xref: /openbmc/linux/kernel/kprobes.c (revision 4b33b5ff)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *		Probes initial implementation (includes suggestions from
9  *		Rusty Russell).
10  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
11  *		hlists and exceptions notifier as suggested by Andi Kleen.
12  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
13  *		interface to access function arguments.
14  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
15  *		exceptions notifier to be first on the priority list.
16  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18  *		<prasanna@in.ibm.com> added function-return probes.
19  */
20 
21 #define pr_fmt(fmt) "kprobes: " fmt
22 
23 #include <linux/kprobes.h>
24 #include <linux/hash.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/stddef.h>
28 #include <linux/export.h>
29 #include <linux/moduleloader.h>
30 #include <linux/kallsyms.h>
31 #include <linux/freezer.h>
32 #include <linux/seq_file.h>
33 #include <linux/debugfs.h>
34 #include <linux/sysctl.h>
35 #include <linux/kdebug.h>
36 #include <linux/memory.h>
37 #include <linux/ftrace.h>
38 #include <linux/cpu.h>
39 #include <linux/jump_label.h>
40 #include <linux/static_call.h>
41 #include <linux/perf_event.h>
42 
43 #include <asm/sections.h>
44 #include <asm/cacheflush.h>
45 #include <asm/errno.h>
46 #include <linux/uaccess.h>
47 
48 #define KPROBE_HASH_BITS 6
49 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
50 
51 #if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
52 #define kprobe_sysctls_init() do { } while (0)
53 #endif
54 
55 static int kprobes_initialized;
56 /* kprobe_table can be accessed by
57  * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
58  * Or
59  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
60  */
61 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
62 
63 /* NOTE: change this value only with 'kprobe_mutex' held */
64 static bool kprobes_all_disarmed;
65 
66 /* This protects 'kprobe_table' and 'optimizing_list' */
67 static DEFINE_MUTEX(kprobe_mutex);
68 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
69 
70 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
71 					unsigned int __unused)
72 {
73 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
74 }
75 
76 /*
77  * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
78  * kprobes can not probe.
79  */
80 static LIST_HEAD(kprobe_blacklist);
81 
82 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
83 /*
84  * 'kprobe::ainsn.insn' points to the copy of the instruction to be
85  * single-stepped. x86_64, POWER4 and above have no-exec support and
86  * stepping on the instruction on a vmalloced/kmalloced/data page
87  * is a recipe for disaster
88  */
89 struct kprobe_insn_page {
90 	struct list_head list;
91 	kprobe_opcode_t *insns;		/* Page of instruction slots */
92 	struct kprobe_insn_cache *cache;
93 	int nused;
94 	int ngarbage;
95 	char slot_used[];
96 };
97 
98 #define KPROBE_INSN_PAGE_SIZE(slots)			\
99 	(offsetof(struct kprobe_insn_page, slot_used) +	\
100 	 (sizeof(char) * (slots)))
101 
102 static int slots_per_page(struct kprobe_insn_cache *c)
103 {
104 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
105 }
106 
107 enum kprobe_slot_state {
108 	SLOT_CLEAN = 0,
109 	SLOT_DIRTY = 1,
110 	SLOT_USED = 2,
111 };
112 
113 void __weak *alloc_insn_page(void)
114 {
115 	/*
116 	 * Use module_alloc() so this page is within +/- 2GB of where the
117 	 * kernel image and loaded module images reside. This is required
118 	 * for most of the architectures.
119 	 * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
120 	 */
121 	return module_alloc(PAGE_SIZE);
122 }
123 
124 static void free_insn_page(void *page)
125 {
126 	module_memfree(page);
127 }
128 
129 struct kprobe_insn_cache kprobe_insn_slots = {
130 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
131 	.alloc = alloc_insn_page,
132 	.free = free_insn_page,
133 	.sym = KPROBE_INSN_PAGE_SYM,
134 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 	.insn_size = MAX_INSN_SIZE,
136 	.nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139 
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146 	struct kprobe_insn_page *kip;
147 	kprobe_opcode_t *slot = NULL;
148 
149 	/* Since the slot array is not protected by rcu, we need a mutex */
150 	mutex_lock(&c->mutex);
151  retry:
152 	rcu_read_lock();
153 	list_for_each_entry_rcu(kip, &c->pages, list) {
154 		if (kip->nused < slots_per_page(c)) {
155 			int i;
156 
157 			for (i = 0; i < slots_per_page(c); i++) {
158 				if (kip->slot_used[i] == SLOT_CLEAN) {
159 					kip->slot_used[i] = SLOT_USED;
160 					kip->nused++;
161 					slot = kip->insns + (i * c->insn_size);
162 					rcu_read_unlock();
163 					goto out;
164 				}
165 			}
166 			/* kip->nused is broken. Fix it. */
167 			kip->nused = slots_per_page(c);
168 			WARN_ON(1);
169 		}
170 	}
171 	rcu_read_unlock();
172 
173 	/* If there are any garbage slots, collect it and try again. */
174 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
175 		goto retry;
176 
177 	/* All out of space.  Need to allocate a new page. */
178 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
179 	if (!kip)
180 		goto out;
181 
182 	kip->insns = c->alloc();
183 	if (!kip->insns) {
184 		kfree(kip);
185 		goto out;
186 	}
187 	INIT_LIST_HEAD(&kip->list);
188 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
189 	kip->slot_used[0] = SLOT_USED;
190 	kip->nused = 1;
191 	kip->ngarbage = 0;
192 	kip->cache = c;
193 	list_add_rcu(&kip->list, &c->pages);
194 	slot = kip->insns;
195 
196 	/* Record the perf ksymbol register event after adding the page */
197 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
198 			   PAGE_SIZE, false, c->sym);
199 out:
200 	mutex_unlock(&c->mutex);
201 	return slot;
202 }
203 
204 /* Return true if all garbages are collected, otherwise false. */
205 static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207 	kip->slot_used[idx] = SLOT_CLEAN;
208 	kip->nused--;
209 	if (kip->nused == 0) {
210 		/*
211 		 * Page is no longer in use.  Free it unless
212 		 * it's the last one.  We keep the last one
213 		 * so as not to have to set it up again the
214 		 * next time somebody inserts a probe.
215 		 */
216 		if (!list_is_singular(&kip->list)) {
217 			/*
218 			 * Record perf ksymbol unregister event before removing
219 			 * the page.
220 			 */
221 			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
222 					   (unsigned long)kip->insns, PAGE_SIZE, true,
223 					   kip->cache->sym);
224 			list_del_rcu(&kip->list);
225 			synchronize_rcu();
226 			kip->cache->free(kip->insns);
227 			kfree(kip);
228 		}
229 		return true;
230 	}
231 	return false;
232 }
233 
234 static int collect_garbage_slots(struct kprobe_insn_cache *c)
235 {
236 	struct kprobe_insn_page *kip, *next;
237 
238 	/* Ensure no-one is interrupted on the garbages */
239 	synchronize_rcu();
240 
241 	list_for_each_entry_safe(kip, next, &c->pages, list) {
242 		int i;
243 
244 		if (kip->ngarbage == 0)
245 			continue;
246 		kip->ngarbage = 0;	/* we will collect all garbages */
247 		for (i = 0; i < slots_per_page(c); i++) {
248 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
249 				break;
250 		}
251 	}
252 	c->nr_garbage = 0;
253 	return 0;
254 }
255 
256 void __free_insn_slot(struct kprobe_insn_cache *c,
257 		      kprobe_opcode_t *slot, int dirty)
258 {
259 	struct kprobe_insn_page *kip;
260 	long idx;
261 
262 	mutex_lock(&c->mutex);
263 	rcu_read_lock();
264 	list_for_each_entry_rcu(kip, &c->pages, list) {
265 		idx = ((long)slot - (long)kip->insns) /
266 			(c->insn_size * sizeof(kprobe_opcode_t));
267 		if (idx >= 0 && idx < slots_per_page(c))
268 			goto out;
269 	}
270 	/* Could not find this slot. */
271 	WARN_ON(1);
272 	kip = NULL;
273 out:
274 	rcu_read_unlock();
275 	/* Mark and sweep: this may sleep */
276 	if (kip) {
277 		/* Check double free */
278 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
279 		if (dirty) {
280 			kip->slot_used[idx] = SLOT_DIRTY;
281 			kip->ngarbage++;
282 			if (++c->nr_garbage > slots_per_page(c))
283 				collect_garbage_slots(c);
284 		} else {
285 			collect_one_slot(kip, idx);
286 		}
287 	}
288 	mutex_unlock(&c->mutex);
289 }
290 
291 /*
292  * Check given address is on the page of kprobe instruction slots.
293  * This will be used for checking whether the address on a stack
294  * is on a text area or not.
295  */
296 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
297 {
298 	struct kprobe_insn_page *kip;
299 	bool ret = false;
300 
301 	rcu_read_lock();
302 	list_for_each_entry_rcu(kip, &c->pages, list) {
303 		if (addr >= (unsigned long)kip->insns &&
304 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
305 			ret = true;
306 			break;
307 		}
308 	}
309 	rcu_read_unlock();
310 
311 	return ret;
312 }
313 
314 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
315 			     unsigned long *value, char *type, char *sym)
316 {
317 	struct kprobe_insn_page *kip;
318 	int ret = -ERANGE;
319 
320 	rcu_read_lock();
321 	list_for_each_entry_rcu(kip, &c->pages, list) {
322 		if ((*symnum)--)
323 			continue;
324 		strscpy(sym, c->sym, KSYM_NAME_LEN);
325 		*type = 't';
326 		*value = (unsigned long)kip->insns;
327 		ret = 0;
328 		break;
329 	}
330 	rcu_read_unlock();
331 
332 	return ret;
333 }
334 
335 #ifdef CONFIG_OPTPROBES
336 void __weak *alloc_optinsn_page(void)
337 {
338 	return alloc_insn_page();
339 }
340 
341 void __weak free_optinsn_page(void *page)
342 {
343 	free_insn_page(page);
344 }
345 
346 /* For optimized_kprobe buffer */
347 struct kprobe_insn_cache kprobe_optinsn_slots = {
348 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
349 	.alloc = alloc_optinsn_page,
350 	.free = free_optinsn_page,
351 	.sym = KPROBE_OPTINSN_PAGE_SYM,
352 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
353 	/* .insn_size is initialized later */
354 	.nr_garbage = 0,
355 };
356 #endif
357 #endif
358 
359 /* We have preemption disabled.. so it is safe to use __ versions */
360 static inline void set_kprobe_instance(struct kprobe *kp)
361 {
362 	__this_cpu_write(kprobe_instance, kp);
363 }
364 
365 static inline void reset_kprobe_instance(void)
366 {
367 	__this_cpu_write(kprobe_instance, NULL);
368 }
369 
370 /*
371  * This routine is called either:
372  *	- under the 'kprobe_mutex' - during kprobe_[un]register().
373  *				OR
374  *	- with preemption disabled - from architecture specific code.
375  */
376 struct kprobe *get_kprobe(void *addr)
377 {
378 	struct hlist_head *head;
379 	struct kprobe *p;
380 
381 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
382 	hlist_for_each_entry_rcu(p, head, hlist,
383 				 lockdep_is_held(&kprobe_mutex)) {
384 		if (p->addr == addr)
385 			return p;
386 	}
387 
388 	return NULL;
389 }
390 NOKPROBE_SYMBOL(get_kprobe);
391 
392 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
393 
394 /* Return true if 'p' is an aggregator */
395 static inline bool kprobe_aggrprobe(struct kprobe *p)
396 {
397 	return p->pre_handler == aggr_pre_handler;
398 }
399 
400 /* Return true if 'p' is unused */
401 static inline bool kprobe_unused(struct kprobe *p)
402 {
403 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
404 	       list_empty(&p->list);
405 }
406 
407 /* Keep all fields in the kprobe consistent. */
408 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
409 {
410 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
411 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
412 }
413 
414 #ifdef CONFIG_OPTPROBES
415 /* NOTE: This is protected by 'kprobe_mutex'. */
416 static bool kprobes_allow_optimization;
417 
418 /*
419  * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
420  * This must be called from arch-dep optimized caller.
