xref: /openbmc/linux/kernel/kprobes.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51 
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56 
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 
60 
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64 
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67 
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74 
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 					unsigned int __unused)
77 {
78 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80 
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83 	return &(kretprobe_table_locks[hash].lock);
84 }
85 
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88 
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91  * kprobe->ainsn.insn points to the copy of the instruction to be
92  * single-stepped. x86_64, POWER4 and above have no-exec support and
93  * stepping on the instruction on a vmalloced/kmalloced/data page
94  * is a recipe for disaster
95  */
96 struct kprobe_insn_page {
97 	struct list_head list;
98 	kprobe_opcode_t *insns;		/* Page of instruction slots */
99 	struct kprobe_insn_cache *cache;
100 	int nused;
101 	int ngarbage;
102 	char slot_used[];
103 };
104 
105 #define KPROBE_INSN_PAGE_SIZE(slots)			\
106 	(offsetof(struct kprobe_insn_page, slot_used) +	\
107 	 (sizeof(char) * (slots)))
108 
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113 
114 enum kprobe_slot_state {
115 	SLOT_CLEAN = 0,
116 	SLOT_DIRTY = 1,
117 	SLOT_USED = 2,
118 };
119 
120 static void *alloc_insn_page(void)
121 {
122 	return module_alloc(PAGE_SIZE);
123 }
124 
125 void __weak free_insn_page(void *page)
126 {
127 	module_memfree(page);
128 }
129 
130 struct kprobe_insn_cache kprobe_insn_slots = {
131 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 	.alloc = alloc_insn_page,
133 	.free = free_insn_page,
134 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 	.insn_size = MAX_INSN_SIZE,
136 	.nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139 
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146 	struct kprobe_insn_page *kip;
147 	kprobe_opcode_t *slot = NULL;
148 
149 	/* Since the slot array is not protected by rcu, we need a mutex */
150 	mutex_lock(&c->mutex);
151  retry:
152 	rcu_read_lock();
153 	list_for_each_entry_rcu(kip, &c->pages, list) {
154 		if (kip->nused < slots_per_page(c)) {
155 			int i;
156 			for (i = 0; i < slots_per_page(c); i++) {
157 				if (kip->slot_used[i] == SLOT_CLEAN) {
158 					kip->slot_used[i] = SLOT_USED;
159 					kip->nused++;
160 					slot = kip->insns + (i * c->insn_size);
161 					rcu_read_unlock();
162 					goto out;
163 				}
164 			}
165 			/* kip->nused is broken. Fix it. */
166 			kip->nused = slots_per_page(c);
167 			WARN_ON(1);
168 		}
169 	}
170 	rcu_read_unlock();
171 
172 	/* If there are any garbage slots, collect it and try again. */
173 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 		goto retry;
175 
176 	/* All out of space.  Need to allocate a new page. */
177 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 	if (!kip)
179 		goto out;
180 
181 	/*
182 	 * Use module_alloc so this page is within +/- 2GB of where the
183 	 * kernel image and loaded module images reside. This is required
184 	 * so x86_64 can correctly handle the %rip-relative fixups.
185 	 */
186 	kip->insns = c->alloc();
187 	if (!kip->insns) {
188 		kfree(kip);
189 		goto out;
190 	}
191 	INIT_LIST_HEAD(&kip->list);
192 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 	kip->slot_used[0] = SLOT_USED;
194 	kip->nused = 1;
195 	kip->ngarbage = 0;
196 	kip->cache = c;
197 	list_add_rcu(&kip->list, &c->pages);
198 	slot = kip->insns;
199 out:
200 	mutex_unlock(&c->mutex);
201 	return slot;
202 }
203 
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207 	kip->slot_used[idx] = SLOT_CLEAN;
208 	kip->nused--;
209 	if (kip->nused == 0) {
210 		/*
211 		 * Page is no longer in use.  Free it unless
212 		 * it's the last one.  We keep the last one
213 		 * so as not to have to set it up again the
214 		 * next time somebody inserts a probe.
215 		 */
216 		if (!list_is_singular(&kip->list)) {
217 			list_del_rcu(&kip->list);
218 			synchronize_rcu();
219 			kip->cache->free(kip->insns);
220 			kfree(kip);
221 		}
222 		return 1;
223 	}
224 	return 0;
225 }
226 
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229 	struct kprobe_insn_page *kip, *next;
230 
231 	/* Ensure no-one is interrupted on the garbages */
232 	synchronize_sched();
233 
234 	list_for_each_entry_safe(kip, next, &c->pages, list) {
235 		int i;
236 		if (kip->ngarbage == 0)
237 			continue;
238 		kip->ngarbage = 0;	/* we will collect all garbages */
239 		for (i = 0; i < slots_per_page(c); i++) {
240 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 				break;
242 		}
243 	}
244 	c->nr_garbage = 0;
245 	return 0;
246 }
247 
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249 		      kprobe_opcode_t *slot, int dirty)
250 {
251 	struct kprobe_insn_page *kip;
252 	long idx;
253 
254 	mutex_lock(&c->mutex);
255 	rcu_read_lock();
256 	list_for_each_entry_rcu(kip, &c->pages, list) {
257 		idx = ((long)slot - (long)kip->insns) /
258 			(c->insn_size * sizeof(kprobe_opcode_t));
259 		if (idx >= 0 && idx < slots_per_page(c))
260 			goto out;
261 	}
262 	/* Could not find this slot. */
263 	WARN_ON(1);
264 	kip = NULL;
265 out:
266 	rcu_read_unlock();
267 	/* Mark and sweep: this may sleep */
268 	if (kip) {
269 		/* Check double free */
270 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 		if (dirty) {
272 			kip->slot_used[idx] = SLOT_DIRTY;
273 			kip->ngarbage++;
274 			if (++c->nr_garbage > slots_per_page(c))
275 				collect_garbage_slots(c);
276 		} else {
277 			collect_one_slot(kip, idx);
278 		}
279 	}
280 	mutex_unlock(&c->mutex);
281 }
282 
283 /*
284  * Check given address is on the page of kprobe instruction slots.
285  * This will be used for checking whether the address on a stack
286  * is on a text area or not.
287  */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290 	struct kprobe_insn_page *kip;
291 	bool ret = false;
292 
293 	rcu_read_lock();
294 	list_for_each_entry_rcu(kip, &c->pages, list) {
295 		if (addr >= (unsigned long)kip->insns &&
296 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 			ret = true;
298 			break;
299 		}
300 	}
301 	rcu_read_unlock();
302 
303 	return ret;
304 }
305 
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 	.alloc = alloc_insn_page,
311 	.free = free_insn_page,
312 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 	/* .insn_size is initialized later */
314 	.nr_garbage = 0,
315 };
316 #endif
317 #endif
318 
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322 	__this_cpu_write(kprobe_instance, kp);
323 }
324 
325 static inline void reset_kprobe_instance(void)
326 {
327 	__this_cpu_write(kprobe_instance, NULL);
328 }
329 
330 /*
331  * This routine is called either:
332  * 	- under the kprobe_mutex - during kprobe_[un]register()
333  * 				OR
334  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
335  */
336 struct kprobe *get_kprobe(void *addr)
337 {
338 	struct hlist_head *head;
339 	struct kprobe *p;
340 
341 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 	hlist_for_each_entry_rcu(p, head, hlist) {
343 		if (p->addr == addr)
344 			return p;
345 	}
346 
347 	return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350 
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352 
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356 	return p->pre_handler == aggr_pre_handler;
357 }
358 
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 	       list_empty(&p->list);
364 }
365 
366 /*
367  * Keep all fields in the kprobe consistent
368  */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374 
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378 
379 /*
380  * Call all pre_handler on the list, but ignores its return value.
381  * This must be called from arch-dep optimized caller.
382  */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385 	struct kprobe *kp;
386 
387 	list_for_each_entry_rcu(kp, &p->list, list) {
388 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 			set_kprobe_instance(kp);
390 			kp->pre_handler(kp, regs);
391 		}
392 		reset_kprobe_instance();
393 	}
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396 
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400 	struct optimized_kprobe *op;
401 
402 	op = container_of(p, struct optimized_kprobe, kp);
403 	arch_remove_optimized_kprobe(op);
404 	arch_remove_kprobe(p);
405 	kfree(op);
406 }
407 
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411 	struct optimized_kprobe *op;
412 
413 	if (kprobe_aggrprobe(p)) {
414 		op = container_of(p, struct optimized_kprobe, kp);
415 		return arch_prepared_optinsn(&op->optinsn);
416 	}
417 
418 	return 0;
419 }
420 
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424 	struct optimized_kprobe *op;
425 
426 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 	if (!kprobe_aggrprobe(p))
428 		return kprobe_disabled(p);
429 
430 	op = container_of(p, struct optimized_kprobe, kp);
431 
432 	return kprobe_disabled(p) && list_empty(&op->list);
433 }
434 
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438 	struct optimized_kprobe *op;
439 
440 	if (kprobe_aggrprobe(p)) {
441 		op = container_of(p, struct optimized_kprobe, kp);
442 		if (!list_empty(&op->list))
443 			return 1;
444 	}
445 	return 0;
446 }
447 
448 /*
449  * Return an optimized kprobe whose optimizing code replaces
450  * instructions including addr (exclude breakpoint).
451  */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454 	int i;
455 	struct kprobe *p = NULL;
456 	struct optimized_kprobe *op;
457 
458 	/* Don't check i == 0, since that is a breakpoint case. */
459 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 		p = get_kprobe((void *)(addr - i));
461 
462 	if (p && kprobe_optready(p)) {
463 		op = container_of(p, struct optimized_kprobe, kp);
464 		if (arch_within_optimized_kprobe(op, addr))
465 			return p;
466 	}
467 
468 	return NULL;
469 }
470 
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475 
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479 
480 /*
481  * Optimize (replace a breakpoint with a jump) kprobes listed on
482  * optimizing_list.
