xref: /openbmc/linux/kernel/kprobes.c (revision 4f6cce39)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51 
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56 
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 
60 
61 /*
62  * Some oddball architectures like 64bit powerpc have function descriptors
63  * so this must be overridable.
64  */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69 
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73 
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76 
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83 
84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86 	return &(kretprobe_table_locks[hash].lock);
87 }
88 
89 /* Blacklist -- list of struct kprobe_blacklist_entry */
90 static LIST_HEAD(kprobe_blacklist);
91 
92 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
93 /*
94  * kprobe->ainsn.insn points to the copy of the instruction to be
95  * single-stepped. x86_64, POWER4 and above have no-exec support and
96  * stepping on the instruction on a vmalloced/kmalloced/data page
97  * is a recipe for disaster
98  */
99 struct kprobe_insn_page {
100 	struct list_head list;
101 	kprobe_opcode_t *insns;		/* Page of instruction slots */
102 	struct kprobe_insn_cache *cache;
103 	int nused;
104 	int ngarbage;
105 	char slot_used[];
106 };
107 
108 #define KPROBE_INSN_PAGE_SIZE(slots)			\
109 	(offsetof(struct kprobe_insn_page, slot_used) +	\
110 	 (sizeof(char) * (slots)))
111 
112 static int slots_per_page(struct kprobe_insn_cache *c)
113 {
114 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
115 }
116 
117 enum kprobe_slot_state {
118 	SLOT_CLEAN = 0,
119 	SLOT_DIRTY = 1,
120 	SLOT_USED = 2,
121 };
122 
123 static void *alloc_insn_page(void)
124 {
125 	return module_alloc(PAGE_SIZE);
126 }
127 
128 static void free_insn_page(void *page)
129 {
130 	module_memfree(page);
131 }
132 
133 struct kprobe_insn_cache kprobe_insn_slots = {
134 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
135 	.alloc = alloc_insn_page,
136 	.free = free_insn_page,
137 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
138 	.insn_size = MAX_INSN_SIZE,
139 	.nr_garbage = 0,
140 };
141 static int collect_garbage_slots(struct kprobe_insn_cache *c);
142 
143 /**
144  * __get_insn_slot() - Find a slot on an executable page for an instruction.
145  * We allocate an executable page if there's no room on existing ones.
146  */
147 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
148 {
149 	struct kprobe_insn_page *kip;
150 	kprobe_opcode_t *slot = NULL;
151 
152 	/* Since the slot array is not protected by rcu, we need a mutex */
153 	mutex_lock(&c->mutex);
154  retry:
155 	rcu_read_lock();
156 	list_for_each_entry_rcu(kip, &c->pages, list) {
157 		if (kip->nused < slots_per_page(c)) {
158 			int i;
159 			for (i = 0; i < slots_per_page(c); i++) {
160 				if (kip->slot_used[i] == SLOT_CLEAN) {
161 					kip->slot_used[i] = SLOT_USED;
162 					kip->nused++;
163 					slot = kip->insns + (i * c->insn_size);
164 					rcu_read_unlock();
165 					goto out;
166 				}
167 			}
168 			/* kip->nused is broken. Fix it. */
169 			kip->nused = slots_per_page(c);
170 			WARN_ON(1);
171 		}
172 	}
173 	rcu_read_unlock();
174 
175 	/* If there are any garbage slots, collect it and try again. */
176 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
177 		goto retry;
178 
179 	/* All out of space.  Need to allocate a new page. */
180 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
181 	if (!kip)
182 		goto out;
183 
184 	/*
185 	 * Use module_alloc so this page is within +/- 2GB of where the
186 	 * kernel image and loaded module images reside. This is required
187 	 * so x86_64 can correctly handle the %rip-relative fixups.
188 	 */
189 	kip->insns = c->alloc();
190 	if (!kip->insns) {
191 		kfree(kip);
192 		goto out;
193 	}
194 	INIT_LIST_HEAD(&kip->list);
195 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
196 	kip->slot_used[0] = SLOT_USED;
197 	kip->nused = 1;
198 	kip->ngarbage = 0;
199 	kip->cache = c;
200 	list_add_rcu(&kip->list, &c->pages);
201 	slot = kip->insns;
202 out:
203 	mutex_unlock(&c->mutex);
204 	return slot;
205 }
206 
207 /* Return 1 if all garbages are collected, otherwise 0. */
208 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
209 {
210 	kip->slot_used[idx] = SLOT_CLEAN;
211 	kip->nused--;
212 	if (kip->nused == 0) {
213 		/*
214 		 * Page is no longer in use.  Free it unless
215 		 * it's the last one.  We keep the last one
216 		 * so as not to have to set it up again the
217 		 * next time somebody inserts a probe.
218 		 */
219 		if (!list_is_singular(&kip->list)) {
220 			list_del_rcu(&kip->list);
221 			synchronize_rcu();
222 			kip->cache->free(kip->insns);
223 			kfree(kip);
224 		}
225 		return 1;
226 	}
227 	return 0;
228 }
229 
230 static int collect_garbage_slots(struct kprobe_insn_cache *c)
231 {
232 	struct kprobe_insn_page *kip, *next;
233 
234 	/* Ensure no-one is interrupted on the garbages */
235 	synchronize_sched();
236 
237 	list_for_each_entry_safe(kip, next, &c->pages, list) {
238 		int i;
239 		if (kip->ngarbage == 0)
240 			continue;
241 		kip->ngarbage = 0;	/* we will collect all garbages */
242 		for (i = 0; i < slots_per_page(c); i++) {
243 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
244 				break;
245 		}
246 	}
247 	c->nr_garbage = 0;
248 	return 0;
249 }
250 
251 void __free_insn_slot(struct kprobe_insn_cache *c,
252 		      kprobe_opcode_t *slot, int dirty)
253 {
254 	struct kprobe_insn_page *kip;
255 	long idx;
256 
257 	mutex_lock(&c->mutex);
258 	rcu_read_lock();
259 	list_for_each_entry_rcu(kip, &c->pages, list) {
260 		idx = ((long)slot - (long)kip->insns) /
261 			(c->insn_size * sizeof(kprobe_opcode_t));
262 		if (idx >= 0 && idx < slots_per_page(c))
263 			goto out;
264 	}
265 	/* Could not find this slot. */
266 	WARN_ON(1);
267 	kip = NULL;
268 out:
269 	rcu_read_unlock();
270 	/* Mark and sweep: this may sleep */
271 	if (kip) {
272 		/* Check double free */
273 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
274 		if (dirty) {
275 			kip->slot_used[idx] = SLOT_DIRTY;
276 			kip->ngarbage++;
277 			if (++c->nr_garbage > slots_per_page(c))
278 				collect_garbage_slots(c);
279 		} else {
280 			collect_one_slot(kip, idx);
281 		}
282 	}
283 	mutex_unlock(&c->mutex);
284 }
285 
286 /*
287  * Check given address is on the page of kprobe instruction slots.
288  * This will be used for checking whether the address on a stack
289  * is on a text area or not.
290  */
291 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
292 {
293 	struct kprobe_insn_page *kip;
294 	bool ret = false;
295 
296 	rcu_read_lock();
297 	list_for_each_entry_rcu(kip, &c->pages, list) {
298 		if (addr >= (unsigned long)kip->insns &&
299 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
300 			ret = true;
301 			break;
302 		}
303 	}
304 	rcu_read_unlock();
305 
306 	return ret;
307 }
308 
309 #ifdef CONFIG_OPTPROBES
310 /* For optimized_kprobe buffer */
311 struct kprobe_insn_cache kprobe_optinsn_slots = {
312 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
313 	.alloc = alloc_insn_page,
314 	.free = free_insn_page,
315 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
316 	/* .insn_size is initialized later */
317 	.nr_garbage = 0,
318 };
319 #endif
320 #endif
321 
322 /* We have preemption disabled.. so it is safe to use __ versions */
323 static inline void set_kprobe_instance(struct kprobe *kp)
324 {
325 	__this_cpu_write(kprobe_instance, kp);
326 }
327 
328 static inline void reset_kprobe_instance(void)
329 {
330 	__this_cpu_write(kprobe_instance, NULL);
331 }
332 
333 /*
334  * This routine is called either:
335  * 	- under the kprobe_mutex - during kprobe_[un]register()
336  * 				OR
337  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
338  */
339 struct kprobe *get_kprobe(void *addr)
340 {
341 	struct hlist_head *head;
342 	struct kprobe *p;
343 
344 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
345 	hlist_for_each_entry_rcu(p, head, hlist) {
346 		if (p->addr == addr)
347 			return p;
348 	}
349 
350 	return NULL;
351 }
352 NOKPROBE_SYMBOL(get_kprobe);
353 
354 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
355 
356 /* Return true if the kprobe is an aggregator */
357 static inline int kprobe_aggrprobe(struct kprobe *p)
358 {
359 	return p->pre_handler == aggr_pre_handler;
360 }
361 
362 /* Return true(!0) if the kprobe is unused */
363 static inline int kprobe_unused(struct kprobe *p)
364 {
365 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
366 	       list_empty(&p->list);
367 }
368 
369 /*
370  * Keep all fields in the kprobe consistent
371  */
372 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
373 {
374 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
375 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
376 }
377 
378 #ifdef CONFIG_OPTPROBES
379 /* NOTE: change this value only with kprobe_mutex held */
380 static bool kprobes_allow_optimization;
381 
382 /*
383  * Call all pre_handler on the list, but ignores its return value.
384  * This must be called from arch-dep optimized caller.
