 
1366 		/* Prepare optimized instructions if possible. */
1367 		prepare_optimized_kprobe(ap);
1368 
1369 		/*
1370 		 * Clear gone flag to prevent allocating new slot again, and
1371 		 * set disabled flag because it is not armed yet.
1372 		 */
1373 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1374 			    | KPROBE_FLAG_DISABLED;
1375 	}
1376 
1377 	/* Copy ap's insn slot to p */
1378 	copy_kprobe(ap, p);
1379 	ret = add_new_kprobe(ap, p);
1380 
1381 out:
1382 	mutex_unlock(&text_mutex);
1383 	jump_label_unlock();
1384 	cpus_read_unlock();
1385 
1386 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1387 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1388 		if (!kprobes_all_disarmed) {
1389 			/* Arm the breakpoint again. */
1390 			ret = arm_kprobe(ap);
1391 			if (ret) {
1392 				ap->flags |= KPROBE_FLAG_DISABLED;
1393 				list_del_rcu(&p->list);
1394 				synchronize_sched();
1395 			}
1396 		}
1397 	}
1398 	return ret;
1399 }
1400 
1401 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1402 {
1403 	/* The __kprobes marked functions and entry code must not be probed */
1404 	return addr >= (unsigned long)__kprobes_text_start &&
1405 	       addr < (unsigned long)__kprobes_text_end;
1406 }
1407 
1408 bool within_kprobe_blacklist(unsigned long addr)
1409 {
1410 	struct kprobe_blacklist_entry *ent;
1411 
1412 	if (arch_within_kprobe_blacklist(addr))
1413 		return true;
1414 	/*
1415 	 * If there exists a kprobe_blacklist, verify and
1416 	 * fail any probe registration in the prohibited area
1417 	 */
1418 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1419 		if (addr >= ent->start_addr && addr < ent->end_addr)
1420 			return true;
1421 	}
1422 
1423 	return false;
1424 }
1425 
1426 /*
1427  * If we have a symbol_name argument, look it up and add the offset field
1428  * to it. This way, we can specify a relative address to a symbol.
1429  * This returns encoded errors if it fails to look up symbol or invalid
1430  * combination of parameters.
1431  */
1432 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1433 			const char *symbol_name, unsigned int offset)
1434 {
1435 	if ((symbol_name && addr) || (!symbol_name && !addr))
1436 		goto invalid;
1437 
1438 	if (symbol_name) {
1439 		addr = kprobe_lookup_name(symbol_name, offset);
1440 		if (!addr)
1441 			return ERR_PTR(-ENOENT);
1442 	}
1443 
1444 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1445 	if (addr)
1446 		return addr;
1447 
1448 invalid:
1449 	return ERR_PTR(-EINVAL);
1450 }
1451 
1452 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1453 {
1454 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1455 }
1456 
1457 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1458 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1459 {
1460 	struct kprobe *ap, *list_p;
1461 
1462 	ap = get_kprobe(p->addr);
1463 	if (unlikely(!ap))
1464 		return NULL;
1465 
1466 	if (p != ap) {
1467 		list_for_each_entry_rcu(list_p, &ap->list, list)
1468 			if (list_p == p)
1469 			/* kprobe p is a valid probe */
1470 				goto valid;
1471 		return NULL;
1472 	}
1473 valid:
1474 	return ap;
1475 }
1476 
1477 /* Return error if the kprobe is being re-registered */
1478 static inline int check_kprobe_rereg(struct kprobe *p)
1479 {
1480 	int ret = 0;
1481 
1482 	mutex_lock(&kprobe_mutex);
1483 	if (__get_valid_kprobe(p))
1484 		ret = -EINVAL;
1485 	mutex_unlock(&kprobe_mutex);
1486 
1487 	return ret;
1488 }
1489 
1490 int __weak arch_check_ftrace_location(struct kprobe *p)
1491 {
1492 	unsigned long ftrace_addr;
1493 
1494 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1495 	if (ftrace_addr) {
1496 #ifdef CONFIG_KPROBES_ON_FTRACE
1497 		/* Given address is not on the instruction boundary */
1498 		if ((unsigned long)p->addr != ftrace_addr)
1499 			return -EILSEQ;
1500 		p->flags |= KPROBE_FLAG_FTRACE;
1501 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1502 		return -EINVAL;
1503 #endif
1504 	}
1505 	return 0;
1506 }
1507 
1508 static int check_kprobe_address_safe(struct kprobe *p,
1509 				     struct module **probed_mod)
1510 {
1511 	int ret;
1512 
1513 	ret = arch_check_ftrace_location(p);
1514 	if (ret)
1515 		return ret;
1516 	jump_label_lock();
1517 	preempt_disable();
1518 
1519 	/* Ensure it is not in reserved area nor out of text */
1520 	if (!kernel_text_address((unsigned long) p->addr) ||
1521 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1522 	    jump_label_text_reserved(p->addr, p->addr)) {
1523 		ret = -EINVAL;
1524 		goto out;
1525 	}
1526 
1527 	/* Check if are we probing a module */
1528 	*probed_mod = __module_text_address((unsigned long) p->addr);
1529 	if (*probed_mod) {
1530 		/*
1531 		 * We must hold a refcount of the probed module while updating
1532 		 * its code to prohibit unexpected unloading.