483  */
484 static void do_optimize_kprobes(void)
485 {
486 	/*
487 	 * The optimization/unoptimization refers online_cpus via
488 	 * stop_machine() and cpu-hotplug modifies online_cpus.
489 	 * And same time, text_mutex will be held in cpu-hotplug and here.
490 	 * This combination can cause a deadlock (cpu-hotplug try to lock
491 	 * text_mutex but stop_machine can not be done because online_cpus
492 	 * has been changed)
493 	 * To avoid this deadlock, caller must have locked cpu hotplug
494 	 * for preventing cpu-hotplug outside of text_mutex locking.
495 	 */
496 	lockdep_assert_cpus_held();
497 
498 	/* Optimization never be done when disarmed */
499 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
500 	    list_empty(&optimizing_list))
501 		return;
502 
503 	mutex_lock(&text_mutex);
504 	arch_optimize_kprobes(&optimizing_list);
505 	mutex_unlock(&text_mutex);
506 }
507 
508 /*
509  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510  * if need) kprobes listed on unoptimizing_list.
511  */
512 static void do_unoptimize_kprobes(void)
513 {
514 	struct optimized_kprobe *op, *tmp;
515 
516 	/* See comment in do_optimize_kprobes() */
517 	lockdep_assert_cpus_held();
518 
519 	/* Unoptimization must be done anytime */
520 	if (list_empty(&unoptimizing_list))
521 		return;
522 
523 	mutex_lock(&text_mutex);
524 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
525 	/* Loop free_list for disarming */
526 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
527 		/* Disarm probes if marked disabled */
528 		if (kprobe_disabled(&op->kp))
529 			arch_disarm_kprobe(&op->kp);
530 		if (kprobe_unused(&op->kp)) {
531 			/*
532 			 * Remove unused probes from hash list. After waiting
533 			 * for synchronization, these probes are reclaimed.
534 			 * (reclaiming is done by do_free_cleaned_kprobes.)
535 			 */
536 			hlist_del_rcu(&op->kp.hlist);
537 		} else
538 			list_del_init(&op->list);
539 	}
540 	mutex_unlock(&text_mutex);
541 }
542 
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546 	struct optimized_kprobe *op, *tmp;
547 
548 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 		BUG_ON(!kprobe_unused(&op->kp));
550 		list_del_init(&op->list);
551 		free_aggr_kprobe(&op->kp);
552 	}
553 }
554 
555 /* Start optimizer after OPTIMIZE_DELAY passed */
556 static void kick_kprobe_optimizer(void)
557 {
558 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
559 }
560 
561 /* Kprobe jump optimizer */
562 static void kprobe_optimizer(struct work_struct *work)
563 {
564 	mutex_lock(&kprobe_mutex);
565 	cpus_read_lock();
566 	/* Lock modules while optimizing kprobes */
567 	mutex_lock(&module_mutex);
568 
569 	/*
570 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
571 	 * kprobes before waiting for quiesence period.
572 	 */
573 	do_unoptimize_kprobes();
574 
575 	/*
576 	 * Step 2: Wait for quiesence period to ensure all running interrupts
577 	 * are done. Because optprobe may modify multiple instructions
578 	 * there is a chance that Nth instruction is interrupted. In that
579 	 * case, running interrupt can return to 2nd-Nth byte of jump
580 	 * instruction. This wait is for avoiding it.
581 	 */
582 	synchronize_sched();
583 
584 	/* Step 3: Optimize kprobes after quiesence period */
585 	do_optimize_kprobes();
586 
587 	/* Step 4: Free cleaned kprobes after quiesence period */
588 	do_free_cleaned_kprobes();
589 
590 	mutex_unlock(&module_mutex);
591 	cpus_read_unlock();
592 	mutex_unlock(&kprobe_mutex);
593 
594 	/* Step 5: Kick optimizer again if needed */
595 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
596 		kick_kprobe_optimizer();
597 }
598 
599 /* Wait for completing optimization and unoptimization */
600 void wait_for_kprobe_optimizer(void)
601 {
602 	mutex_lock(&kprobe_mutex);
603 
604 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
605 		mutex_unlock(&kprobe_mutex);
606 
607 		/* this will also make optimizing_work execute immmediately */
608 		flush_delayed_work(&optimizing_work);
609 		/* @optimizing_work might not have been queued yet, relax */
610 		cpu_relax();
611 
612 		mutex_lock(&kprobe_mutex);
613 	}
614 
615 	mutex_unlock(&kprobe_mutex);
616 }
617 
618 /* Optimize kprobe if p is ready to be optimized */
619 static void optimize_kprobe(struct kprobe *p)
620 {
621 	struct optimized_kprobe *op;
622 
623 	/* Check if the kprobe is disabled or not ready for optimization. */
624 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
625 	    (kprobe_disabled(p) || kprobes_all_disarmed))
626 		return;
627 
628 	/* Both of break_handler and post_handler are not supported. */
629 	if (p->break_handler || p->post_handler)
630 		return;
631 
632 	op = container_of(p, struct optimized_kprobe, kp);
633 
634 	/* Check there is no other kprobes at the optimized instructions */
635 	if (arch_check_optimized_kprobe(op) < 0)
636 		return;
637 
638 	/* Check if it is already optimized. */
639 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
640 		return;
641 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
642 
643 	if (!list_empty(&op->list))
644 		/* This is under unoptimizing. Just dequeue the probe */
645 		list_del_init(&op->list);
646 	else {
647 		list_add(&op->list, &optimizing_list);
648 		kick_kprobe_optimizer();
649 	}
650 }
651 
652 /* Short cut to direct unoptimizing */
653 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
654 {
655 	lockdep_assert_cpus_held();
656 	arch_unoptimize_kprobe(op);
657 	if (kprobe_disabled(&op->kp))
658 		arch_disarm_kprobe(&op->kp);
659 }
660 
661 /* Unoptimize a kprobe if p is optimized */
662 static void unoptimize_kprobe(struct kprobe *p, bool force)
663 {
664 	struct optimized_kprobe *op;
665 
666 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
667 		return; /* This is not an optprobe nor optimized */
668 
669 	op = container_of(p, struct optimized_kprobe, kp);
670 	if (!kprobe_optimized(p)) {
671 		/* Unoptimized or unoptimizing case */
672 		if (force && !list_empty(&op->list)) {
673 			/*
674 			 * Only if this is unoptimizing kprobe and forced,
675 			 * forcibly unoptimize it. (No need to unoptimize
676 			 * unoptimized kprobe again :)
677 			 */
678 			list_del_init(&op->list);
679 			force_unoptimize_kprobe(op);
680 		}
681 		return;
682 	}
683 
684 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
685 	if (!list_empty(&op->list)) {
686 		/* Dequeue from the optimization queue */
687 		list_del_init(&op->list);
688 		return;
689 	}
690 	/* Optimized kprobe case */
691 	if (force)
692 		/* Forcibly update the code: this is a special case */
693 		force_unoptimize_kprobe(op);
694 	else {
695 		list_add(&op->list, &unoptimizing_list);
696 		kick_kprobe_optimizer();
697 	}
698 }
699 
700 /* Cancel unoptimizing for reusing */
701 static void reuse_unused_kprobe(struct kprobe *ap)
702 {
703 	struct optimized_kprobe *op;
704 
705 	BUG_ON(!kprobe_unused(ap));
706 	/*
707 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
708 	 * there is still a relative jump) and disabled.
709 	 */
710 	op = container_of(ap, struct optimized_kprobe, kp);
711 	if (unlikely(list_empty(&op->list)))
712 		printk(KERN_WARNING "Warning: found a stray unused "
713 			"aggrprobe@%p\n", ap->addr);
714 	/* Enable the probe again */
715 	ap->flags &= ~KPROBE_FLAG_DISABLED;
716 	/* Optimize it again (remove from op->list) */
717 	BUG_ON(!kprobe_optready(ap));
718 	optimize_kprobe(ap);
719 }
720 
721 /* Remove optimized instructions */
722 static void kill_optimized_kprobe(struct kprobe *p)
723 {
724 	struct optimized_kprobe *op;
725 
726 	op = container_of(p, struct optimized_kprobe, kp);
727 	if (!list_empty(&op->list))
728 		/* Dequeue from the (un)optimization queue */
729 		list_del_init(&op->list);
730 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
731 
732 	if (kprobe_unused(p)) {
733 		/* Enqueue if it is unused */
734 		list_add(&op->list, &freeing_list);
735 		/*
736 		 * Remove unused probes from the hash list. After waiting
737 		 * for synchronization, this probe is reclaimed.
738 		 * (reclaiming is done by do_free_cleaned_kprobes().)