385  */
386 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
387 {
388 	struct kprobe *kp;
389 
390 	list_for_each_entry_rcu(kp, &p->list, list) {
391 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
392 			set_kprobe_instance(kp);
393 			kp->pre_handler(kp, regs);
394 		}
395 		reset_kprobe_instance();
396 	}
397 }
398 NOKPROBE_SYMBOL(opt_pre_handler);
399 
400 /* Free optimized instructions and optimized_kprobe */
401 static void free_aggr_kprobe(struct kprobe *p)
402 {
403 	struct optimized_kprobe *op;
404 
405 	op = container_of(p, struct optimized_kprobe, kp);
406 	arch_remove_optimized_kprobe(op);
407 	arch_remove_kprobe(p);
408 	kfree(op);
409 }
410 
411 /* Return true(!0) if the kprobe is ready for optimization. */
412 static inline int kprobe_optready(struct kprobe *p)
413 {
414 	struct optimized_kprobe *op;
415 
416 	if (kprobe_aggrprobe(p)) {
417 		op = container_of(p, struct optimized_kprobe, kp);
418 		return arch_prepared_optinsn(&op->optinsn);
419 	}
420 
421 	return 0;
422 }
423 
424 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
425 static inline int kprobe_disarmed(struct kprobe *p)
426 {
427 	struct optimized_kprobe *op;
428 
429 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
430 	if (!kprobe_aggrprobe(p))
431 		return kprobe_disabled(p);
432 
433 	op = container_of(p, struct optimized_kprobe, kp);
434 
435 	return kprobe_disabled(p) && list_empty(&op->list);
436 }
437 
438 /* Return true(!0) if the probe is queued on (un)optimizing lists */
439 static int kprobe_queued(struct kprobe *p)
440 {
441 	struct optimized_kprobe *op;
442 
443 	if (kprobe_aggrprobe(p)) {
444 		op = container_of(p, struct optimized_kprobe, kp);
445 		if (!list_empty(&op->list))
446 			return 1;
447 	}
448 	return 0;
449 }
450 
451 /*
452  * Return an optimized kprobe whose optimizing code replaces
453  * instructions including addr (exclude breakpoint).
454  */
455 static struct kprobe *get_optimized_kprobe(unsigned long addr)
456 {
457 	int i;
458 	struct kprobe *p = NULL;
459 	struct optimized_kprobe *op;
460 
461 	/* Don't check i == 0, since that is a breakpoint case. */
462 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
463 		p = get_kprobe((void *)(addr - i));
464 
465 	if (p && kprobe_optready(p)) {
466 		op = container_of(p, struct optimized_kprobe, kp);
467 		if (arch_within_optimized_kprobe(op, addr))
468 			return p;
469 	}
470 
471 	return NULL;
472 }
473 
474 /* Optimization staging list, protected by kprobe_mutex */
475 static LIST_HEAD(optimizing_list);
476 static LIST_HEAD(unoptimizing_list);
477 static LIST_HEAD(freeing_list);
478 
479 static void kprobe_optimizer(struct work_struct *work);
480 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
481 #define OPTIMIZE_DELAY 5
482 
483 /*
484  * Optimize (replace a breakpoint with a jump) kprobes listed on
485  * optimizing_list.
486  */
487 static void do_optimize_kprobes(void)
488 {
489 	/* Optimization never be done when disarmed */
490 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
491 	    list_empty(&optimizing_list))
492 		return;
493 
494 	/*
495 	 * The optimization/unoptimization refers online_cpus via
496 	 * stop_machine() and cpu-hotplug modifies online_cpus.
497 	 * And same time, text_mutex will be held in cpu-hotplug and here.
498 	 * This combination can cause a deadlock (cpu-hotplug try to lock
499 	 * text_mutex but stop_machine can not be done because online_cpus
500 	 * has been changed)
501 	 * To avoid this deadlock, we need to call get_online_cpus()
502 	 * for preventing cpu-hotplug outside of text_mutex locking.
503 	 */
504 	get_online_cpus();
505 	mutex_lock(&text_mutex);
506 	arch_optimize_kprobes(&optimizing_list);
507 	mutex_unlock(&text_mutex);
508 	put_online_cpus();
509 }
510 
511 /*
512  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
513  * if need) kprobes listed on unoptimizing_list.
514  */
515 static void do_unoptimize_kprobes(void)
516 {
517 	struct optimized_kprobe *op, *tmp;
518 
519 	/* Unoptimization must be done anytime */
520 	if (list_empty(&unoptimizing_list))
521 		return;
522 
523 	/* Ditto to do_optimize_kprobes */
524 	get_online_cpus();
525 	mutex_lock(&text_mutex);
526 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
527 	/* Loop free_list for disarming */
528 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
529 		/* Disarm probes if marked disabled */
530 		if (kprobe_disabled(&op->kp))
531 			arch_disarm_kprobe(&op->kp);
532 		if (kprobe_unused(&op->kp)) {
533 			/*
534 			 * Remove unused probes from hash list. After waiting
535 			 * for synchronization, these probes are reclaimed.
536 			 * (reclaiming is done by do_free_cleaned_kprobes.)
537 			 */
538 			hlist_del_rcu(&op->kp.hlist);
539 		} else
540 			list_del_init(&op->list);
541 	}
542 	mutex_unlock(&text_mutex);
543 	put_online_cpus();
544 }
545 
546 /* Reclaim all kprobes on the free_list */
547 static void do_free_cleaned_kprobes(void)
548 {
549 	struct optimized_kprobe *op, *tmp;
550 
551 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
552 		BUG_ON(!kprobe_unused(&op->kp));
553 		list_del_init(&op->list);
554 		free_aggr_kprobe(&op->kp);
555 	}
556 }
557 
558 /* Start optimizer after OPTIMIZE_DELAY passed */
559 static void kick_kprobe_optimizer(void)
560 {
561 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
562 }
563 
564 /* Kprobe jump optimizer */
565 static void kprobe_optimizer(struct work_struct *work)
566 {
567 	mutex_lock(&kprobe_mutex);
568 	/* Lock modules while optimizing kprobes */
569 	mutex_lock(&module_mutex);
570 
571 	/*
572 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
573 	 * kprobes before waiting for quiesence period.
574 	 */
575 	do_unoptimize_kprobes();
576 
577 	/*
578 	 * Step 2: Wait for quiesence period to ensure all running interrupts
579 	 * are done. Because optprobe may modify multiple instructions
580 	 * there is a chance that Nth instruction is interrupted. In that
581 	 * case, running interrupt can return to 2nd-Nth byte of jump
582 	 * instruction. This wait is for avoiding it.
583 	 */
584 	synchronize_sched();
585 
586 	/* Step 3: Optimize kprobes after quiesence period */
587 	do_optimize_kprobes();
588 
589 	/* Step 4: Free cleaned kprobes after quiesence period */
590 	do_free_cleaned_kprobes();
591 
592 	mutex_unlock(&module_mutex);
593 	mutex_unlock(&kprobe_mutex);
594 
595 	/* Step 5: Kick optimizer again if needed */
596 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
597 		kick_kprobe_optimizer();
598 }
599 
600 /* Wait for completing optimization and unoptimization */
601 static void wait_for_kprobe_optimizer(void)
602 {
603 	mutex_lock(&kprobe_mutex);
604 
605 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
606 		mutex_unlock(&kprobe_mutex);
607 
608 		/* this will also make optimizing_work execute immmediately */
609 		flush_delayed_work(&optimizing_work);
610 		/* @optimizing_work might not have been queued yet, relax */
611 		cpu_relax();
612 
613 		mutex_lock(&kprobe_mutex);
614 	}
615 
616 	mutex_unlock(&kprobe_mutex);
617 }
618 
619 /* Optimize kprobe if p is ready to be optimized */
620 static void optimize_kprobe(struct kprobe *p)
621 {
622 	struct optimized_kprobe *op;
623 
624 	/* Check if the kprobe is disabled or not ready for optimization. */
625 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
626 	    (kprobe_disabled(p) || kprobes_all_disarmed))
627 		return;
628 
629 	/* Both of break_handler and post_handler are not supported. */
630 	if (p->break_handler || p->post_handler)
631 		return;
632 
633 	op = container_of(p, struct optimized_kprobe, kp);
634 
635 	/* Check there is no other kprobes at the optimized instructions */
636 	if (arch_check_optimized_kprobe(op) < 0)
637 		return;
638 
639 	/* Check if it is already optimized. */
640 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
641 		return;
642 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
643 
644 	if (!list_empty(&op->list))
645 		/* This is under unoptimizing. Just dequeue the probe */
646 		list_del_init(&op->list);
647 	else {
648 		list_add(&op->list, &optimizing_list);
649 		kick_kprobe_optimizer();
650 	}
651 }
652 
653 /* Short cut to direct unoptimizing */
654 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
655 {
656 	get_online_cpus();
657 	arch_unoptimize_kprobe(op);
658 	put_online_cpus();
659 	if (kprobe_disabled(&op->kp))
660 		arch_disarm_kprobe(&op->kp);
661 }
662 
663 /* Unoptimize a kprobe if p is optimized */
664 static void unoptimize_kprobe(struct kprobe *p, bool force)
665 {
666 	struct optimized_kprobe *op;
667 
668 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
669 		return; /* This is not an optprobe nor optimized */
670 
671 	op = container_of(p, struct optimized_kprobe, kp);
672 	if (!kprobe_optimized(p)) {
673 		/* Unoptimized or unoptimizing case */
674 		if (force && !list_empty(&op->list)) {
675 			/*
676 			 * Only if this is unoptimizing kprobe and forced,
677 			 * forcibly unoptimize it. (No need to unoptimize
678 			 * unoptimized kprobe again :)
679 			 */
680 			list_del_init(&op->list);
681 			force_unoptimize_kprobe(op);
682 		}
683 		return;
684 	}
685 
686 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
687 	if (!list_empty(&op->list)) {
688 		/* Dequeue from the optimization queue */
689 		list_del_init(&op->list);
690 		return;
691 	}
692 	/* Optimized kprobe case */
693 	if (force)
694 		/* Forcibly update the code: this is a special case */
695 		force_unoptimize_kprobe(op);
696 	else {
697 		list_add(&op->list, &unoptimizing_list);
698 		kick_kprobe_optimizer();
699 	}
700 }
701 
702 /* Cancel unoptimizing for reusing */
703 static void reuse_unused_kprobe(struct kprobe *ap)
704 {
705 	struct optimized_kprobe *op;
706 
707 	BUG_ON(!kprobe_unused(ap));
708 	/*
709 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
710 	 * there is still a relative jump) and disabled.