421  */
422 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
423 {
424 	struct kprobe *kp;
425 
426 	list_for_each_entry_rcu(kp, &p->list, list) {
427 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
428 			set_kprobe_instance(kp);
429 			kp->pre_handler(kp, regs);
430 		}
431 		reset_kprobe_instance();
432 	}
433 }
434 NOKPROBE_SYMBOL(opt_pre_handler);
435 
436 /* Free optimized instructions and optimized_kprobe */
437 static void free_aggr_kprobe(struct kprobe *p)
438 {
439 	struct optimized_kprobe *op;
440 
441 	op = container_of(p, struct optimized_kprobe, kp);
442 	arch_remove_optimized_kprobe(op);
443 	arch_remove_kprobe(p);
444 	kfree(op);
445 }
446 
447 /* Return true if the kprobe is ready for optimization. */
448 static inline int kprobe_optready(struct kprobe *p)
449 {
450 	struct optimized_kprobe *op;
451 
452 	if (kprobe_aggrprobe(p)) {
453 		op = container_of(p, struct optimized_kprobe, kp);
454 		return arch_prepared_optinsn(&op->optinsn);
455 	}
456 
457 	return 0;
458 }
459 
460 /* Return true if the kprobe is disarmed. Note: p must be on hash list */
461 static inline bool kprobe_disarmed(struct kprobe *p)
462 {
463 	struct optimized_kprobe *op;
464 
465 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
466 	if (!kprobe_aggrprobe(p))
467 		return kprobe_disabled(p);
468 
469 	op = container_of(p, struct optimized_kprobe, kp);
470 
471 	return kprobe_disabled(p) && list_empty(&op->list);
472 }
473 
474 /* Return true if the probe is queued on (un)optimizing lists */
475 static bool kprobe_queued(struct kprobe *p)
476 {
477 	struct optimized_kprobe *op;
478 
479 	if (kprobe_aggrprobe(p)) {
480 		op = container_of(p, struct optimized_kprobe, kp);
481 		if (!list_empty(&op->list))
482 			return true;
483 	}
484 	return false;
485 }
486 
487 /*
488  * Return an optimized kprobe whose optimizing code replaces
489  * instructions including 'addr' (exclude breakpoint).
490  */
491 static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
492 {
493 	int i;
494 	struct kprobe *p = NULL;
495 	struct optimized_kprobe *op;
496 
497 	/* Don't check i == 0, since that is a breakpoint case. */
498 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
499 		p = get_kprobe(addr - i);
500 
501 	if (p && kprobe_optready(p)) {
502 		op = container_of(p, struct optimized_kprobe, kp);
503 		if (arch_within_optimized_kprobe(op, addr))
504 			return p;
505 	}
506 
507 	return NULL;
508 }
509 
510 /* Optimization staging list, protected by 'kprobe_mutex' */
511 static LIST_HEAD(optimizing_list);
512 static LIST_HEAD(unoptimizing_list);
513 static LIST_HEAD(freeing_list);
514 
515 static void kprobe_optimizer(struct work_struct *work);
516 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
517 #define OPTIMIZE_DELAY 5
518 
519 /*
520  * Optimize (replace a breakpoint with a jump) kprobes listed on
521  * 'optimizing_list'.
522  */
523 static void do_optimize_kprobes(void)
524 {
525 	lockdep_assert_held(&text_mutex);
526 	/*
527 	 * The optimization/unoptimization refers 'online_cpus' via
528 	 * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
529 	 * And same time, 'text_mutex' will be held in cpu-hotplug and here.
530 	 * This combination can cause a deadlock (cpu-hotplug tries to lock
531 	 * 'text_mutex' but stop_machine() can not be done because
532 	 * the 'online_cpus' has been changed)
533 	 * To avoid this deadlock, caller must have locked cpu-hotplug
534 	 * for preventing cpu-hotplug outside of 'text_mutex' locking.
535 	 */
536 	lockdep_assert_cpus_held();
537 
538 	/* Optimization never be done when disarmed */
539 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
540 	    list_empty(&optimizing_list))
541 		return;
542 
543 	arch_optimize_kprobes(&optimizing_list);
544 }
545 
546 /*
547  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
548  * if need) kprobes listed on 'unoptimizing_list'.
549  */
550 static void do_unoptimize_kprobes(void)
551 {
552 	struct optimized_kprobe *op, *tmp;
553 
554 	lockdep_assert_held(&text_mutex);
555 	/* See comment in do_optimize_kprobes() */
556 	lockdep_assert_cpus_held();
557 
558 	/* Unoptimization must be done anytime */
559 	if (list_empty(&unoptimizing_list))
560 		return;
561 
562 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
563 	/* Loop on 'freeing_list' for disarming */
564 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
565 		/* Switching from detour code to origin */
566 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
567 		/* Disarm probes if marked disabled */
568 		if (kprobe_disabled(&op->kp))
569 			arch_disarm_kprobe(&op->kp);
570 		if (kprobe_unused(&op->kp)) {
571 			/*
572 			 * Remove unused probes from hash list. After waiting
573 			 * for synchronization, these probes are reclaimed.
574 			 * (reclaiming is done by do_free_cleaned_kprobes().)
575 			 */
576 			hlist_del_rcu(&op->kp.hlist);
577 		} else
578 			list_del_init(&op->list);
579 	}
580 }
581 
582 /* Reclaim all kprobes on the 'freeing_list' */
583 static void do_free_cleaned_kprobes(void)
584 {
585 	struct optimized_kprobe *op, *tmp;
586 
587 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
588 		list_del_init(&op->list);
589 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
590 			/*
591 			 * This must not happen, but if there is a kprobe
592 			 * still in use, keep it on kprobes hash list.
593 			 */
594 			continue;
595 		}
596 		free_aggr_kprobe(&op->kp);
597 	}
598 }
599 
600 /* Start optimizer after OPTIMIZE_DELAY passed */
601 static void kick_kprobe_optimizer(void)
602 {
603 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
604 }
605 
606 /* Kprobe jump optimizer */
607 static void kprobe_optimizer(struct work_struct *work)
608 {
609 	mutex_lock(&kprobe_mutex);
610 	cpus_read_lock();
611 	mutex_lock(&text_mutex);
612 
613 	/*
614 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
615 	 * kprobes before waiting for quiesence period.
616 	 */
617 	do_unoptimize_kprobes();
618 
619 	/*
620 	 * Step 2: Wait for quiesence period to ensure all potentially
621 	 * preempted tasks to have normally scheduled. Because optprobe
622 	 * may modify multiple instructions, there is a chance that Nth
623 	 * instruction is preempted. In that case, such tasks can return
624 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
625 	 * Note that on non-preemptive kernel, this is transparently converted
626 	 * to synchronoze_sched() to wait for all interrupts to have completed.
627 	 */
628 	synchronize_rcu_tasks();
629 
630 	/* Step 3: Optimize kprobes after quiesence period */
631 	do_optimize_kprobes();
632 
633 	/* Step 4: Free cleaned kprobes after quiesence period */
634 	do_free_cleaned_kprobes();
635 
636 	mutex_unlock(&text_mutex);
637 	cpus_read_unlock();
638 
639 	/* Step 5: Kick optimizer again if needed */
640 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
641 		kick_kprobe_optimizer();
642 
643 	mutex_unlock(&kprobe_mutex);
644 }
645 
646 /* Wait for completing optimization and unoptimization */
647 void wait_for_kprobe_optimizer(void)
648 {
649 	mutex_lock(&kprobe_mutex);
650 
651 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
652 		mutex_unlock(&kprobe_mutex);
653 
654 		/* This will also make 'optimizing_work' execute immmediately */
655 		flush_delayed_work(&optimizing_work);
656 		/* 'optimizing_work' might not have been queued yet, relax */
657 		cpu_relax();
658 
659 		mutex_lock(&kprobe_mutex);
660 	}
661 
662 	mutex_unlock(&kprobe_mutex);
663 }
664 
665 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
666 {
667 	struct optimized_kprobe *_op;
668 
669 	list_for_each_entry(_op, &unoptimizing_list, list) {
670 		if (op == _op)
671 			return true;
672 	}
673 
674 	return false;
675 }
676 
677 /* Optimize kprobe if p is ready to be optimized */
678 static void optimize_kprobe(struct kprobe *p)
679 {
680 	struct optimized_kprobe *op;
681 
682 	/* Check if the kprobe is disabled or not ready for optimization. */
683 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
684 	    (kprobe_disabled(p) || kprobes_all_disarmed))
685 		return;
686 
687 	/* kprobes with 'post_handler' can not be optimized */
688 	if (p->post_handler)
689 		return;
690 
691 	op = container_of(p, struct optimized_kprobe, kp);
692 
693 	/* Check there is no other kprobes at the optimized instructions */
694 	if (arch_check_optimized_kprobe(op) < 0)
695 		return;
696 
697 	/* Check if it is already optimized. */
698 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
699 		if (optprobe_queued_unopt(op)) {
700 			/* This is under unoptimizing. Just dequeue the probe */
701 			list_del_init(&op->list);
702 		}
703 		return;
704 	}
705 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
706 
707 	/*
708 	 * On the 'unoptimizing_list' and 'optimizing_list',
709 	 * 'op' must have OPTIMIZED flag
710 	 */
711 	if (WARN_ON_ONCE(!list_empty(&op->list)))
712 		return;
713 
714 	list_add(&op->list, &optimizing_list);
715 	kick_kprobe_optimizer();
716 }
717 
718 /* Short cut to direct unoptimizing */
719 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
720 {
721 	lockdep_assert_cpus_held();
722 	arch_unoptimize_kprobe(op);
723 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
724 }
725 
726 /* Unoptimize a kprobe if p is optimized */
727 static void unoptimize_kprobe(struct kprobe *p, bool force)
728 {
729 	struct optimized_kprobe *op;
730 
731 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
732 		return; /* This is not an optprobe nor optimized */
733 
734 	op = container_of(p, struct optimized_kprobe, kp);
735 	if (!kprobe_optimized(p))
736 		return;
737 
738 	if (!list_empty(&op->list)) {
739 		if (optprobe_queued_unopt(op)) {
740 			/* Queued in unoptimizing queue */
741 			if (force) {
742 				/*
743 				 * Forcibly unoptimize the kprobe here, and queue it
744 				 * in the freeing list for release afterwards.
745 				 */
746 				force_unoptimize_kprobe(op);
747 				list_move(&op->list, &freeing_list);
748 			}
749 		} else {
750 			/* Dequeue from the optimizing queue */
751 			list_del_init(&op->list);
752 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
753 		}
754 		return;
755 	}
756 
757 	/* Optimized kprobe case */
758 	if (force) {
759 		/* Forcibly update the code: this is a special case */
760 		force_unoptimize_kprobe(op);
761 	} else {
762 		list_add(&op->list, &unoptimizing_list);
763 		kick_kprobe_optimizer();
764 	}
765 }
766 
767 /* Cancel unoptimizing for reusing */
768 static int reuse_unused_kprobe(struct kprobe *ap)
769 {
770 	struct optimized_kprobe *op;
771 
772 	/*
773 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
774 	 * there is still a relative jump) and disabled.