739 		 */
740 		hlist_del_rcu(&op->kp.hlist);
741 	}
742 
743 	/* Don't touch the code, because it is already freed. */
744 	arch_remove_optimized_kprobe(op);
745 }
746 
747 static inline
748 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
749 {
750 	if (!kprobe_ftrace(p))
751 		arch_prepare_optimized_kprobe(op, p);
752 }
753 
754 /* Try to prepare optimized instructions */
755 static void prepare_optimized_kprobe(struct kprobe *p)
756 {
757 	struct optimized_kprobe *op;
758 
759 	op = container_of(p, struct optimized_kprobe, kp);
760 	__prepare_optimized_kprobe(op, p);
761 }
762 
763 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
764 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
765 {
766 	struct optimized_kprobe *op;
767 
768 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
769 	if (!op)
770 		return NULL;
771 
772 	INIT_LIST_HEAD(&op->list);
773 	op->kp.addr = p->addr;
774 	__prepare_optimized_kprobe(op, p);
775 
776 	return &op->kp;
777 }
778 
779 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
780 
781 /*
782  * Prepare an optimized_kprobe and optimize it
783  * NOTE: p must be a normal registered kprobe
784  */
785 static void try_to_optimize_kprobe(struct kprobe *p)
786 {
787 	struct kprobe *ap;
788 	struct optimized_kprobe *op;
789 
790 	/* Impossible to optimize ftrace-based kprobe */
791 	if (kprobe_ftrace(p))
792 		return;
793 
794 	/* For preparing optimization, jump_label_text_reserved() is called */
795 	cpus_read_lock();
796 	jump_label_lock();
797 	mutex_lock(&text_mutex);
798 
799 	ap = alloc_aggr_kprobe(p);
800 	if (!ap)
801 		goto out;
802 
803 	op = container_of(ap, struct optimized_kprobe, kp);
804 	if (!arch_prepared_optinsn(&op->optinsn)) {
805 		/* If failed to setup optimizing, fallback to kprobe */
806 		arch_remove_optimized_kprobe(op);
807 		kfree(op);
808 		goto out;
809 	}
810 
811 	init_aggr_kprobe(ap, p);
812 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
813 
814 out:
815 	mutex_unlock(&text_mutex);
816 	jump_label_unlock();
817 	cpus_read_unlock();
818 }
819 
820 #ifdef CONFIG_SYSCTL
821 static void optimize_all_kprobes(void)
822 {
823 	struct hlist_head *head;
824 	struct kprobe *p;
825 	unsigned int i;
826 
827 	mutex_lock(&kprobe_mutex);
828 	/* If optimization is already allowed, just return */
829 	if (kprobes_allow_optimization)
830 		goto out;
831 
832 	cpus_read_lock();
833 	kprobes_allow_optimization = true;
834 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
835 		head = &kprobe_table[i];
836 		hlist_for_each_entry_rcu(p, head, hlist)
837 			if (!kprobe_disabled(p))
838 				optimize_kprobe(p);
839 	}
840 	cpus_read_unlock();
841 	printk(KERN_INFO "Kprobes globally optimized\n");
842 out:
843 	mutex_unlock(&kprobe_mutex);
844 }
845 
846 static void unoptimize_all_kprobes(void)
847 {
848 	struct hlist_head *head;
849 	struct kprobe *p;
850 	unsigned int i;
851 
852 	mutex_lock(&kprobe_mutex);
853 	/* If optimization is already prohibited, just return */
854 	if (!kprobes_allow_optimization) {
855 		mutex_unlock(&kprobe_mutex);
856 		return;
857 	}
858 
859 	cpus_read_lock();
860 	kprobes_allow_optimization = false;
861 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
862 		head = &kprobe_table[i];
863 		hlist_for_each_entry_rcu(p, head, hlist) {
864 			if (!kprobe_disabled(p))
865 				unoptimize_kprobe(p, false);
866 		}
867 	}
868 	cpus_read_unlock();
869 	mutex_unlock(&kprobe_mutex);
870 
871 	/* Wait for unoptimizing completion */
872 	wait_for_kprobe_optimizer();
873 	printk(KERN_INFO "Kprobes globally unoptimized\n");
874 }
875 
876 static DEFINE_MUTEX(kprobe_sysctl_mutex);
877 int sysctl_kprobes_optimization;
878 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
879 				      void __user *buffer, size_t *length,
880 				      loff_t *ppos)
881 {
882 	int ret;
883 
884 	mutex_lock(&kprobe_sysctl_mutex);
885 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
886 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
887 
888 	if (sysctl_kprobes_optimization)
889 		optimize_all_kprobes();
890 	else
891 		unoptimize_all_kprobes();
892 	mutex_unlock(&kprobe_sysctl_mutex);
893 
894 	return ret;
895 }
896 #endif /* CONFIG_SYSCTL */
897 
898 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
899 static void __arm_kprobe(struct kprobe *p)
900 {
901 	struct kprobe *_p;
902 
903 	/* Check collision with other optimized kprobes */
904 	_p = get_optimized_kprobe((unsigned long)p->addr);
905 	if (unlikely(_p))
906 		/* Fallback to unoptimized kprobe */
907 		unoptimize_kprobe(_p, true);
908 
909 	arch_arm_kprobe(p);
910 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
911 }
912 
913 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
914 static void __disarm_kprobe(struct kprobe *p, bool reopt)
915 {
916 	struct kprobe *_p;
917 
918 	/* Try to unoptimize */
919 	unoptimize_kprobe(p, kprobes_all_disarmed);
920 
921 	if (!kprobe_queued(p)) {
922 		arch_disarm_kprobe(p);
923 		/* If another kprobe was blocked, optimize it. */
924 		_p = get_optimized_kprobe((unsigned long)p->addr);
925 		if (unlikely(_p) && reopt)
926 			optimize_kprobe(_p);
927 	}
928 	/* TODO: reoptimize others after unoptimized this probe */
929 }
930 
931 #else /* !CONFIG_OPTPROBES */
932 
933 #define optimize_kprobe(p)			do {} while (0)
934 #define unoptimize_kprobe(p, f)			do {} while (0)
935 #define kill_optimized_kprobe(p)		do {} while (0)
936 #define prepare_optimized_kprobe(p)		do {} while (0)
937 #define try_to_optimize_kprobe(p)		do {} while (0)
938 #define __arm_kprobe(p)				arch_arm_kprobe(p)
939 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
940 #define kprobe_disarmed(p)			kprobe_disabled(p)
941 #define wait_for_kprobe_optimizer()		do {} while (0)
942 
943 /* There should be no unused kprobes can be reused without optimization */
944 static void reuse_unused_kprobe(struct kprobe *ap)
945 {
946 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
947 	BUG_ON(kprobe_unused(ap));
948 }
949 
950 static void free_aggr_kprobe(struct kprobe *p)
951 {
952 	arch_remove_kprobe(p);
953 	kfree(p);
954 }
955 
956 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
957 {
958 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
959 }
960 #endif /* CONFIG_OPTPROBES */
961 
962 #ifdef CONFIG_KPROBES_ON_FTRACE
963 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
964 	.func = kprobe_ftrace_handler,
965 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
966 };
967 static int kprobe_ftrace_enabled;
968 
969 /* Must ensure p->addr is really on ftrace */
970 static int prepare_kprobe(struct kprobe *p)
971 {
972 	if (!kprobe_ftrace(p))
973 		return arch_prepare_kprobe(p);
974 
975 	return arch_prepare_kprobe_ftrace(p);
976 }
977 
978 /* Caller must lock kprobe_mutex */
979 static void arm_kprobe_ftrace(struct kprobe *p)
980 {
981 	int ret;
982 
983 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
984 				   (unsigned long)p->addr, 0, 0);
985 	WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
986 	kprobe_ftrace_enabled++;
987 	if (kprobe_ftrace_enabled == 1) {
988 		ret = register_ftrace_function(&kprobe_ftrace_ops);
989 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
990 	}
991 }
992 
993 /* Caller must lock kprobe_mutex */
994 static void disarm_kprobe_ftrace(struct kprobe *p)
995 {
996 	int ret;
997 
998 	kprobe_ftrace_enabled--;
999 	if (kprobe_ftrace_enabled == 0) {
1000 		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1001 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
1002 	}
1003 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1004 			   (unsigned long)p->addr, 1, 0);
1005 	WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
1006 }
1007 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1008 #define prepare_kprobe(p)	arch_prepare_kprobe(p)
1009 #define arm_kprobe_ftrace(p)	do {} while (0)
1010 #define disarm_kprobe_ftrace(p)	do {} while (0)
1011 #endif
1012 
1013 /* Arm a kprobe with text_mutex */
1014 static void arm_kprobe(struct kprobe *kp)
1015 {
1016 	if (unlikely(kprobe_ftrace(kp))) {
1017 		arm_kprobe_ftrace(kp);
1018 		return;
1019 	}
1020 	cpus_read_lock();
1021 	mutex_lock(&text_mutex);
1022 	__arm_kprobe(kp);
1023 	mutex_unlock(&text_mutex);
1024 	cpus_read_unlock();
1025 }
1026 
1027 /* Disarm a kprobe with text_mutex */
1028 static void disarm_kprobe(struct kprobe *kp, bool reopt)
1029 {
1030 	if (unlikely(kprobe_ftrace(kp))) {
1031 		disarm_kprobe_ftrace(kp);
1032 		return;
1033 	}
1034 
1035 	cpus_read_lock();
1036 	mutex_lock(&text_mutex);
1037 	__disarm_kprobe(kp, reopt);
1038 	mutex_unlock(&text_mutex);
1039 	cpus_read_unlock();
1040 }
1041 
1042 /*
1043  * Aggregate handlers for multiple kprobes support - these handlers
1044  * take care of invoking the individual kprobe handlers on p->list
1045  */
1046 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1047 {
1048 	struct kprobe *kp;
1049 
1050 	list_for_each_entry_rcu(kp, &p->list, list) {
1051 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1052 			set_kprobe_instance(kp);
1053 			if (kp->pre_handler(kp, regs))