711 	 */
712 	op = container_of(ap, struct optimized_kprobe, kp);
713 	if (unlikely(list_empty(&op->list)))
714 		printk(KERN_WARNING "Warning: found a stray unused "
715 			"aggrprobe@%p\n", ap->addr);
716 	/* Enable the probe again */
717 	ap->flags &= ~KPROBE_FLAG_DISABLED;
718 	/* Optimize it again (remove from op->list) */
719 	BUG_ON(!kprobe_optready(ap));
720 	optimize_kprobe(ap);
721 }
722 
723 /* Remove optimized instructions */
724 static void kill_optimized_kprobe(struct kprobe *p)
725 {
726 	struct optimized_kprobe *op;
727 
728 	op = container_of(p, struct optimized_kprobe, kp);
729 	if (!list_empty(&op->list))
730 		/* Dequeue from the (un)optimization queue */
731 		list_del_init(&op->list);
732 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
733 
734 	if (kprobe_unused(p)) {
735 		/* Enqueue if it is unused */
736 		list_add(&op->list, &freeing_list);
737 		/*
738 		 * Remove unused probes from the hash list. After waiting
739 		 * for synchronization, this probe is reclaimed.
740 		 * (reclaiming is done by do_free_cleaned_kprobes().)
741 		 */
742 		hlist_del_rcu(&op->kp.hlist);
743 	}
744 
745 	/* Don't touch the code, because it is already freed. */
746 	arch_remove_optimized_kprobe(op);
747 }
748 
749 /* Try to prepare optimized instructions */
750 static void prepare_optimized_kprobe(struct kprobe *p)
751 {
752 	struct optimized_kprobe *op;
753 
754 	op = container_of(p, struct optimized_kprobe, kp);
755 	arch_prepare_optimized_kprobe(op, p);
756 }
757 
758 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
759 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
760 {
761 	struct optimized_kprobe *op;
762 
763 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
764 	if (!op)
765 		return NULL;
766 
767 	INIT_LIST_HEAD(&op->list);
768 	op->kp.addr = p->addr;
769 	arch_prepare_optimized_kprobe(op, p);
770 
771 	return &op->kp;
772 }
773 
774 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
775 
776 /*
777  * Prepare an optimized_kprobe and optimize it
778  * NOTE: p must be a normal registered kprobe
779  */
780 static void try_to_optimize_kprobe(struct kprobe *p)
781 {
782 	struct kprobe *ap;
783 	struct optimized_kprobe *op;
784 
785 	/* Impossible to optimize ftrace-based kprobe */
786 	if (kprobe_ftrace(p))
787 		return;
788 
789 	/* For preparing optimization, jump_label_text_reserved() is called */
790 	jump_label_lock();
791 	mutex_lock(&text_mutex);
792 
793 	ap = alloc_aggr_kprobe(p);
794 	if (!ap)
795 		goto out;
796 
797 	op = container_of(ap, struct optimized_kprobe, kp);
798 	if (!arch_prepared_optinsn(&op->optinsn)) {
799 		/* If failed to setup optimizing, fallback to kprobe */
800 		arch_remove_optimized_kprobe(op);
801 		kfree(op);
802 		goto out;
803 	}
804 
805 	init_aggr_kprobe(ap, p);
806 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
807 
808 out:
809 	mutex_unlock(&text_mutex);
810 	jump_label_unlock();
811 }
812 
813 #ifdef CONFIG_SYSCTL
814 static void optimize_all_kprobes(void)
815 {
816 	struct hlist_head *head;
817 	struct kprobe *p;
818 	unsigned int i;
819 
820 	mutex_lock(&kprobe_mutex);
821 	/* If optimization is already allowed, just return */
822 	if (kprobes_allow_optimization)
823 		goto out;
824 
825 	kprobes_allow_optimization = true;
826 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
827 		head = &kprobe_table[i];
828 		hlist_for_each_entry_rcu(p, head, hlist)
829 			if (!kprobe_disabled(p))
830 				optimize_kprobe(p);
831 	}
832 	printk(KERN_INFO "Kprobes globally optimized\n");
833 out:
834 	mutex_unlock(&kprobe_mutex);
835 }
836 
837 static void unoptimize_all_kprobes(void)
838 {
839 	struct hlist_head *head;
840 	struct kprobe *p;
841 	unsigned int i;
842 
843 	mutex_lock(&kprobe_mutex);
844 	/* If optimization is already prohibited, just return */
845 	if (!kprobes_allow_optimization) {
846 		mutex_unlock(&kprobe_mutex);
847 		return;
848 	}
849 
850 	kprobes_allow_optimization = false;
851 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
852 		head = &kprobe_table[i];
853 		hlist_for_each_entry_rcu(p, head, hlist) {
854 			if (!kprobe_disabled(p))
855 				unoptimize_kprobe(p, false);
856 		}
857 	}
858 	mutex_unlock(&kprobe_mutex);
859 
860 	/* Wait for unoptimizing completion */
861 	wait_for_kprobe_optimizer();
862 	printk(KERN_INFO "Kprobes globally unoptimized\n");
863 }
864 
865 static DEFINE_MUTEX(kprobe_sysctl_mutex);
866 int sysctl_kprobes_optimization;
867 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
868 				      void __user *buffer, size_t *length,
869 				      loff_t *ppos)
870 {
871 	int ret;
872 
873 	mutex_lock(&kprobe_sysctl_mutex);
874 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
875 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
876 
877 	if (sysctl_kprobes_optimization)
878 		optimize_all_kprobes();
879 	else
880 		unoptimize_all_kprobes();
881 	mutex_unlock(&kprobe_sysctl_mutex);
882 
883 	return ret;
884 }
885 #endif /* CONFIG_SYSCTL */
886 
887 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
888 static void __arm_kprobe(struct kprobe *p)
889 {
890 	struct kprobe *_p;
891 
892 	/* Check collision with other optimized kprobes */
893 	_p = get_optimized_kprobe((unsigned long)p->addr);
894 	if (unlikely(_p))
895 		/* Fallback to unoptimized kprobe */
896 		unoptimize_kprobe(_p, true);
897 
898 	arch_arm_kprobe(p);
899 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
900 }
901 
902 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
903 static void __disarm_kprobe(struct kprobe *p, bool reopt)
904 {
905 	struct kprobe *_p;
906 
907 	/* Try to unoptimize */
908 	unoptimize_kprobe(p, kprobes_all_disarmed);
909 
910 	if (!kprobe_queued(p)) {
911 		arch_disarm_kprobe(p);
912 		/* If another kprobe was blocked, optimize it. */
913 		_p = get_optimized_kprobe((unsigned long)p->addr);
914 		if (unlikely(_p) && reopt)
915 			optimize_kprobe(_p);
916 	}
917 	/* TODO: reoptimize others after unoptimized this probe */
918 }
919 
920 #else /* !CONFIG_OPTPROBES */
921 
922 #define optimize_kprobe(p)			do {} while (0)
923 #define unoptimize_kprobe(p, f)			do {} while (0)
924 #define kill_optimized_kprobe(p)		do {} while (0)
925 #define prepare_optimized_kprobe(p)		do {} while (0)
926 #define try_to_optimize_kprobe(p)		do {} while (0)
927 #define __arm_kprobe(p)				arch_arm_kprobe(p)
928 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
929 #define kprobe_disarmed(p)			kprobe_disabled(p)
930 #define wait_for_kprobe_optimizer()		do {} while (0)
931 
932 /* There should be no unused kprobes can be reused without optimization */
933 static void reuse_unused_kprobe(struct kprobe *ap)
934 {
935 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
936 	BUG_ON(kprobe_unused(ap));
937 }
938 
939 static void free_aggr_kprobe(struct kprobe *p)
940 {
941 	arch_remove_kprobe(p);
942 	kfree(p);
943 }
944 
945 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
946 {
947 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
948 }
949 #endif /* CONFIG_OPTPROBES */
950 
951 #ifdef CONFIG_KPROBES_ON_FTRACE
952 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
953 	.func = kprobe_ftrace_handler,
954 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
955 };
956 static int kprobe_ftrace_enabled;
957 
958 /* Must ensure p->addr is really on ftrace */
959 static int prepare_kprobe(struct kprobe *p)
960 {
961 	if (!kprobe_ftrace(p))
962 		return arch_prepare_kprobe(p);
963 
964 	return arch_prepare_kprobe_ftrace(p);
965 }
966 
967 /* Caller must lock kprobe_mutex */
968 static void arm_kprobe_ftrace(struct kprobe *p)
969 {
970 	int ret;
971 
972 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
973 				   (unsigned long)p->addr, 0, 0);
974 	WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
975 	kprobe_ftrace_enabled++;
976 	if (kprobe_ftrace_enabled == 1) {
977 		ret = register_ftrace_function(&kprobe_ftrace_ops);
978 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
979 	}
980 }
981 
982 /* Caller must lock kprobe_mutex */
983 static void disarm_kprobe_ftrace(struct kprobe *p)
984 {
985 	int ret;
986 
987 	kprobe_ftrace_enabled--;
988 	if (kprobe_ftrace_enabled == 0) {
989 		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
990 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
991 	}
992 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
993 			   (unsigned long)p->addr, 1, 0);
994 	WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
995 }
996 #else	/* !CONFIG_KPROBES_ON_FTRACE */
997 #define prepare_kprobe(p)	arch_prepare_kprobe(p)
998 #define arm_kprobe_ftrace(p)	do {} while (0)
999 #define disarm_kprobe_ftrace(p)	do {} while (0)
1000 #endif
1001 
1002 /* Arm a kprobe with text_mutex */
1003 static void arm_kprobe(struct kprobe *kp)
1004 {
1005 	if (unlikely(kprobe_ftrace(kp))) {
1006 		arm_kprobe_ftrace(kp);
1007 		return;
1008 	}
1009 	/*
1010 	 * Here, since __arm_kprobe() doesn't use stop_machine(),
1011 	 * this doesn't cause deadlock on text_mutex. So, we don't
1012 	 * need get_online_cpus().
