1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * kernel/kprobes.c 5 * 6 * Copyright (C) IBM Corporation, 2002, 2004 7 * 8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 9 * Probes initial implementation (includes suggestions from 10 * Rusty Russell). 11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 12 * hlists and exceptions notifier as suggested by Andi Kleen. 13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 14 * interface to access function arguments. 15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 16 * exceptions notifier to be first on the priority list. 17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 19 * <prasanna@in.ibm.com> added function-return probes. 20 */ 21 #include <linux/kprobes.h> 22 #include <linux/hash.h> 23 #include <linux/init.h> 24 #include <linux/slab.h> 25 #include <linux/stddef.h> 26 #include <linux/export.h> 27 #include <linux/moduleloader.h> 28 #include <linux/kallsyms.h> 29 #include <linux/freezer.h> 30 #include <linux/seq_file.h> 31 #include <linux/debugfs.h> 32 #include <linux/sysctl.h> 33 #include <linux/kdebug.h> 34 #include <linux/memory.h> 35 #include <linux/ftrace.h> 36 #include <linux/cpu.h> 37 #include <linux/jump_label.h> 38 #include <linux/perf_event.h> 39 40 #include <asm/sections.h> 41 #include <asm/cacheflush.h> 42 #include <asm/errno.h> 43 #include <linux/uaccess.h> 44 45 #define KPROBE_HASH_BITS 6 46 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 47 48 49 static int kprobes_initialized; 50 /* kprobe_table can be accessed by 51 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held. 52 * Or 53 * - RCU hlist traversal under disabling preempt (breakpoint handlers) 54 */ 55 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 56 57 /* NOTE: change this value only with kprobe_mutex held */ 58 static bool kprobes_all_disarmed; 59 60 /* This protects kprobe_table and optimizing_list */ 61 static DEFINE_MUTEX(kprobe_mutex); 62 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 63 64 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, 65 unsigned int __unused) 66 { 67 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); 68 } 69 70 /* Blacklist -- list of struct kprobe_blacklist_entry */ 71 static LIST_HEAD(kprobe_blacklist); 72 73 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 74 /* 75 * kprobe->ainsn.insn points to the copy of the instruction to be 76 * single-stepped. x86_64, POWER4 and above have no-exec support and 77 * stepping on the instruction on a vmalloced/kmalloced/data page 78 * is a recipe for disaster 79 */ 80 struct kprobe_insn_page { 81 struct list_head list; 82 kprobe_opcode_t *insns; /* Page of instruction slots */ 83 struct kprobe_insn_cache *cache; 84 int nused; 85 int ngarbage; 86 char slot_used[]; 87 }; 88 89 #define KPROBE_INSN_PAGE_SIZE(slots) \ 90 (offsetof(struct kprobe_insn_page, slot_used) + \ 91 (sizeof(char) * (slots))) 92 93 static int slots_per_page(struct kprobe_insn_cache *c) 94 { 95 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 96 } 97 98 enum kprobe_slot_state { 99 SLOT_CLEAN = 0, 100 SLOT_DIRTY = 1, 101 SLOT_USED = 2, 102 }; 103 104 void __weak *alloc_insn_page(void) 105 { 106 return module_alloc(PAGE_SIZE); 107 } 108 109 void __weak free_insn_page(void *page) 110 { 111 module_memfree(page); 112 } 113 114 struct kprobe_insn_cache kprobe_insn_slots = { 115 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 116 .alloc = alloc_insn_page, 117 .free = free_insn_page, 118 .sym = KPROBE_INSN_PAGE_SYM, 119 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 120 .insn_size = MAX_INSN_SIZE, 121 .nr_garbage = 0, 122 }; 123 static int collect_garbage_slots(struct kprobe_insn_cache *c); 124 125 /** 126 * __get_insn_slot() - Find a slot on an executable page for an instruction. 127 * We allocate an executable page if there's no room on existing ones. 128 */ 129 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 130 { 131 struct kprobe_insn_page *kip; 132 kprobe_opcode_t *slot = NULL; 133 134 /* Since the slot array is not protected by rcu, we need a mutex */ 135 mutex_lock(&c->mutex); 136 retry: 137 rcu_read_lock(); 138 list_for_each_entry_rcu(kip, &c->pages, list) { 139 if (kip->nused < slots_per_page(c)) { 140 int i; 141 for (i = 0; i < slots_per_page(c); i++) { 142 if (kip->slot_used[i] == SLOT_CLEAN) { 143 kip->slot_used[i] = SLOT_USED; 144 kip->nused++; 145 slot = kip->insns + (i * c->insn_size); 146 rcu_read_unlock(); 147 goto out; 148 } 149 } 150 /* kip->nused is broken. Fix it. */ 151 kip->nused = slots_per_page(c); 152 WARN_ON(1); 153 } 154 } 155 rcu_read_unlock(); 156 157 /* If there are any garbage slots, collect it and try again. */ 158 if (c->nr_garbage && collect_garbage_slots(c) == 0) 159 goto retry; 160 161 /* All out of space. Need to allocate a new page. */ 162 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 163 if (!kip) 164 goto out; 165 166 /* 167 * Use module_alloc so this page is within +/- 2GB of where the 168 * kernel image and loaded module images reside. This is required 169 * so x86_64 can correctly handle the %rip-relative fixups. 170 */ 171 kip->insns = c->alloc(); 172 if (!kip->insns) { 173 kfree(kip); 174 goto out; 175 } 176 INIT_LIST_HEAD(&kip->list); 177 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 178 kip->slot_used[0] = SLOT_USED; 179 kip->nused = 1; 180 kip->ngarbage = 0; 181 kip->cache = c; 182 list_add_rcu(&kip->list, &c->pages); 183 slot = kip->insns; 184 185 /* Record the perf ksymbol register event after adding the page */ 186 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns, 187 PAGE_SIZE, false, c->sym); 188 out: 189 mutex_unlock(&c->mutex); 190 return slot; 191 } 192 193 /* Return 1 if all garbages are collected, otherwise 0. */ 194 static int collect_one_slot(struct kprobe_insn_page *kip, int idx) 195 { 196 kip->slot_used[idx] = SLOT_CLEAN; 197 kip->nused--; 198 if (kip->nused == 0) { 199 /* 200 * Page is no longer in use. Free it unless 201 * it's the last one. We keep the last one 202 * so as not to have to set it up again the 203 * next time somebody inserts a probe. 