1533 		 */
1534 		if (unlikely(!try_module_get(*probed_mod))) {
1535 			ret = -ENOENT;
1536 			goto out;
1537 		}
1538 
1539 		/*
1540 		 * If the module freed .init.text, we couldn't insert
1541 		 * kprobes in there.
1542 		 */
1543 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1544 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1545 			module_put(*probed_mod);
1546 			*probed_mod = NULL;
1547 			ret = -ENOENT;
1548 		}
1549 	}
1550 out:
1551 	preempt_enable();
1552 	jump_label_unlock();
1553 
1554 	return ret;
1555 }
1556 
1557 int register_kprobe(struct kprobe *p)
1558 {
1559 	int ret;
1560 	struct kprobe *old_p;
1561 	struct module *probed_mod;
1562 	kprobe_opcode_t *addr;
1563 
1564 	/* Adjust probe address from symbol */
1565 	addr = kprobe_addr(p);
1566 	if (IS_ERR(addr))
1567 		return PTR_ERR(addr);
1568 	p->addr = addr;
1569 
1570 	ret = check_kprobe_rereg(p);
1571 	if (ret)
1572 		return ret;
1573 
1574 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1575 	p->flags &= KPROBE_FLAG_DISABLED;
1576 	p->nmissed = 0;
1577 	INIT_LIST_HEAD(&p->list);
1578 
1579 	ret = check_kprobe_address_safe(p, &probed_mod);
1580 	if (ret)
1581 		return ret;
1582 
1583 	mutex_lock(&kprobe_mutex);
1584 
1585 	old_p = get_kprobe(p->addr);
1586 	if (old_p) {
1587 		/* Since this may unoptimize old_p, locking text_mutex. */
1588 		ret = register_aggr_kprobe(old_p, p);
1589 		goto out;
1590 	}
1591 
1592 	cpus_read_lock();
1593 	/* Prevent text modification */
1594 	mutex_lock(&text_mutex);
1595 	ret = prepare_kprobe(p);
1596 	mutex_unlock(&text_mutex);
1597 	cpus_read_unlock();
1598 	if (ret)
1599 		goto out;
1600 
1601 	INIT_HLIST_NODE(&p->hlist);
1602 	hlist_add_head_rcu(&p->hlist,
1603 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1604 
1605 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1606 		ret = arm_kprobe(p);
1607 		if (ret) {
1608 			hlist_del_rcu(&p->hlist);
1609 			synchronize_sched();
1610 			goto out;
1611 		}
1612 	}
1613 
1614 	/* Try to optimize kprobe */
1615 	try_to_optimize_kprobe(p);
1616 out:
1617 	mutex_unlock(&kprobe_mutex);
1618 
1619 	if (probed_mod)
1620 		module_put(probed_mod);
1621 
1622 	return ret;
1623 }
1624 EXPORT_SYMBOL_GPL(register_kprobe);
1625 
1626 /* Check if all probes on the aggrprobe are disabled */
1627 static int aggr_kprobe_disabled(struct kprobe *ap)
1628 {
1629 	struct kprobe *kp;
1630 
1631 	list_for_each_entry_rcu(kp, &ap->list, list)
1632 		if (!kprobe_disabled(kp))
1633 			/*
1634 			 * There is an active probe on the list.
1635 			 * We can't disable this ap.
1636 			 */
1637 			return 0;
1638 
1639 	return 1;
1640 }
1641 
1642 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1643 static struct kprobe *__disable_kprobe(struct kprobe *p)
1644 {
1645 	struct kprobe *orig_p;
1646 	int ret;
1647 
1648 	/* Get an original kprobe for return */
1649 	orig_p = __get_valid_kprobe(p);
1650 	if (unlikely(orig_p == NULL))
1651 		return ERR_PTR(-EINVAL);
1652 
1653 	if (!kprobe_disabled(p)) {
1654 		/* Disable probe if it is a child probe */
1655 		if (p != orig_p)
1656 			p->flags |= KPROBE_FLAG_DISABLED;
1657 
1658 		/* Try to disarm and disable this/parent probe */
1659 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1660 			/*
1661 			 * If kprobes_all_disarmed is set, orig_p
1662 			 * should have already been disarmed, so
1663 			 * skip unneed disarming process.
1664 			 */
1665 			if (!kprobes_all_disarmed) {
1666 				ret = disarm_kprobe(orig_p, true);
1667 				if (ret) {
1668 					p->flags &= ~KPROBE_FLAG_DISABLED;
1669 					return ERR_PTR(ret);
1670 				}
1671 			}
1672 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1673 		}
1674 	}
1675 
1676 	return orig_p;
1677 }
1678 
1679 /*
1680  * Unregister a kprobe without a scheduler synchronization.
1681  */
1682 static int __unregister_kprobe_top(struct kprobe *p)
1683 {
1684 	struct kprobe *ap, *list_p;
1685 
1686 	/* Disable kprobe. This will disarm it if needed. */
1687 	ap = __disable_kprobe(p);
1688 	if (IS_ERR(ap))
1689 		return PTR_ERR(ap);
1690 
1691 	if (ap == p)
1692 		/*
1693 		 * This probe is an independent(and non-optimized) kprobe
1694 		 * (not an aggrprobe). Remove from the hash list.