1013 	 */
1014 	mutex_lock(&text_mutex);
1015 	__arm_kprobe(kp);
1016 	mutex_unlock(&text_mutex);
1017 }
1018 
1019 /* Disarm a kprobe with text_mutex */
1020 static void disarm_kprobe(struct kprobe *kp, bool reopt)
1021 {
1022 	if (unlikely(kprobe_ftrace(kp))) {
1023 		disarm_kprobe_ftrace(kp);
1024 		return;
1025 	}
1026 	/* Ditto */
1027 	mutex_lock(&text_mutex);
1028 	__disarm_kprobe(kp, reopt);
1029 	mutex_unlock(&text_mutex);
1030 }
1031 
1032 /*
1033  * Aggregate handlers for multiple kprobes support - these handlers
1034  * take care of invoking the individual kprobe handlers on p->list
1035  */
1036 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1037 {
1038 	struct kprobe *kp;
1039 
1040 	list_for_each_entry_rcu(kp, &p->list, list) {
1041 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1042 			set_kprobe_instance(kp);
1043 			if (kp->pre_handler(kp, regs))
1044 				return 1;
1045 		}
1046 		reset_kprobe_instance();
1047 	}
1048 	return 0;
1049 }
1050 NOKPROBE_SYMBOL(aggr_pre_handler);
1051 
1052 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1053 			      unsigned long flags)
1054 {
1055 	struct kprobe *kp;
1056 
1057 	list_for_each_entry_rcu(kp, &p->list, list) {
1058 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1059 			set_kprobe_instance(kp);
1060 			kp->post_handler(kp, regs, flags);
1061 			reset_kprobe_instance();
1062 		}
1063 	}
1064 }
1065 NOKPROBE_SYMBOL(aggr_post_handler);
1066 
1067 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1068 			      int trapnr)
1069 {
1070 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1071 
1072 	/*
1073 	 * if we faulted "during" the execution of a user specified
1074 	 * probe handler, invoke just that probe's fault handler
1075 	 */
1076 	if (cur && cur->fault_handler) {
1077 		if (cur->fault_handler(cur, regs, trapnr))
1078 			return 1;
1079 	}
1080 	return 0;
1081 }
1082 NOKPROBE_SYMBOL(aggr_fault_handler);
1083 
1084 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1085 {
1086 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1087 	int ret = 0;
1088 
1089 	if (cur && cur->break_handler) {
1090 		if (cur->break_handler(cur, regs))
1091 			ret = 1;
1092 	}
1093 	reset_kprobe_instance();
1094 	return ret;
1095 }
1096 NOKPROBE_SYMBOL(aggr_break_handler);
1097 
1098 /* Walks the list and increments nmissed count for multiprobe case */
1099 void kprobes_inc_nmissed_count(struct kprobe *p)
1100 {
1101 	struct kprobe *kp;
1102 	if (!kprobe_aggrprobe(p)) {
1103 		p->nmissed++;
1104 	} else {
1105 		list_for_each_entry_rcu(kp, &p->list, list)
1106 			kp->nmissed++;
1107 	}
1108 	return;
1109 }
1110 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1111 
1112 void recycle_rp_inst(struct kretprobe_instance *ri,
1113 		     struct hlist_head *head)
1114 {
1115 	struct kretprobe *rp = ri->rp;
1116 
1117 	/* remove rp inst off the rprobe_inst_table */
1118 	hlist_del(&ri->hlist);
1119 	INIT_HLIST_NODE(&ri->hlist);
1120 	if (likely(rp)) {
1121 		raw_spin_lock(&rp->lock);
1122 		hlist_add_head(&ri->hlist, &rp->free_instances);
1123 		raw_spin_unlock(&rp->lock);
1124 	} else
1125 		/* Unregistering */
1126 		hlist_add_head(&ri->hlist, head);
1127 }
1128 NOKPROBE_SYMBOL(recycle_rp_inst);
1129 
1130 void kretprobe_hash_lock(struct task_struct *tsk,
1131 			 struct hlist_head **head, unsigned long *flags)
1132 __acquires(hlist_lock)
1133 {
1134 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1135 	raw_spinlock_t *hlist_lock;
1136 
1137 	*head = &kretprobe_inst_table[hash];
1138 	hlist_lock = kretprobe_table_lock_ptr(hash);
1139 	raw_spin_lock_irqsave(hlist_lock, *flags);
1140 }
1141 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1142 
1143 static void kretprobe_table_lock(unsigned long hash,
1144 				 unsigned long *flags)
1145 __acquires(hlist_lock)
1146 {
1147 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1148 	raw_spin_lock_irqsave(hlist_lock, *flags);
1149 }
1150 NOKPROBE_SYMBOL(kretprobe_table_lock);
1151 
1152 void kretprobe_hash_unlock(struct task_struct *tsk,
1153 			   unsigned long *flags)
1154 __releases(hlist_lock)
1155 {
1156 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1157 	raw_spinlock_t *hlist_lock;
1158 
1159 	hlist_lock = kretprobe_table_lock_ptr(hash);
1160 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1161 }
1162 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1163 
1164 static void kretprobe_table_unlock(unsigned long hash,
1165 				   unsigned long *flags)
1166 __releases(hlist_lock)
1167 {
1168 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1169 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1170 }
1171 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1172 
1173 /*
1174  * This function is called from finish_task_switch when task tk becomes dead,
1175  * so that we can recycle any function-return probe instances associated
1176  * with this task. These left over instances represent probed functions
1177  * that have been called but will never return.
1178  */
1179 void kprobe_flush_task(struct task_struct *tk)
1180 {
1181 	struct kretprobe_instance *ri;
1182 	struct hlist_head *head, empty_rp;
1183 	struct hlist_node *tmp;
1184 	unsigned long hash, flags = 0;
1185 
1186 	if (unlikely(!kprobes_initialized))
1187 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1188 		return;
1189 
1190 	INIT_HLIST_HEAD(&empty_rp);
1191 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1192 	head = &kretprobe_inst_table[hash];
1193 	kretprobe_table_lock(hash, &flags);
1194 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1195 		if (ri->task == tk)
1196 			recycle_rp_inst(ri, &empty_rp);
1197 	}
1198 	kretprobe_table_unlock(hash, &flags);
1199 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1200 		hlist_del(&ri->hlist);
1201 		kfree(ri);
1202 	}
1203 }
1204 NOKPROBE_SYMBOL(kprobe_flush_task);
1205 
1206 static inline void free_rp_inst(struct kretprobe *rp)
1207 {
1208 	struct kretprobe_instance *ri;
1209 	struct hlist_node *next;
1210 
1211 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1212 		hlist_del(&ri->hlist);
1213 		kfree(ri);
1214 	}
1215 }
1216 
1217 static void cleanup_rp_inst(struct kretprobe *rp)
1218 {
1219 	unsigned long flags, hash;
1220 	struct kretprobe_instance *ri;
1221 	struct hlist_node *next;
1222 	struct hlist_head *head;
1223 
1224 	/* No race here */
1225 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1226 		kretprobe_table_lock(hash, &flags);
1227 		head = &kretprobe_inst_table[hash];
1228 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1229 			if (ri->rp == rp)
1230 				ri->rp = NULL;
1231 		}
1232 		kretprobe_table_unlock(hash, &flags);
1233 	}
1234 	free_rp_inst(rp);
1235 }
1236 NOKPROBE_SYMBOL(cleanup_rp_inst);
1237 
1238 /*
1239 * Add the new probe to ap->list. Fail if this is the
1240 * second jprobe at the address - two jprobes can't coexist
1241 */
1242 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1243 {
1244 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1245 
1246 	if (p->break_handler || p->post_handler)
1247 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1248 
1249 	if (p->break_handler) {
1250 		if (ap->break_handler)
1251 			return -EEXIST;
1252 		list_add_tail_rcu(&p->list, &ap->list);
1253 		ap->break_handler = aggr_break_handler;
1254 	} else
1255 		list_add_rcu(&p->list, &ap->list);
1256 	if (p->post_handler && !ap->post_handler)
1257 		ap->post_handler = aggr_post_handler;
1258 
1259 	return 0;
1260 }
1261 
1262 /*
1263  * Fill in the required fields of the "manager kprobe". Replace the
1264  * earlier kprobe in the hlist with the manager kprobe
1265  */
1266 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1267 {
1268 	/* Copy p's insn slot to ap */
1269 	copy_kprobe(p, ap);
1270 	flush_insn_slot(ap);
1271 	ap->addr = p->addr;
1272 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1273 	ap->pre_handler = aggr_pre_handler;
1274 	ap->fault_handler = aggr_fault_handler;
1275 	/* We don't care the kprobe which has gone. */
1276 	if (p->post_handler && !kprobe_gone(p))
1277 		ap->post_handler = aggr_post_handler;
1278 	if (p->break_handler && !kprobe_gone(p))
1279 		ap->break_handler = aggr_break_handler;
1280 
1281 	INIT_LIST_HEAD(&ap->list);
1282 	INIT_HLIST_NODE(&ap->hlist);
1283 
1284 	list_add_rcu(&p->list, &ap->list);
1285 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1286 }
1287 
1288 /*
1289  * This is the second or subsequent kprobe at the address - handle
1290  * the intricacies
1291  */
1292 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1293 {
1294 	int ret = 0;
1295 	struct kprobe *ap = orig_p;
1296 
1297 	/* For preparing optimization, jump_label_text_reserved() is called */
1298 	jump_label_lock();
1299 	/*
1300 	 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1301 	 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1302 	 */
1303 	get_online_cpus();
1304 	mutex_lock(&text_mutex);
1305 
1306 	if (!kprobe_aggrprobe(orig_p)) {
1307 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1308 		ap = alloc_aggr_kprobe(orig_p);
1309 		if (!ap) {
1310 			ret = -ENOMEM;
1311 			goto out;
1312 		}
1313 		init_aggr_kprobe(ap, orig_p);
1314 	} else if (kprobe_unused(ap))
1315 		/* This probe is going to die. Rescue it */
1316 		reuse_unused_kprobe(ap);
1317 
1318 	if (kprobe_gone(ap)) {
1319 		/*
1320 		 * Attempting to insert new probe at the same location that
1321 		 * had a probe in the module vaddr area which already
1322 		 * freed. So, the instruction slot has already been
1323 		 * released. We need a new slot for the new probe.