204 */ 205 if (!list_is_singular(&kip->list)) { 206 /* 207 * Record perf ksymbol unregister event before removing 208 * the page. 209 */ 210 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 211 (unsigned long)kip->insns, PAGE_SIZE, true, 212 kip->cache->sym); 213 list_del_rcu(&kip->list); 214 synchronize_rcu(); 215 kip->cache->free(kip->insns); 216 kfree(kip); 217 } 218 return 1; 219 } 220 return 0; 221 } 222 223 static int collect_garbage_slots(struct kprobe_insn_cache *c) 224 { 225 struct kprobe_insn_page *kip, *next; 226 227 /* Ensure no-one is interrupted on the garbages */ 228 synchronize_rcu(); 229 230 list_for_each_entry_safe(kip, next, &c->pages, list) { 231 int i; 232 if (kip->ngarbage == 0) 233 continue; 234 kip->ngarbage = 0; /* we will collect all garbages */ 235 for (i = 0; i < slots_per_page(c); i++) { 236 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 237 break; 238 } 239 } 240 c->nr_garbage = 0; 241 return 0; 242 } 243 244 void __free_insn_slot(struct kprobe_insn_cache *c, 245 kprobe_opcode_t *slot, int dirty) 246 { 247 struct kprobe_insn_page *kip; 248 long idx; 249 250 mutex_lock(&c->mutex); 251 rcu_read_lock(); 252 list_for_each_entry_rcu(kip, &c->pages, list) { 253 idx = ((long)slot - (long)kip->insns) / 254 (c->insn_size * sizeof(kprobe_opcode_t)); 255 if (idx >= 0 && idx < slots_per_page(c)) 256 goto out; 257 } 258 /* Could not find this slot. */ 259 WARN_ON(1); 260 kip = NULL; 261 out: 262 rcu_read_unlock(); 263 /* Mark and sweep: this may sleep */ 264 if (kip) { 265 /* Check double free */ 266 WARN_ON(kip->slot_used[idx] != SLOT_USED); 267 if (dirty) { 268 kip->slot_used[idx] = SLOT_DIRTY; 269 kip->ngarbage++; 270 if (++c->nr_garbage > slots_per_page(c)) 271 collect_garbage_slots(c); 272 } else { 273 collect_one_slot(kip, idx); 274 } 275 } 276 mutex_unlock(&c->mutex); 277 } 278 279 /* 280 * Check given address is on the page of kprobe instruction slots. 281 * This will be used for checking whether the address on a stack 282 * is on a text area or not. 283 */ 284 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 285 { 286 struct kprobe_insn_page *kip; 287 bool ret = false; 288 289 rcu_read_lock(); 290 list_for_each_entry_rcu(kip, &c->pages, list) { 291 if (addr >= (unsigned long)kip->insns && 292 addr < (unsigned long)kip->insns + PAGE_SIZE) { 293 ret = true; 294 break; 295 } 296 } 297 rcu_read_unlock(); 298 299 return ret; 300 } 301 302 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum, 303 unsigned long *value, char *type, char *sym) 304 { 305 struct kprobe_insn_page *kip; 306 int ret = -ERANGE; 307 308 rcu_read_lock(); 309 list_for_each_entry_rcu(kip, &c->pages, list) { 310 if ((*symnum)--) 311 continue; 312 strlcpy(sym, c->sym, KSYM_NAME_LEN); 313 *type = 't'; 314 *value = (unsigned long)kip->insns; 315 ret = 0; 316 break; 317 } 318 rcu_read_unlock(); 319 320 return ret; 321 } 322 323 #ifdef CONFIG_OPTPROBES 324 void __weak *alloc_optinsn_page(void) 325 { 326 return alloc_insn_page(); 327 } 328 329 void __weak free_optinsn_page(void *page) 330 { 331 free_insn_page(page); 332 } 333 334 /* For optimized_kprobe buffer */ 335 struct kprobe_insn_cache kprobe_optinsn_slots = { 336 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 337 .alloc = alloc_optinsn_page, 338 .free = free_optinsn_page, 339 .sym = KPROBE_OPTINSN_PAGE_SYM, 340 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 341 /* .insn_size is initialized later */ 342 .nr_garbage = 0, 343 }; 344 #endif 345 #endif 346 347 /* We have preemption disabled.. so it is safe to use __ versions */ 348 static inline void set_kprobe_instance(struct kprobe *kp) 349 { 350 __this_cpu_write(kprobe_instance, kp); 351 } 352 353 static inline void reset_kprobe_instance(void) 354 { 355 __this_cpu_write(kprobe_instance, NULL); 356 } 357 358 /* 359 * This routine is called either: 360 * - under the kprobe_mutex - during kprobe_[un]register() 361 * OR 362 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 363 */ 364 struct kprobe *get_kprobe(void *addr) 365 { 366 struct hlist_head *head; 367 struct kprobe *p; 368 369 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 370 hlist_for_each_entry_rcu(p, head, hlist, 371 lockdep_is_held(&kprobe_mutex)) { 372 if (p->addr == addr) 373 return p; 374 } 375 376 return NULL; 377 } 378 NOKPROBE_SYMBOL(get_kprobe); 379 380 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 381 382 /* Return true if the kprobe is an aggregator */ 383 static inline int kprobe_aggrprobe(struct kprobe *p) 384 { 385 return p->pre_handler == aggr_pre_handler; 386 } 387 388 /* Return true(!0) if the kprobe is unused */ 389 static inline int kprobe_unused(struct kprobe *p) 390 { 391 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 392 list_empty(&p->list); 393 } 394 395 /* 396 * Keep all fields in the kprobe consistent 397 */ 398 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 399 { 400 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 401 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 402 } 403 404 #ifdef CONFIG_OPTPROBES 405 /* NOTE: change this value only with kprobe_mutex held */ 406 static bool kprobes_allow_optimization; 407 408 /* 409 * Call all pre_handler on the list, but ignores its return value. 410 * This must be called from arch-dep optimized caller. 411 */ 412 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 413 { 414 struct kprobe *kp; 415 416 list_for_each_entry_rcu(kp, &p->list, list) { 417 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 418 set_kprobe_instance(kp); 419 kp->pre_handler(kp, regs); 420 } 421 reset_kprobe_instance(); 422 } 423 } 424 NOKPROBE_SYMBOL(opt_pre_handler); 425 426 /* Free optimized instructions and optimized_kprobe */ 427 static void free_aggr_kprobe(struct kprobe *p) 428 { 429 struct optimized_kprobe *op; 430 431 op = container_of(p, struct optimized_kprobe, kp); 432 arch_remove_optimized_kprobe(op); 433 arch_remove_kprobe(p); 434 kfree(op); 435 } 436 437 /* Return true(!0) if the kprobe is ready for optimization. */ 438 static inline int kprobe_optready(struct kprobe *p) 439 { 440 struct optimized_kprobe *op; 441 442 if (kprobe_aggrprobe(p)) { 443 op = container_of(p, struct optimized_kprobe, kp); 444 return arch_prepared_optinsn(&op->optinsn); 445 } 446 447 return 0; 448 } 449 450 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 451 static inline int kprobe_disarmed(struct kprobe *p) 452 { 453 struct optimized_kprobe *op; 454 455 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 456 if (!kprobe_aggrprobe(p)) 457 return kprobe_disabled(p); 458 459 op = container_of(p, struct optimized_kprobe, kp); 460 461 return kprobe_disabled(p) && list_empty(&op->list); 462 } 463 464 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 465 static int kprobe_queued(struct kprobe *p) 466 { 467 struct optimized_kprobe *op; 468 469 if (kprobe_aggrprobe(p)) { 470 op = container_of(p, struct optimized_kprobe, kp); 471 if (!list_empty(&op->list)) 472 return 1; 473 } 474 return 0; 475 } 476 477 /* 478 * Return an optimized kprobe whose optimizing code replaces 479 * instructions including addr (exclude breakpoint). 