1695 		 */
1696 		goto disarmed;
1697 
1698 	/* Following process expects this probe is an aggrprobe */
1699 	WARN_ON(!kprobe_aggrprobe(ap));
1700 
1701 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1702 		/*
1703 		 * !disarmed could be happen if the probe is under delayed
1704 		 * unoptimizing.
1705 		 */
1706 		goto disarmed;
1707 	else {
1708 		/* If disabling probe has special handlers, update aggrprobe */
1709 		if (p->break_handler && !kprobe_gone(p))
1710 			ap->break_handler = NULL;
1711 		if (p->post_handler && !kprobe_gone(p)) {
1712 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1713 				if ((list_p != p) && (list_p->post_handler))
1714 					goto noclean;
1715 			}
1716 			ap->post_handler = NULL;
1717 		}
1718 noclean:
1719 		/*
1720 		 * Remove from the aggrprobe: this path will do nothing in
1721 		 * __unregister_kprobe_bottom().
1722 		 */
1723 		list_del_rcu(&p->list);
1724 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1725 			/*
1726 			 * Try to optimize this probe again, because post
1727 			 * handler may have been changed.
1728 			 */
1729 			optimize_kprobe(ap);
1730 	}
1731 	return 0;
1732 
1733 disarmed:
1734 	BUG_ON(!kprobe_disarmed(ap));
1735 	hlist_del_rcu(&ap->hlist);
1736 	return 0;
1737 }
1738 
1739 static void __unregister_kprobe_bottom(struct kprobe *p)
1740 {
1741 	struct kprobe *ap;
1742 
1743 	if (list_empty(&p->list))
1744 		/* This is an independent kprobe */
1745 		arch_remove_kprobe(p);
1746 	else if (list_is_singular(&p->list)) {
1747 		/* This is the last child of an aggrprobe */
1748 		ap = list_entry(p->list.next, struct kprobe, list);
1749 		list_del(&p->list);
1750 		free_aggr_kprobe(ap);
1751 	}
1752 	/* Otherwise, do nothing. */
1753 }
1754 
1755 int register_kprobes(struct kprobe **kps, int num)
1756 {
1757 	int i, ret = 0;
1758 
1759 	if (num <= 0)
1760 		return -EINVAL;
1761 	for (i = 0; i < num; i++) {
1762 		ret = register_kprobe(kps[i]);
1763 		if (ret < 0) {
1764 			if (i > 0)
1765 				unregister_kprobes(kps, i);
1766 			break;
1767 		}
1768 	}
1769 	return ret;
1770 }
1771 EXPORT_SYMBOL_GPL(register_kprobes);
1772 
1773 void unregister_kprobe(struct kprobe *p)
1774 {
1775 	unregister_kprobes(&p, 1);
1776 }
1777 EXPORT_SYMBOL_GPL(unregister_kprobe);
1778 
1779 void unregister_kprobes(struct kprobe **kps, int num)
1780 {
1781 	int i;
1782 
1783 	if (num <= 0)
1784 		return;
1785 	mutex_lock(&kprobe_mutex);
1786 	for (i = 0; i < num; i++)
1787 		if (__unregister_kprobe_top(kps[i]) < 0)
1788 			kps[i]->addr = NULL;
1789 	mutex_unlock(&kprobe_mutex);
1790 
1791 	synchronize_sched();
1792 	for (i = 0; i < num; i++)
1793 		if (kps[i]->addr)
1794 			__unregister_kprobe_bottom(kps[i]);
1795 }
1796 EXPORT_SYMBOL_GPL(unregister_kprobes);
1797 
1798 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1799 					unsigned long val, void *data)
1800 {
1801 	return NOTIFY_DONE;
1802 }
1803 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1804 
1805 static struct notifier_block kprobe_exceptions_nb = {
1806 	.notifier_call = kprobe_exceptions_notify,
1807 	.priority = 0x7fffffff /* we need to be notified first */
1808 };
1809 
1810 unsigned long __weak arch_deref_entry_point(void *entry)
1811 {
1812 	return (unsigned long)entry;
1813 }
1814 
1815 #if 0
1816 int register_jprobes(struct jprobe **jps, int num)
1817 {
1818 	int ret = 0, i;
1819 
1820 	if (num <= 0)
1821 		return -EINVAL;
1822 
1823 	for (i = 0; i < num; i++) {
1824 		ret = register_jprobe(jps[i]);
1825 
1826 		if (ret < 0) {
1827 			if (i > 0)
1828 				unregister_jprobes(jps, i);
1829 			break;
1830 		}
1831 	}
1832 
1833 	return ret;
1834 }
1835 EXPORT_SYMBOL_GPL(register_jprobes);
1836 
1837 int register_jprobe(struct jprobe *jp)
1838 {
1839 	unsigned long addr, offset;
1840 	struct kprobe *kp = &jp->kp;
1841 
1842 	/*
1843 	 * Verify probepoint as well as the jprobe handler are
1844 	 * valid function entry points.