1324 		 */
1325 		ret = arch_prepare_kprobe(ap);
1326 		if (ret)
1327 			/*
1328 			 * Even if fail to allocate new slot, don't need to
1329 			 * free aggr_probe. It will be used next time, or
1330 			 * freed by unregister_kprobe.
1331 			 */
1332 			goto out;
1333 
1334 		/* Prepare optimized instructions if possible. */
1335 		prepare_optimized_kprobe(ap);
1336 
1337 		/*
1338 		 * Clear gone flag to prevent allocating new slot again, and
1339 		 * set disabled flag because it is not armed yet.
1340 		 */
1341 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1342 			    | KPROBE_FLAG_DISABLED;
1343 	}
1344 
1345 	/* Copy ap's insn slot to p */
1346 	copy_kprobe(ap, p);
1347 	ret = add_new_kprobe(ap, p);
1348 
1349 out:
1350 	mutex_unlock(&text_mutex);
1351 	put_online_cpus();
1352 	jump_label_unlock();
1353 
1354 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1355 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1356 		if (!kprobes_all_disarmed)
1357 			/* Arm the breakpoint again. */
1358 			arm_kprobe(ap);
1359 	}
1360 	return ret;
1361 }
1362 
1363 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1364 {
1365 	/* The __kprobes marked functions and entry code must not be probed */
1366 	return addr >= (unsigned long)__kprobes_text_start &&
1367 	       addr < (unsigned long)__kprobes_text_end;
1368 }
1369 
1370 bool within_kprobe_blacklist(unsigned long addr)
1371 {
1372 	struct kprobe_blacklist_entry *ent;
1373 
1374 	if (arch_within_kprobe_blacklist(addr))
1375 		return true;
1376 	/*
1377 	 * If there exists a kprobe_blacklist, verify and
1378 	 * fail any probe registration in the prohibited area
1379 	 */
1380 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1381 		if (addr >= ent->start_addr && addr < ent->end_addr)
1382 			return true;
1383 	}
1384 
1385 	return false;
1386 }
1387 
1388 /*
1389  * If we have a symbol_name argument, look it up and add the offset field
1390  * to it. This way, we can specify a relative address to a symbol.
1391  * This returns encoded errors if it fails to look up symbol or invalid
1392  * combination of parameters.
1393  */
1394 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1395 {
1396 	kprobe_opcode_t *addr = p->addr;
1397 
1398 	if ((p->symbol_name && p->addr) ||
1399 	    (!p->symbol_name && !p->addr))
1400 		goto invalid;
1401 
1402 	if (p->symbol_name) {
1403 		kprobe_lookup_name(p->symbol_name, addr);
1404 		if (!addr)
1405 			return ERR_PTR(-ENOENT);
1406 	}
1407 
1408 	addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1409 	if (addr)
1410 		return addr;
1411 
1412 invalid:
1413 	return ERR_PTR(-EINVAL);
1414 }
1415 
1416 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1417 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1418 {
1419 	struct kprobe *ap, *list_p;
1420 
1421 	ap = get_kprobe(p->addr);
1422 	if (unlikely(!ap))
1423 		return NULL;
1424 
1425 	if (p != ap) {
1426 		list_for_each_entry_rcu(list_p, &ap->list, list)
1427 			if (list_p == p)
1428 			/* kprobe p is a valid probe */
1429 				goto valid;
1430 		return NULL;
1431 	}
1432 valid:
1433 	return ap;
1434 }
1435 
1436 /* Return error if the kprobe is being re-registered */
1437 static inline int check_kprobe_rereg(struct kprobe *p)
1438 {
1439 	int ret = 0;
1440 
1441 	mutex_lock(&kprobe_mutex);
1442 	if (__get_valid_kprobe(p))
1443 		ret = -EINVAL;
1444 	mutex_unlock(&kprobe_mutex);
1445 
1446 	return ret;
1447 }
1448 
1449 int __weak arch_check_ftrace_location(struct kprobe *p)
1450 {
1451 	unsigned long ftrace_addr;
1452 
1453 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1454 	if (ftrace_addr) {
1455 #ifdef CONFIG_KPROBES_ON_FTRACE
1456 		/* Given address is not on the instruction boundary */
1457 		if ((unsigned long)p->addr != ftrace_addr)
1458 			return -EILSEQ;
1459 		p->flags |= KPROBE_FLAG_FTRACE;
1460 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1461 		return -EINVAL;
1462 #endif
1463 	}
1464 	return 0;
1465 }
1466 
1467 static int check_kprobe_address_safe(struct kprobe *p,
1468 				     struct module **probed_mod)
1469 {
1470 	int ret;
1471 
1472 	ret = arch_check_ftrace_location(p);
1473 	if (ret)
1474 		return ret;
1475 	jump_label_lock();
1476 	preempt_disable();
1477 
1478 	/* Ensure it is not in reserved area nor out of text */
1479 	if (!kernel_text_address((unsigned long) p->addr) ||
1480 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1481 	    jump_label_text_reserved(p->addr, p->addr)) {
1482 		ret = -EINVAL;
1483 		goto out;
1484 	}
1485 
1486 	/* Check if are we probing a module */
1487 	*probed_mod = __module_text_address((unsigned long) p->addr);
1488 	if (*probed_mod) {
1489 		/*
1490 		 * We must hold a refcount of the probed module while updating
1491 		 * its code to prohibit unexpected unloading.
1492 		 */
1493 		if (unlikely(!try_module_get(*probed_mod))) {
1494 			ret = -ENOENT;
1495 			goto out;
1496 		}
1497 
1498 		/*
1499 		 * If the module freed .init.text, we couldn't insert
1500 		 * kprobes in there.
1501 		 */
1502 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1503 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1504 			module_put(*probed_mod);
1505 			*probed_mod = NULL;
1506 			ret = -ENOENT;
1507 		}
1508 	}
1509 out:
1510 	preempt_enable();
1511 	jump_label_unlock();
1512 
1513 	return ret;
1514 }
1515 
1516 int register_kprobe(struct kprobe *p)
1517 {
1518 	int ret;
1519 	struct kprobe *old_p;
1520 	struct module *probed_mod;
1521 	kprobe_opcode_t *addr;
1522 
1523 	/* Adjust probe address from symbol */
1524 	addr = kprobe_addr(p);
1525 	if (IS_ERR(addr))
1526 		return PTR_ERR(addr);
1527 	p->addr = addr;
1528 
1529 	ret = check_kprobe_rereg(p);
1530 	if (ret)
1531 		return ret;
1532 
1533 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1534 	p->flags &= KPROBE_FLAG_DISABLED;
1535 	p->nmissed = 0;
1536 	INIT_LIST_HEAD(&p->list);
1537 
1538 	ret = check_kprobe_address_safe(p, &probed_mod);
1539 	if (ret)
1540 		return ret;
1541 
1542 	mutex_lock(&kprobe_mutex);
1543 
1544 	old_p = get_kprobe(p->addr);
1545 	if (old_p) {
1546 		/* Since this may unoptimize old_p, locking text_mutex. */
1547 		ret = register_aggr_kprobe(old_p, p);
1548 		goto out;
1549 	}
1550 
1551 	mutex_lock(&text_mutex);	/* Avoiding text modification */
1552 	ret = prepare_kprobe(p);
1553 	mutex_unlock(&text_mutex);
1554 	if (ret)
1555 		goto out;
1556 
1557 	INIT_HLIST_NODE(&p->hlist);
1558 	hlist_add_head_rcu(&p->hlist,
1559 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1560 
1561 	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1562 		arm_kprobe(p);
1563 
1564 	/* Try to optimize kprobe */
1565 	try_to_optimize_kprobe(p);
1566 
1567 out:
1568 	mutex_unlock(&kprobe_mutex);
1569 
1570 	if (probed_mod)
1571 		module_put(probed_mod);
1572 
1573 	return ret;
1574 }
1575 EXPORT_SYMBOL_GPL(register_kprobe);
1576 
1577 /* Check if all probes on the aggrprobe are disabled */
1578 static int aggr_kprobe_disabled(struct kprobe *ap)
1579 {
1580 	struct kprobe *kp;
1581 
1582 	list_for_each_entry_rcu(kp, &ap->list, list)
1583 		if (!kprobe_disabled(kp))
1584 			/*
1585 			 * There is an active probe on the list.
1586 			 * We can't disable this ap.
1587 			 */
1588 			return 0;
1589 
1590 	return 1;
1591 }
1592 
1593 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1594 static struct kprobe *__disable_kprobe(struct kprobe *p)
1595 {
1596 	struct kprobe *orig_p;
1597 
1598 	/* Get an original kprobe for return */
1599 	orig_p = __get_valid_kprobe(p);
1600 	if (unlikely(orig_p == NULL))
1601 		return NULL;
1602 
1603 	if (!kprobe_disabled(p)) {
1604 		/* Disable probe if it is a child probe */
1605 		if (p != orig_p)
1606 			p->flags |= KPROBE_FLAG_DISABLED;
1607 
1608 		/* Try to disarm and disable this/parent probe */
1609 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1610 			/*
1611 			 * If kprobes_all_disarmed is set, orig_p
1612 			 * should have already been disarmed, so
1613 			 * skip unneed disarming process.