480 */ 481 static struct kprobe *get_optimized_kprobe(unsigned long addr) 482 { 483 int i; 484 struct kprobe *p = NULL; 485 struct optimized_kprobe *op; 486 487 /* Don't check i == 0, since that is a breakpoint case. */ 488 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 489 p = get_kprobe((void *)(addr - i)); 490 491 if (p && kprobe_optready(p)) { 492 op = container_of(p, struct optimized_kprobe, kp); 493 if (arch_within_optimized_kprobe(op, addr)) 494 return p; 495 } 496 497 return NULL; 498 } 499 500 /* Optimization staging list, protected by kprobe_mutex */ 501 static LIST_HEAD(optimizing_list); 502 static LIST_HEAD(unoptimizing_list); 503 static LIST_HEAD(freeing_list); 504 505 static void kprobe_optimizer(struct work_struct *work); 506 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 507 #define OPTIMIZE_DELAY 5 508 509 /* 510 * Optimize (replace a breakpoint with a jump) kprobes listed on 511 * optimizing_list. 512 */ 513 static void do_optimize_kprobes(void) 514 { 515 lockdep_assert_held(&text_mutex); 516 /* 517 * The optimization/unoptimization refers online_cpus via 518 * stop_machine() and cpu-hotplug modifies online_cpus. 519 * And same time, text_mutex will be held in cpu-hotplug and here. 520 * This combination can cause a deadlock (cpu-hotplug try to lock 521 * text_mutex but stop_machine can not be done because online_cpus 522 * has been changed) 523 * To avoid this deadlock, caller must have locked cpu hotplug 524 * for preventing cpu-hotplug outside of text_mutex locking. 525 */ 526 lockdep_assert_cpus_held(); 527 528 /* Optimization never be done when disarmed */ 529 if (kprobes_all_disarmed || !kprobes_allow_optimization || 530 list_empty(&optimizing_list)) 531 return; 532 533 arch_optimize_kprobes(&optimizing_list); 534 } 535 536 /* 537 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 538 * if need) kprobes listed on unoptimizing_list. 539 */ 540 static void do_unoptimize_kprobes(void) 541 { 542 struct optimized_kprobe *op, *tmp; 543 544 lockdep_assert_held(&text_mutex); 545 /* See comment in do_optimize_kprobes() */ 546 lockdep_assert_cpus_held(); 547 548 /* Unoptimization must be done anytime */ 549 if (list_empty(&unoptimizing_list)) 550 return; 551 552 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 553 /* Loop free_list for disarming */ 554 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 555 /* Switching from detour code to origin */ 556 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 557 /* Disarm probes if marked disabled */ 558 if (kprobe_disabled(&op->kp)) 559 arch_disarm_kprobe(&op->kp); 560 if (kprobe_unused(&op->kp)) { 561 /* 562 * Remove unused probes from hash list. After waiting 563 * for synchronization, these probes are reclaimed. 564 * (reclaiming is done by do_free_cleaned_kprobes.) 565 */ 566 hlist_del_rcu(&op->kp.hlist); 567 } else 568 list_del_init(&op->list); 569 } 570 } 571 572 /* Reclaim all kprobes on the free_list */ 573 static void do_free_cleaned_kprobes(void) 574 { 575 struct optimized_kprobe *op, *tmp; 576 577 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 578 list_del_init(&op->list); 579 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) { 580 /* 581 * This must not happen, but if there is a kprobe 582 * still in use, keep it on kprobes hash list. 583 */ 584 continue; 585 } 586 free_aggr_kprobe(&op->kp); 587 } 588 } 589 590 /* Start optimizer after OPTIMIZE_DELAY passed */ 591 static void kick_kprobe_optimizer(void) 592 { 593 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 594 } 595 596 /* Kprobe jump optimizer */ 597 static void kprobe_optimizer(struct work_struct *work) 598 { 599 mutex_lock(&kprobe_mutex); 600 cpus_read_lock(); 601 mutex_lock(&text_mutex); 602 603 /* 604 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 605 * kprobes before waiting for quiesence period. 606 */ 607 do_unoptimize_kprobes(); 608 609 /* 610 * Step 2: Wait for quiesence period to ensure all potentially 611 * preempted tasks to have normally scheduled. Because optprobe 612 * may modify multiple instructions, there is a chance that Nth 613 * instruction is preempted. In that case, such tasks can return 614 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. 615 * Note that on non-preemptive kernel, this is transparently converted 616 * to synchronoze_sched() to wait for all interrupts to have completed. 617 */ 618 synchronize_rcu_tasks(); 619 620 /* Step 3: Optimize kprobes after quiesence period */ 621 do_optimize_kprobes(); 622 623 /* Step 4: Free cleaned kprobes after quiesence period */ 624 do_free_cleaned_kprobes(); 625 626 mutex_unlock(&text_mutex); 627 cpus_read_unlock(); 628 629 /* Step 5: Kick optimizer again if needed */ 630 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 631 kick_kprobe_optimizer(); 632 633 mutex_unlock(&kprobe_mutex); 634 } 635 636 /* Wait for completing optimization and unoptimization */ 637 void wait_for_kprobe_optimizer(void) 638 { 639 mutex_lock(&kprobe_mutex); 640 641 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 642 mutex_unlock(&kprobe_mutex); 643 644 /* this will also make optimizing_work execute immmediately */ 645 flush_delayed_work(&optimizing_work); 646 /* @optimizing_work might not have been queued yet, relax */ 647 cpu_relax(); 648 649 mutex_lock(&kprobe_mutex); 650 } 651 652 mutex_unlock(&kprobe_mutex); 653 } 654 655 static bool optprobe_queued_unopt(struct optimized_kprobe *op) 656 { 657 struct optimized_kprobe *_op; 658 659 list_for_each_entry(_op, &unoptimizing_list, list) { 660 if (op == _op) 661 return true; 662 } 663 664 return false; 665 } 666 667 /* Optimize kprobe if p is ready to be optimized */ 668 static void optimize_kprobe(struct kprobe *p) 669 { 670 struct optimized_kprobe *op; 671 672 /* Check if the kprobe is disabled or not ready for optimization. */ 673 if (!kprobe_optready(p) || !kprobes_allow_optimization || 674 (kprobe_disabled(p) || kprobes_all_disarmed)) 