1845 	 */
1846 	addr = arch_deref_entry_point(jp->entry);
1847 
1848 	if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0 &&
1849 	    kprobe_on_func_entry(kp->addr, kp->symbol_name, kp->offset)) {
1850 		kp->pre_handler = setjmp_pre_handler;
1851 		kp->break_handler = longjmp_break_handler;
1852 		return register_kprobe(kp);
1853 	}
1854 
1855 	return -EINVAL;
1856 }
1857 EXPORT_SYMBOL_GPL(register_jprobe);
1858 
1859 void unregister_jprobe(struct jprobe *jp)
1860 {
1861 	unregister_jprobes(&jp, 1);
1862 }
1863 EXPORT_SYMBOL_GPL(unregister_jprobe);
1864 
1865 void unregister_jprobes(struct jprobe **jps, int num)
1866 {
1867 	int i;
1868 
1869 	if (num <= 0)
1870 		return;
1871 	mutex_lock(&kprobe_mutex);
1872 	for (i = 0; i < num; i++)
1873 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1874 			jps[i]->kp.addr = NULL;
1875 	mutex_unlock(&kprobe_mutex);
1876 
1877 	synchronize_sched();
1878 	for (i = 0; i < num; i++) {
1879 		if (jps[i]->kp.addr)
1880 			__unregister_kprobe_bottom(&jps[i]->kp);
1881 	}
1882 }
1883 EXPORT_SYMBOL_GPL(unregister_jprobes);
1884 #endif
1885 
1886 #ifdef CONFIG_KRETPROBES
1887 /*
1888  * This kprobe pre_handler is registered with every kretprobe. When probe
1889  * hits it will set up the return probe.
1890  */
1891 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1892 {
1893 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1894 	unsigned long hash, flags = 0;
1895 	struct kretprobe_instance *ri;
1896 
1897 	/*
1898 	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1899 	 * just skip the probe and increase the (inexact) 'nmissed'
1900 	 * statistical counter, so that the user is informed that
1901 	 * something happened:
1902 	 */
1903 	if (unlikely(in_nmi())) {
1904 		rp->nmissed++;
1905 		return 0;
1906 	}
1907 
1908 	/* TODO: consider to only swap the RA after the last pre_handler fired */
1909 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1910 	raw_spin_lock_irqsave(&rp->lock, flags);
1911 	if (!hlist_empty(&rp->free_instances)) {
1912 		ri = hlist_entry(rp->free_instances.first,
1913 				struct kretprobe_instance, hlist);
1914 		hlist_del(&ri->hlist);
1915 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1916 
1917 		ri->rp = rp;
1918 		ri->task = current;
1919 
1920 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1921 			raw_spin_lock_irqsave(&rp->lock, flags);
1922 			hlist_add_head(&ri->hlist, &rp->free_instances);
1923 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1924 			return 0;
1925 		}
1926 
1927 		arch_prepare_kretprobe(ri, regs);
1928 
1929 		/* XXX(hch): why is there no hlist_move_head? */
1930 		INIT_HLIST_NODE(&ri->hlist);
1931 		kretprobe_table_lock(hash, &flags);
1932 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1933 		kretprobe_table_unlock(hash, &flags);
1934 	} else {
1935 		rp->nmissed++;
1936 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1937 	}
1938 	return 0;
1939 }
1940 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1941 
1942 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1943 {
1944 	return !offset;
1945 }
1946 
1947 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1948 {
1949 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1950 
1951 	if (IS_ERR(kp_addr))
1952 		return false;
1953 
1954 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1955 						!arch_kprobe_on_func_entry(offset))
1956 		return false;
1957 
1958 	return true;
1959 }
1960 
1961 int register_kretprobe(struct kretprobe *rp)
1962 {
1963 	int ret = 0;
1964 	struct kretprobe_instance *inst;
1965 	int i;
1966 	void *addr;
1967 
1968 	if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1969 		return -EINVAL;
1970 
1971 	if (kretprobe_blacklist_size) {
1972 		addr = kprobe_addr(&rp->kp);
1973 		if (IS_ERR(addr))
1974 			return PTR_ERR(addr);
1975 
1976 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1977 			if (kretprobe_blacklist[i].addr == addr)
1978 				return -EINVAL;
1979 		}
1980 	}
1981 
1982 	rp->kp.pre_handler = pre_handler_kretprobe;
1983 	rp->kp.post_handler = NULL;
1984 	rp->kp.fault_handler = NULL;
1985 	rp->kp.break_handler = NULL;
1986 
1987 	/* Pre-allocate memory for max kretprobe instances */
1988 	if (rp->maxactive <= 0) {
1989 #ifdef CONFIG_PREEMPT
1990 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1991 #else
1992 		rp->maxactive = num_possible_cpus();
1993 #endif
1994 	}
1995 	raw_spin_lock_init(&rp->lock);
1996 	INIT_HLIST_HEAD(&rp->free_instances);
1997 	for (i = 0; i < rp->maxactive; i++) {
1998 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1999 			       rp->data_size, GFP_KERNEL);
2000 		if (inst == NULL) {