1614 			 */
1615 			if (!kprobes_all_disarmed)
1616 				disarm_kprobe(orig_p, true);
1617 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1618 		}
1619 	}
1620 
1621 	return orig_p;
1622 }
1623 
1624 /*
1625  * Unregister a kprobe without a scheduler synchronization.
1626  */
1627 static int __unregister_kprobe_top(struct kprobe *p)
1628 {
1629 	struct kprobe *ap, *list_p;
1630 
1631 	/* Disable kprobe. This will disarm it if needed. */
1632 	ap = __disable_kprobe(p);
1633 	if (ap == NULL)
1634 		return -EINVAL;
1635 
1636 	if (ap == p)
1637 		/*
1638 		 * This probe is an independent(and non-optimized) kprobe
1639 		 * (not an aggrprobe). Remove from the hash list.
1640 		 */
1641 		goto disarmed;
1642 
1643 	/* Following process expects this probe is an aggrprobe */
1644 	WARN_ON(!kprobe_aggrprobe(ap));
1645 
1646 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1647 		/*
1648 		 * !disarmed could be happen if the probe is under delayed
1649 		 * unoptimizing.
1650 		 */
1651 		goto disarmed;
1652 	else {
1653 		/* If disabling probe has special handlers, update aggrprobe */
1654 		if (p->break_handler && !kprobe_gone(p))
1655 			ap->break_handler = NULL;
1656 		if (p->post_handler && !kprobe_gone(p)) {
1657 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1658 				if ((list_p != p) && (list_p->post_handler))
1659 					goto noclean;
1660 			}
1661 			ap->post_handler = NULL;
1662 		}
1663 noclean:
1664 		/*
1665 		 * Remove from the aggrprobe: this path will do nothing in
1666 		 * __unregister_kprobe_bottom().
1667 		 */
1668 		list_del_rcu(&p->list);
1669 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1670 			/*
1671 			 * Try to optimize this probe again, because post
1672 			 * handler may have been changed.
1673 			 */
1674 			optimize_kprobe(ap);
1675 	}
1676 	return 0;
1677 
1678 disarmed:
1679 	BUG_ON(!kprobe_disarmed(ap));
1680 	hlist_del_rcu(&ap->hlist);
1681 	return 0;
1682 }
1683 
1684 static void __unregister_kprobe_bottom(struct kprobe *p)
1685 {
1686 	struct kprobe *ap;
1687 
1688 	if (list_empty(&p->list))
1689 		/* This is an independent kprobe */
1690 		arch_remove_kprobe(p);
1691 	else if (list_is_singular(&p->list)) {
1692 		/* This is the last child of an aggrprobe */
1693 		ap = list_entry(p->list.next, struct kprobe, list);
1694 		list_del(&p->list);
1695 		free_aggr_kprobe(ap);
1696 	}
1697 	/* Otherwise, do nothing. */
1698 }
1699 
1700 int register_kprobes(struct kprobe **kps, int num)
1701 {
1702 	int i, ret = 0;
1703 
1704 	if (num <= 0)
1705 		return -EINVAL;
1706 	for (i = 0; i < num; i++) {
1707 		ret = register_kprobe(kps[i]);
1708 		if (ret < 0) {
1709 			if (i > 0)
1710 				unregister_kprobes(kps, i);
1711 			break;
1712 		}
1713 	}
1714 	return ret;
1715 }
1716 EXPORT_SYMBOL_GPL(register_kprobes);
1717 
1718 void unregister_kprobe(struct kprobe *p)
1719 {
1720 	unregister_kprobes(&p, 1);
1721 }
1722 EXPORT_SYMBOL_GPL(unregister_kprobe);
1723 
1724 void unregister_kprobes(struct kprobe **kps, int num)
1725 {
1726 	int i;
1727 
1728 	if (num <= 0)
1729 		return;
1730 	mutex_lock(&kprobe_mutex);
1731 	for (i = 0; i < num; i++)
1732 		if (__unregister_kprobe_top(kps[i]) < 0)
1733 			kps[i]->addr = NULL;
1734 	mutex_unlock(&kprobe_mutex);
1735 
1736 	synchronize_sched();
1737 	for (i = 0; i < num; i++)
1738 		if (kps[i]->addr)
1739 			__unregister_kprobe_bottom(kps[i]);
1740 }
1741 EXPORT_SYMBOL_GPL(unregister_kprobes);
1742 
1743 int __weak __kprobes kprobe_exceptions_notify(struct notifier_block *self,
1744 					      unsigned long val, void *data)
1745 {
1746 	return NOTIFY_DONE;
1747 }
1748 
1749 static struct notifier_block kprobe_exceptions_nb = {
1750 	.notifier_call = kprobe_exceptions_notify,
1751 	.priority = 0x7fffffff /* we need to be notified first */
1752 };
1753 
1754 unsigned long __weak arch_deref_entry_point(void *entry)
1755 {
1756 	return (unsigned long)entry;
1757 }
1758 
1759 int register_jprobes(struct jprobe **jps, int num)
1760 {
1761 	struct jprobe *jp;
1762 	int ret = 0, i;
1763 
1764 	if (num <= 0)
1765 		return -EINVAL;
1766 	for (i = 0; i < num; i++) {
1767 		unsigned long addr, offset;
1768 		jp = jps[i];
1769 		addr = arch_deref_entry_point(jp->entry);
1770 
1771 		/* Verify probepoint is a function entry point */
1772 		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1773 		    offset == 0) {
1774 			jp->kp.pre_handler = setjmp_pre_handler;
1775 			jp->kp.break_handler = longjmp_break_handler;
1776 			ret = register_kprobe(&jp->kp);
1777 		} else
1778 			ret = -EINVAL;
1779 
1780 		if (ret < 0) {
1781 			if (i > 0)
1782 				unregister_jprobes(jps, i);
1783 			break;
1784 		}
1785 	}
1786 	return ret;
1787 }
1788 EXPORT_SYMBOL_GPL(register_jprobes);
1789 
1790 int register_jprobe(struct jprobe *jp)
1791 {
1792 	return register_jprobes(&jp, 1);
1793 }
1794 EXPORT_SYMBOL_GPL(register_jprobe);
1795 
1796 void unregister_jprobe(struct jprobe *jp)
1797 {
1798 	unregister_jprobes(&jp, 1);
1799 }
1800 EXPORT_SYMBOL_GPL(unregister_jprobe);
1801 
1802 void unregister_jprobes(struct jprobe **jps, int num)
1803 {
1804 	int i;
1805 
1806 	if (num <= 0)
1807 		return;
1808 	mutex_lock(&kprobe_mutex);
1809 	for (i = 0; i < num; i++)
1810 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1811 			jps[i]->kp.addr = NULL;
1812 	mutex_unlock(&kprobe_mutex);
1813 
1814 	synchronize_sched();
1815 	for (i = 0; i < num; i++) {
1816 		if (jps[i]->kp.addr)
1817 			__unregister_kprobe_bottom(&jps[i]->kp);
1818 	}
1819 }
1820 EXPORT_SYMBOL_GPL(unregister_jprobes);
1821 
1822 #ifdef CONFIG_KRETPROBES
1823 /*
1824  * This kprobe pre_handler is registered with every kretprobe. When probe
1825  * hits it will set up the return probe.