675 return; 676 677 /* kprobes with post_handler can not be optimized */ 678 if (p->post_handler) 679 return; 680 681 op = container_of(p, struct optimized_kprobe, kp); 682 683 /* Check there is no other kprobes at the optimized instructions */ 684 if (arch_check_optimized_kprobe(op) < 0) 685 return; 686 687 /* Check if it is already optimized. */ 688 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) { 689 if (optprobe_queued_unopt(op)) { 690 /* This is under unoptimizing. Just dequeue the probe */ 691 list_del_init(&op->list); 692 } 693 return; 694 } 695 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 696 697 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */ 698 if (WARN_ON_ONCE(!list_empty(&op->list))) 699 return; 700 701 list_add(&op->list, &optimizing_list); 702 kick_kprobe_optimizer(); 703 } 704 705 /* Short cut to direct unoptimizing */ 706 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 707 { 708 lockdep_assert_cpus_held(); 709 arch_unoptimize_kprobe(op); 710 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 711 } 712 713 /* Unoptimize a kprobe if p is optimized */ 714 static void unoptimize_kprobe(struct kprobe *p, bool force) 715 { 716 struct optimized_kprobe *op; 717 718 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 719 return; /* This is not an optprobe nor optimized */ 720 721 op = container_of(p, struct optimized_kprobe, kp); 722 if (!kprobe_optimized(p)) 723 return; 724 725 if (!list_empty(&op->list)) { 726 if (optprobe_queued_unopt(op)) { 727 /* Queued in unoptimizing queue */ 728 if (force) { 729 /* 730 * Forcibly unoptimize the kprobe here, and queue it 731 * in the freeing list for release afterwards. 732 */ 733 force_unoptimize_kprobe(op); 734 list_move(&op->list, &freeing_list); 735 } 736 } else { 737 /* Dequeue from the optimizing queue */ 738 list_del_init(&op->list); 739 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 740 } 741 return; 742 } 743 744 /* Optimized kprobe case */ 745 if (force) { 746 /* Forcibly update the code: this is a special case */ 747 force_unoptimize_kprobe(op); 748 } else { 749 list_add(&op->list, &unoptimizing_list); 750 kick_kprobe_optimizer(); 751 } 752 } 753 754 /* Cancel unoptimizing for reusing */ 755 static int reuse_unused_kprobe(struct kprobe *ap) 756 { 757 struct optimized_kprobe *op; 758 759 /* 760 * Unused kprobe MUST be on the way of delayed unoptimizing (means 761 * there is still a relative jump) and disabled. 762 */ 763 op = container_of(ap, struct optimized_kprobe, kp); 764 WARN_ON_ONCE(list_empty(&op->list)); 765 /* Enable the probe again */ 766 ap->flags &= ~KPROBE_FLAG_DISABLED; 767 /* Optimize it again (remove from op->list) */ 768 if (!kprobe_optready(ap)) 769 return -EINVAL; 770 771 optimize_kprobe(ap); 772 return 0; 773 } 774 775 /* Remove optimized instructions */ 776 static void kill_optimized_kprobe(struct kprobe *p) 777 { 778 struct optimized_kprobe *op; 779 780 op = container_of(p, struct optimized_kprobe, kp); 781 if (!list_empty(&op->list)) 782 /* Dequeue from the (un)optimization queue */ 783 list_del_init(&op->list); 784 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 785 786 if (kprobe_unused(p)) { 787 /* Enqueue if it is unused */ 788 list_add(&op->list, &freeing_list); 789 /* 790 * Remove unused probes from the hash list. After waiting 791 * for synchronization, this probe is reclaimed. 792 * (reclaiming is done by do_free_cleaned_kprobes().) 793 */ 794 hlist_del_rcu(&op->kp.hlist); 795 } 796 797 /* Don't touch the code, because it is already freed. */ 798 arch_remove_optimized_kprobe(op); 799 } 800 801 static inline 802 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) 803 { 804 if (!kprobe_ftrace(p)) 805 arch_prepare_optimized_kprobe(op, p); 806 } 807 808 /* Try to prepare optimized instructions */ 809 static void prepare_optimized_kprobe(struct kprobe *p) 810 { 811 struct optimized_kprobe *op; 812 813 op = container_of(p, struct optimized_kprobe, kp); 814 __prepare_optimized_kprobe(op, p); 815 } 816 817 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 818 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 819 { 820 struct optimized_kprobe *op; 821 822 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 823 if (!op) 824 return NULL; 825 826 INIT_LIST_HEAD(&op->list); 827 op->kp.addr = p->addr; 828 __prepare_optimized_kprobe(op, p); 829 830 return &op->kp; 831 } 832 833 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 834 835 /* 836 * Prepare an optimized_kprobe and optimize it 837 * NOTE: p must be a normal registered kprobe 838 */ 839 static void try_to_optimize_kprobe(struct kprobe *p) 840 { 841 struct kprobe *ap; 842 struct optimized_kprobe *op; 843 844 /* Impossible to optimize ftrace-based kprobe */ 845 if (kprobe_ftrace(p)) 846 return; 847 848 /* For preparing optimization, jump_label_text_reserved() is called */ 849 cpus_read_lock(); 850 jump_label_lock(); 851 mutex_lock(&text_mutex); 852 853 ap = alloc_aggr_kprobe(p); 854 if (!ap) 855 goto out; 856 857 op = container_of(ap, struct optimized_kprobe, kp); 858 if (!arch_prepared_optinsn(&op->optinsn)) { 859 /* If failed to setup optimizing, fallback to kprobe */ 860 arch_remove_optimized_kprobe(op); 861 kfree(op); 862 goto out; 863 } 864 865 init_aggr_kprobe(ap, p); 866 optimize_kprobe(ap); /* This just kicks optimizer thread */ 867 868 out: 869 mutex_unlock(&text_mutex); 870 jump_label_unlock(); 871 cpus_read_unlock(); 872 } 873 874 static void optimize_all_kprobes(void) 875 { 876 struct hlist_head *head; 877 struct kprobe *p; 878 unsigned int i; 879 880 mutex_lock(&kprobe_mutex); 881 /* If optimization is already allowed, just return */ 882 if (kprobes_allow_optimization) 883 goto out; 884 885 cpus_read_lock(); 886 kprobes_allow_optimization = true; 887 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 888 head = &kprobe_table[i]; 889 hlist_for_each_entry(p, head, hlist) 890 if (!kprobe_disabled(p)) 891 optimize_kprobe(p); 892 } 893 cpus_read_unlock(); 894 printk(KERN_INFO "Kprobes globally optimized\n"); 895 out: 896 mutex_unlock(&kprobe_mutex); 897 } 898 899 #ifdef CONFIG_SYSCTL 900 static void unoptimize_all_kprobes(void) 901 { 902 struct hlist_head *head; 903 struct kprobe *p; 904 unsigned int i; 905 906 mutex_lock(&kprobe_mutex); 907 /* If optimization is already prohibited, just return */ 908 if (!kprobes_allow_optimization) { 909 