775 	 */
776 	op = container_of(ap, struct optimized_kprobe, kp);
777 	WARN_ON_ONCE(list_empty(&op->list));
778 	/* Enable the probe again */
779 	ap->flags &= ~KPROBE_FLAG_DISABLED;
780 	/* Optimize it again. (remove from 'op->list') */
781 	if (!kprobe_optready(ap))
782 		return -EINVAL;
783 
784 	optimize_kprobe(ap);
785 	return 0;
786 }
787 
788 /* Remove optimized instructions */
789 static void kill_optimized_kprobe(struct kprobe *p)
790 {
791 	struct optimized_kprobe *op;
792 
793 	op = container_of(p, struct optimized_kprobe, kp);
794 	if (!list_empty(&op->list))
795 		/* Dequeue from the (un)optimization queue */
796 		list_del_init(&op->list);
797 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
798 
799 	if (kprobe_unused(p)) {
800 		/* Enqueue if it is unused */
801 		list_add(&op->list, &freeing_list);
802 		/*
803 		 * Remove unused probes from the hash list. After waiting
804 		 * for synchronization, this probe is reclaimed.
805 		 * (reclaiming is done by do_free_cleaned_kprobes().)
806 		 */
807 		hlist_del_rcu(&op->kp.hlist);
808 	}
809 
810 	/* Don't touch the code, because it is already freed. */
811 	arch_remove_optimized_kprobe(op);
812 }
813 
814 static inline
815 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
816 {
817 	if (!kprobe_ftrace(p))
818 		arch_prepare_optimized_kprobe(op, p);
819 }
820 
821 /* Try to prepare optimized instructions */
822 static void prepare_optimized_kprobe(struct kprobe *p)
823 {
824 	struct optimized_kprobe *op;
825 
826 	op = container_of(p, struct optimized_kprobe, kp);
827 	__prepare_optimized_kprobe(op, p);
828 }
829 
830 /* Allocate new optimized_kprobe and try to prepare optimized instructions. */
831 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
832 {
833 	struct optimized_kprobe *op;
834 
835 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
836 	if (!op)
837 		return NULL;
838 
839 	INIT_LIST_HEAD(&op->list);
840 	op->kp.addr = p->addr;
841 	__prepare_optimized_kprobe(op, p);
842 
843 	return &op->kp;
844 }
845 
846 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
847 
848 /*
849  * Prepare an optimized_kprobe and optimize it.
850  * NOTE: 'p' must be a normal registered kprobe.
851  */
852 static void try_to_optimize_kprobe(struct kprobe *p)
853 {
854 	struct kprobe *ap;
855 	struct optimized_kprobe *op;
856 
857 	/* Impossible to optimize ftrace-based kprobe. */
858 	if (kprobe_ftrace(p))
859 		return;
860 
861 	/* For preparing optimization, jump_label_text_reserved() is called. */
862 	cpus_read_lock();
863 	jump_label_lock();
864 	mutex_lock(&text_mutex);
865 
866 	ap = alloc_aggr_kprobe(p);
867 	if (!ap)
868 		goto out;
869 
870 	op = container_of(ap, struct optimized_kprobe, kp);
871 	if (!arch_prepared_optinsn(&op->optinsn)) {
872 		/* If failed to setup optimizing, fallback to kprobe. */
873 		arch_remove_optimized_kprobe(op);
874 		kfree(op);
875 		goto out;
876 	}
877 
878 	init_aggr_kprobe(ap, p);
879 	optimize_kprobe(ap);	/* This just kicks optimizer thread. */
880 
881 out:
882 	mutex_unlock(&text_mutex);
883 	jump_label_unlock();
884 	cpus_read_unlock();
885 }
886 
887 static void optimize_all_kprobes(void)
888 {
889 	struct hlist_head *head;
890 	struct kprobe *p;
891 	unsigned int i;
892 
893 	mutex_lock(&kprobe_mutex);
894 	/* If optimization is already allowed, just return. */
895 	if (kprobes_allow_optimization)
896 		goto out;
897 
898 	cpus_read_lock();
899 	kprobes_allow_optimization = true;
900 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
901 		head = &kprobe_table[i];
902 		hlist_for_each_entry(p, head, hlist)
903 			if (!kprobe_disabled(p))
904 				optimize_kprobe(p);
905 	}
906 	cpus_read_unlock();
907 	pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
908 out:
909 	mutex_unlock(&kprobe_mutex);
910 }
911 
912 #ifdef CONFIG_SYSCTL
913 static void unoptimize_all_kprobes(void)
914 {
915 	struct hlist_head *head;
916 	struct kprobe *p;
917 	unsigned int i;
918 
919 	mutex_lock(&kprobe_mutex);
920 	/* If optimization is already prohibited, just return. */
921 	if (!kprobes_allow_optimization) {
922 		mutex_unlock(&kprobe_mutex);
923 		return;
924 	}
925 
926 	cpus_read_lock();
927 	kprobes_allow_optimization = false;
928 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
929 		head = &kprobe_table[i];
930 		hlist_for_each_entry(p, head, hlist) {
931 			if (!kprobe_disabled(p))
932 				unoptimize_kprobe(p, false);
933 		}
934 	}
935 	cpus_read_unlock();
936 	mutex_unlock(&kprobe_mutex);
937 
938 	/* Wait for unoptimizing completion. */
939 	wait_for_kprobe_optimizer();
940 	pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
941 }
942 
943 static DEFINE_MUTEX(kprobe_sysctl_mutex);
944 static int sysctl_kprobes_optimization;
945 static int proc_kprobes_optimization_handler(struct ctl_table *table,
946 					     int write, void *buffer,
947 					     size_t *length, loff_t *ppos)
948 {
949 	int ret;
950 
951 	mutex_lock(&kprobe_sysctl_mutex);
952 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
953 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
954 
955 	if (sysctl_kprobes_optimization)
956 		optimize_all_kprobes();
957 	else
958 		unoptimize_all_kprobes();
959 	mutex_unlock(&kprobe_sysctl_mutex);
960 
961 	return ret;
962 }
963 
964 static struct ctl_table kprobe_sysctls[] = {
965 	{
966 		.procname	= "kprobes-optimization",
967 		.data		= &sysctl_kprobes_optimization,
968 		.maxlen		= sizeof(int),
969 		.mode		= 0644,
970 		.proc_handler	= proc_kprobes_optimization_handler,
971 		.extra1		= SYSCTL_ZERO,
972 		.extra2		= SYSCTL_ONE,
973 	},
974 	{}
975 };
976 
977 static void __init kprobe_sysctls_init(void)
978 {
979 	register_sysctl_init("debug", kprobe_sysctls);
980 }
981 #endif /* CONFIG_SYSCTL */
982 
983 /* Put a breakpoint for a probe. */
984 static void __arm_kprobe(struct kprobe *p)
985 {
986 	struct kprobe *_p;
987 
988 	lockdep_assert_held(&text_mutex);
989 
990 	/* Find the overlapping optimized kprobes. */
991 	_p = get_optimized_kprobe(p->addr);
992 	if (unlikely(_p))
993 		/* Fallback to unoptimized kprobe */
994 		unoptimize_kprobe(_p, true);
995 
996 	arch_arm_kprobe(p);
997 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
998 }
999 
1000 /* Remove the breakpoint of a probe. */
1001 static void __disarm_kprobe(struct kprobe *p, bool reopt)
1002 {
1003 	struct kprobe *_p;
1004 
1005 	lockdep_assert_held(&text_mutex);
1006 
1007 	/* Try to unoptimize */
1008 	unoptimize_kprobe(p, kprobes_all_disarmed);
1009 
1010 	if (!kprobe_queued(p)) {
1011 		arch_disarm_kprobe(p);
1012 		/* If another kprobe was blocked, re-optimize it. */
1013 		_p = get_optimized_kprobe(p->addr);
1014 		if (unlikely(_p) && reopt)
1015 			optimize_kprobe(_p);
1016 	}
1017 	/*
1018 	 * TODO: Since unoptimization and real disarming will be done by
1019 	 * the worker thread, we can not check whether another probe are
1020 	 * unoptimized because of this probe here. It should be re-optimized
1021 	 * by the worker thread.
1022 	 */
1023 }
1024 
1025 #else /* !CONFIG_OPTPROBES */
1026 
1027 #define optimize_kprobe(p)			do {} while (0)
1028 #define unoptimize_kprobe(p, f)			do {} while (0)
1029 #define kill_optimized_kprobe(p)		do {} while (0)
1030 #define prepare_optimized_kprobe(p)		do {} while (0)
1031 #define try_to_optimize_kprobe(p)		do {} while (0)
1032 #define __arm_kprobe(p)				arch_arm_kprobe(p)
1033 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
1034 #define kprobe_disarmed(p)			kprobe_disabled(p)
1035 #define wait_for_kprobe_optimizer()		do {} while (0)
1036 
1037 static int reuse_unused_kprobe(struct kprobe *ap)
1038 {
1039 	/*
1040 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
1041 	 * released at the same time that the last aggregated kprobe is
1042 	 * unregistered.
1043 	 * Thus there should be no chance to reuse unused kprobe.
1044 	 */
1045 	WARN_ON_ONCE(1);
1046 	return -EINVAL;
1047 }
1048 
1049 static void free_aggr_kprobe(struct kprobe *p)
1050 {
1051 	arch_remove_kprobe(p);
1052 	kfree(p);
1053 }
1054 
1055 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1056 {
1057 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1058 }
1059 #endif /* CONFIG_OPTPROBES */
1060 
1061 #ifdef CONFIG_KPROBES_ON_FTRACE
1062 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1063 	.func = kprobe_ftrace_handler,
1064 	.flags = FTRACE_OPS_FL_SAVE_REGS,
1065 };
1066 
1067 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1068 	.func = kprobe_ftrace_handler,
1069 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1070 };
1071 
1072 static int kprobe_ipmodify_enabled;
1073 static int kprobe_ftrace_enabled;
1074 
1075 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1076 			       int *cnt)
1077 {
1078 	int ret = 0;
1079 
1080 	lockdep_assert_held(&kprobe_mutex);
1081 
1082 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1083 	if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1084 		return ret;
1085 
1086 	if (*cnt == 0) {
1087 		ret = register_ftrace_function(ops);
1088 		if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
1089 			goto err_ftrace;
1090 	}
1091 
1092 	(*cnt)++;
1093 	return ret;
1094 
1095 err_ftrace:
1096 	/*
1097 	 * At this point, sinec ops is not registered, we should be sefe from
1098 	 * registering empty filter.