2001 			free_rp_inst(rp);
2002 			return -ENOMEM;
2003 		}
2004 		INIT_HLIST_NODE(&inst->hlist);
2005 		hlist_add_head(&inst->hlist, &rp->free_instances);
2006 	}
2007 
2008 	rp->nmissed = 0;
2009 	/* Establish function entry probe point */
2010 	ret = register_kprobe(&rp->kp);
2011 	if (ret != 0)
2012 		free_rp_inst(rp);
2013 	return ret;
2014 }
2015 EXPORT_SYMBOL_GPL(register_kretprobe);
2016 
2017 int register_kretprobes(struct kretprobe **rps, int num)
2018 {
2019 	int ret = 0, i;
2020 
2021 	if (num <= 0)
2022 		return -EINVAL;
2023 	for (i = 0; i < num; i++) {
2024 		ret = register_kretprobe(rps[i]);
2025 		if (ret < 0) {
2026 			if (i > 0)
2027 				unregister_kretprobes(rps, i);
2028 			break;
2029 		}
2030 	}
2031 	return ret;
2032 }
2033 EXPORT_SYMBOL_GPL(register_kretprobes);
2034 
2035 void unregister_kretprobe(struct kretprobe *rp)
2036 {
2037 	unregister_kretprobes(&rp, 1);
2038 }
2039 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2040 
2041 void unregister_kretprobes(struct kretprobe **rps, int num)
2042 {
2043 	int i;
2044 
2045 	if (num <= 0)
2046 		return;
2047 	mutex_lock(&kprobe_mutex);
2048 	for (i = 0; i < num; i++)
2049 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2050 			rps[i]->kp.addr = NULL;
2051 	mutex_unlock(&kprobe_mutex);
2052 
2053 	synchronize_sched();
2054 	for (i = 0; i < num; i++) {
2055 		if (rps[i]->kp.addr) {
2056 			__unregister_kprobe_bottom(&rps[i]->kp);
2057 			cleanup_rp_inst(rps[i]);
2058 		}
2059 	}
2060 }
2061 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2062 
2063 #else /* CONFIG_KRETPROBES */
2064 int register_kretprobe(struct kretprobe *rp)
2065 {
2066 	return -ENOSYS;
2067 }
2068 EXPORT_SYMBOL_GPL(register_kretprobe);
2069 
2070 int register_kretprobes(struct kretprobe **rps, int num)
2071 {
2072 	return -ENOSYS;
2073 }
2074 EXPORT_SYMBOL_GPL(register_kretprobes);
2075 
2076 void unregister_kretprobe(struct kretprobe *rp)
2077 {
2078 }
2079 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2080 
2081 void unregister_kretprobes(struct kretprobe **rps, int num)
2082 {
2083 }
2084 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2085 
2086 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2087 {
2088 	return 0;
2089 }
2090 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2091 
2092 #endif /* CONFIG_KRETPROBES */
2093 
2094 /* Set the kprobe gone and remove its instruction buffer. */
2095 static void kill_kprobe(struct kprobe *p)
2096 {
2097 	struct kprobe *kp;
2098 
2099 	p->flags |= KPROBE_FLAG_GONE;
2100 	if (kprobe_aggrprobe(p)) {
2101 		/*
2102 		 * If this is an aggr_kprobe, we have to list all the
2103 		 * chained probes and mark them GONE.
2104 		 */
2105 		list_for_each_entry_rcu(kp, &p->list, list)
2106 			kp->flags |= KPROBE_FLAG_GONE;
2107 		p->post_handler = NULL;
2108 		p->break_handler = NULL;
2109 		kill_optimized_kprobe(p);
2110 	}
2111 	/*
2112 	 * Here, we can remove insn_slot safely, because no thread calls
2113 	 * the original probed function (which will be freed soon) any more.
2114 	 */
2115 	arch_remove_kprobe(p);
2116 }
2117 
2118 /* Disable one kprobe */
2119 int disable_kprobe(struct kprobe *kp)
2120 {
2121 	int ret = 0;
2122 	struct kprobe *p;
2123 
2124 	mutex_lock(&kprobe_mutex);
2125 
2126 	/* Disable this kprobe */
2127 	p = __disable_kprobe(kp);
2128 	if (IS_ERR(p))
2129 		ret = PTR_ERR(p);
2130 
2131 	mutex_unlock(&kprobe_mutex);
2132 	return ret;
2133 }
2134 EXPORT_SYMBOL_GPL(disable_kprobe);
2135 
2136 /* Enable one kprobe */
2137 int enable_kprobe(struct kprobe *kp)
2138 {
2139 	int ret = 0;
2140 	struct kprobe *p;
2141 
2142 	mutex_lock(&kprobe_mutex);
2143 
2144 	/* Check whether specified probe is valid. */
2145 	p = __get_valid_kprobe(kp);
2146 	if (unlikely(p == NULL)) {
2147 		ret = -EINVAL;
2148 		goto out;
2149 	}
2150 
2151 	if (kprobe_gone(kp)) {
2152 		/* This kprobe has gone, we couldn't enable it. */
2153 		ret = -EINVAL;
2154 		goto out;
2155 	}
2156 
2157 	if (p != kp)
2158 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2159 
2160 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2161 		p->flags &= ~KPROBE_FLAG_DISABLED;
2162 		ret = arm_kprobe(p);
2163 		if (ret)
2164 			p->flags |= KPROBE_FLAG_DISABLED;
2165 	}
2166 out:
2167 	mutex_unlock(&kprobe_mutex);
2168 	return ret;
2169 }
2170 EXPORT_SYMBOL_GPL(enable_kprobe);
2171 
2172 void dump_kprobe(struct kprobe *kp)
2173 {
2174 	printk(KERN_WARNING "Dumping kprobe:\n");
2175 	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2176 	       kp->symbol_name, kp->addr, kp->offset);
2177 }
2178 NOKPROBE_SYMBOL(dump_kprobe);
2179 
2180 /*
2181  * Lookup and populate the kprobe_blacklist.