mutex_unlock(&kprobe_mutex); 910 return; 911 } 912 913 cpus_read_lock(); 914 kprobes_allow_optimization = false; 915 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 916 head = &kprobe_table[i]; 917 hlist_for_each_entry(p, head, hlist) { 918 if (!kprobe_disabled(p)) 919 unoptimize_kprobe(p, false); 920 } 921 } 922 cpus_read_unlock(); 923 mutex_unlock(&kprobe_mutex); 924 925 /* Wait for unoptimizing completion */ 926 wait_for_kprobe_optimizer(); 927 printk(KERN_INFO "Kprobes globally unoptimized\n"); 928 } 929 930 static DEFINE_MUTEX(kprobe_sysctl_mutex); 931 int sysctl_kprobes_optimization; 932 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 933 void *buffer, size_t *length, 934 loff_t *ppos) 935 { 936 int ret; 937 938 mutex_lock(&kprobe_sysctl_mutex); 939 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 940 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 941 942 if (sysctl_kprobes_optimization) 943 optimize_all_kprobes(); 944 else 945 unoptimize_all_kprobes(); 946 mutex_unlock(&kprobe_sysctl_mutex); 947 948 return ret; 949 } 950 #endif /* CONFIG_SYSCTL */ 951 952 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 953 static void __arm_kprobe(struct kprobe *p) 954 { 955 struct kprobe *_p; 956 957 /* Check collision with other optimized kprobes */ 958 _p = get_optimized_kprobe((unsigned long)p->addr); 959 if (unlikely(_p)) 960 /* Fallback to unoptimized kprobe */ 961 unoptimize_kprobe(_p, true); 962 963 arch_arm_kprobe(p); 964 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 965 } 966 967 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 968 static void __disarm_kprobe(struct kprobe *p, bool reopt) 969 { 970 struct kprobe *_p; 971 972 /* Try to unoptimize */ 973 unoptimize_kprobe(p, kprobes_all_disarmed); 974 975 if (!kprobe_queued(p)) { 976 arch_disarm_kprobe(p); 977 /* If another kprobe was blocked, optimize it. */ 978 _p = get_optimized_kprobe((unsigned long)p->addr); 979 if (unlikely(_p) && reopt) 980 optimize_kprobe(_p); 981 } 982 /* TODO: reoptimize others after unoptimized this probe */ 983 } 984 985 #else /* !CONFIG_OPTPROBES */ 986 987 #define optimize_kprobe(p) do {} while (0) 988 #define unoptimize_kprobe(p, f) do {} while (0) 989 #define kill_optimized_kprobe(p) do {} while (0) 990 #define prepare_optimized_kprobe(p) do {} while (0) 991 #define try_to_optimize_kprobe(p) do {} while (0) 992 #define __arm_kprobe(p) arch_arm_kprobe(p) 993 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 994 #define kprobe_disarmed(p) kprobe_disabled(p) 995 #define wait_for_kprobe_optimizer() do {} while (0) 996 997 static int reuse_unused_kprobe(struct kprobe *ap) 998 { 999 /* 1000 * If the optimized kprobe is NOT supported, the aggr kprobe is 1001 * released at the same time that the last aggregated kprobe is 1002 * unregistered. 1003 * Thus there should be no chance to reuse unused kprobe. 1004 */ 1005 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 1006 return -EINVAL; 1007 } 1008 1009 static void free_aggr_kprobe(struct kprobe *p) 1010 { 1011 arch_remove_kprobe(p); 1012 kfree(p); 1013 } 1014 1015 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 1016 { 1017 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 1018 } 1019 #endif /* CONFIG_OPTPROBES */ 1020 1021 #ifdef CONFIG_KPROBES_ON_FTRACE 1022 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 1023 .func = kprobe_ftrace_handler, 1024 .flags = FTRACE_OPS_FL_SAVE_REGS, 1025 }; 1026 1027 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = { 1028 .func = kprobe_ftrace_handler, 1029 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 1030 }; 1031 1032 static int kprobe_ipmodify_enabled; 1033 static int kprobe_ftrace_enabled; 1034 1035 /* Must ensure p->addr is really on ftrace */ 1036 static int prepare_kprobe(struct kprobe *p) 1037 { 1038 if (!kprobe_ftrace(p)) 1039 return arch_prepare_kprobe(p); 1040 1041 return arch_prepare_kprobe_ftrace(p); 1042 } 1043 1044 /* Caller must lock kprobe_mutex */ 1045 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1046 int *cnt) 1047 { 1048 int ret = 0; 1049 1050 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0); 1051 if (ret) { 1052 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n", 1053 p->addr, ret); 1054 return ret; 1055 } 1056 1057 if (*cnt == 0) { 1058 ret = register_ftrace_function(ops); 1059 if (ret) { 1060 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret); 1061 goto err_ftrace; 1062 } 1063 } 1064 1065 (*cnt)++; 1066 return ret; 1067 1068 err_ftrace: 1069 /* 1070 * At this point, sinec ops is not registered, we should be sefe from 1071 * registering empty filter. 1072 */ 1073 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1074 return ret; 1075 } 1076 1077 static int arm_kprobe_ftrace(struct kprobe *p) 1078 { 1079 bool ipmodify = (p->post_handler != NULL); 1080 1081 return __arm_kprobe_ftrace(p, 1082 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1083 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1084 } 1085 1086 /* Caller must lock kprobe_mutex */ 1087 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1088 int *cnt) 1089 { 1090 int ret = 0; 1091 1092 if (*cnt == 1) { 1093 ret = unregister_ftrace_function(ops); 1094 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret)) 1095 return ret; 1096 } 1097 1098 (*cnt)--; 1099 1100 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1101 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n", 1102 p->addr, ret); 1103 return ret; 1104 } 1105 1106 static int disarm_kprobe_ftrace(struct kprobe *p) 1107 { 1108 bool ipmodify = (p->post_handler != NULL); 1109 1110 return __disarm_kprobe_ftrace(p, 1111 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1112 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1113 } 1114 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1115 static inline int prepare_kprobe(struct kprobe *p) 1116 { 1117 return arch_prepare_kprobe(p); 1118 } 1119 1120 static inline int arm_kprobe_ftrace(struct kprobe *p) 1121 { 1122 return -ENODEV; 1123 } 1124 1125 static inline int disarm_kprobe_ftrace(struct kprobe *p) 1126 { 1127 return -ENODEV; 1128 } 1129 #endif 1130 1131 /* Arm a kprobe with text_mutex */ 1132 static int arm_kprobe(struct kprobe *kp) 1133 { 1134 if (unlikely(kprobe_ftrace(kp))) 1135 return arm_kprobe_ftrace(kp); 1136 1137 cpus_read_lock(); 1138 mutex_lock(&text_mutex); 1139 __arm_kprobe(kp); 