1099 	 */
1100 	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1101 	return ret;
1102 }
1103 
1104 static int arm_kprobe_ftrace(struct kprobe *p)
1105 {
1106 	bool ipmodify = (p->post_handler != NULL);
1107 
1108 	return __arm_kprobe_ftrace(p,
1109 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1110 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1111 }
1112 
1113 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1114 				  int *cnt)
1115 {
1116 	int ret = 0;
1117 
1118 	lockdep_assert_held(&kprobe_mutex);
1119 
1120 	if (*cnt == 1) {
1121 		ret = unregister_ftrace_function(ops);
1122 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1123 			return ret;
1124 	}
1125 
1126 	(*cnt)--;
1127 
1128 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1129 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1130 		  p->addr, ret);
1131 	return ret;
1132 }
1133 
1134 static int disarm_kprobe_ftrace(struct kprobe *p)
1135 {
1136 	bool ipmodify = (p->post_handler != NULL);
1137 
1138 	return __disarm_kprobe_ftrace(p,
1139 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1140 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1141 }
1142 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1143 static inline int arm_kprobe_ftrace(struct kprobe *p)
1144 {
1145 	return -ENODEV;
1146 }
1147 
1148 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1149 {
1150 	return -ENODEV;
1151 }
1152 #endif
1153 
1154 static int prepare_kprobe(struct kprobe *p)
1155 {
1156 	/* Must ensure p->addr is really on ftrace */
1157 	if (kprobe_ftrace(p))
1158 		return arch_prepare_kprobe_ftrace(p);
1159 
1160 	return arch_prepare_kprobe(p);
1161 }
1162 
1163 static int arm_kprobe(struct kprobe *kp)
1164 {
1165 	if (unlikely(kprobe_ftrace(kp)))
1166 		return arm_kprobe_ftrace(kp);
1167 
1168 	cpus_read_lock();
1169 	mutex_lock(&text_mutex);
1170 	__arm_kprobe(kp);
1171 	mutex_unlock(&text_mutex);
1172 	cpus_read_unlock();
1173 
1174 	return 0;
1175 }
1176 
1177 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1178 {
1179 	if (unlikely(kprobe_ftrace(kp)))
1180 		return disarm_kprobe_ftrace(kp);
1181 
1182 	cpus_read_lock();
1183 	mutex_lock(&text_mutex);
1184 	__disarm_kprobe(kp, reopt);
1185 	mutex_unlock(&text_mutex);
1186 	cpus_read_unlock();
1187 
1188 	return 0;
1189 }
1190 
1191 /*
1192  * Aggregate handlers for multiple kprobes support - these handlers
1193  * take care of invoking the individual kprobe handlers on p->list
1194  */
1195 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1196 {
1197 	struct kprobe *kp;
1198 
1199 	list_for_each_entry_rcu(kp, &p->list, list) {
1200 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1201 			set_kprobe_instance(kp);
1202 			if (kp->pre_handler(kp, regs))
1203 				return 1;
1204 		}
1205 		reset_kprobe_instance();
1206 	}
1207 	return 0;
1208 }
1209 NOKPROBE_SYMBOL(aggr_pre_handler);
1210 
1211 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1212 			      unsigned long flags)
1213 {
1214 	struct kprobe *kp;
1215 
1216 	list_for_each_entry_rcu(kp, &p->list, list) {
1217 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1218 			set_kprobe_instance(kp);
1219 			kp->post_handler(kp, regs, flags);
1220 			reset_kprobe_instance();
1221 		}
1222 	}
1223 }
1224 NOKPROBE_SYMBOL(aggr_post_handler);
1225 
1226 /* Walks the list and increments 'nmissed' if 'p' has child probes. */
1227 void kprobes_inc_nmissed_count(struct kprobe *p)
1228 {
1229 	struct kprobe *kp;
1230 
1231 	if (!kprobe_aggrprobe(p)) {
1232 		p->nmissed++;
1233 	} else {
1234 		list_for_each_entry_rcu(kp, &p->list, list)
1235 			kp->nmissed++;
1236 	}
1237 }
1238 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1239 
1240 static struct kprobe kprobe_busy = {
1241 	.addr = (void *) get_kprobe,
1242 };
1243 
1244 void kprobe_busy_begin(void)
1245 {
1246 	struct kprobe_ctlblk *kcb;
1247 
1248 	preempt_disable();
1249 	__this_cpu_write(current_kprobe, &kprobe_busy);
1250 	kcb = get_kprobe_ctlblk();
1251 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1252 }
1253 
1254 void kprobe_busy_end(void)
1255 {
1256 	__this_cpu_write(current_kprobe, NULL);
1257 	preempt_enable();
1258 }
1259 
1260 #if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
1261 static void free_rp_inst_rcu(struct rcu_head *head)
1262 {
1263 	struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1264 
1265 	if (refcount_dec_and_test(&ri->rph->ref))
1266 		kfree(ri->rph);
1267 	kfree(ri);
1268 }
1269 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1270 
1271 static void recycle_rp_inst(struct kretprobe_instance *ri)
1272 {
1273 	struct kretprobe *rp = get_kretprobe(ri);
1274 
1275 	if (likely(rp))
1276 		freelist_add(&ri->freelist, &rp->freelist);
1277 	else
1278 		call_rcu(&ri->rcu, free_rp_inst_rcu);
1279 }
1280 NOKPROBE_SYMBOL(recycle_rp_inst);
1281 
1282 /*
1283  * This function is called from delayed_put_task_struct() when a task is
1284  * dead and cleaned up to recycle any kretprobe instances associated with
1285  * this task. These left over instances represent probed functions that
1286  * have been called but will never return.
1287  */
1288 void kprobe_flush_task(struct task_struct *tk)
1289 {
1290 	struct kretprobe_instance *ri;
1291 	struct llist_node *node;
1292 
1293 	/* Early boot, not yet initialized. */
1294 	if (unlikely(!kprobes_initialized))
1295 		return;
1296 
1297 	kprobe_busy_begin();
1298 
1299 	node = __llist_del_all(&tk->kretprobe_instances);
1300 	while (node) {
1301 		ri = container_of(node, struct kretprobe_instance, llist);
1302 		node = node->next;
1303 
1304 		recycle_rp_inst(ri);
1305 	}
1306 
1307 	kprobe_busy_end();
1308 }
1309 NOKPROBE_SYMBOL(kprobe_flush_task);
1310 
1311 static inline void free_rp_inst(struct kretprobe *rp)
1312 {
1313 	struct kretprobe_instance *ri;
1314 	struct freelist_node *node;
1315 	int count = 0;
1316 
1317 	node = rp->freelist.head;
1318 	while (node) {
1319 		ri = container_of(node, struct kretprobe_instance, freelist);
1320 		node = node->next;
1321 
1322 		kfree(ri);
1323 		count++;
1324 	}
1325 
1326 	if (refcount_sub_and_test(count, &rp->rph->ref)) {
1327 		kfree(rp->rph);
1328 		rp->rph = NULL;
1329 	}
1330 }
1331 #endif	/* !CONFIG_KRETPROBE_ON_RETHOOK */
1332 
1333 /* Add the new probe to 'ap->list'. */
1334 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1335 {
1336 	if (p->post_handler)
1337 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1338 
1339 	list_add_rcu(&p->list, &ap->list);
1340 	if (p->post_handler && !ap->post_handler)
1341 		ap->post_handler = aggr_post_handler;
1342 
1343 	return 0;
1344 }
1345 
1346 /*
1347  * Fill in the required fields of the aggregator kprobe. Replace the
1348  * earlier kprobe in the hlist with the aggregator kprobe.
1349  */
1350 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1351 {
1352 	/* Copy the insn slot of 'p' to 'ap'. */
1353 	copy_kprobe(p, ap);
1354 	flush_insn_slot(ap);
1355 	ap->addr = p->addr;
1356 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1357 	ap->pre_handler = aggr_pre_handler;
1358 	/* We don't care the kprobe which has gone. */
1359 	if (p->post_handler && !kprobe_gone(p))
1360 		ap->post_handler = aggr_post_handler;
1361 
1362 	INIT_LIST_HEAD(&ap->list);
1363 	INIT_HLIST_NODE(&ap->hlist);
1364 
1365 	list_add_rcu(&p->list, &ap->list);
1366 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1367 }
1368 
1369 /*
1370  * This registers the second or subsequent kprobe at the same address.
1371  */
1372 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1373 {
1374 	int ret = 0;
1375 	struct kprobe *ap = orig_p;
1376 
1377 	cpus_read_lock();
1378 
1379 	/* For preparing optimization, jump_label_text_reserved() is called */
1380 	jump_label_lock();
1381 	mutex_lock(&text_mutex);
1382 
1383 	if (!kprobe_aggrprobe(orig_p)) {
1384 		/* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1385 		ap = alloc_aggr_kprobe(orig_p);
1386 		if (!ap) {
1387 			ret = -ENOMEM;
1388 			goto out;
1389 		}
1390 		init_aggr_kprobe(ap, orig_p);
1391 	} else if (kprobe_unused(ap)) {
1392 		/* This probe is going to die. Rescue it */
1393 		ret = reuse_unused_kprobe(ap);
1394 		if (ret)
1395 			goto out;
1396 	}
1397 
1398 	if (kprobe_gone(ap)) {
1399 		/*
1400 		 * Attempting to insert new probe at the same location that
1401 		 * had a probe in the module vaddr area which already
1402 		 * freed. So, the instruction slot has already been
1403 		 * released. We need a new slot for the new probe.
1404 		 */
1405 		ret = arch_prepare_kprobe(ap);
1406 		if (ret)
1407 			/*
1408 			 * Even if fail to allocate new slot, don't need to
1409 			 * free the 'ap'. It will be used next time, or
1410 			 * freed by unregister_kprobe().
1411 			 */
1412 			goto out;
1413 
1414 		/* Prepare optimized instructions if possible. */
1415 		prepare_optimized_kprobe(ap);
1416 
1417 		/*
1418 		 * Clear gone flag to prevent allocating new slot again, and
1419 		 * set disabled flag because it is not armed yet.
1420 		 */
1421 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1422 			    | KPROBE_FLAG_DISABLED;
1423 	}
1424 
1425 	/* Copy the insn slot of 'p' to 'ap'. */
1426 	copy_kprobe(ap, p);
1427 	ret = add_new_kprobe(ap, p);
1428 
1429 out:
1430 	mutex_unlock(&text_mutex);
1431 	jump_label_unlock();
1432 	cpus_read_unlock();
1433 
1434 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1435 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1436 		if (!kprobes_all_disarmed) {
1437 			/* Arm the breakpoint again. */
1438 			ret = arm_kprobe(ap);
1439 			if (ret) {
1440 				ap->flags |= KPROBE_FLAG_DISABLED;
1441 				list_del_rcu(&p->list);
1442 				synchronize_rcu();
1443 			}
1444 		}
1445 	}
1446 	return ret;
1447 }
1448 
1449 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1450 {
1451 	/* The '__kprobes' functions and entry code must not be probed. */
1452 	return addr >= (unsigned long)__kprobes_text_start &&
1453 	       addr < (unsigned long)__kprobes_text_end;
1454 }
1455 
1456 static bool __within_kprobe_blacklist(unsigned long addr)
1457 {
1458 	struct kprobe_blacklist_entry *ent;
1459 
1460 	if (arch_within_kprobe_blacklist(addr))
1461 		return true;
1462 	/*
1463 	 * If 'kprobe_blacklist' is defined, check the address and
1464 	 * reject any probe registration in the prohibited area.
1465 	 */
1466 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1467 		if (addr >= ent->start_addr && addr < ent->end_addr)
1468 			return true;
1469 	}
1470 	return false;
1471 }
1472 
1473 bool within_kprobe_blacklist(unsigned long addr)
1474 {
1475 	char symname[KSYM_NAME_LEN], *p;
1476 
1477 	if (__within_kprobe_blacklist(addr))
1478 		return true;
1479 
1480 	/* Check if the address is on a suffixed-symbol */
1481 	if (!lookup_symbol_name(addr, symname)) {
1482 		p = strchr(symname, '.');
1483 		if (!p)
1484 			return false;
1485 		*p = '\0';
1486 		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1487 		if (addr)
1488 			return __within_kprobe_blacklist(addr);
1489 	}
1490 	return false;
1491 }
1492 
1493 /*
1494  * arch_adjust_kprobe_addr - adjust the address
1495  * @addr: symbol base address
1496  * @offset: offset within the symbol
1497  * @on_func_entry: was this @addr+@offset on the function entry
1498  *
1499  * Typically returns @addr + @offset, except for special cases where the
1500  * function might be prefixed by a CFI landing pad, in that case any offset
1501  * inside the landing pad is mapped to the first 'real' instruction of the
1502  * symbol.
1503  *
1504  * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1505  * instruction at +0.
1506  */
1507 kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1508 						unsigned long offset,
1509 						bool *on_func_entry)
1510 {
1511 	*on_func_entry = !offset;
1512 	return (kprobe_opcode_t *)(addr + offset);
1513 }
1514 
1515 /*
1516  * If 'symbol_name' is specified, look it up and add the 'offset'
1517  * to it. This way, we can specify a relative address to a symbol.
1518  * This returns encoded errors if it fails to look up symbol or invalid
1519  * combination of parameters.
1520  */
1521 static kprobe_opcode_t *
1522 _kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1523 	     unsigned long offset, bool *on_func_entry)
1524 {
1525 	if ((symbol_name && addr) || (!symbol_name && !addr))
1526 		goto invalid;
1527 
1528 	if (symbol_name) {
1529 		/*
1530 		 * Input: @sym + @offset
1531 		 * Output: @addr + @offset
1532 		 *
1533 		 * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1534 		 *       argument into it's output!