2182  *
2183  * Unlike the kretprobe blacklist, we'll need to determine
2184  * the range of addresses that belong to the said functions,
2185  * since a kprobe need not necessarily be at the beginning
2186  * of a function.
2187  */
2188 static int __init populate_kprobe_blacklist(unsigned long *start,
2189 					     unsigned long *end)
2190 {
2191 	unsigned long *iter;
2192 	struct kprobe_blacklist_entry *ent;
2193 	unsigned long entry, offset = 0, size = 0;
2194 
2195 	for (iter = start; iter < end; iter++) {
2196 		entry = arch_deref_entry_point((void *)*iter);
2197 
2198 		if (!kernel_text_address(entry) ||
2199 		    !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2200 			pr_err("Failed to find blacklist at %p\n",
2201 				(void *)entry);
2202 			continue;
2203 		}
2204 
2205 		ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2206 		if (!ent)
2207 			return -ENOMEM;
2208 		ent->start_addr = entry;
2209 		ent->end_addr = entry + size;
2210 		INIT_LIST_HEAD(&ent->list);
2211 		list_add_tail(&ent->list, &kprobe_blacklist);
2212 	}
2213 	return 0;
2214 }
2215 
2216 /* Module notifier call back, checking kprobes on the module */
2217 static int kprobes_module_callback(struct notifier_block *nb,
2218 				   unsigned long val, void *data)
2219 {
2220 	struct module *mod = data;
2221 	struct hlist_head *head;
2222 	struct kprobe *p;
2223 	unsigned int i;
2224 	int checkcore = (val == MODULE_STATE_GOING);
2225 
2226 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2227 		return NOTIFY_DONE;
2228 
2229 	/*
2230 	 * When MODULE_STATE_GOING was notified, both of module .text and
2231 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2232 	 * notified, only .init.text section would be freed. We need to
2233 	 * disable kprobes which have been inserted in the sections.
2234 	 */
2235 	mutex_lock(&kprobe_mutex);
2236 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2237 		head = &kprobe_table[i];
2238 		hlist_for_each_entry_rcu(p, head, hlist)
2239 			if (within_module_init((unsigned long)p->addr, mod) ||
2240 			    (checkcore &&
2241 			     within_module_core((unsigned long)p->addr, mod))) {
2242 				/*
2243 				 * The vaddr this probe is installed will soon
2244 				 * be vfreed buy not synced to disk. Hence,
2245 				 * disarming the breakpoint isn't needed.
2246 				 *
2247 				 * Note, this will also move any optimized probes
2248 				 * that are pending to be removed from their
2249 				 * corresponding lists to the freeing_list and
2250 				 * will not be touched by the delayed
2251 				 * kprobe_optimizer work handler.
2252 				 */
2253 				kill_kprobe(p);
2254 			}
2255 	}
2256 	mutex_unlock(&kprobe_mutex);
2257 	return NOTIFY_DONE;
2258 }
2259 
2260 static struct notifier_block kprobe_module_nb = {
2261 	.notifier_call = kprobes_module_callback,
2262 	.priority = 0
2263 };
2264 
2265 /* Markers of _kprobe_blacklist section */
2266 extern unsigned long __start_kprobe_blacklist[];
2267 extern unsigned long __stop_kprobe_blacklist[];
2268 
2269 static int __init init_kprobes(void)
2270 {
2271 	int i, err = 0;
2272 
2273 	/* FIXME allocate the probe table, currently defined statically */
2274 	/* initialize all list heads */
2275 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2276 		INIT_HLIST_HEAD(&kprobe_table[i]);
2277 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2278 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2279 	}
2280 
2281 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2282 					__stop_kprobe_blacklist);
2283 	if (err) {
2284 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2285 		pr_err("Please take care of using kprobes.\n");
2286 	}
2287 
2288 	if (kretprobe_blacklist_size) {
2289 		/* lookup the function address from its name */
2290 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2291 			kretprobe_blacklist[i].addr =
2292 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2293 			if (!kretprobe_blacklist[i].addr)
2294 				printk("kretprobe: lookup failed: %s\n",
2295 				       kretprobe_blacklist[i].name);
2296 		}
2297 	}
2298 
2299 #if defined(CONFIG_OPTPROBES)
2300 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2301 	/* Init kprobe_optinsn_slots */
2302 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2303 #endif
2304 	/* By default, kprobes can be optimized */
2305 	kprobes_allow_optimization = true;
2306 #endif
2307 
2308 	/* By default, kprobes are armed */
2309 	kprobes_all_disarmed = false;
2310 
2311 	err = arch_init_kprobes();
2312 	if (!err)
2313 		err = register_die_notifier(&kprobe_exceptions_nb);
2314 	if (!err)