1140 mutex_unlock(&text_mutex); 1141 cpus_read_unlock(); 1142 1143 return 0; 1144 } 1145 1146 /* Disarm a kprobe with text_mutex */ 1147 static int disarm_kprobe(struct kprobe *kp, bool reopt) 1148 { 1149 if (unlikely(kprobe_ftrace(kp))) 1150 return disarm_kprobe_ftrace(kp); 1151 1152 cpus_read_lock(); 1153 mutex_lock(&text_mutex); 1154 __disarm_kprobe(kp, reopt); 1155 mutex_unlock(&text_mutex); 1156 cpus_read_unlock(); 1157 1158 return 0; 1159 } 1160 1161 /* 1162 * Aggregate handlers for multiple kprobes support - these handlers 1163 * take care of invoking the individual kprobe handlers on p->list 1164 */ 1165 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1166 { 1167 struct kprobe *kp; 1168 1169 list_for_each_entry_rcu(kp, &p->list, list) { 1170 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1171 set_kprobe_instance(kp); 1172 if (kp->pre_handler(kp, regs)) 1173 return 1; 1174 } 1175 reset_kprobe_instance(); 1176 } 1177 return 0; 1178 } 1179 NOKPROBE_SYMBOL(aggr_pre_handler); 1180 1181 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1182 unsigned long flags) 1183 { 1184 struct kprobe *kp; 1185 1186 list_for_each_entry_rcu(kp, &p->list, list) { 1187 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1188 set_kprobe_instance(kp); 1189 kp->post_handler(kp, regs, flags); 1190 reset_kprobe_instance(); 1191 } 1192 } 1193 } 1194 NOKPROBE_SYMBOL(aggr_post_handler); 1195 1196 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 1197 int trapnr) 1198 { 1199 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1200 1201 /* 1202 * if we faulted "during" the execution of a user specified 1203 * probe handler, invoke just that probe's fault handler 1204 */ 1205 if (cur && cur->fault_handler) { 1206 if (cur->fault_handler(cur, regs, trapnr)) 1207 return 1; 1208 } 1209 return 0; 1210 } 1211 NOKPROBE_SYMBOL(aggr_fault_handler); 1212 1213 /* Walks the list and increments nmissed count for multiprobe case */ 1214 void kprobes_inc_nmissed_count(struct kprobe *p) 1215 { 1216 struct kprobe *kp; 1217 if (!kprobe_aggrprobe(p)) { 1218 p->nmissed++; 1219 } else { 1220 list_for_each_entry_rcu(kp, &p->list, list) 1221 kp->nmissed++; 1222 } 1223 return; 1224 } 1225 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1226 1227 static void free_rp_inst_rcu(struct rcu_head *head) 1228 { 1229 struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu); 1230 1231 if (refcount_dec_and_test(&ri->rph->ref)) 1232 kfree(ri->rph); 1233 kfree(ri); 1234 } 1235 NOKPROBE_SYMBOL(free_rp_inst_rcu); 1236 1237 static void recycle_rp_inst(struct kretprobe_instance *ri) 1238 { 1239 struct kretprobe *rp = get_kretprobe(ri); 1240 1241 if (likely(rp)) { 1242 freelist_add(&ri->freelist, &rp->freelist); 1243 } else 1244 call_rcu(&ri->rcu, free_rp_inst_rcu); 1245 } 1246 NOKPROBE_SYMBOL(recycle_rp_inst); 1247 1248 static struct kprobe kprobe_busy = { 1249 .addr = (void *) get_kprobe, 1250 }; 1251 1252 void kprobe_busy_begin(void) 1253 { 1254 struct kprobe_ctlblk *kcb; 1255 1256 preempt_disable(); 1257 __this_cpu_write(current_kprobe, &kprobe_busy); 1258 kcb = get_kprobe_ctlblk(); 1259 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 1260 } 1261 1262 void kprobe_busy_end(void) 1263 { 1264 __this_cpu_write(current_kprobe, NULL); 1265 preempt_enable(); 1266 } 1267 1268 /* 1269 * This function is called from finish_task_switch when task tk becomes dead, 1270 * so that we can recycle any function-return probe instances associated 1271 * with this task. These left over instances represent probed functions 1272 * that have been called but will never return. 1273 */ 1274 void kprobe_flush_task(struct task_struct *tk) 1275 { 1276 struct kretprobe_instance *ri; 1277 struct llist_node *node; 1278 1279 /* Early boot, not yet initialized. */ 1280 if (unlikely(!kprobes_initialized)) 1281 return; 1282 1283 kprobe_busy_begin(); 1284 1285 node = __llist_del_all(&tk->kretprobe_instances); 1286 while (node) { 1287 ri = container_of(node, struct kretprobe_instance, llist); 1288 node = node->next; 1289 1290 recycle_rp_inst(ri); 1291 } 1292 1293 kprobe_busy_end(); 1294 } 1295 NOKPROBE_SYMBOL(kprobe_flush_task); 1296 1297 static inline void free_rp_inst(struct kretprobe *rp) 1298 { 1299 struct kretprobe_instance *ri; 1300 struct freelist_node *node; 1301 int count = 0; 1302 1303 node = rp->freelist.head; 1304 while (node) { 1305 ri = container_of(node, struct kretprobe_instance, freelist); 1306 node = node->next; 1307 1308 kfree(ri); 1309 count++; 1310 } 1311 1312 if (refcount_sub_and_test(count, &rp->rph->ref)) { 1313 kfree(rp->rph); 1314 rp->rph = NULL; 1315 } 1316 } 1317 1318 /* Add the new probe to ap->list */ 1319 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1320 { 1321 if (p->post_handler) 1322 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1323 1324 list_add_rcu(&p->list, &ap->list); 1325 if (p->post_handler && !ap->post_handler) 1326 ap->post_handler = aggr_post_handler; 1327 1328 return 0; 1329 } 1330 1331 /* 1332 * Fill in the required fields of the "manager kprobe". Replace the 1333 * earlier kprobe in the hlist with the manager kprobe 1334 */ 1335 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1336 { 1337 /* Copy p's insn slot to ap */ 1338 copy_kprobe(p, ap); 1339 flush_insn_slot(ap); 1340 ap->addr = p->addr; 1341 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1342 ap->pre_handler = aggr_pre_handler; 1343 ap->fault_handler = aggr_fault_handler; 1344 /* We don't care the kprobe which has gone. */ 1345 if (p->post_handler && !kprobe_gone(p)) 1346 ap->post_handler = aggr_post_handler; 1347 1348 INIT_LIST_HEAD(&ap->list); 1349 INIT_HLIST_NODE(&ap->hlist); 1350 1351 list_add_rcu(&p->list, &ap->list); 1352 hlist_replace_rcu(&p->hlist, &ap->hlist); 1353 } 1354 1355 /* 1356 * This is the second or subsequent kprobe at the address - handle 1357 * the intricacies 1358 */ 1359 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1360 { 1361 int ret = 0; 1362 struct kprobe *ap = orig_p; 1363 1364 cpus_read_lock(); 1365 1366 /* For preparing optimization, jump_label_text_reserved() is called */ 1367 jump_label_lock(); 1368 mutex_lock(&text_mutex); 1369 1370 if (!kprobe_aggrprobe(orig_p)) { 1371 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1372 ap = alloc_aggr_kprobe(orig_p); 1373 if (!ap) { 1374 ret = -ENOMEM; 1375 goto out; 1376 } 1377 init_aggr_kprobe(ap, orig_p); 1378 } else if (kprobe_unused(ap)) { 1379 /* This probe is going to die. Rescue it */ 1380 ret = reuse_unused_kprobe(ap); 1381 if (ret) 1382 goto out; 1383 } 1384 1385 if (kprobe_gone(ap)) { 1386 /* 1387 * Attempting to insert new probe at the same location that 1388 * had a probe in the module vaddr area which already 1389 * freed. So, the instruction slot has already been 1390 * released. We need a new slot for the new probe. 