1535 		 */
1536 		addr = kprobe_lookup_name(symbol_name, offset);
1537 		if (!addr)
1538 			return ERR_PTR(-ENOENT);
1539 	}
1540 
1541 	/*
1542 	 * So here we have @addr + @offset, displace it into a new
1543 	 * @addr' + @offset' where @addr' is the symbol start address.
1544 	 */
1545 	addr = (void *)addr + offset;
1546 	if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1547 		return ERR_PTR(-ENOENT);
1548 	addr = (void *)addr - offset;
1549 
1550 	/*
1551 	 * Then ask the architecture to re-combine them, taking care of
1552 	 * magical function entry details while telling us if this was indeed
1553 	 * at the start of the function.
1554 	 */
1555 	addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1556 	if (addr)
1557 		return addr;
1558 
1559 invalid:
1560 	return ERR_PTR(-EINVAL);
1561 }
1562 
1563 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1564 {
1565 	bool on_func_entry;
1566 	return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1567 }
1568 
1569 /*
1570  * Check the 'p' is valid and return the aggregator kprobe
1571  * at the same address.
1572  */
1573 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1574 {
1575 	struct kprobe *ap, *list_p;
1576 
1577 	lockdep_assert_held(&kprobe_mutex);
1578 
1579 	ap = get_kprobe(p->addr);
1580 	if (unlikely(!ap))
1581 		return NULL;
1582 
1583 	if (p != ap) {
1584 		list_for_each_entry(list_p, &ap->list, list)
1585 			if (list_p == p)
1586 			/* kprobe p is a valid probe */
1587 				goto valid;
1588 		return NULL;
1589 	}
1590 valid:
1591 	return ap;
1592 }
1593 
1594 /*
1595  * Warn and return error if the kprobe is being re-registered since
1596  * there must be a software bug.
1597  */
1598 static inline int warn_kprobe_rereg(struct kprobe *p)
1599 {
1600 	int ret = 0;
1601 
1602 	mutex_lock(&kprobe_mutex);
1603 	if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1604 		ret = -EINVAL;
1605 	mutex_unlock(&kprobe_mutex);
1606 
1607 	return ret;
1608 }
1609 
1610 static int check_ftrace_location(struct kprobe *p)
1611 {
1612 	unsigned long addr = (unsigned long)p->addr;
1613 
1614 	if (ftrace_location(addr) == addr) {
1615 #ifdef CONFIG_KPROBES_ON_FTRACE
1616 		p->flags |= KPROBE_FLAG_FTRACE;
1617 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1618 		return -EINVAL;
1619 #endif
1620 	}
1621 	return 0;
1622 }
1623 
1624 static int check_kprobe_address_safe(struct kprobe *p,
1625 				     struct module **probed_mod)
1626 {
1627 	int ret;
1628 
1629 	ret = check_ftrace_location(p);
1630 	if (ret)
1631 		return ret;
1632 	jump_label_lock();
1633 	preempt_disable();
1634 
1635 	/* Ensure it is not in reserved area nor out of text */
1636 	if (!kernel_text_address((unsigned long) p->addr) ||
1637 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1638 	    jump_label_text_reserved(p->addr, p->addr) ||
1639 	    static_call_text_reserved(p->addr, p->addr) ||
1640 	    find_bug((unsigned long)p->addr)) {
1641 		ret = -EINVAL;
1642 		goto out;
1643 	}
1644 
1645 	/* Check if 'p' is probing a module. */
1646 	*probed_mod = __module_text_address((unsigned long) p->addr);
1647 	if (*probed_mod) {
1648 		/*
1649 		 * We must hold a refcount of the probed module while updating
1650 		 * its code to prohibit unexpected unloading.
1651 		 */
1652 		if (unlikely(!try_module_get(*probed_mod))) {
1653 			ret = -ENOENT;
1654 			goto out;
1655 		}
1656 
1657 		/*
1658 		 * If the module freed '.init.text', we couldn't insert
1659 		 * kprobes in there.
1660 		 */
1661 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1662 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1663 			module_put(*probed_mod);
1664 			*probed_mod = NULL;
1665 			ret = -ENOENT;
1666 		}
1667 	}
1668 out:
1669 	preempt_enable();
1670 	jump_label_unlock();
1671 
1672 	return ret;
1673 }
1674 
1675 int register_kprobe(struct kprobe *p)
1676 {
1677 	int ret;
1678 	struct kprobe *old_p;
1679 	struct module *probed_mod;
1680 	kprobe_opcode_t *addr;
1681 
1682 	/* Adjust probe address from symbol */
1683 	addr = kprobe_addr(p);
1684 	if (IS_ERR(addr))
1685 		return PTR_ERR(addr);
1686 	p->addr = addr;
1687 
1688 	ret = warn_kprobe_rereg(p);
1689 	if (ret)
1690 		return ret;
1691 
1692 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1693 	p->flags &= KPROBE_FLAG_DISABLED;
1694 	p->nmissed = 0;
1695 	INIT_LIST_HEAD(&p->list);
1696 
1697 	ret = check_kprobe_address_safe(p, &probed_mod);
1698 	if (ret)
1699 		return ret;
1700 
1701 	mutex_lock(&kprobe_mutex);
1702 
1703 	old_p = get_kprobe(p->addr);
1704 	if (old_p) {
1705 		/* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1706 		ret = register_aggr_kprobe(old_p, p);
1707 		goto out;
1708 	}
1709 
1710 	cpus_read_lock();
1711 	/* Prevent text modification */
1712 	mutex_lock(&text_mutex);
1713 	ret = prepare_kprobe(p);
1714 	mutex_unlock(&text_mutex);
1715 	cpus_read_unlock();
1716 	if (ret)
1717 		goto out;
1718 
1719 	INIT_HLIST_NODE(&p->hlist);
1720 	hlist_add_head_rcu(&p->hlist,
1721 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1722 
1723 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1724 		ret = arm_kprobe(p);
1725 		if (ret) {
1726 			hlist_del_rcu(&p->hlist);
1727 			synchronize_rcu();
1728 			goto out;
1729 		}
1730 	}
1731 
1732 	/* Try to optimize kprobe */
1733 	try_to_optimize_kprobe(p);
1734 out:
1735 	mutex_unlock(&kprobe_mutex);
1736 
1737 	if (probed_mod)
1738 		module_put(probed_mod);
1739 
1740 	return ret;
1741 }
1742 EXPORT_SYMBOL_GPL(register_kprobe);
1743 
1744 /* Check if all probes on the 'ap' are disabled. */
1745 static bool aggr_kprobe_disabled(struct kprobe *ap)
1746 {
1747 	struct kprobe *kp;
1748 
1749 	lockdep_assert_held(&kprobe_mutex);
1750 
1751 	list_for_each_entry(kp, &ap->list, list)
1752 		if (!kprobe_disabled(kp))
1753 			/*
1754 			 * Since there is an active probe on the list,
1755 			 * we can't disable this 'ap'.
1756 			 */
1757 			return false;
1758 
1759 	return true;
1760 }
1761 
1762 static struct kprobe *__disable_kprobe(struct kprobe *p)
1763 {
1764 	struct kprobe *orig_p;
1765 	int ret;
1766 
1767 	lockdep_assert_held(&kprobe_mutex);
1768 
1769 	/* Get an original kprobe for return */
1770 	orig_p = __get_valid_kprobe(p);
1771 	if (unlikely(orig_p == NULL))
1772 		return ERR_PTR(-EINVAL);
1773 
1774 	if (!kprobe_disabled(p)) {
1775 		/* Disable probe if it is a child probe */
1776 		if (p != orig_p)
1777 			p->flags |= KPROBE_FLAG_DISABLED;
1778 
1779 		/* Try to disarm and disable this/parent probe */
1780 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1781 			/*
1782 			 * If 'kprobes_all_disarmed' is set, 'orig_p'
1783 			 * should have already been disarmed, so
1784 			 * skip unneed disarming process.
1785 			 */
1786 			if (!kprobes_all_disarmed) {
1787 				ret = disarm_kprobe(orig_p, true);
1788 				if (ret) {
1789 					p->flags &= ~KPROBE_FLAG_DISABLED;
1790 					return ERR_PTR(ret);
1791 				}
1792 			}
1793 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1794 		}
1795 	}
1796 
1797 	return orig_p;
1798 }
1799 
1800 /*
1801  * Unregister a kprobe without a scheduler synchronization.
1802  */
1803 static int __unregister_kprobe_top(struct kprobe *p)
1804 {
1805 	struct kprobe *ap, *list_p;
1806 
1807 	/* Disable kprobe. This will disarm it if needed. */
1808 	ap = __disable_kprobe(p);
1809 	if (IS_ERR(ap))
1810 		return PTR_ERR(ap);
1811 
1812 	if (ap == p)
1813 		/*
1814 		 * This probe is an independent(and non-optimized) kprobe
1815 		 * (not an aggrprobe). Remove from the hash list.
1816 		 */
1817 		goto disarmed;
1818 
1819 	/* Following process expects this probe is an aggrprobe */
1820 	WARN_ON(!kprobe_aggrprobe(ap));
1821 
1822 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1823 		/*
1824 		 * !disarmed could be happen if the probe is under delayed
1825 		 * unoptimizing.
1826 		 */
1827 		goto disarmed;
1828 	else {
1829 		/* If disabling probe has special handlers, update aggrprobe */
1830 		if (p->post_handler && !kprobe_gone(p)) {
1831 			list_for_each_entry(list_p, &ap->list, list) {
1832 				if ((list_p != p) && (list_p->post_handler))
1833 					goto noclean;
1834 			}
1835 			ap->post_handler = NULL;
1836 		}
1837 noclean:
1838 		/*
1839 		 * Remove from the aggrprobe: this path will do nothing in
1840 		 * __unregister_kprobe_bottom().
1841 		 */
1842 		list_del_rcu(&p->list);
1843 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1844 			/*
1845 			 * Try to optimize this probe again, because post
1846 			 * handler may have been changed.
1847 			 */
1848 			optimize_kprobe(ap);
1849 	}
1850 	return 0;
1851 
1852 disarmed:
1853 	hlist_del_rcu(&ap->hlist);
1854 	return 0;
1855 }
1856 
1857 static void __unregister_kprobe_bottom(struct kprobe *p)
1858 {
1859 	struct kprobe *ap;
1860 
1861 	if (list_empty(&p->list))
1862 		/* This is an independent kprobe */
1863 		arch_remove_kprobe(p);
1864 	else if (list_is_singular(&p->list)) {
1865 		/* This is the last child of an aggrprobe */
1866 		ap = list_entry(p->list.next, struct kprobe, list);
1867 		list_del(&p->list);
1868 		free_aggr_kprobe(ap);
1869 	}
1870 	/* Otherwise, do nothing. */
1871 }
1872 
1873 int register_kprobes(struct kprobe **kps, int num)
1874 {
1875 	int i, ret = 0;
1876 
1877 	if (num <= 0)
1878 		return -EINVAL;
1879 	for (i = 0; i < num; i++) {
1880 		ret = register_kprobe(kps[i]);
1881 		if (ret < 0) {
1882 			if (i > 0)
1883 				unregister_kprobes(kps, i);
1884 			break;
1885 		}
1886 	}
1887 	return ret;
1888 }
1889 EXPORT_SYMBOL_GPL(register_kprobes);
1890 
1891 void unregister_kprobe(struct kprobe *p)
1892 {
1893 	unregister_kprobes(&p, 1);
1894 }
1895 EXPORT_SYMBOL_GPL(unregister_kprobe);
1896 
1897 void unregister_kprobes(struct kprobe **kps, int num)
1898 {
1899 	int i;
1900 
1901 	if (num <= 0)
1902 		return;
1903 	mutex_lock(&kprobe_mutex);
1904 	for (i = 0; i < num; i++)
1905 		if (__unregister_kprobe_top(kps[i]) < 0)
1906 			kps[i]->addr = NULL;
1907 	mutex_unlock(&kprobe_mutex);
1908 
1909 	synchronize_rcu();
1910 	for (i = 0; i < num; i++)
1911 		if (kps[i]->addr)
1912 			__unregister_kprobe_bottom(kps[i]);
1913 }
1914 EXPORT_SYMBOL_GPL(unregister_kprobes);
1915 
1916 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1917 					unsigned long val, void *data)
1918 {
1919 	return NOTIFY_DONE;
1920 }
1921 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1922 
1923 static struct notifier_block kprobe_exceptions_nb = {
1924 	.notifier_call = kprobe_exceptions_notify,
1925 	.priority = 0x7fffffff /* we need to be notified first */
1926 };
1927 
1928 #ifdef CONFIG_KRETPROBES
1929 
1930 #if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
1931 /* This assumes the 'tsk' is the current task or the is not running. */
1932 static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1933 						  struct llist_node **cur)
1934 {
1935 	struct kretprobe_instance *ri = NULL;
1936 	struct llist_node *node = *cur;
1937 
1938 	if (!node)
1939 		node = tsk->kretprobe_instances.first;
1940 	else
1941 		node = node->next;
1942 
1943 	while (node) {
1944 		ri = container_of(node, struct kretprobe_instance, llist);
1945 		if (ri->ret_addr != kretprobe_trampoline_addr()) {
1946 			*cur = node;
1947 			return ri->ret_addr;
1948 		}
1949 		node = node->next;
1950 	}
1951 	return NULL;
1952 }
1953 NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1954 
1955 /**
1956  * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1957  * @tsk: Target task
1958  * @fp: A frame pointer
1959  * @cur: a storage of the loop cursor llist_node pointer for next call
1960  *
1961  * Find the correct return address modified by a kretprobe on @tsk in unsigned
1962  * long type. If it finds the return address, this returns that address value,
1963  * or this returns 0.