1826  */
1827 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1828 {
1829 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1830 	unsigned long hash, flags = 0;
1831 	struct kretprobe_instance *ri;
1832 
1833 	/*
1834 	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1835 	 * just skip the probe and increase the (inexact) 'nmissed'
1836 	 * statistical counter, so that the user is informed that
1837 	 * something happened:
1838 	 */
1839 	if (unlikely(in_nmi())) {
1840 		rp->nmissed++;
1841 		return 0;
1842 	}
1843 
1844 	/* TODO: consider to only swap the RA after the last pre_handler fired */
1845 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1846 	raw_spin_lock_irqsave(&rp->lock, flags);
1847 	if (!hlist_empty(&rp->free_instances)) {
1848 		ri = hlist_entry(rp->free_instances.first,
1849 				struct kretprobe_instance, hlist);
1850 		hlist_del(&ri->hlist);
1851 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1852 
1853 		ri->rp = rp;
1854 		ri->task = current;
1855 
1856 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1857 			raw_spin_lock_irqsave(&rp->lock, flags);
1858 			hlist_add_head(&ri->hlist, &rp->free_instances);
1859 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1860 			return 0;
1861 		}
1862 
1863 		arch_prepare_kretprobe(ri, regs);
1864 
1865 		/* XXX(hch): why is there no hlist_move_head? */
1866 		INIT_HLIST_NODE(&ri->hlist);
1867 		kretprobe_table_lock(hash, &flags);
1868 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1869 		kretprobe_table_unlock(hash, &flags);
1870 	} else {
1871 		rp->nmissed++;
1872 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1873 	}
1874 	return 0;
1875 }
1876 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1877 
1878 int register_kretprobe(struct kretprobe *rp)
1879 {
1880 	int ret = 0;
1881 	struct kretprobe_instance *inst;
1882 	int i;
1883 	void *addr;
1884 
1885 	if (kretprobe_blacklist_size) {
1886 		addr = kprobe_addr(&rp->kp);
1887 		if (IS_ERR(addr))
1888 			return PTR_ERR(addr);
1889 
1890 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1891 			if (kretprobe_blacklist[i].addr == addr)
1892 				return -EINVAL;
1893 		}
1894 	}
1895 
1896 	rp->kp.pre_handler = pre_handler_kretprobe;
1897 	rp->kp.post_handler = NULL;
1898 	rp->kp.fault_handler = NULL;
1899 	rp->kp.break_handler = NULL;
1900 
1901 	/* Pre-allocate memory for max kretprobe instances */
1902 	if (rp->maxactive <= 0) {
1903 #ifdef CONFIG_PREEMPT
1904 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1905 #else
1906 		rp->maxactive = num_possible_cpus();
1907 #endif
1908 	}
1909 	raw_spin_lock_init(&rp->lock);
1910 	INIT_HLIST_HEAD(&rp->free_instances);
1911 	for (i = 0; i < rp->maxactive; i++) {
1912 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1913 			       rp->data_size, GFP_KERNEL);
1914 		if (inst == NULL) {
1915 			free_rp_inst(rp);
1916 			return -ENOMEM;
1917 		}
1918 		INIT_HLIST_NODE(&inst->hlist);
1919 		hlist_add_head(&inst->hlist, &rp->free_instances);
1920 	}
1921 
1922 	rp->nmissed = 0;
1923 	/* Establish function entry probe point */
1924 	ret = register_kprobe(&rp->kp);
1925 	if (ret != 0)
1926 		free_rp_inst(rp);
1927 	return ret;
1928 }
1929 EXPORT_SYMBOL_GPL(register_kretprobe);
1930 
1931 int register_kretprobes(struct kretprobe **rps, int num)
1932 {
1933 	int ret = 0, i;
1934 
1935 	if (num <= 0)
1936 		return -EINVAL;
1937 	for (i = 0; i < num; i++) {
1938 		ret = register_kretprobe(rps[i]);
1939 		if (ret < 0) {
1940 			if (i > 0)
1941 				unregister_kretprobes(rps, i);
1942 			break;
1943 		}
1944 	}
1945 	return ret;
1946 }
1947 EXPORT_SYMBOL_GPL(register_kretprobes);
1948 
1949 void unregister_kretprobe(struct kretprobe *rp)
1950 {
1951 	unregister_kretprobes(&rp, 1);
1952 }
1953 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1954 
1955 void unregister_kretprobes(struct kretprobe **rps, int num)
1956 {
1957 	int i;
1958 
1959 	if (num <= 0)
1960 		return;
1961 	mutex_lock(&kprobe_mutex);
1962 	for (i = 0; i < num; i++)
1963 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1964 			rps[i]->kp.addr = NULL;
1965 	mutex_unlock(&kprobe_mutex);
1966 
1967 	synchronize_sched();
1968 	for (i = 0; i < num; i++) {
1969 		if (rps[i]->kp.addr) {
1970 			__unregister_kprobe_bottom(&rps[i]->kp);
1971 			cleanup_rp_inst(rps[i]);
1972 		}
1973 	}
1974 }
1975 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1976 
1977 #else /* CONFIG_KRETPROBES */
1978 int register_kretprobe(struct kretprobe *rp)
1979 {
1980 	return -ENOSYS;
1981 }
1982 EXPORT_SYMBOL_GPL(register_kretprobe);
1983 
1984 int register_kretprobes(struct kretprobe **rps, int num)
1985 {
1986 	return -ENOSYS;
1987 }
1988 EXPORT_SYMBOL_GPL(register_kretprobes);
1989 
1990 void unregister_kretprobe(struct kretprobe *rp)
1991 {
1992 }
1993 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1994 
1995 void unregister_kretprobes(struct kretprobe **rps, int num)
1996 {
1997 }
1998 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1999 
2000 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2001 {
2002 	return 0;
2003 }
2004 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2005 
2006 #endif /* CONFIG_KRETPROBES */
2007 
2008 /* Set the kprobe gone and remove its instruction buffer. */
2009 static void kill_kprobe(struct kprobe *p)
2010 {
2011 	struct kprobe *kp;
2012 
2013 	p->flags |= KPROBE_FLAG_GONE;
2014 	if (kprobe_aggrprobe(p)) {
2015 		/*
2016 		 * If this is an aggr_kprobe, we have to list all the
2017 		 * chained probes and mark them GONE.
2018 		 */
2019 		list_for_each_entry_rcu(kp, &p->list, list)
2020 			kp->flags |= KPROBE_FLAG_GONE;
2021 		p->post_handler = NULL;
2022 		p->break_handler = NULL;
2023 		kill_optimized_kprobe(p);
2024 	}
2025 	/*
2026 	 * Here, we can remove insn_slot safely, because no thread calls
2027 	 * the original probed function (which will be freed soon) any more.
2028 	 */
2029 	arch_remove_kprobe(p);
2030 }
2031 
2032 /* Disable one kprobe */
2033 int disable_kprobe(struct kprobe *kp)
2034 {
2035 	int ret = 0;
2036 
2037 	mutex_lock(&kprobe_mutex);
2038 
2039 	/* Disable this kprobe */
2040 	if (__disable_kprobe(kp) == NULL)
2041 		ret = -EINVAL;
2042 
2043 	mutex_unlock(&kprobe_mutex);
2044 	return ret;
2045 }
2046 EXPORT_SYMBOL_GPL(disable_kprobe);
2047 
2048 /* Enable one kprobe */
2049 int enable_kprobe(struct kprobe *kp)
2050 {
2051 	int ret = 0;
2052 	struct kprobe *p;
2053 
2054 	mutex_lock(&kprobe_mutex);
2055 
2056 	/* Check whether specified probe is valid. */
2057 	p = __get_valid_kprobe(kp);
2058 	if (unlikely(p == NULL)) {
2059 		ret = -EINVAL;
2060 		goto out;
2061 	}
2062 
2063 	if (kprobe_gone(kp)) {
2064 		/* This kprobe has gone, we couldn't enable it. */
2065 		ret = -EINVAL;
2066 		goto out;
2067 	}
2068 
2069 	if (p != kp)
2070 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2071 
2072 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2073 		p->flags &= ~KPROBE_FLAG_DISABLED;
2074 		arm_kprobe(p);
2075 	}
2076 out:
2077 	mutex_unlock(&kprobe_mutex);
2078 	return ret;
2079 }
2080 EXPORT_SYMBOL_GPL(enable_kprobe);
2081 
2082 void dump_kprobe(struct kprobe *kp)
2083 {
2084 	printk(KERN_WARNING "Dumping kprobe:\n");
2085 	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2086 	       kp->symbol_name, kp->addr, kp->offset);
2087 }
2088 NOKPROBE_SYMBOL(dump_kprobe);
2089 
2090 /*
2091  * Lookup and populate the kprobe_blacklist.
2092  *
2093  * Unlike the kretprobe blacklist, we'll need to determine
2094  * the range of addresses that belong to the said functions,
2095  * since a kprobe need not necessarily be at the beginning
2096  * of a function.
2097  */
2098 static int __init populate_kprobe_blacklist(unsigned long *start,
2099 					     unsigned long *end)
2100 {
2101 	unsigned long *iter;
2102 	struct kprobe_blacklist_entry *ent;
2103 	unsigned long entry, offset = 0, size = 0;
2104 
2105 	for (iter = start; iter < end; iter++) {
2106 		entry = arch_deref_entry_point((void *)*iter);
2107 
2108 		if (!kernel_text_address(entry) ||
2109 		    !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2110 			pr_err("Failed to find blacklist at %p\n",
2111 				(void *)entry);
2112 			continue;
2113 		}
2114 
2115 		ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2116 		if (!ent)
2117 			return -ENOMEM;
2118 		ent->start_addr = entry;
2119 		ent->end_addr = entry + size;
2120 		INIT_LIST_HEAD(&ent->list);
2121 		list_add_tail(&ent->list, &kprobe_blacklist);
2122 	}
2123 	return 0;
2124 }
2125 
2126 /* Module notifier call back, checking kprobes on the module */
2127 static int kprobes_module_callback(struct notifier_block *nb,
2128 				   unsigned long val, void *data)
2129 {
2130 	struct module *mod = data;
2131 	struct hlist_head *head;
2132 	struct kprobe *p;
2133 	unsigned int i;
2134 	int checkcore = (val == MODULE_STATE_GOING);
2135 
2136 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2137 		return NOTIFY_DONE;
2138 
2139 	/*
2140 	 * When MODULE_STATE_GOING was notified, both of module .text and
2141 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2142 	 * notified, only .init.text section would be freed. We need to
2143 	 * disable kprobes which have been inserted in the sections.
2144 	 */
2145 	mutex_lock(&kprobe_mutex);
2146 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2147 		head = &kprobe_table[i];
2148 		hlist_for_each_entry_rcu(p, head, hlist)
2149 			if (within_module_init((unsigned long)p->addr, mod) ||
2150 			    (checkcore &&
2151 			     within_module_core((unsigned long)p->addr, mod))) {
2152 				/*
2153 				 * The vaddr this probe is installed will soon
2154 				 * be vfreed buy not synced to disk. Hence,
2155 				 * disarming the breakpoint isn't needed.