2315 		err = register_module_notifier(&kprobe_module_nb);
2316 
2317 	kprobes_initialized = (err == 0);
2318 
2319 	if (!err)
2320 		init_test_probes();
2321 	return err;
2322 }
2323 
2324 #ifdef CONFIG_DEBUG_FS
2325 static void report_probe(struct seq_file *pi, struct kprobe *p,
2326 		const char *sym, int offset, char *modname, struct kprobe *pp)
2327 {
2328 	char *kprobe_type;
2329 
2330 	if (p->pre_handler == pre_handler_kretprobe)
2331 		kprobe_type = "r";
2332 	else if (p->pre_handler == setjmp_pre_handler)
2333 		kprobe_type = "j";
2334 	else
2335 		kprobe_type = "k";
2336 
2337 	if (sym)
2338 		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2339 			p->addr, kprobe_type, sym, offset,
2340 			(modname ? modname : " "));
2341 	else
2342 		seq_printf(pi, "%p  %s  %p ",
2343 			p->addr, kprobe_type, p->addr);
2344 
2345 	if (!pp)
2346 		pp = p;
2347 	seq_printf(pi, "%s%s%s%s\n",
2348 		(kprobe_gone(p) ? "[GONE]" : ""),
2349 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2350 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2351 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2352 }
2353 
2354 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2355 {
2356 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2357 }
2358 
2359 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2360 {
2361 	(*pos)++;
2362 	if (*pos >= KPROBE_TABLE_SIZE)
2363 		return NULL;
2364 	return pos;
2365 }
2366 
2367 static void kprobe_seq_stop(struct seq_file *f, void *v)
2368 {
2369 	/* Nothing to do */
2370 }
2371 
2372 static int show_kprobe_addr(struct seq_file *pi, void *v)
2373 {
2374 	struct hlist_head *head;
2375 	struct kprobe *p, *kp;
2376 	const char *sym = NULL;
2377 	unsigned int i = *(loff_t *) v;
2378 	unsigned long offset = 0;
2379 	char *modname, namebuf[KSYM_NAME_LEN];
2380 
2381 	head = &kprobe_table[i];
2382 	preempt_disable();
2383 	hlist_for_each_entry_rcu(p, head, hlist) {
2384 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2385 					&offset, &modname, namebuf);
2386 		if (kprobe_aggrprobe(p)) {
2387 			list_for_each_entry_rcu(kp, &p->list, list)
2388 				report_probe(pi, kp, sym, offset, modname, p);
2389 		} else
2390 			report_probe(pi, p, sym, offset, modname, NULL);
2391 	}
2392 	preempt_enable();
2393 	return 0;
2394 }
2395 
2396 static const struct seq_operations kprobes_seq_ops = {
2397 	.start = kprobe_seq_start,
2398 	.next  = kprobe_seq_next,
2399 	.stop  = kprobe_seq_stop,
2400 	.show  = show_kprobe_addr
2401 };
2402 
2403 static int kprobes_open(struct inode *inode, struct file *filp)
2404 {
2405 	return seq_open(filp, &kprobes_seq_ops);
2406 }
2407 
2408 static const struct file_operations debugfs_kprobes_operations = {
2409 	.open           = kprobes_open,
2410 	.read           = seq_read,
2411 	.llseek         = seq_lseek,
2412 	.release        = seq_release,
2413 };
2414 
2415 /* kprobes/blacklist -- shows which functions can not be probed */
2416 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2417 {
2418 	return seq_list_start(&kprobe_blacklist, *pos);
2419 }
2420 
2421 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2422 {
2423 	return seq_list_next(v, &kprobe_blacklist, pos);
2424 }
2425 
2426 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2427 {
2428 	struct kprobe_blacklist_entry *ent =
2429 		list_entry(v, struct kprobe_blacklist_entry, list);
2430 
2431 	seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2432 		   (void *)ent->end_addr, (void *)ent->start_addr);
2433 	return 0;
2434 }
2435 
2436 static const struct seq_operations kprobe_blacklist_seq_ops = {
2437 	.start = kprobe_blacklist_seq_start,
2438 	.next  = kprobe_blacklist_seq_next,
2439 	.stop  = kprobe_seq_stop,	/* Reuse void function */
2440 	.show  = kprobe_blacklist_seq_show,
2441 };
2442 
2443 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2444 {
2445 	return seq_open(filp, &kprobe_blacklist_seq_ops);
2446 }
2447 
2448 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2449 	.open           = kprobe_blacklist_open,
2450 	.read           = seq_read,
2451 	.llseek         = seq_lseek,
2452 	.release        = seq_release,
2453 };
2454 
2455 static int arm_all_kprobes(void)
2456 {
2457 	struct hlist_head *head;
2458 	struct kprobe *p;
2459 	unsigned int i, total = 0, errors = 0;
2460 	int err, ret = 0;
2461 
2462 	mutex_lock(&kprobe_mutex);
2463 
2464 	/* If kprobes are armed, just return */
2465 	if (!kprobes_all_disarmed)
2466 		goto already_enabled;
2467 
2468 	/*
2469 	 * optimize_kprobe() called by arm_kprobe() checks
2470 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2471 	 * arm_kprobe.