1054 				return 1;
1055 		}
1056 		reset_kprobe_instance();
1057 	}
1058 	return 0;
1059 }
1060 NOKPROBE_SYMBOL(aggr_pre_handler);
1061 
1062 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1063 			      unsigned long flags)
1064 {
1065 	struct kprobe *kp;
1066 
1067 	list_for_each_entry_rcu(kp, &p->list, list) {
1068 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1069 			set_kprobe_instance(kp);
1070 			kp->post_handler(kp, regs, flags);
1071 			reset_kprobe_instance();
1072 		}
1073 	}
1074 }
1075 NOKPROBE_SYMBOL(aggr_post_handler);
1076 
1077 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1078 			      int trapnr)
1079 {
1080 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1081 
1082 	/*
1083 	 * if we faulted "during" the execution of a user specified
1084 	 * probe handler, invoke just that probe's fault handler
1085 	 */
1086 	if (cur && cur->fault_handler) {
1087 		if (cur->fault_handler(cur, regs, trapnr))
1088 			return 1;
1089 	}
1090 	return 0;
1091 }
1092 NOKPROBE_SYMBOL(aggr_fault_handler);
1093 
1094 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1095 {
1096 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1097 	int ret = 0;
1098 
1099 	if (cur && cur->break_handler) {
1100 		if (cur->break_handler(cur, regs))
1101 			ret = 1;
1102 	}
1103 	reset_kprobe_instance();
1104 	return ret;
1105 }
1106 NOKPROBE_SYMBOL(aggr_break_handler);
1107 
1108 /* Walks the list and increments nmissed count for multiprobe case */
1109 void kprobes_inc_nmissed_count(struct kprobe *p)
1110 {
1111 	struct kprobe *kp;
1112 	if (!kprobe_aggrprobe(p)) {
1113 		p->nmissed++;
1114 	} else {
1115 		list_for_each_entry_rcu(kp, &p->list, list)
1116 			kp->nmissed++;
1117 	}
1118 	return;
1119 }
1120 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1121 
1122 void recycle_rp_inst(struct kretprobe_instance *ri,
1123 		     struct hlist_head *head)
1124 {
1125 	struct kretprobe *rp = ri->rp;
1126 
1127 	/* remove rp inst off the rprobe_inst_table */
1128 	hlist_del(&ri->hlist);
1129 	INIT_HLIST_NODE(&ri->hlist);
1130 	if (likely(rp)) {
1131 		raw_spin_lock(&rp->lock);
1132 		hlist_add_head(&ri->hlist, &rp->free_instances);
1133 		raw_spin_unlock(&rp->lock);
1134 	} else
1135 		/* Unregistering */
1136 		hlist_add_head(&ri->hlist, head);
1137 }
1138 NOKPROBE_SYMBOL(recycle_rp_inst);
1139 
1140 void kretprobe_hash_lock(struct task_struct *tsk,
1141 			 struct hlist_head **head, unsigned long *flags)
1142 __acquires(hlist_lock)
1143 {
1144 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1145 	raw_spinlock_t *hlist_lock;
1146 
1147 	*head = &kretprobe_inst_table[hash];
1148 	hlist_lock = kretprobe_table_lock_ptr(hash);
1149 	raw_spin_lock_irqsave(hlist_lock, *flags);
1150 }
1151 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1152 
1153 static void kretprobe_table_lock(unsigned long hash,
1154 				 unsigned long *flags)
1155 __acquires(hlist_lock)
1156 {
1157 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1158 	raw_spin_lock_irqsave(hlist_lock, *flags);
1159 }
1160 NOKPROBE_SYMBOL(kretprobe_table_lock);
1161 
1162 void kretprobe_hash_unlock(struct task_struct *tsk,
1163 			   unsigned long *flags)
1164 __releases(hlist_lock)
1165 {
1166 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1167 	raw_spinlock_t *hlist_lock;
1168 
1169 	hlist_lock = kretprobe_table_lock_ptr(hash);
1170 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1171 }
1172 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1173 
1174 static void kretprobe_table_unlock(unsigned long hash,
1175 				   unsigned long *flags)
1176 __releases(hlist_lock)
1177 {
1178 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1179 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1180 }
1181 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1182 
1183 /*
1184  * This function is called from finish_task_switch when task tk becomes dead,
1185  * so that we can recycle any function-return probe instances associated
1186  * with this task. These left over instances represent probed functions
1187  * that have been called but will never return.
1188  */
1189 void kprobe_flush_task(struct task_struct *tk)
1190 {
1191 	struct kretprobe_instance *ri;
1192 	struct hlist_head *head, empty_rp;
1193 	struct hlist_node *tmp;
1194 	unsigned long hash, flags = 0;
1195 
1196 	if (unlikely(!kprobes_initialized))
1197 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1198 		return;
1199 
1200 	INIT_HLIST_HEAD(&empty_rp);
1201 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1202 	head = &kretprobe_inst_table[hash];
1203 	kretprobe_table_lock(hash, &flags);
1204 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1205 		if (ri->task == tk)
1206 			recycle_rp_inst(ri, &empty_rp);
1207 	}
1208 	kretprobe_table_unlock(hash, &flags);
1209 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1210 		hlist_del(&ri->hlist);
1211 		kfree(ri);
1212 	}
1213 }
1214 NOKPROBE_SYMBOL(kprobe_flush_task);
1215 
1216 static inline void free_rp_inst(struct kretprobe *rp)
1217 {
1218 	struct kretprobe_instance *ri;
1219 	struct hlist_node *next;
1220 
1221 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1222 		hlist_del(&ri->hlist);
1223 		kfree(ri);
1224 	}
1225 }
1226 
1227 static void cleanup_rp_inst(struct kretprobe *rp)
1228 {
1229 	unsigned long flags, hash;
1230 	struct kretprobe_instance *ri;
1231 	struct hlist_node *next;
1232 	struct hlist_head *head;
1233 
1234 	/* No race here */
1235 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1236 		kretprobe_table_lock(hash, &flags);
1237 		head = &kretprobe_inst_table[hash];
1238 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1239 			if (ri->rp == rp)
1240 				ri->rp = NULL;
1241 		}
1242 		kretprobe_table_unlock(hash, &flags);
1243 	}
1244 	free_rp_inst(rp);
1245 }
1246 NOKPROBE_SYMBOL(cleanup_rp_inst);
1247 
1248 /*
1249 * Add the new probe to ap->list. Fail if this is the
1250 * second jprobe at the address - two jprobes can't coexist
1251 */
1252 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1253 {
1254 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1255 
1256 	if (p->break_handler || p->post_handler)
1257 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1258 
1259 	if (p->break_handler) {
1260 		if (ap->break_handler)
1261 			return -EEXIST;
1262 		list_add_tail_rcu(&p->list, &ap->list);
1263 		ap->break_handler = aggr_break_handler;
1264 	} else
1265 		list_add_rcu(&p->list, &ap->list);
1266 	if (p->post_handler && !ap->post_handler)
1267 		ap->post_handler = aggr_post_handler;
1268 
1269 	return 0;
1270 }
1271 
1272 /*
1273  * Fill in the required fields of the "manager kprobe". Replace the
1274  * earlier kprobe in the hlist with the manager kprobe
1275  */
1276 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1277 {
1278 	/* Copy p's insn slot to ap */
1279 	copy_kprobe(p, ap);
1280 	flush_insn_slot(ap);
1281 	ap->addr = p->addr;
1282 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1283 	ap->pre_handler = aggr_pre_handler;
1284 	ap->fault_handler = aggr_fault_handler;
1285 	/* We don't care the kprobe which has gone. */
1286 	if (p->post_handler && !kprobe_gone(p))
1287 		ap->post_handler = aggr_post_handler;
1288 	if (p->break_handler && !kprobe_gone(p))
1289 		ap->break_handler = aggr_break_handler;
1290 
1291 	INIT_LIST_HEAD(&ap->list);
1292 	INIT_HLIST_NODE(&ap->hlist);
1293 
1294 	list_add_rcu(&p->list, &ap->list);
1295 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1296 }
1297 
1298 /*
1299  * This is the second or subsequent kprobe at the address - handle
1300  * the intricacies
1301  */
1302 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1303 {
1304 	int ret = 0;
1305 	struct kprobe *ap = orig_p;
1306 
1307 	cpus_read_lock();
1308 
1309 	/* For preparing optimization, jump_label_text_reserved() is called */
1310 	jump_label_lock();
1311 	mutex_lock(&text_mutex);
1312 
1313 	if (!kprobe_aggrprobe(orig_p)) {
1314 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1315 		ap = alloc_aggr_kprobe(orig_p);
1316 		if (!ap) {
1317 			ret = -ENOMEM;
1318 			goto out;
1319 		}
1320 		init_aggr_kprobe(ap, orig_p);
1321 	} else if (kprobe_unused(ap))
1322 		/* This probe is going to die. Rescue it */
1323 		reuse_unused_kprobe(ap);
1324 
1325 	if (kprobe_gone(ap)) {
1326 		/*
1327 		 * Attempting to insert new probe at the same location that
1328 		 * had a probe in the module vaddr area which already
1329 		 * freed. So, the instruction slot has already been
1330 		 * released. We need a new slot for the new probe.
1331 		 */
1332 		ret = arch_prepare_kprobe(ap);
1333 		if (ret)
1334 			/*
1335 			 * Even if fail to allocate new slot, don't need to
1336 			 * free aggr_probe. It will be used next time, or
1337 			 * freed by unregister_kprobe.
1338 			 */
1339 			goto out;
1340 
1341 		/* Prepare optimized instructions if possible. */
1342 		prepare_optimized_kprobe(ap);
1343 
1344 		/*
1345 		 * Clear gone flag to prevent allocating new slot again, and
1346 		 * set disabled flag because it is not armed yet.