1964  * The @tsk must be 'current' or a task which is not running. @fp is a hint
1965  * to get the currect return address - which is compared with the
1966  * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1967  * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
1968  * first call, but '@cur' itself must NOT NULL.
1969  */
1970 unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
1971 				      struct llist_node **cur)
1972 {
1973 	struct kretprobe_instance *ri = NULL;
1974 	kprobe_opcode_t *ret;
1975 
1976 	if (WARN_ON_ONCE(!cur))
1977 		return 0;
1978 
1979 	do {
1980 		ret = __kretprobe_find_ret_addr(tsk, cur);
1981 		if (!ret)
1982 			break;
1983 		ri = container_of(*cur, struct kretprobe_instance, llist);
1984 	} while (ri->fp != fp);
1985 
1986 	return (unsigned long)ret;
1987 }
1988 NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
1989 
1990 void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
1991 					kprobe_opcode_t *correct_ret_addr)
1992 {
1993 	/*
1994 	 * Do nothing by default. Please fill this to update the fake return
1995 	 * address on the stack with the correct one on each arch if possible.
1996 	 */
1997 }
1998 
1999 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
2000 					     void *frame_pointer)
2001 {
2002 	kprobe_opcode_t *correct_ret_addr = NULL;
2003 	struct kretprobe_instance *ri = NULL;
2004 	struct llist_node *first, *node = NULL;
2005 	struct kretprobe *rp;
2006 
2007 	/* Find correct address and all nodes for this frame. */
2008 	correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2009 	if (!correct_ret_addr) {
2010 		pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2011 		BUG_ON(1);
2012 	}
2013 
2014 	/*
2015 	 * Set the return address as the instruction pointer, because if the
2016 	 * user handler calls stack_trace_save_regs() with this 'regs',
2017 	 * the stack trace will start from the instruction pointer.
2018 	 */
2019 	instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
2020 
2021 	/* Run the user handler of the nodes. */
2022 	first = current->kretprobe_instances.first;
2023 	while (first) {
2024 		ri = container_of(first, struct kretprobe_instance, llist);
2025 
2026 		if (WARN_ON_ONCE(ri->fp != frame_pointer))
2027 			break;
2028 
2029 		rp = get_kretprobe(ri);
2030 		if (rp && rp->handler) {
2031 			struct kprobe *prev = kprobe_running();
2032 
2033 			__this_cpu_write(current_kprobe, &rp->kp);
2034 			ri->ret_addr = correct_ret_addr;
2035 			rp->handler(ri, regs);
2036 			__this_cpu_write(current_kprobe, prev);
2037 		}
2038 		if (first == node)
2039 			break;
2040 
2041 		first = first->next;
2042 	}
2043 
2044 	arch_kretprobe_fixup_return(regs, correct_ret_addr);
2045 
2046 	/* Unlink all nodes for this frame. */
2047 	first = current->kretprobe_instances.first;
2048 	current->kretprobe_instances.first = node->next;
2049 	node->next = NULL;
2050 
2051 	/* Recycle free instances. */
2052 	while (first) {
2053 		ri = container_of(first, struct kretprobe_instance, llist);
2054 		first = first->next;
2055 
2056 		recycle_rp_inst(ri);
2057 	}
2058 
2059 	return (unsigned long)correct_ret_addr;
2060 }
2061 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2062 
2063 /*
2064  * This kprobe pre_handler is registered with every kretprobe. When probe
2065  * hits it will set up the return probe.
2066  */
2067 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2068 {
2069 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2070 	struct kretprobe_instance *ri;
2071 	struct freelist_node *fn;
2072 
2073 	fn = freelist_try_get(&rp->freelist);
2074 	if (!fn) {
2075 		rp->nmissed++;
2076 		return 0;
2077 	}
2078 
2079 	ri = container_of(fn, struct kretprobe_instance, freelist);
2080 
2081 	if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2082 		freelist_add(&ri->freelist, &rp->freelist);
2083 		return 0;
2084 	}
2085 
2086 	arch_prepare_kretprobe(ri, regs);
2087 
2088 	__llist_add(&ri->llist, &current->kretprobe_instances);
2089 
2090 	return 0;
2091 }
2092 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2093 #else /* CONFIG_KRETPROBE_ON_RETHOOK */
2094 /*
2095  * This kprobe pre_handler is registered with every kretprobe. When probe
2096  * hits it will set up the return probe.
2097  */
2098 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2099 {
2100 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2101 	struct kretprobe_instance *ri;
2102 	struct rethook_node *rhn;
2103 
2104 	rhn = rethook_try_get(rp->rh);
2105 	if (!rhn) {
2106 		rp->nmissed++;
2107 		return 0;
2108 	}
2109 
2110 	ri = container_of(rhn, struct kretprobe_instance, node);
2111 
2112 	if (rp->entry_handler && rp->entry_handler(ri, regs))
2113 		rethook_recycle(rhn);
2114 	else
2115 		rethook_hook(rhn, regs, kprobe_ftrace(p));
2116 
2117 	return 0;
2118 }
2119 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2120 
2121 static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2122 				      struct pt_regs *regs)
2123 {
2124 	struct kretprobe *rp = (struct kretprobe *)data;
2125 	struct kretprobe_instance *ri;
2126 	struct kprobe_ctlblk *kcb;
2127 
2128 	/* The data must NOT be null. This means rethook data structure is broken. */
2129 	if (WARN_ON_ONCE(!data) || !rp->handler)
2130 		return;
2131 
2132 	__this_cpu_write(current_kprobe, &rp->kp);
2133 	kcb = get_kprobe_ctlblk();
2134 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2135 
2136 	ri = container_of(rh, struct kretprobe_instance, node);
2137 	rp->handler(ri, regs);
2138 
2139 	__this_cpu_write(current_kprobe, NULL);
2140 }
2141 NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2142 
2143 #endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2144 
2145 /**
2146  * kprobe_on_func_entry() -- check whether given address is function entry
2147  * @addr: Target address
2148  * @sym:  Target symbol name
2149  * @offset: The offset from the symbol or the address
2150  *
2151  * This checks whether the given @addr+@offset or @sym+@offset is on the
2152  * function entry address or not.
2153  * This returns 0 if it is the function entry, or -EINVAL if it is not.
2154  * And also it returns -ENOENT if it fails the symbol or address lookup.
2155  * Caller must pass @addr or @sym (either one must be NULL), or this
2156  * returns -EINVAL.
2157  */
2158 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2159 {
2160 	bool on_func_entry;
2161 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2162 
2163 	if (IS_ERR(kp_addr))
2164 		return PTR_ERR(kp_addr);
2165 
2166 	if (!on_func_entry)
2167 		return -EINVAL;
2168 
2169 	return 0;
2170 }
2171 
2172 int register_kretprobe(struct kretprobe *rp)
2173 {
2174 	int ret;
2175 	struct kretprobe_instance *inst;
2176 	int i;
2177 	void *addr;
2178 
2179 	ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2180 	if (ret)
2181 		return ret;
2182 
2183 	/* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2184 	if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2185 		return -EINVAL;
2186 
2187 	if (kretprobe_blacklist_size) {
2188 		addr = kprobe_addr(&rp->kp);
2189 		if (IS_ERR(addr))
2190 			return PTR_ERR(addr);
2191 
2192 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2193 			if (kretprobe_blacklist[i].addr == addr)
2194 				return -EINVAL;
2195 		}
2196 	}
2197 
2198 	if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2199 		return -E2BIG;
2200 
2201 	rp->kp.pre_handler = pre_handler_kretprobe;
2202 	rp->kp.post_handler = NULL;
2203 
2204 	/* Pre-allocate memory for max kretprobe instances */
2205 	if (rp->maxactive <= 0) {
2206 #ifdef CONFIG_PREEMPTION
2207 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2208 #else
2209 		rp->maxactive = num_possible_cpus();
2210 #endif
2211 	}
2212 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2213 	rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler);
2214 	if (!rp->rh)
2215 		return -ENOMEM;
2216 
2217 	for (i = 0; i < rp->maxactive; i++) {
2218 		inst = kzalloc(sizeof(struct kretprobe_instance) +
2219 			       rp->data_size, GFP_KERNEL);
2220 		if (inst == NULL) {
2221 			rethook_free(rp->rh);
2222 			rp->rh = NULL;
2223 			return -ENOMEM;
2224 		}
2225 		rethook_add_node(rp->rh, &inst->node);
2226 	}
2227 	rp->nmissed = 0;
2228 	/* Establish function entry probe point */
2229 	ret = register_kprobe(&rp->kp);
2230 	if (ret != 0) {
2231 		rethook_free(rp->rh);
2232 		rp->rh = NULL;
2233 	}
2234 #else	/* !CONFIG_KRETPROBE_ON_RETHOOK */
2235 	rp->freelist.head = NULL;
2236 	rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2237 	if (!rp->rph)
2238 		return -ENOMEM;
2239 
2240 	rp->rph->rp = rp;
2241 	for (i = 0; i < rp->maxactive; i++) {
2242 		inst = kzalloc(sizeof(struct kretprobe_instance) +
2243 			       rp->data_size, GFP_KERNEL);
2244 		if (inst == NULL) {
2245 			refcount_set(&rp->rph->ref, i);
2246 			free_rp_inst(rp);
2247 			return -ENOMEM;
2248 		}
2249 		inst->rph = rp->rph;
2250 		freelist_add(&inst->freelist, &rp->freelist);
2251 	}
2252 	refcount_set(&rp->rph->ref, i);
2253 
2254 	rp->nmissed = 0;
2255 	/* Establish function entry probe point */
2256 	ret = register_kprobe(&rp->kp);
2257 	if (ret != 0)
2258 		free_rp_inst(rp);
2259 #endif
2260 	return ret;
2261 }
2262 EXPORT_SYMBOL_GPL(register_kretprobe);
2263 
2264 int register_kretprobes(struct kretprobe **rps, int num)
2265 {
2266 	int ret = 0, i;
2267 
2268 	if (num <= 0)
2269 		return -EINVAL;
2270 	for (i = 0; i < num; i++) {
2271 		ret = register_kretprobe(rps[i]);
2272 		if (ret < 0) {
2273 			if (i > 0)
2274 				unregister_kretprobes(rps, i);
2275 			break;
2276 		}
2277 	}
2278 	return ret;
2279 }
2280 EXPORT_SYMBOL_GPL(register_kretprobes);
2281 
2282 void unregister_kretprobe(struct kretprobe *rp)
2283 {
2284 	unregister_kretprobes(&rp, 1);
2285 }
2286 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2287 
2288 void unregister_kretprobes(struct kretprobe **rps, int num)
2289 {
2290 	int i;
2291 
2292 	if (num <= 0)
2293 		return;
2294 	mutex_lock(&kprobe_mutex);
2295 	for (i = 0; i < num; i++) {
2296 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2297 			rps[i]->kp.addr = NULL;
2298 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2299 		rethook_free(rps[i]->rh);
2300 #else
2301 		rps[i]->rph->rp = NULL;
2302 #endif
2303 	}
2304 	mutex_unlock(&kprobe_mutex);
2305 
2306 	synchronize_rcu();
2307 	for (i = 0; i < num; i++) {
2308 		if (rps[i]->kp.addr) {
2309 			__unregister_kprobe_bottom(&rps[i]->kp);
2310 #ifndef CONFIG_KRETPROBE_ON_RETHOOK
2311 			free_rp_inst(rps[i]);
2312 #endif
2313 		}
2314 	}
2315 }
2316 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2317 
2318 #else /* CONFIG_KRETPROBES */
2319 int register_kretprobe(struct kretprobe *rp)
2320 {
2321 	return -EOPNOTSUPP;
2322 }
2323 EXPORT_SYMBOL_GPL(register_kretprobe);
2324 
2325 int register_kretprobes(struct kretprobe **rps, int num)
2326 {
2327 	return -EOPNOTSUPP;
2328 }
2329 EXPORT_SYMBOL_GPL(register_kretprobes);
2330 
2331 void unregister_kretprobe(struct kretprobe *rp)
2332 {
2333 }
2334 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2335 
2336 void unregister_kretprobes(struct kretprobe **rps, int num)
2337 {
2338 }
2339 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2340 
2341 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2342 {
2343 	return 0;
2344 }
2345 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2346 
2347 #endif /* CONFIG_KRETPROBES */
2348 
2349 /* Set the kprobe gone and remove its instruction buffer. */
2350 static void kill_kprobe(struct kprobe *p)
2351 {
2352 	struct kprobe *kp;
2353 
2354 	lockdep_assert_held(&kprobe_mutex);
2355 
2356 	p->flags |= KPROBE_FLAG_GONE;
2357 	if (kprobe_aggrprobe(p)) {
2358 		/*
2359 		 * If this is an aggr_kprobe, we have to list all the
2360 		 * chained probes and mark them GONE.