2156 				 */
2157 				kill_kprobe(p);
2158 			}
2159 	}
2160 	mutex_unlock(&kprobe_mutex);
2161 	return NOTIFY_DONE;
2162 }
2163 
2164 static struct notifier_block kprobe_module_nb = {
2165 	.notifier_call = kprobes_module_callback,
2166 	.priority = 0
2167 };
2168 
2169 /* Markers of _kprobe_blacklist section */
2170 extern unsigned long __start_kprobe_blacklist[];
2171 extern unsigned long __stop_kprobe_blacklist[];
2172 
2173 static int __init init_kprobes(void)
2174 {
2175 	int i, err = 0;
2176 
2177 	/* FIXME allocate the probe table, currently defined statically */
2178 	/* initialize all list heads */
2179 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2180 		INIT_HLIST_HEAD(&kprobe_table[i]);
2181 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2182 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2183 	}
2184 
2185 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2186 					__stop_kprobe_blacklist);
2187 	if (err) {
2188 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2189 		pr_err("Please take care of using kprobes.\n");
2190 	}
2191 
2192 	if (kretprobe_blacklist_size) {
2193 		/* lookup the function address from its name */
2194 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2195 			kprobe_lookup_name(kretprobe_blacklist[i].name,
2196 					   kretprobe_blacklist[i].addr);
2197 			if (!kretprobe_blacklist[i].addr)
2198 				printk("kretprobe: lookup failed: %s\n",
2199 				       kretprobe_blacklist[i].name);
2200 		}
2201 	}
2202 
2203 #if defined(CONFIG_OPTPROBES)
2204 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2205 	/* Init kprobe_optinsn_slots */
2206 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2207 #endif
2208 	/* By default, kprobes can be optimized */
2209 	kprobes_allow_optimization = true;
2210 #endif
2211 
2212 	/* By default, kprobes are armed */
2213 	kprobes_all_disarmed = false;
2214 
2215 	err = arch_init_kprobes();
2216 	if (!err)
2217 		err = register_die_notifier(&kprobe_exceptions_nb);
2218 	if (!err)
2219 		err = register_module_notifier(&kprobe_module_nb);
2220 
2221 	kprobes_initialized = (err == 0);
2222 
2223 	if (!err)
2224 		init_test_probes();
2225 	return err;
2226 }
2227 
2228 #ifdef CONFIG_DEBUG_FS
2229 static void report_probe(struct seq_file *pi, struct kprobe *p,
2230 		const char *sym, int offset, char *modname, struct kprobe *pp)
2231 {
2232 	char *kprobe_type;
2233 
2234 	if (p->pre_handler == pre_handler_kretprobe)
2235 		kprobe_type = "r";
2236 	else if (p->pre_handler == setjmp_pre_handler)
2237 		kprobe_type = "j";
2238 	else
2239 		kprobe_type = "k";
2240 
2241 	if (sym)
2242 		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2243 			p->addr, kprobe_type, sym, offset,
2244 			(modname ? modname : " "));
2245 	else
2246 		seq_printf(pi, "%p  %s  %p ",
2247 			p->addr, kprobe_type, p->addr);
2248 
2249 	if (!pp)
2250 		pp = p;
2251 	seq_printf(pi, "%s%s%s%s\n",
2252 		(kprobe_gone(p) ? "[GONE]" : ""),
2253 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2254 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2255 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2256 }
2257 
2258 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2259 {
2260 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2261 }
2262 
2263 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2264 {
2265 	(*pos)++;
2266 	if (*pos >= KPROBE_TABLE_SIZE)
2267 		return NULL;
2268 	return pos;
2269 }
2270 
2271 static void kprobe_seq_stop(struct seq_file *f, void *v)
2272 {
2273 	/* Nothing to do */
2274 }
2275 
2276 static int show_kprobe_addr(struct seq_file *pi, void *v)
2277 {
2278 	struct hlist_head *head;
2279 	struct kprobe *p, *kp;
2280 	const char *sym = NULL;
2281 	unsigned int i = *(loff_t *) v;
2282 	unsigned long offset = 0;
2283 	char *modname, namebuf[KSYM_NAME_LEN];
2284 
2285 	head = &kprobe_table[i];
2286 	preempt_disable();
2287 	hlist_for_each_entry_rcu(p, head, hlist) {
2288 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2289 					&offset, &modname, namebuf);
2290 		if (kprobe_aggrprobe(p)) {
2291 			list_for_each_entry_rcu(kp, &p->list, list)
2292 				report_probe(pi, kp, sym, offset, modname, p);
2293 		} else
2294 			report_probe(pi, p, sym, offset, modname, NULL);
2295 	}
2296 	preempt_enable();
2297 	return 0;
2298 }
2299 
2300 static const struct seq_operations kprobes_seq_ops = {
2301 	.start = kprobe_seq_start,
2302 	.next  = kprobe_seq_next,
2303 	.stop  = kprobe_seq_stop,
2304 	.show  = show_kprobe_addr
2305 };
2306 
2307 static int kprobes_open(struct inode *inode, struct file *filp)
2308 {
2309 	return seq_open(filp, &kprobes_seq_ops);
2310 }
2311 
2312 static const struct file_operations debugfs_kprobes_operations = {
2313 	.open           = kprobes_open,
2314 	.read           = seq_read,
2315 	.llseek         = seq_lseek,
2316 	.release        = seq_release,
2317 };
2318 
2319 /* kprobes/blacklist -- shows which functions can not be probed */
2320 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2321 {
2322 	return seq_list_start(&kprobe_blacklist, *pos);
2323 }
2324 
2325 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2326 {
2327 	return seq_list_next(v, &kprobe_blacklist, pos);
2328 }
2329 
2330 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2331 {
2332 	struct kprobe_blacklist_entry *ent =
2333 		list_entry(v, struct kprobe_blacklist_entry, list);
2334 
2335 	seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2336 		   (void *)ent->end_addr, (void *)ent->start_addr);
2337 	return 0;
2338 }
2339 
2340 static const struct seq_operations kprobe_blacklist_seq_ops = {
2341 	.start = kprobe_blacklist_seq_start,
2342 	.next  = kprobe_blacklist_seq_next,
2343 	.stop  = kprobe_seq_stop,	/* Reuse void function */
2344 	.show  = kprobe_blacklist_seq_show,
2345 };
2346 
2347 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2348 {
2349 	return seq_open(filp, &kprobe_blacklist_seq_ops);
2350 }
2351 
2352 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2353 	.open           = kprobe_blacklist_open,
2354 	.read           = seq_read,
2355 	.llseek         = seq_lseek,
2356 	.release        = seq_release,
2357 };
2358 
2359 static void arm_all_kprobes(void)
2360 {
2361 	struct hlist_head *head;
2362 	struct kprobe *p;
2363 	unsigned int i;
2364 
2365 	mutex_lock(&kprobe_mutex);
2366 
2367 	/* If kprobes are armed, just return */
2368 	if (!kprobes_all_disarmed)
2369 		goto already_enabled;
2370 
2371 	/*
2372 	 * optimize_kprobe() called by arm_kprobe() checks
2373 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2374 	 * arm_kprobe.
2375 	 */
2376 	kprobes_all_disarmed = false;
2377 	/* Arming kprobes doesn't optimize kprobe itself */
2378 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2379 		head = &kprobe_table[i];
2380 		hlist_for_each_entry_rcu(p, head, hlist)
2381 			if (!kprobe_disabled(p))
2382 				arm_kprobe(p);
2383 	}
2384 
2385 	printk(KERN_INFO "Kprobes globally enabled\n");
2386 
2387 already_enabled:
2388 	mutex_unlock(&kprobe_mutex);
2389 	return;
2390 }
2391 
2392 static void disarm_all_kprobes(void)
2393 {
2394 	struct hlist_head *head;
2395 	struct kprobe *p;
2396 	unsigned int i;
2397 
2398 	mutex_lock(&kprobe_mutex);
2399 
2400 	/* If kprobes are already disarmed, just return */
2401 	if (kprobes_all_disarmed) {
2402 		mutex_unlock(&kprobe_mutex);
2403 		return;
2404 	}
2405 
2406 	kprobes_all_disarmed = true;
2407 	printk(KERN_INFO "Kprobes globally disabled\n");
2408 
2409 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2410 		head = &kprobe_table[i];
2411 		hlist_for_each_entry_rcu(p, head, hlist) {
2412 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2413 				disarm_kprobe(p, false);
2414 		}
2415 	}
2416 	mutex_unlock(&kprobe_mutex);
2417 
2418 	/* Wait for disarming all kprobes by optimizer */
2419 	wait_for_kprobe_optimizer();
2420 }
2421 
2422 /*
2423  * XXX: The debugfs bool file interface doesn't allow for callbacks
2424  * when the bool state is switched. We can reuse that facility when
2425  * available
2426  */
2427 static ssize_t read_enabled_file_bool(struct file *file,
2428 	       char __user *user_buf, size_t count, loff_t *ppos)
2429 {
2430 	char buf[3];
2431 
2432 	if (!kprobes_all_disarmed)
2433 		buf[0] = '1';
2434 	else
2435 		buf[0] = '0';
2436 	buf[1] = '\n';
2437 	buf[2] = 0x00;
2438 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2439 }
2440 
2441 static ssize_t write_enabled_file_bool(struct file *file,
2442 	       const char __user *user_buf, size_t count, loff_t *ppos)
2443 {
2444 	char buf[32];
2445 	size_t buf_size;
2446 
2447 	buf_size = min(count, (sizeof(buf)-1));
2448 	if (copy_from_user(buf, user_buf, buf_size))
2449 		return -EFAULT;
2450 
2451 	buf[buf_size] = '\0';
2452 	switch (buf[0]) {
2453 	case 'y':
2454 	case 'Y':
2455 	case '1':
2456 		arm_all_kprobes();
2457 		break;
2458 	case 'n':
2459 	case 'N':
2460 	case '0':
2461 		disarm_all_kprobes();
2462 		break;
2463 	default:
2464 		return -EINVAL;
2465 	}
2466 
2467 	return count;
2468 }
2469 
2470 static const struct file_operations fops_kp = {
2471 	.read =         read_enabled_file_bool,
2472 	.write =        write_enabled_file_bool,
2473 	.llseek =	default_llseek,
2474 };
2475 
2476 static int __init debugfs_kprobe_init(void)
2477 {
2478 	struct dentry *dir, *file;
2479 	unsigned int value = 1;
2480 
2481 	dir = debugfs_create_dir("kprobes", NULL);
2482 	if (!dir)
2483 		return -ENOMEM;
2484 
2485 	file = debugfs_create_file("list", 0444, dir, NULL,
2486 				&debugfs_kprobes_operations);
2487 	if (!file)
2488 		goto error;
2489 
2490 	file = debugfs_create_file("enabled", 0600, dir,
2491 					&value, &fops_kp);
2492 	if (!file)
2493 		goto error;
2494 
2495 	file = debugfs_create_file("blacklist", 0444, dir, NULL,
2496 				&debugfs_kprobe_blacklist_ops);
2497 	if (!file)
2498 		goto error;
2499 
2500 	return 0;
2501 
2502 error:
2503 	debugfs_remove(dir);
2504 	return -ENOMEM;
2505 }
2506 
2507 late_initcall(debugfs_kprobe_init);
2508 #endif /* CONFIG_DEBUG_FS */
2509 
2510 module_init(init_kprobes);
2511 
2512 /* defined in arch/.../kernel/kprobes.c */
2513 EXPORT_SYMBOL_GPL(jprobe_return);
2514