1347 		 */
1348 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1349 			    | KPROBE_FLAG_DISABLED;
1350 	}
1351 
1352 	/* Copy ap's insn slot to p */
1353 	copy_kprobe(ap, p);
1354 	ret = add_new_kprobe(ap, p);
1355 
1356 out:
1357 	mutex_unlock(&text_mutex);
1358 	jump_label_unlock();
1359 	cpus_read_unlock();
1360 
1361 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1362 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1363 		if (!kprobes_all_disarmed)
1364 			/* Arm the breakpoint again. */
1365 			arm_kprobe(ap);
1366 	}
1367 	return ret;
1368 }
1369 
1370 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1371 {
1372 	/* The __kprobes marked functions and entry code must not be probed */
1373 	return addr >= (unsigned long)__kprobes_text_start &&
1374 	       addr < (unsigned long)__kprobes_text_end;
1375 }
1376 
1377 bool within_kprobe_blacklist(unsigned long addr)
1378 {
1379 	struct kprobe_blacklist_entry *ent;
1380 
1381 	if (arch_within_kprobe_blacklist(addr))
1382 		return true;
1383 	/*
1384 	 * If there exists a kprobe_blacklist, verify and
1385 	 * fail any probe registration in the prohibited area
1386 	 */
1387 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1388 		if (addr >= ent->start_addr && addr < ent->end_addr)
1389 			return true;
1390 	}
1391 
1392 	return false;
1393 }
1394 
1395 /*
1396  * If we have a symbol_name argument, look it up and add the offset field
1397  * to it. This way, we can specify a relative address to a symbol.
1398  * This returns encoded errors if it fails to look up symbol or invalid
1399  * combination of parameters.
1400  */
1401 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1402 			const char *symbol_name, unsigned int offset)
1403 {
1404 	if ((symbol_name && addr) || (!symbol_name && !addr))
1405 		goto invalid;
1406 
1407 	if (symbol_name) {
1408 		addr = kprobe_lookup_name(symbol_name, offset);
1409 		if (!addr)
1410 			return ERR_PTR(-ENOENT);
1411 	}
1412 
1413 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1414 	if (addr)
1415 		return addr;
1416 
1417 invalid:
1418 	return ERR_PTR(-EINVAL);
1419 }
1420 
1421 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1422 {
1423 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1424 }
1425 
1426 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1427 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1428 {
1429 	struct kprobe *ap, *list_p;
1430 
1431 	ap = get_kprobe(p->addr);
1432 	if (unlikely(!ap))
1433 		return NULL;
1434 
1435 	if (p != ap) {
1436 		list_for_each_entry_rcu(list_p, &ap->list, list)
1437 			if (list_p == p)
1438 			/* kprobe p is a valid probe */
1439 				goto valid;
1440 		return NULL;
1441 	}
1442 valid:
1443 	return ap;
1444 }
1445 
1446 /* Return error if the kprobe is being re-registered */
1447 static inline int check_kprobe_rereg(struct kprobe *p)
1448 {
1449 	int ret = 0;
1450 
1451 	mutex_lock(&kprobe_mutex);
1452 	if (__get_valid_kprobe(p))
1453 		ret = -EINVAL;
1454 	mutex_unlock(&kprobe_mutex);
1455 
1456 	return ret;
1457 }
1458 
1459 int __weak arch_check_ftrace_location(struct kprobe *p)
1460 {
1461 	unsigned long ftrace_addr;
1462 
1463 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1464 	if (ftrace_addr) {
1465 #ifdef CONFIG_KPROBES_ON_FTRACE
1466 		/* Given address is not on the instruction boundary */
1467 		if ((unsigned long)p->addr != ftrace_addr)
1468 			return -EILSEQ;
1469 		p->flags |= KPROBE_FLAG_FTRACE;
1470 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1471 		return -EINVAL;
1472 #endif
1473 	}
1474 	return 0;
1475 }
1476 
1477 static int check_kprobe_address_safe(struct kprobe *p,
1478 				     struct module **probed_mod)
1479 {
1480 	int ret;
1481 
1482 	ret = arch_check_ftrace_location(p);
1483 	if (ret)
1484 		return ret;
1485 	jump_label_lock();
1486 	preempt_disable();
1487 
1488 	/* Ensure it is not in reserved area nor out of text */
1489 	if (!kernel_text_address((unsigned long) p->addr) ||
1490 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1491 	    jump_label_text_reserved(p->addr, p->addr)) {
1492 		ret = -EINVAL;
1493 		goto out;
1494 	}
1495 
1496 	/* Check if are we probing a module */
1497 	*probed_mod = __module_text_address((unsigned long) p->addr);
1498 	if (*probed_mod) {
1499 		/*
1500 		 * We must hold a refcount of the probed module while updating
1501 		 * its code to prohibit unexpected unloading.
1502 		 */
1503 		if (unlikely(!try_module_get(*probed_mod))) {
1504 			ret = -ENOENT;
1505 			goto out;
1506 		}
1507 
1508 		/*
1509 		 * If the module freed .init.text, we couldn't insert
1510 		 * kprobes in there.
1511 		 */
1512 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1513 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1514 			module_put(*probed_mod);
1515 			*probed_mod = NULL;
1516 			ret = -ENOENT;
1517 		}
1518 	}
1519 out:
1520 	preempt_enable();
1521 	jump_label_unlock();
1522 
1523 	return ret;
1524 }
1525 
1526 int register_kprobe(struct kprobe *p)
1527 {
1528 	int ret;
1529 	struct kprobe *old_p;
1530 	struct module *probed_mod;
1531 	kprobe_opcode_t *addr;
1532 
1533 	/* Adjust probe address from symbol */
1534 	addr = kprobe_addr(p);
1535 	if (IS_ERR(addr))
1536 		return PTR_ERR(addr);
1537 	p->addr = addr;
1538 
1539 	ret = check_kprobe_rereg(p);
1540 	if (ret)
1541 		return ret;
1542 
1543 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1544 	p->flags &= KPROBE_FLAG_DISABLED;
1545 	p->nmissed = 0;
1546 	INIT_LIST_HEAD(&p->list);
1547 
1548 	ret = check_kprobe_address_safe(p, &probed_mod);
1549 	if (ret)
1550 		return ret;
1551 
1552 	mutex_lock(&kprobe_mutex);
1553 
1554 	old_p = get_kprobe(p->addr);
1555 	if (old_p) {
1556 		/* Since this may unoptimize old_p, locking text_mutex. */
1557 		ret = register_aggr_kprobe(old_p, p);
1558 		goto out;
1559 	}
1560 
1561 	cpus_read_lock();
1562 	/* Prevent text modification */
1563 	mutex_lock(&text_mutex);
1564 	ret = prepare_kprobe(p);
1565 	mutex_unlock(&text_mutex);
1566 	cpus_read_unlock();
1567 	if (ret)
1568 		goto out;
1569 
1570 	INIT_HLIST_NODE(&p->hlist);
1571 	hlist_add_head_rcu(&p->hlist,
1572 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1573 
1574 	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1575 		arm_kprobe(p);
1576 
1577 	/* Try to optimize kprobe */
1578 	try_to_optimize_kprobe(p);
1579 out:
1580 	mutex_unlock(&kprobe_mutex);
1581 
1582 	if (probed_mod)
1583 		module_put(probed_mod);
1584 
1585 	return ret;
1586 }
1587 EXPORT_SYMBOL_GPL(register_kprobe);
1588 
1589 /* Check if all probes on the aggrprobe are disabled */
1590 static int aggr_kprobe_disabled(struct kprobe *ap)
1591 {
1592 	struct kprobe *kp;
1593 
1594 	list_for_each_entry_rcu(kp, &ap->list, list)
1595 		if (!kprobe_disabled(kp))
1596 			/*
1597 			 * There is an active probe on the list.
1598 			 * We can't disable this ap.
1599 			 */
1600 			return 0;
1601 
1602 	return 1;
1603 }
1604 
1605 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1606 static struct kprobe *__disable_kprobe(struct kprobe *p)
1607 {
1608 	struct kprobe *orig_p;
1609 
1610 	/* Get an original kprobe for return */
1611 	orig_p = __get_valid_kprobe(p);
1612 	if (unlikely(orig_p == NULL))
1613 		return NULL;
1614 
1615 	if (!kprobe_disabled(p)) {
1616 		/* Disable probe if it is a child probe */
1617 		if (p != orig_p)
1618 			p->flags |= KPROBE_FLAG_DISABLED;
1619 
1620 		/* Try to disarm and disable this/parent probe */
1621 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1622 			/*
1623 			 * If kprobes_all_disarmed is set, orig_p
1624 			 * should have already been disarmed, so
1625 			 * skip unneed disarming process.
1626 			 */
1627 			if (!kprobes_all_disarmed)
1628 				disarm_kprobe(orig_p, true);
1629 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1630 		}
1631 	}
1632 
1633 	return orig_p;
1634 }
1635 
1636 /*
1637  * Unregister a kprobe without a scheduler synchronization.
1638  */
1639 static int __unregister_kprobe_top(struct kprobe *p)
1640 {
1641 	struct kprobe *ap, *list_p;
1642 
1643 	/* Disable kprobe. This will disarm it if needed. */
1644 	ap = __disable_kprobe(p);
1645 	if (ap == NULL)
1646 		return -EINVAL;
1647 
1648 	if (ap == p)
1649 		/*
1650 		 * This probe is an independent(and non-optimized) kprobe
1651 		 * (not an aggrprobe). Remove from the hash list.
1652 		 */
1653 		goto disarmed;
1654 
1655 	/* Following process expects this probe is an aggrprobe */
1656 	WARN_ON(!kprobe_aggrprobe(ap));
1657 
1658 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1659 		/*
1660 		 * !disarmed could be happen if the probe is under delayed
1661 		 * unoptimizing.
1662 		 */
1663 		goto disarmed;
1664 	else {
1665 		/* If disabling probe has special handlers, update aggrprobe */
1666 		if (p->break_handler && !kprobe_gone(p))
1667 			ap->break_handler = NULL;
1668 		if (p->post_handler && !kprobe_gone(p)) {
1669 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1670 				if ((list_p != p) && (list_p->post_handler))
1671 					goto noclean;
1672 			}
1673 			ap->post_handler = NULL;
1674 		}
1675 noclean:
1676 		/*
1677 		 * Remove from the aggrprobe: this path will do nothing in
1678 		 * __unregister_kprobe_bottom().