1391 */ 1392 ret = arch_prepare_kprobe(ap); 1393 if (ret) 1394 /* 1395 * Even if fail to allocate new slot, don't need to 1396 * free aggr_probe. It will be used next time, or 1397 * freed by unregister_kprobe. 1398 */ 1399 goto out; 1400 1401 /* Prepare optimized instructions if possible. */ 1402 prepare_optimized_kprobe(ap); 1403 1404 /* 1405 * Clear gone flag to prevent allocating new slot again, and 1406 * set disabled flag because it is not armed yet. 1407 */ 1408 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1409 | KPROBE_FLAG_DISABLED; 1410 } 1411 1412 /* Copy ap's insn slot to p */ 1413 copy_kprobe(ap, p); 1414 ret = add_new_kprobe(ap, p); 1415 1416 out: 1417 mutex_unlock(&text_mutex); 1418 jump_label_unlock(); 1419 cpus_read_unlock(); 1420 1421 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1422 ap->flags &= ~KPROBE_FLAG_DISABLED; 1423 if (!kprobes_all_disarmed) { 1424 /* Arm the breakpoint again. */ 1425 ret = arm_kprobe(ap); 1426 if (ret) { 1427 ap->flags |= KPROBE_FLAG_DISABLED; 1428 list_del_rcu(&p->list); 1429 synchronize_rcu(); 1430 } 1431 } 1432 } 1433 return ret; 1434 } 1435 1436 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1437 { 1438 /* The __kprobes marked functions and entry code must not be probed */ 1439 return addr >= (unsigned long)__kprobes_text_start && 1440 addr < (unsigned long)__kprobes_text_end; 1441 } 1442 1443 static bool __within_kprobe_blacklist(unsigned long addr) 1444 { 1445 struct kprobe_blacklist_entry *ent; 1446 1447 if (arch_within_kprobe_blacklist(addr)) 1448 return true; 1449 /* 1450 * If there exists a kprobe_blacklist, verify and 1451 * fail any probe registration in the prohibited area 1452 */ 1453 list_for_each_entry(ent, &kprobe_blacklist, list) { 1454 if (addr >= ent->start_addr && addr < ent->end_addr) 1455 return true; 1456 } 1457 return false; 1458 } 1459 1460 bool within_kprobe_blacklist(unsigned long addr) 1461 { 1462 char symname[KSYM_NAME_LEN], *p; 1463 1464 if (__within_kprobe_blacklist(addr)) 1465 return true; 1466 1467 /* Check if the address is on a suffixed-symbol */ 1468 if (!lookup_symbol_name(addr, symname)) { 1469 p = strchr(symname, '.'); 1470 if (!p) 1471 return false; 1472 *p = '\0'; 1473 addr = (unsigned long)kprobe_lookup_name(symname, 0); 1474 if (addr) 1475 return __within_kprobe_blacklist(addr); 1476 } 1477 return false; 1478 } 1479 1480 /* 1481 * If we have a symbol_name argument, look it up and add the offset field 1482 * to it. This way, we can specify a relative address to a symbol. 1483 * This returns encoded errors if it fails to look up symbol or invalid 1484 * combination of parameters. 1485 */ 1486 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr, 1487 const char *symbol_name, unsigned int offset) 1488 { 1489 if ((symbol_name && addr) || (!symbol_name && !addr)) 1490 goto invalid; 1491 1492 if (symbol_name) { 1493 addr = kprobe_lookup_name(symbol_name, offset); 1494 if (!addr) 1495 return ERR_PTR(-ENOENT); 1496 } 1497 1498 addr = (kprobe_opcode_t *)(((char *)addr) + offset); 1499 if (addr) 1500 return addr; 1501 1502 invalid: 1503 return ERR_PTR(-EINVAL); 1504 } 1505 1506 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1507 { 1508 return _kprobe_addr(p->addr, p->symbol_name, p->offset); 1509 } 1510 1511 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1512 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1513 { 1514 struct kprobe *ap, *list_p; 1515 1516 lockdep_assert_held(&kprobe_mutex); 1517 1518 ap = get_kprobe(p->addr); 1519 if (unlikely(!ap)) 1520 return NULL; 1521 1522 if (p != ap) { 1523 list_for_each_entry(list_p, &ap->list, list) 1524 if (list_p == p) 1525 /* kprobe p is a valid probe */ 1526 goto valid; 1527 return NULL; 1528 } 1529 valid: 1530 return ap; 1531 } 1532 1533 /* 1534 * Warn and return error if the kprobe is being re-registered since 1535 * there must be a software bug. 1536 */ 1537 static inline int warn_kprobe_rereg(struct kprobe *p) 1538 { 1539 int ret = 0; 1540 1541 mutex_lock(&kprobe_mutex); 1542 if (WARN_ON_ONCE(__get_valid_kprobe(p))) 1543 ret = -EINVAL; 1544 mutex_unlock(&kprobe_mutex); 1545 1546 return ret; 1547 } 1548 1549 int __weak arch_check_ftrace_location(struct kprobe *p) 1550 { 1551 unsigned long ftrace_addr; 1552 1553 ftrace_addr = ftrace_location((unsigned long)p->addr); 1554 if (ftrace_addr) { 1555 #ifdef CONFIG_KPROBES_ON_FTRACE 1556 /* Given address is not on the instruction boundary */ 1557 if ((unsigned long)p->addr != ftrace_addr) 1558 return -EILSEQ; 1559 p->flags |= KPROBE_FLAG_FTRACE; 1560 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1561 return -EINVAL; 1562 #endif 1563 } 1564 return 0; 1565 } 1566 1567 static int check_kprobe_address_safe(struct kprobe *p, 1568 struct module **probed_mod) 1569 { 1570 int ret; 1571 1572 ret = arch_check_ftrace_location(p); 1573 if (ret) 1574 return ret; 1575 jump_label_lock(); 1576 preempt_disable(); 1577 1578 /* Ensure it is not in reserved area nor out of text */ 1579 if (!kernel_text_address((unsigned long) p->addr) || 1580 within_kprobe_blacklist((unsigned long) p->addr) || 1581 jump_label_text_reserved(p->addr, p->addr) || 1582 find_bug((unsigned long)p->addr)) { 1583 ret = -EINVAL; 1584 goto out; 1585 } 1586 1587 /* Check if are we probing a module */ 1588 *probed_mod = __module_text_address((unsigned long) p->addr); 1589 if (*probed_mod) { 1590 /* 1591 * We must hold a refcount of the probed module while updating 1592 * its code to prohibit unexpected unloading. 1593 */ 1594 if (unlikely(!try_module_get(*probed_mod))) { 1595 ret = -ENOENT; 1596 goto out; 1597 } 1598 1599 /* 1600 * If the module freed .init.text, we couldn't insert 1601 * kprobes in there. 