2361 		 */
2362 		list_for_each_entry(kp, &p->list, list)
2363 			kp->flags |= KPROBE_FLAG_GONE;
2364 		p->post_handler = NULL;
2365 		kill_optimized_kprobe(p);
2366 	}
2367 	/*
2368 	 * Here, we can remove insn_slot safely, because no thread calls
2369 	 * the original probed function (which will be freed soon) any more.
2370 	 */
2371 	arch_remove_kprobe(p);
2372 
2373 	/*
2374 	 * The module is going away. We should disarm the kprobe which
2375 	 * is using ftrace, because ftrace framework is still available at
2376 	 * 'MODULE_STATE_GOING' notification.
2377 	 */
2378 	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2379 		disarm_kprobe_ftrace(p);
2380 }
2381 
2382 /* Disable one kprobe */
2383 int disable_kprobe(struct kprobe *kp)
2384 {
2385 	int ret = 0;
2386 	struct kprobe *p;
2387 
2388 	mutex_lock(&kprobe_mutex);
2389 
2390 	/* Disable this kprobe */
2391 	p = __disable_kprobe(kp);
2392 	if (IS_ERR(p))
2393 		ret = PTR_ERR(p);
2394 
2395 	mutex_unlock(&kprobe_mutex);
2396 	return ret;
2397 }
2398 EXPORT_SYMBOL_GPL(disable_kprobe);
2399 
2400 /* Enable one kprobe */
2401 int enable_kprobe(struct kprobe *kp)
2402 {
2403 	int ret = 0;
2404 	struct kprobe *p;
2405 
2406 	mutex_lock(&kprobe_mutex);
2407 
2408 	/* Check whether specified probe is valid. */
2409 	p = __get_valid_kprobe(kp);
2410 	if (unlikely(p == NULL)) {
2411 		ret = -EINVAL;
2412 		goto out;
2413 	}
2414 
2415 	if (kprobe_gone(kp)) {
2416 		/* This kprobe has gone, we couldn't enable it. */
2417 		ret = -EINVAL;
2418 		goto out;
2419 	}
2420 
2421 	if (p != kp)
2422 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2423 
2424 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2425 		p->flags &= ~KPROBE_FLAG_DISABLED;
2426 		ret = arm_kprobe(p);
2427 		if (ret)
2428 			p->flags |= KPROBE_FLAG_DISABLED;
2429 	}
2430 out:
2431 	mutex_unlock(&kprobe_mutex);
2432 	return ret;
2433 }
2434 EXPORT_SYMBOL_GPL(enable_kprobe);
2435 
2436 /* Caller must NOT call this in usual path. This is only for critical case */
2437 void dump_kprobe(struct kprobe *kp)
2438 {
2439 	pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2440 	       kp->symbol_name, kp->offset, kp->addr);
2441 }
2442 NOKPROBE_SYMBOL(dump_kprobe);
2443 
2444 int kprobe_add_ksym_blacklist(unsigned long entry)
2445 {
2446 	struct kprobe_blacklist_entry *ent;
2447 	unsigned long offset = 0, size = 0;
2448 
2449 	if (!kernel_text_address(entry) ||
2450 	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2451 		return -EINVAL;
2452 
2453 	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2454 	if (!ent)
2455 		return -ENOMEM;
2456 	ent->start_addr = entry;
2457 	ent->end_addr = entry + size;
2458 	INIT_LIST_HEAD(&ent->list);
2459 	list_add_tail(&ent->list, &kprobe_blacklist);
2460 
2461 	return (int)size;
2462 }
2463 
2464 /* Add all symbols in given area into kprobe blacklist */
2465 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2466 {
2467 	unsigned long entry;
2468 	int ret = 0;
2469 
2470 	for (entry = start; entry < end; entry += ret) {
2471 		ret = kprobe_add_ksym_blacklist(entry);
2472 		if (ret < 0)
2473 			return ret;
2474 		if (ret == 0)	/* In case of alias symbol */
2475 			ret = 1;
2476 	}
2477 	return 0;
2478 }
2479 
2480 /* Remove all symbols in given area from kprobe blacklist */
2481 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2482 {
2483 	struct kprobe_blacklist_entry *ent, *n;
2484 
2485 	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2486 		if (ent->start_addr < start || ent->start_addr >= end)
2487 			continue;
2488 		list_del(&ent->list);
2489 		kfree(ent);
2490 	}
2491 }
2492 
2493 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2494 {
2495 	kprobe_remove_area_blacklist(entry, entry + 1);
2496 }
2497 
2498 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2499 				   char *type, char *sym)
2500 {
2501 	return -ERANGE;
2502 }
2503 
2504 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2505 		       char *sym)
2506 {
2507 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2508 	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2509 		return 0;
2510 #ifdef CONFIG_OPTPROBES
2511 	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2512 		return 0;
2513 #endif
2514 #endif
2515 	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2516 		return 0;
2517 	return -ERANGE;
2518 }
2519 
2520 int __init __weak arch_populate_kprobe_blacklist(void)
2521 {
2522 	return 0;
2523 }
2524 
2525 /*
2526  * Lookup and populate the kprobe_blacklist.
2527  *
2528  * Unlike the kretprobe blacklist, we'll need to determine
2529  * the range of addresses that belong to the said functions,
2530  * since a kprobe need not necessarily be at the beginning
2531  * of a function.
2532  */
2533 static int __init populate_kprobe_blacklist(unsigned long *start,
2534 					     unsigned long *end)
2535 {
2536 	unsigned long entry;
2537 	unsigned long *iter;
2538 	int ret;
2539 
2540 	for (iter = start; iter < end; iter++) {
2541 		entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2542 		ret = kprobe_add_ksym_blacklist(entry);
2543 		if (ret == -EINVAL)
2544 			continue;
2545 		if (ret < 0)
2546 			return ret;
2547 	}
2548 
2549 	/* Symbols in '__kprobes_text' are blacklisted */
2550 	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2551 					(unsigned long)__kprobes_text_end);
2552 	if (ret)
2553 		return ret;
2554 
2555 	/* Symbols in 'noinstr' section are blacklisted */
2556 	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2557 					(unsigned long)__noinstr_text_end);
2558 
2559 	return ret ? : arch_populate_kprobe_blacklist();
2560 }
2561 
2562 static void add_module_kprobe_blacklist(struct module *mod)
2563 {
2564 	unsigned long start, end;
2565 	int i;
2566 
2567 	if (mod->kprobe_blacklist) {
2568 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2569 			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2570 	}
2571 
2572 	start = (unsigned long)mod->kprobes_text_start;
2573 	if (start) {
2574 		end = start + mod->kprobes_text_size;
2575 		kprobe_add_area_blacklist(start, end);
2576 	}
2577 
2578 	start = (unsigned long)mod->noinstr_text_start;
2579 	if (start) {
2580 		end = start + mod->noinstr_text_size;
2581 		kprobe_add_area_blacklist(start, end);
2582 	}
2583 }
2584 
2585 static void remove_module_kprobe_blacklist(struct module *mod)
2586 {
2587 	unsigned long start, end;
2588 	int i;
2589 
2590 	if (mod->kprobe_blacklist) {
2591 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2592 			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2593 	}
2594 
2595 	start = (unsigned long)mod->kprobes_text_start;
2596 	if (start) {
2597 		end = start + mod->kprobes_text_size;
2598 		kprobe_remove_area_blacklist(start, end);
2599 	}
2600 
2601 	start = (unsigned long)mod->noinstr_text_start;
2602 	if (start) {
2603 		end = start + mod->noinstr_text_size;
2604 		kprobe_remove_area_blacklist(start, end);
2605 	}
2606 }
2607 
2608 /* Module notifier call back, checking kprobes on the module */
2609 static int kprobes_module_callback(struct notifier_block *nb,
2610 				   unsigned long val, void *data)
2611 {
2612 	struct module *mod = data;
2613 	struct hlist_head *head;
2614 	struct kprobe *p;
2615 	unsigned int i;
2616 	int checkcore = (val == MODULE_STATE_GOING);
2617 
2618 	if (val == MODULE_STATE_COMING) {
2619 		mutex_lock(&kprobe_mutex);
2620 		add_module_kprobe_blacklist(mod);
2621 		mutex_unlock(&kprobe_mutex);
2622 	}
2623 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2624 		return NOTIFY_DONE;
2625 
2626 	/*
2627 	 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2628 	 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2629 	 * notified, only '.init.text' section would be freed. We need to
2630 	 * disable kprobes which have been inserted in the sections.
2631 	 */
2632 	mutex_lock(&kprobe_mutex);
2633 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2634 		head = &kprobe_table[i];
2635 		hlist_for_each_entry(p, head, hlist)
2636 			if (within_module_init((unsigned long)p->addr, mod) ||
2637 			    (checkcore &&
2638 			     within_module_core((unsigned long)p->addr, mod))) {
2639 				/*
2640 				 * The vaddr this probe is installed will soon
2641 				 * be vfreed buy not synced to disk. Hence,
2642 				 * disarming the breakpoint isn't needed.