1679 		 */
1680 		list_del_rcu(&p->list);
1681 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1682 			/*
1683 			 * Try to optimize this probe again, because post
1684 			 * handler may have been changed.
1685 			 */
1686 			optimize_kprobe(ap);
1687 	}
1688 	return 0;
1689 
1690 disarmed:
1691 	BUG_ON(!kprobe_disarmed(ap));
1692 	hlist_del_rcu(&ap->hlist);
1693 	return 0;
1694 }
1695 
1696 static void __unregister_kprobe_bottom(struct kprobe *p)
1697 {
1698 	struct kprobe *ap;
1699 
1700 	if (list_empty(&p->list))
1701 		/* This is an independent kprobe */
1702 		arch_remove_kprobe(p);
1703 	else if (list_is_singular(&p->list)) {
1704 		/* This is the last child of an aggrprobe */
1705 		ap = list_entry(p->list.next, struct kprobe, list);
1706 		list_del(&p->list);
1707 		free_aggr_kprobe(ap);
1708 	}
1709 	/* Otherwise, do nothing. */
1710 }
1711 
1712 int register_kprobes(struct kprobe **kps, int num)
1713 {
1714 	int i, ret = 0;
1715 
1716 	if (num <= 0)
1717 		return -EINVAL;
1718 	for (i = 0; i < num; i++) {
1719 		ret = register_kprobe(kps[i]);
1720 		if (ret < 0) {
1721 			if (i > 0)
1722 				unregister_kprobes(kps, i);
1723 			break;
1724 		}
1725 	}
1726 	return ret;
1727 }
1728 EXPORT_SYMBOL_GPL(register_kprobes);
1729 
1730 void unregister_kprobe(struct kprobe *p)
1731 {
1732 	unregister_kprobes(&p, 1);
1733 }
1734 EXPORT_SYMBOL_GPL(unregister_kprobe);
1735 
1736 void unregister_kprobes(struct kprobe **kps, int num)
1737 {
1738 	int i;
1739 
1740 	if (num <= 0)
1741 		return;
1742 	mutex_lock(&kprobe_mutex);
1743 	for (i = 0; i < num; i++)
1744 		if (__unregister_kprobe_top(kps[i]) < 0)
1745 			kps[i]->addr = NULL;
1746 	mutex_unlock(&kprobe_mutex);
1747 
1748 	synchronize_sched();
1749 	for (i = 0; i < num; i++)
1750 		if (kps[i]->addr)
1751 			__unregister_kprobe_bottom(kps[i]);
1752 }
1753 EXPORT_SYMBOL_GPL(unregister_kprobes);
1754 
1755 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1756 					unsigned long val, void *data)
1757 {
1758 	return NOTIFY_DONE;
1759 }
1760 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1761 
1762 static struct notifier_block kprobe_exceptions_nb = {
1763 	.notifier_call = kprobe_exceptions_notify,
1764 	.priority = 0x7fffffff /* we need to be notified first */
1765 };
1766 
1767 unsigned long __weak arch_deref_entry_point(void *entry)
1768 {
1769 	return (unsigned long)entry;
1770 }
1771 
1772 int register_jprobes(struct jprobe **jps, int num)
1773 {
1774 	int ret = 0, i;
1775 
1776 	if (num <= 0)
1777 		return -EINVAL;
1778 
1779 	for (i = 0; i < num; i++) {
1780 		ret = register_jprobe(jps[i]);
1781 
1782 		if (ret < 0) {
1783 			if (i > 0)
1784 				unregister_jprobes(jps, i);
1785 			break;
1786 		}
1787 	}
1788 
1789 	return ret;
1790 }
1791 EXPORT_SYMBOL_GPL(register_jprobes);
1792 
1793 int register_jprobe(struct jprobe *jp)
1794 {
1795 	unsigned long addr, offset;
1796 	struct kprobe *kp = &jp->kp;
1797 
1798 	/*
1799 	 * Verify probepoint as well as the jprobe handler are
1800 	 * valid function entry points.
1801 	 */
1802 	addr = arch_deref_entry_point(jp->entry);
1803 
1804 	if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0 &&
1805 	    kprobe_on_func_entry(kp->addr, kp->symbol_name, kp->offset)) {
1806 		kp->pre_handler = setjmp_pre_handler;
1807 		kp->break_handler = longjmp_break_handler;
1808 		return register_kprobe(kp);
1809 	}
1810 
1811 	return -EINVAL;
1812 }
1813 EXPORT_SYMBOL_GPL(register_jprobe);
1814 
1815 void unregister_jprobe(struct jprobe *jp)
1816 {
1817 	unregister_jprobes(&jp, 1);
1818 }
1819 EXPORT_SYMBOL_GPL(unregister_jprobe);
1820 
1821 void unregister_jprobes(struct jprobe **jps, int num)
1822 {
1823 	int i;
1824 
1825 	if (num <= 0)
1826 		return;
1827 	mutex_lock(&kprobe_mutex);
1828 	for (i = 0; i < num; i++)
1829 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1830 			jps[i]->kp.addr = NULL;
1831 	mutex_unlock(&kprobe_mutex);
1832 
1833 	synchronize_sched();
1834 	for (i = 0; i < num; i++) {
1835 		if (jps[i]->kp.addr)
1836 			__unregister_kprobe_bottom(&jps[i]->kp);
1837 	}
1838 }
1839 EXPORT_SYMBOL_GPL(unregister_jprobes);
1840 
1841 #ifdef CONFIG_KRETPROBES
1842 /*
1843  * This kprobe pre_handler is registered with every kretprobe. When probe
1844  * hits it will set up the return probe.
1845  */
1846 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1847 {
1848 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1849 	unsigned long hash, flags = 0;
1850 	struct kretprobe_instance *ri;
1851 
1852 	/*
1853 	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1854 	 * just skip the probe and increase the (inexact) 'nmissed'
1855 	 * statistical counter, so that the user is informed that
1856 	 * something happened:
1857 	 */
1858 	if (unlikely(in_nmi())) {
1859 		rp->nmissed++;
1860 		return 0;
1861 	}
1862 
1863 	/* TODO: consider to only swap the RA after the last pre_handler fired */
1864 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1865 	raw_spin_lock_irqsave(&rp->lock, flags);
1866 	if (!hlist_empty(&rp->free_instances)) {
1867 		ri = hlist_entry(rp->free_instances.first,
1868 				struct kretprobe_instance, hlist);
1869 		hlist_del(&ri->hlist);
1870 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1871 
1872 		ri->rp = rp;
1873 		ri->task = current;
1874 
1875 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1876 			raw_spin_lock_irqsave(&rp->lock, flags);
1877 			hlist_add_head(&ri->hlist, &rp->free_instances);
1878 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1879 			return 0;
1880 		}
1881 
1882 		arch_prepare_kretprobe(ri, regs);
1883 
1884 		/* XXX(hch): why is there no hlist_move_head? */
1885 		INIT_HLIST_NODE(&ri->hlist);
1886 		kretprobe_table_lock(hash, &flags);
1887 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1888 		kretprobe_table_unlock(hash, &flags);
1889 	} else {
1890 		rp->nmissed++;
1891 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1892 	}
1893 	return 0;
1894 }
1895 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1896 
1897 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1898 {
1899 	return !offset;
1900 }
1901 
1902 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1903 {
1904 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1905 
1906 	if (IS_ERR(kp_addr))
1907 		return false;
1908 
1909 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1910 						!arch_kprobe_on_func_entry(offset))
1911 		return false;
1912 
1913 	return true;
1914 }
1915 
1916 int register_kretprobe(struct kretprobe *rp)
1917 {
1918 	int ret = 0;
1919 	struct kretprobe_instance *inst;
1920 	int i;
1921 	void *addr;
1922 
1923 	if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1924 		return -EINVAL;
1925 
1926 	if (kretprobe_blacklist_size) {
1927 		addr = kprobe_addr(&rp->kp);
1928 		if (IS_ERR(addr))
1929 			return PTR_ERR(addr);
1930 
1931 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1932 			if (kretprobe_blacklist[i].addr == addr)
1933 				return -EINVAL;
1934 		}
1935 	}
1936 
1937 	rp->kp.pre_handler = pre_handler_kretprobe;
1938 	rp->kp.post_handler = NULL;
1939 	rp->kp.fault_handler = NULL;
1940 	rp->kp.break_handler = NULL;
1941 
1942 	/* Pre-allocate memory for max kretprobe instances */
1943 	if (rp->maxactive <= 0) {
1944 #ifdef CONFIG_PREEMPT
1945 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1946 #else
1947 		rp->maxactive = num_possible_cpus();
1948 #endif
1949 	}
1950 	raw_spin_lock_init(&rp->lock);
1951 	INIT_HLIST_HEAD(&rp->free_instances);
1952 	for (i = 0; i < rp->maxactive; i++) {
1953 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1954 			       rp->data_size, GFP_KERNEL);
1955 		if (inst == NULL) {
1956 			free_rp_inst(rp);
1957 			return -ENOMEM;
1958 		}
1959 		INIT_HLIST_NODE(&inst->hlist);
1960 		hlist_add_head(&inst->hlist, &rp->free_instances);
1961 	}
1962 
1963 	rp->nmissed = 0;
1964 	/* Establish function entry probe point */
1965 	ret = register_kprobe(&rp->kp);
1966 	if (ret != 0)
1967 		free_rp_inst(rp);
1968 	return ret;
1969 }
1970 EXPORT_SYMBOL_GPL(register_kretprobe);
1971 
1972 int register_kretprobes(struct kretprobe **rps, int num)
1973 {
1974 	int ret = 0, i;
1975 
1976 	if (num <= 0)
1977 		return -EINVAL;
1978 	for (i = 0; i < num; i++) {
1979 		ret = register_kretprobe(rps[i]);
1980 		if (ret < 0) {
1981 			if (i > 0)
1982 				unregister_kretprobes(rps, i);
1983 			break;
1984 		}
1985 	}
1986 	return ret;
1987 }
1988 EXPORT_SYMBOL_GPL(register_kretprobes);
1989 
1990 void unregister_kretprobe(struct kretprobe *rp)
1991 {
1992 	unregister_kretprobes(&rp, 1);
1993 }
1994 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1995 
1996 void unregister_kretprobes(struct kretprobe **rps, int num)
1997 {
1998 	int i;
1999 
2000 	if (num <= 0)
2001 		return;
2002 	mutex_lock(&kprobe_mutex);
2003 	for (i = 0; i < num; i++)
2004 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2005 			rps[i]->kp.addr = NULL;
2006 	mutex_unlock(&kprobe_mutex);
2007 
2008 	synchronize_sched();
2009 	for (i = 0; i < num; i++) {
2010 		if (rps[i]->kp.addr) {
2011 			__unregister_kprobe_bottom(&rps[i]->kp);
2012 			cleanup_rp_inst(rps[i]);
2013 		}
2014 	}
2015 }
2016 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2017 
2018 #else /* CONFIG_KRETPROBES */
2019 int register_kretprobe(struct kretprobe *rp)
2020 {
2021 	return -ENOSYS;
2022 }
2023 EXPORT_SYMBOL_GPL(register_kretprobe);
2024 
2025 int register_kretprobes(struct kretprobe **rps, int num)
2026 {
2027 	return -ENOSYS;
2028 }
2029 EXPORT_SYMBOL_GPL(register_kretprobes);
2030 
2031 void unregister_kretprobe(struct kretprobe *rp)
2032 {
2033 }
2034 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2035 
2036 void unregister_kretprobes(struct kretprobe **rps, int num)
2037 {
2038 }
2039 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2040 
2041 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2042 {
2043 	return 0;
2044 }
2045 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2046 
2047 #endif /* CONFIG_KRETPROBES */
2048 
2049 /* Set the kprobe gone and remove its instruction buffer. */
2050 static void kill_kprobe(struct kprobe *p)
2051 {
2052 	struct kprobe *kp;
2053 
2054 	p->flags |= KPROBE_FLAG_GONE;
2055 	if (kprobe_aggrprobe(p)) {
2056 		/*
2057 		 * If this is an aggr_kprobe, we have to list all the
2058 		 * chained probes and mark them GONE.