2472 	 */
2473 	kprobes_all_disarmed = false;
2474 	/* Arming kprobes doesn't optimize kprobe itself */
2475 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2476 		head = &kprobe_table[i];
2477 		/* Arm all kprobes on a best-effort basis */
2478 		hlist_for_each_entry_rcu(p, head, hlist) {
2479 			if (!kprobe_disabled(p)) {
2480 				err = arm_kprobe(p);
2481 				if (err)  {
2482 					errors++;
2483 					ret = err;
2484 				}
2485 				total++;
2486 			}
2487 		}
2488 	}
2489 
2490 	if (errors)
2491 		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2492 			errors, total);
2493 	else
2494 		pr_info("Kprobes globally enabled\n");
2495 
2496 already_enabled:
2497 	mutex_unlock(&kprobe_mutex);
2498 	return ret;
2499 }
2500 
2501 static int disarm_all_kprobes(void)
2502 {
2503 	struct hlist_head *head;
2504 	struct kprobe *p;
2505 	unsigned int i, total = 0, errors = 0;
2506 	int err, ret = 0;
2507 
2508 	mutex_lock(&kprobe_mutex);
2509 
2510 	/* If kprobes are already disarmed, just return */
2511 	if (kprobes_all_disarmed) {
2512 		mutex_unlock(&kprobe_mutex);
2513 		return 0;
2514 	}
2515 
2516 	kprobes_all_disarmed = true;
2517 
2518 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2519 		head = &kprobe_table[i];
2520 		/* Disarm all kprobes on a best-effort basis */
2521 		hlist_for_each_entry_rcu(p, head, hlist) {
2522 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2523 				err = disarm_kprobe(p, false);
2524 				if (err) {
2525 					errors++;
2526 					ret = err;
2527 				}
2528 				total++;
2529 			}
2530 		}
2531 	}
2532 
2533 	if (errors)
2534 		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2535 			errors, total);
2536 	else
2537 		pr_info("Kprobes globally disabled\n");
2538 
2539 	mutex_unlock(&kprobe_mutex);
2540 
2541 	/* Wait for disarming all kprobes by optimizer */
2542 	wait_for_kprobe_optimizer();
2543 
2544 	return ret;
2545 }
2546 
2547 /*
2548  * XXX: The debugfs bool file interface doesn't allow for callbacks
2549  * when the bool state is switched. We can reuse that facility when
2550  * available
2551  */
2552 static ssize_t read_enabled_file_bool(struct file *file,
2553 	       char __user *user_buf, size_t count, loff_t *ppos)
2554 {
2555 	char buf[3];
2556 
2557 	if (!kprobes_all_disarmed)
2558 		buf[0] = '1';
2559 	else
2560 		buf[0] = '0';
2561 	buf[1] = '\n';
2562 	buf[2] = 0x00;
2563 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2564 }
2565 
2566 static ssize_t write_enabled_file_bool(struct file *file,
2567 	       const char __user *user_buf, size_t count, loff_t *ppos)
2568 {
2569 	char buf[32];
2570 	size_t buf_size;
2571 	int ret = 0;
2572 
2573 	buf_size = min(count, (sizeof(buf)-1));
2574 	if (copy_from_user(buf, user_buf, buf_size))
2575 		return -EFAULT;
2576 
2577 	buf[buf_size] = '\0';
2578 	switch (buf[0]) {
2579 	case 'y':
2580 	case 'Y':
2581 	case '1':
2582 		ret = arm_all_kprobes();
2583 		break;
2584 	case 'n':
2585 	case 'N':
2586 	case '0':
2587 		ret = disarm_all_kprobes();
2588 		break;
2589 	default:
2590 		return -EINVAL;
2591 	}
2592 
2593 	if (ret)
2594 		return ret;
2595 
2596 	return count;
2597 }
2598 
2599 static const struct file_operations fops_kp = {
2600 	.read =         read_enabled_file_bool,
2601 	.write =        write_enabled_file_bool,
2602 	.llseek =	default_llseek,
2603 };
2604 
2605 static int __init debugfs_kprobe_init(void)
2606 {
2607 	struct dentry *dir, *file;
2608 	unsigned int value = 1;
2609 
2610 	dir = debugfs_create_dir("kprobes", NULL);
2611 	if (!dir)
2612 		return -ENOMEM;
2613 
2614 	file = debugfs_create_file("list", 0444, dir, NULL,
2615 				&debugfs_kprobes_operations);
2616 	if (!file)
2617 		goto error;
2618 
2619 	file = debugfs_create_file("enabled", 0600, dir,
2620 					&value, &fops_kp);
2621 	if (!file)
2622 		goto error;
2623 
2624 	file = debugfs_create_file("blacklist", 0444, dir, NULL,
2625 				&debugfs_kprobe_blacklist_ops);
2626 	if (!file)
2627 		goto error;
2628 
2629 	return 0;
2630 
2631 error:
2632 	debugfs_remove(dir);
2633 	return -ENOMEM;
2634 }
2635 
2636 late_initcall(debugfs_kprobe_init);
2637 #endif /* CONFIG_DEBUG_FS */
2638 
2639 module_init(init_kprobes);
2640 
2641 /* defined in arch/.../kernel/kprobes.c */
2642 EXPORT_SYMBOL_GPL(jprobe_return);
2643