2643 				 *
2644 				 * Note, this will also move any optimized probes
2645 				 * that are pending to be removed from their
2646 				 * corresponding lists to the 'freeing_list' and
2647 				 * will not be touched by the delayed
2648 				 * kprobe_optimizer() work handler.
2649 				 */
2650 				kill_kprobe(p);
2651 			}
2652 	}
2653 	if (val == MODULE_STATE_GOING)
2654 		remove_module_kprobe_blacklist(mod);
2655 	mutex_unlock(&kprobe_mutex);
2656 	return NOTIFY_DONE;
2657 }
2658 
2659 static struct notifier_block kprobe_module_nb = {
2660 	.notifier_call = kprobes_module_callback,
2661 	.priority = 0
2662 };
2663 
2664 void kprobe_free_init_mem(void)
2665 {
2666 	void *start = (void *)(&__init_begin);
2667 	void *end = (void *)(&__init_end);
2668 	struct hlist_head *head;
2669 	struct kprobe *p;
2670 	int i;
2671 
2672 	mutex_lock(&kprobe_mutex);
2673 
2674 	/* Kill all kprobes on initmem because the target code has been freed. */
2675 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2676 		head = &kprobe_table[i];
2677 		hlist_for_each_entry(p, head, hlist) {
2678 			if (start <= (void *)p->addr && (void *)p->addr < end)
2679 				kill_kprobe(p);
2680 		}
2681 	}
2682 
2683 	mutex_unlock(&kprobe_mutex);
2684 }
2685 
2686 static int __init init_kprobes(void)
2687 {
2688 	int i, err = 0;
2689 
2690 	/* FIXME allocate the probe table, currently defined statically */
2691 	/* initialize all list heads */
2692 	for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2693 		INIT_HLIST_HEAD(&kprobe_table[i]);
2694 
2695 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2696 					__stop_kprobe_blacklist);
2697 	if (err)
2698 		pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2699 
2700 	if (kretprobe_blacklist_size) {
2701 		/* lookup the function address from its name */
2702 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2703 			kretprobe_blacklist[i].addr =
2704 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2705 			if (!kretprobe_blacklist[i].addr)
2706 				pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2707 				       kretprobe_blacklist[i].name);
2708 		}
2709 	}
2710 
2711 	/* By default, kprobes are armed */
2712 	kprobes_all_disarmed = false;
2713 
2714 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2715 	/* Init 'kprobe_optinsn_slots' for allocation */
2716 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2717 #endif
2718 
2719 	err = arch_init_kprobes();
2720 	if (!err)
2721 		err = register_die_notifier(&kprobe_exceptions_nb);
2722 	if (!err)
2723 		err = register_module_notifier(&kprobe_module_nb);
2724 
2725 	kprobes_initialized = (err == 0);
2726 	kprobe_sysctls_init();
2727 	return err;
2728 }
2729 early_initcall(init_kprobes);
2730 
2731 #if defined(CONFIG_OPTPROBES)
2732 static int __init init_optprobes(void)
2733 {
2734 	/*
2735 	 * Enable kprobe optimization - this kicks the optimizer which
2736 	 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2737 	 * not spawned in early initcall. So delay the optimization.
2738 	 */
2739 	optimize_all_kprobes();
2740 
2741 	return 0;
2742 }
2743 subsys_initcall(init_optprobes);
2744 #endif
2745 
2746 #ifdef CONFIG_DEBUG_FS
2747 static void report_probe(struct seq_file *pi, struct kprobe *p,
2748 		const char *sym, int offset, char *modname, struct kprobe *pp)
2749 {
2750 	char *kprobe_type;
2751 	void *addr = p->addr;
2752 
2753 	if (p->pre_handler == pre_handler_kretprobe)
2754 		kprobe_type = "r";
2755 	else
2756 		kprobe_type = "k";
2757 
2758 	if (!kallsyms_show_value(pi->file->f_cred))
2759 		addr = NULL;
2760 
2761 	if (sym)
2762 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2763 			addr, kprobe_type, sym, offset,
2764 			(modname ? modname : " "));
2765 	else	/* try to use %pS */
2766 		seq_printf(pi, "%px  %s  %pS ",
2767 			addr, kprobe_type, p->addr);
2768 
2769 	if (!pp)
2770 		pp = p;
2771 	seq_printf(pi, "%s%s%s%s\n",
2772 		(kprobe_gone(p) ? "[GONE]" : ""),
2773 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2774 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2775 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2776 }
2777 
2778 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2779 {
2780 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2781 }
2782 
2783 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2784 {
2785 	(*pos)++;
2786 	if (*pos >= KPROBE_TABLE_SIZE)
2787 		return NULL;
2788 	return pos;
2789 }
2790 
2791 static void kprobe_seq_stop(struct seq_file *f, void *v)
2792 {
2793 	/* Nothing to do */
2794 }
2795 
2796 static int show_kprobe_addr(struct seq_file *pi, void *v)
2797 {
2798 	struct hlist_head *head;
2799 	struct kprobe *p, *kp;
2800 	const char *sym = NULL;
2801 	unsigned int i = *(loff_t *) v;
2802 	unsigned long offset = 0;
2803 	char *modname, namebuf[KSYM_NAME_LEN];
2804 
2805 	head = &kprobe_table[i];
2806 	preempt_disable();
2807 	hlist_for_each_entry_rcu(p, head, hlist) {
2808 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2809 					&offset, &modname, namebuf);
2810 		if (kprobe_aggrprobe(p)) {
2811 			list_for_each_entry_rcu(kp, &p->list, list)
2812 				report_probe(pi, kp, sym, offset, modname, p);
2813 		} else
2814 			report_probe(pi, p, sym, offset, modname, NULL);
2815 	}
2816 	preempt_enable();
2817 	return 0;
2818 }
2819 
2820 static const struct seq_operations kprobes_sops = {
2821 	.start = kprobe_seq_start,
2822 	.next  = kprobe_seq_next,
2823 	.stop  = kprobe_seq_stop,
2824 	.show  = show_kprobe_addr
2825 };
2826 
2827 DEFINE_SEQ_ATTRIBUTE(kprobes);
2828 
2829 /* kprobes/blacklist -- shows which functions can not be probed */
2830 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2831 {
2832 	mutex_lock(&kprobe_mutex);
2833 	return seq_list_start(&kprobe_blacklist, *pos);
2834 }
2835 
2836 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2837 {
2838 	return seq_list_next(v, &kprobe_blacklist, pos);
2839 }
2840 
2841 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2842 {
2843 	struct kprobe_blacklist_entry *ent =
2844 		list_entry(v, struct kprobe_blacklist_entry, list);
2845 
2846 	/*
2847 	 * If '/proc/kallsyms' is not showing kernel address, we won't
2848 	 * show them here either.
2849 	 */
2850 	if (!kallsyms_show_value(m->file->f_cred))
2851 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2852 			   (void *)ent->start_addr);
2853 	else
2854 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2855 			   (void *)ent->end_addr, (void *)ent->start_addr);
2856 	return 0;
2857 }
2858 
2859 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2860 {
2861 	mutex_unlock(&kprobe_mutex);
2862 }
2863 
2864 static const struct seq_operations kprobe_blacklist_sops = {
2865 	.start = kprobe_blacklist_seq_start,
2866 	.next  = kprobe_blacklist_seq_next,
2867 	.stop  = kprobe_blacklist_seq_stop,
2868 	.show  = kprobe_blacklist_seq_show,
2869 };
2870 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2871 
2872 static int arm_all_kprobes(void)
2873 {
2874 	struct hlist_head *head;
2875 	struct kprobe *p;
2876 	unsigned int i, total = 0, errors = 0;
2877 	int err, ret = 0;
2878 
2879 	mutex_lock(&kprobe_mutex);
2880 
2881 	/* If kprobes are armed, just return */
2882 	if (!kprobes_all_disarmed)
2883 		goto already_enabled;
2884 
2885 	/*
2886 	 * optimize_kprobe() called by arm_kprobe() checks
2887 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2888 	 * arm_kprobe.
2889 	 */
2890 	kprobes_all_disarmed = false;
2891 	/* Arming kprobes doesn't optimize kprobe itself */
2892 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2893 		head = &kprobe_table[i];
2894 		/* Arm all kprobes on a best-effort basis */
2895 		hlist_for_each_entry(p, head, hlist) {
2896 			if (!kprobe_disabled(p)) {
2897 				err = arm_kprobe(p);
2898 				if (err)  {
2899 					errors++;
2900 					ret = err;
2901 				}
2902 				total++;
2903 			}
2904 		}
2905 	}
2906 
2907 	if (errors)
2908 		pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2909 			errors, total);
2910 	else
2911 		pr_info("Kprobes globally enabled\n");
2912 
2913 already_enabled:
2914 	mutex_unlock(&kprobe_mutex);
2915 	return ret;
2916 }
2917 
2918 static int disarm_all_kprobes(void)
2919 {
2920 	struct hlist_head *head;
2921 	struct kprobe *p;
2922 	unsigned int i, total = 0, errors = 0;
2923 	int err, ret = 0;
2924 
2925 	mutex_lock(&kprobe_mutex);
2926 
2927 	/* If kprobes are already disarmed, just return */
2928 	if (kprobes_all_disarmed) {
2929 		mutex_unlock(&kprobe_mutex);
2930 		return 0;
2931 	}
2932 
2933 	kprobes_all_disarmed = true;
2934 
2935 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2936 		head = &kprobe_table[i];
2937 		/* Disarm all kprobes on a best-effort basis */
2938 		hlist_for_each_entry(p, head, hlist) {
2939 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2940 				err = disarm_kprobe(p, false);
2941 				if (err) {
2942 					errors++;
2943 					ret = err;
2944 				}
2945 				total++;
2946 			}
2947 		}
2948 	}
2949 
2950 	if (errors)
2951 		pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2952 			errors, total);
2953 	else
2954 		pr_info("Kprobes globally disabled\n");
2955 
2956 	mutex_unlock(&kprobe_mutex);
2957 
2958 	/* Wait for disarming all kprobes by optimizer */
2959 	wait_for_kprobe_optimizer();
2960 
2961 	return ret;
2962 }
2963 
2964 /*
2965  * XXX: The debugfs bool file interface doesn't allow for callbacks
2966  * when the bool state is switched. We can reuse that facility when
2967  * available
2968  */
2969 static ssize_t read_enabled_file_bool(struct file *file,
2970 	       char __user *user_buf, size_t count, loff_t *ppos)
2971 {
2972 	char buf[3];
2973 
2974 	if (!kprobes_all_disarmed)
2975 		buf[0] = '1';
2976 	else
2977 		buf[0] = '0';
2978 	buf[1] = '\n';
2979 	buf[2] = 0x00;
2980 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2981 }
2982 
2983 static ssize_t write_enabled_file_bool(struct file *file,
2984 	       const char __user *user_buf, size_t count, loff_t *ppos)
2985 {
2986 	bool enable;
2987 	int ret;
2988 
2989 	ret = kstrtobool_from_user(user_buf, count, &enable);
2990 	if (ret)
2991 		return ret;
2992 
2993 	ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
2994 	if (ret)
2995 		return ret;
2996 
2997 	return count;
2998 }
2999 
3000 static const struct file_operations fops_kp = {
3001 	.read =         read_enabled_file_bool,
3002 	.write =        write_enabled_file_bool,
3003 	.llseek =	default_llseek,
3004 };
3005 
3006 static int __init debugfs_kprobe_init(void)
3007 {
3008 	struct dentry *dir;
3009 
3010 	dir = debugfs_create_dir("kprobes", NULL);
3011 
3012 	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
3013 
3014 	debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
3015 
3016 	debugfs_create_file("blacklist", 0400, dir, NULL,
3017 			    &kprobe_blacklist_fops);
3018 
3019 	return 0;
3020 }
3021 
3022 late_initcall(debugfs_kprobe_init);
3023 #endif /* CONFIG_DEBUG_FS */
3024