2059 		 */
2060 		list_for_each_entry_rcu(kp, &p->list, list)
2061 			kp->flags |= KPROBE_FLAG_GONE;
2062 		p->post_handler = NULL;
2063 		p->break_handler = NULL;
2064 		kill_optimized_kprobe(p);
2065 	}
2066 	/*
2067 	 * Here, we can remove insn_slot safely, because no thread calls
2068 	 * the original probed function (which will be freed soon) any more.
2069 	 */
2070 	arch_remove_kprobe(p);
2071 }
2072 
2073 /* Disable one kprobe */
2074 int disable_kprobe(struct kprobe *kp)
2075 {
2076 	int ret = 0;
2077 
2078 	mutex_lock(&kprobe_mutex);
2079 
2080 	/* Disable this kprobe */
2081 	if (__disable_kprobe(kp) == NULL)
2082 		ret = -EINVAL;
2083 
2084 	mutex_unlock(&kprobe_mutex);
2085 	return ret;
2086 }
2087 EXPORT_SYMBOL_GPL(disable_kprobe);
2088 
2089 /* Enable one kprobe */
2090 int enable_kprobe(struct kprobe *kp)
2091 {
2092 	int ret = 0;
2093 	struct kprobe *p;
2094 
2095 	mutex_lock(&kprobe_mutex);
2096 
2097 	/* Check whether specified probe is valid. */
2098 	p = __get_valid_kprobe(kp);
2099 	if (unlikely(p == NULL)) {
2100 		ret = -EINVAL;
2101 		goto out;
2102 	}
2103 
2104 	if (kprobe_gone(kp)) {
2105 		/* This kprobe has gone, we couldn't enable it. */
2106 		ret = -EINVAL;
2107 		goto out;
2108 	}
2109 
2110 	if (p != kp)
2111 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2112 
2113 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2114 		p->flags &= ~KPROBE_FLAG_DISABLED;
2115 		arm_kprobe(p);
2116 	}
2117 out:
2118 	mutex_unlock(&kprobe_mutex);
2119 	return ret;
2120 }
2121 EXPORT_SYMBOL_GPL(enable_kprobe);
2122 
2123 void dump_kprobe(struct kprobe *kp)
2124 {
2125 	printk(KERN_WARNING "Dumping kprobe:\n");
2126 	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2127 	       kp->symbol_name, kp->addr, kp->offset);
2128 }
2129 NOKPROBE_SYMBOL(dump_kprobe);
2130 
2131 /*
2132  * Lookup and populate the kprobe_blacklist.
2133  *
2134  * Unlike the kretprobe blacklist, we'll need to determine
2135  * the range of addresses that belong to the said functions,
2136  * since a kprobe need not necessarily be at the beginning
2137  * of a function.
2138  */
2139 static int __init populate_kprobe_blacklist(unsigned long *start,
2140 					     unsigned long *end)
2141 {
2142 	unsigned long *iter;
2143 	struct kprobe_blacklist_entry *ent;
2144 	unsigned long entry, offset = 0, size = 0;
2145 
2146 	for (iter = start; iter < end; iter++) {
2147 		entry = arch_deref_entry_point((void *)*iter);
2148 
2149 		if (!kernel_text_address(entry) ||
2150 		    !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2151 			pr_err("Failed to find blacklist at %p\n",
2152 				(void *)entry);
2153 			continue;
2154 		}
2155 
2156 		ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2157 		if (!ent)
2158 			return -ENOMEM;
2159 		ent->start_addr = entry;
2160 		ent->end_addr = entry + size;
2161 		INIT_LIST_HEAD(&ent->list);
2162 		list_add_tail(&ent->list, &kprobe_blacklist);
2163 	}
2164 	return 0;
2165 }
2166 
2167 /* Module notifier call back, checking kprobes on the module */
2168 static int kprobes_module_callback(struct notifier_block *nb,
2169 				   unsigned long val, void *data)
2170 {
2171 	struct module *mod = data;
2172 	struct hlist_head *head;
2173 	struct kprobe *p;
2174 	unsigned int i;
2175 	int checkcore = (val == MODULE_STATE_GOING);
2176 
2177 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2178 		return NOTIFY_DONE;
2179 
2180 	/*
2181 	 * When MODULE_STATE_GOING was notified, both of module .text and
2182 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2183 	 * notified, only .init.text section would be freed. We need to
2184 	 * disable kprobes which have been inserted in the sections.
2185 	 */
2186 	mutex_lock(&kprobe_mutex);
2187 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2188 		head = &kprobe_table[i];
2189 		hlist_for_each_entry_rcu(p, head, hlist)
2190 			if (within_module_init((unsigned long)p->addr, mod) ||
2191 			    (checkcore &&
2192 			     within_module_core((unsigned long)p->addr, mod))) {
2193 				/*
2194 				 * The vaddr this probe is installed will soon
2195 				 * be vfreed buy not synced to disk. Hence,
2196 				 * disarming the breakpoint isn't needed.
2197 				 *
2198 				 * Note, this will also move any optimized probes
2199 				 * that are pending to be removed from their
2200 				 * corresponding lists to the freeing_list and
2201 				 * will not be touched by the delayed
2202 				 * kprobe_optimizer work handler.
2203 				 */
2204 				kill_kprobe(p);
2205 			}
2206 	}
2207 	mutex_unlock(&kprobe_mutex);
2208 	return NOTIFY_DONE;
2209 }
2210 
2211 static struct notifier_block kprobe_module_nb = {
2212 	.notifier_call = kprobes_module_callback,
2213 	.priority = 0
2214 };
2215 
2216 /* Markers of _kprobe_blacklist section */
2217 extern unsigned long __start_kprobe_blacklist[];
2218 extern unsigned long __stop_kprobe_blacklist[];
2219 
2220 static int __init init_kprobes(void)
2221 {
2222 	int i, err = 0;
2223 
2224 	/* FIXME allocate the probe table, currently defined statically */
2225 	/* initialize all list heads */
2226 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2227 		INIT_HLIST_HEAD(&kprobe_table[i]);
2228 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2229 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2230 	}
2231 
2232 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2233 					__stop_kprobe_blacklist);
2234 	if (err) {
2235 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2236 		pr_err("Please take care of using kprobes.\n");
2237 	}
2238 
2239 	if (kretprobe_blacklist_size) {
2240 		/* lookup the function address from its name */
2241 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2242 			kretprobe_blacklist[i].addr =
2243 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2244 			if (!kretprobe_blacklist[i].addr)
2245 				printk("kretprobe: lookup failed: %s\n",
2246 				       kretprobe_blacklist[i].name);
2247 		}
2248 	}
2249 
2250 #if defined(CONFIG_OPTPROBES)
2251 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2252 	/* Init kprobe_optinsn_slots */
2253 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2254 #endif
2255 	/* By default, kprobes can be optimized */
2256 	kprobes_allow_optimization = true;
2257 #endif
2258 
2259 	/* By default, kprobes are armed */
2260 	kprobes_all_disarmed = false;
2261 
2262 	err = arch_init_kprobes();
2263 	if (!err)
2264 		err = register_die_notifier(&kprobe_exceptions_nb);
2265 	if (!err)
2266 		err = register_module_notifier(&kprobe_module_nb);
2267 
2268 	kprobes_initialized = (err == 0);
2269 
2270 	if (!err)
2271 		init_test_probes();
2272 	return err;
2273 }
2274 
2275 #ifdef CONFIG_DEBUG_FS
2276 static void report_probe(struct seq_file *pi, struct kprobe *p,
2277 		const char *sym, int offset, char *modname, struct kprobe *pp)
2278 {
2279 	char *kprobe_type;
2280 
2281 	if (p->pre_handler == pre_handler_kretprobe)
2282 		kprobe_type = "r";
2283 	else if (p->pre_handler == setjmp_pre_handler)
2284 		kprobe_type = "j";
2285 	else
2286 		kprobe_type = "k";
2287 
2288 	if (sym)
2289 		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2290 			p->addr, kprobe_type, sym, offset,
2291 			(modname ? modname : " "));
2292 	else
2293 		seq_printf(pi, "%p  %s  %p ",
2294 			p->addr, kprobe_type, p->addr);
2295 
2296 	if (!pp)
2297 		pp = p;
2298 	seq_printf(pi, "%s%s%s%s\n",
2299 		(kprobe_gone(p) ? "[GONE]" : ""),
2300 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2301 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2302 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2303 }
2304 
2305 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2306 {
2307 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2308 }
2309 
2310 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2311 {
2312 	(*pos)++;
2313 	if (*pos >= KPROBE_TABLE_SIZE)
2314 		return NULL;
2315 	return pos;
2316 }
2317 
2318 static void kprobe_seq_stop(struct seq_file *f, void *v)
2319 {
2320 	/* Nothing to do */
2321 }
2322 
2323 static int show_kprobe_addr(struct seq_file *pi, void *v)
2324 {
2325 	struct hlist_head *head;
2326 	struct kprobe *p, *kp;
2327 	const char *sym = NULL;
2328 	unsigned int i = *(loff_t *) v;
2329 	unsigned long offset = 0;
2330 	char *modname, namebuf[KSYM_NAME_LEN];
2331 
2332 	head = &kprobe_table[i];
2333 	preempt_disable();
2334 	hlist_for_each_entry_rcu(p, head, hlist) {
2335 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2336 					&offset, &modname, namebuf);
2337 		if (kprobe_aggrprobe(p)) {
2338 			list_for_each_entry_rcu(kp, &p->list, list)
2339 				report_probe(pi, kp, sym, offset, modname, p);
2340 		} else
2341 			report_probe(pi, p, sym, offset, modname, NULL);
2342 	}
2343 	preempt_enable();
2344 	return 0;
2345 }
2346 
2347 static const struct seq_operations kprobes_seq_ops = {
2348 	.start = kprobe_seq_start,
2349 	.next  = kprobe_seq_next,
2350 	.stop  = kprobe_seq_stop,
2351 	.show  = show_kprobe_addr
2352 };
2353 
2354 static int kprobes_open(struct inode *inode, struct file *filp)
2355 {
2356 	return seq_open(filp, &kprobes_seq_ops);
2357 }
2358 
2359 static const struct file_operations debugfs_kprobes_operations = {
2360 	.open           = kprobes_open,
2361 	.read           = seq_read,
2362 	.llseek         = seq_lseek,
2363 	.release        = seq_release,
2364 };
2365 
2366 /* kprobes/blacklist -- shows which functions can not be probed */
2367 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2368 {
2369 	return seq_list_start(&kprobe_blacklist, *pos);
2370 }
2371 
2372 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2373 {
2374 	return seq_list_next(v, &kprobe_blacklist, pos);
2375 }
2376 
2377 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2378 {
2379 	struct kprobe_blacklist_entry *ent =
2380 		list_entry(v, struct kprobe_blacklist_entry, list);
2381 
2382 	seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2383 		   (void *)ent->end_addr, (void *)ent->start_addr);
2384 	return 0;
2385 }
2386 
2387 static const struct seq_operations kprobe_blacklist_seq_ops = {
2388 	.start = kprobe_blacklist_seq_start,
2389 	.next  = kprobe_blacklist_seq_next,
2390 	.stop  = kprobe_seq_stop,	/* Reuse void function */
2391 	.show  = kprobe_blacklist_seq_show,
2392 };
2393 
2394 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2395 {
2396 	return seq_open(filp, &kprobe_blacklist_seq_ops);
2397 }
2398 
2399 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2400 	.open           = kprobe_blacklist_open,
2401 	.read           = seq_read,
2402 	.llseek         = seq_lseek,
2403 	.release        = seq_release,
2404 };
2405 
2406 static void arm_all_kprobes(void)
2407 {
2408 	struct hlist_head *head;
2409 	struct kprobe *p;
2410 	unsigned int i;
2411 
2412 	mutex_lock(&kprobe_mutex);
2413 
2414 	/* If kprobes are armed, just return */
2415 	if (!kprobes_all_disarmed)
2416 		goto already_enabled;
2417 
2418 	/*
2419 	 * optimize_kprobe() called by arm_kprobe() checks
2420 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2421 	 * arm_kprobe.
2422 	 */
2423 	kprobes_all_disarmed = false;
2424 	/* Arming kprobes doesn't optimize kprobe itself */
2425 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2426 		head = &kprobe_table[i];
2427 		hlist_for_each_entry_rcu(p, head, hlist)
2428 			if (!kprobe_disabled(p))
2429 				arm_kprobe(p);
2430 	}
2431 
2432 	printk(KERN_INFO "Kprobes globally enabled\n");
2433 
2434 already_enabled:
2435 	mutex_unlock(&kprobe_mutex);
2436 	return;
2437 }
2438 
2439 static void disarm_all_kprobes(void)
2440 {
2441 	struct hlist_head *head;
2442 	struct kprobe *p;
2443 	unsigned int i;
2444 
2445 	mutex_lock(&kprobe_mutex);
2446 
2447 	/* If kprobes are already disarmed, just return */
2448 	if (kprobes_all_disarmed) {
2449 		mutex_unlock(&kprobe_mutex);
2450 		return;
2451 	}
2452 
2453 	kprobes_all_disarmed = true;
2454 	printk(KERN_INFO "Kprobes globally disabled\n");
2455 
2456 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2457 		head = &kprobe_table[i];
2458 		hlist_for_each_entry_rcu(p, head, hlist) {
2459 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2460 				disarm_kprobe(p, false);
2461 		}
2462 	}
2463 	mutex_unlock(&kprobe_mutex);
2464 
2465 	/* Wait for disarming all kprobes by optimizer */
2466 	wait_for_kprobe_optimizer();
2467 }
2468 
2469 /*
2470  * XXX: The debugfs bool file interface doesn't allow for callbacks
2471  * when the bool state is switched. We can reuse that facility when
2472  * available
2473  */
2474 static ssize_t read_enabled_file_bool(struct file *file,
2475 	       char __user *user_buf, size_t count, loff_t *ppos)
2476 {
2477 	char buf[3];
2478 
2479 	if (!kprobes_all_disarmed)
2480 		buf[0] = '1';
2481 	else
2482 		buf[0] = '0';
2483 	buf[1] = '\n';
2484 	buf[2] = 0x00;
2485 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2486 }
2487 
2488 static ssize_t write_enabled_file_bool(struct file *file,
2489 	       const char __user *user_buf, size_t count, loff_t *ppos)
2490 {
2491 	char buf[32];
2492 	size_t buf_size;
2493 
2494 	buf_size = min(count, (sizeof(buf)-1));
2495 	if (copy_from_user(buf, user_buf, buf_size))
2496 		return -EFAULT;
2497 
2498 	buf[buf_size] = '\0';
2499 	switch (buf[0]) {
2500 	case 'y':
2501 	case 'Y':
2502 	case '1':
2503 		arm_all_kprobes();
2504 		break;
2505 	case 'n':
2506 	case 'N':
2507 	case '0':
2508 		disarm_all_kprobes();
2509 		break;
2510 	default:
2511 		return -EINVAL;
2512 	}
2513 
2514 	return count;
2515 }
2516 
2517 static const struct file_operations fops_kp = {
2518 	.read =         read_enabled_file_bool,
2519 	.write =        write_enabled_file_bool,
2520 	.llseek =	default_llseek,
2521 };
2522 
2523 static int __init debugfs_kprobe_init(void)
2524 {
2525 	struct dentry *dir, *file;
2526 	unsigned int value = 1;
2527 
2528 	dir = debugfs_create_dir("kprobes", NULL);
2529 	if (!dir)
2530 		return -ENOMEM;
2531 
2532 	file = debugfs_create_file("list", 0444, dir, NULL,
2533 				&debugfs_kprobes_operations);
2534 	if (!file)
2535 		goto error;
2536 
2537 	file = debugfs_create_file("enabled", 0600, dir,
2538 					&value, &fops_kp);
2539 	if (!file)
2540 		goto error;
2541 
2542 	file = debugfs_create_file("blacklist", 0444, dir, NULL,
2543 				&debugfs_kprobe_blacklist_ops);
2544 	if (!file)
2545 		goto error;
2546 
2547 	return 0;
2548 
2549 error:
2550 	debugfs_remove(dir);
2551 	return -ENOMEM;
2552 }
2553 
2554 late_initcall(debugfs_kprobe_init);
2555 #endif /* CONFIG_DEBUG_FS */
2556 
2557 module_init(init_kprobes);
2558 
2559 /* defined in arch/.../kernel/kprobes.c */
2560 EXPORT_SYMBOL_GPL(jprobe_return);
2561