1602 */ 1603 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1604 (*probed_mod)->state != MODULE_STATE_COMING) { 1605 module_put(*probed_mod); 1606 *probed_mod = NULL; 1607 ret = -ENOENT; 1608 } 1609 } 1610 out: 1611 preempt_enable(); 1612 jump_label_unlock(); 1613 1614 return ret; 1615 } 1616 1617 int register_kprobe(struct kprobe *p) 1618 { 1619 int ret; 1620 struct kprobe *old_p; 1621 struct module *probed_mod; 1622 kprobe_opcode_t *addr; 1623 1624 /* Adjust probe address from symbol */ 1625 addr = kprobe_addr(p); 1626 if (IS_ERR(addr)) 1627 return PTR_ERR(addr); 1628 p->addr = addr; 1629 1630 ret = warn_kprobe_rereg(p); 1631 if (ret) 1632 return ret; 1633 1634 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1635 p->flags &= KPROBE_FLAG_DISABLED; 1636 p->nmissed = 0; 1637 INIT_LIST_HEAD(&p->list); 1638 1639 ret = check_kprobe_address_safe(p, &probed_mod); 1640 if (ret) 1641 return ret; 1642 1643 mutex_lock(&kprobe_mutex); 1644 1645 old_p = get_kprobe(p->addr); 1646 if (old_p) { 1647 /* Since this may unoptimize old_p, locking text_mutex. */ 1648 ret = register_aggr_kprobe(old_p, p); 1649 goto out; 1650 } 1651 1652 cpus_read_lock(); 1653 /* Prevent text modification */ 1654 mutex_lock(&text_mutex); 1655 ret = prepare_kprobe(p); 1656 mutex_unlock(&text_mutex); 1657 cpus_read_unlock(); 1658 if (ret) 1659 goto out; 1660 1661 INIT_HLIST_NODE(&p->hlist); 1662 hlist_add_head_rcu(&p->hlist, 1663 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1664 1665 if (!kprobes_all_disarmed && !kprobe_disabled(p)) { 1666 ret = arm_kprobe(p); 1667 if (ret) { 1668 hlist_del_rcu(&p->hlist); 1669 synchronize_rcu(); 1670 goto out; 1671 } 1672 } 1673 1674 /* Try to optimize kprobe */ 1675 try_to_optimize_kprobe(p); 1676 out: 1677 mutex_unlock(&kprobe_mutex); 1678 1679 if (probed_mod) 1680 module_put(probed_mod); 1681 1682 return ret; 1683 } 1684 EXPORT_SYMBOL_GPL(register_kprobe); 1685 1686 /* Check if all probes on the aggrprobe are disabled */ 1687 static int aggr_kprobe_disabled(struct kprobe *ap) 1688 { 1689 struct kprobe *kp; 1690 1691 lockdep_assert_held(&kprobe_mutex); 1692 1693 list_for_each_entry(kp, &ap->list, list) 1694 if (!kprobe_disabled(kp)) 1695 /* 1696 * There is an active probe on the list. 1697 * We can't disable this ap. 1698 */ 1699 return 0; 1700 1701 return 1; 1702 } 1703 1704 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1705 static struct kprobe *__disable_kprobe(struct kprobe *p) 1706 { 1707 struct kprobe *orig_p; 1708 int ret; 1709 1710 /* Get an original kprobe for return */ 1711 orig_p = __get_valid_kprobe(p); 1712 if (unlikely(orig_p == NULL)) 1713 return ERR_PTR(-EINVAL); 1714 1715 if (!kprobe_disabled(p)) { 1716 /* Disable probe if it is a child probe */ 1717 if (p != orig_p) 1718 p->flags |= KPROBE_FLAG_DISABLED; 1719 1720 /* Try to disarm and disable this/parent probe */ 1721 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1722 /* 1723 * If kprobes_all_disarmed is set, orig_p 1724 * should have already been disarmed, so 1725 * skip unneed disarming process. 1726 */ 1727 if (!kprobes_all_disarmed) { 1728 ret = disarm_kprobe(orig_p, true); 1729 if (ret) { 1730 p->flags &= ~KPROBE_FLAG_DISABLED; 1731 return ERR_PTR(ret); 1732 } 1733 } 1734 orig_p->flags |= KPROBE_FLAG_DISABLED; 1735 } 1736 } 1737 1738 return orig_p; 1739 } 1740 1741 /* 1742 * Unregister a kprobe without a scheduler synchronization. 1743 */ 1744 static int __unregister_kprobe_top(struct kprobe *p) 1745 { 1746 struct kprobe *ap, *list_p; 1747 1748 /* Disable kprobe. This will disarm it if needed. */ 1749 ap = __disable_kprobe(p); 1750 if (IS_ERR(ap)) 1751 return PTR_ERR(ap); 1752 1753 if (ap == p) 1754 /* 1755 * This probe is an independent(and non-optimized) kprobe 1756 * (not an aggrprobe). Remove from the hash list. 1757 */ 1758 goto disarmed; 1759 1760 /* Following process expects this probe is an aggrprobe */ 1761 WARN_ON(!kprobe_aggrprobe(ap)); 1762 1763 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1764 /* 1765 * !disarmed could be happen if the probe is under delayed 1766 * unoptimizing. 1767 */ 1768 goto disarmed; 1769 else { 1770 /* If disabling probe has special handlers, update aggrprobe */ 1771 if (p->post_handler && !kprobe_gone(p)) { 1772 list_for_each_entry(list_p, &ap->list, list) { 1773 if ((list_p != p) && (list_p->post_handler)) 1774 goto noclean; 1775 } 1776 ap->post_handler = NULL; 1777 } 1778 noclean: 1779 /* 1780 * Remove from the aggrprobe: this path will do nothing in 1781 * __unregister_kprobe_bottom(). 1782 */ 1783 list_del_rcu(&p->list); 1784 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1785 /* 1786 * Try to optimize this probe again, because post 1787 * handler may have been changed. 1788 */ 1789 optimize_kprobe(ap); 1790 } 1791 return 0; 1792 1793 disarmed: 1794 hlist_del_rcu(&ap->hlist); 1795 return 0; 1796 } 1797 1798 static void __unregister_kprobe_bottom(struct kprobe *p) 1799 { 1800 struct kprobe *ap; 1801 1802 if (list_empty(&p->list)) 1803 /* This is an independent kprobe */ 1804 arch_remove_kprobe(p); 1805 else if (list_is_singular(&p->list)) { 1806 /* This is the last child of an aggrprobe */ 1807 ap = list_entry(p->list.next, struct kprobe, list); 1808 list_del(&p->list); 1809 free_aggr_kprobe(ap); 1810 } 1811 /* Otherwise, do nothing. */ 1812 } 1813 1814 int register_kprobes(struct kprobe **kps, int num) 1815 { 1816 int i, ret = 0; 1817 1818 if (num <= 0) 1819 return -EINVAL; 1820 for (i = 0; i < num; i++) { 1821 ret = register_kprobe(kps[i]); 1822 if (ret < 0) { 1823 if (i > 0) 1824 unregister_kprobes(kps, i); 1825 break; 1826 } 1827 } 1828 return ret; 1829 } 1830 EXPORT_SYMBOL_GPL(register_kprobes); 1831 1832 void unregister_kprobe(struct kprobe *p) 1833 { 1834 unregister_kprobes(&p, 1); 1835 } 1836 EXPORT_SYMBOL_GPL(unregister_kprobe); 1837 1838 void unregister_kprobes(struct kprobe **kps, int num) 1839 { 1840 int i; 1841 1842 if (num <= 0) 1843 return; 1844 mutex_lock(&kprobe_mutex); 1845 for (i = 0; i < num; i++) 1846 if (__unregister_kprobe_top(kps[i]) < 0) 1847 kps[i]->addr = NULL; 1848 mutex_unlock(&kprobe_mutex); 1849 1850 synchronize_rcu(); 1851 for (i = 0; i < num; i++) 1852 if (kps[i]->addr) 1853 __unregister_kprobe_bottom(kps[i]); 1854 } 1855 EXPORT_SYMBOL_GPL(unregister_kprobes); 1856 1857 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1858 unsigned long val, void *data) 1859 { 1860 return NOTIFY_DONE; 1861 } 1862 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1863 1864 static struct notifier_block kprobe_exceptions_nb = { 1865 .notifier_call = kprobe_exceptions_notify, 1866 .priority = 0x7fffffff /* we need to be notified first */ 1867 }; 1868 1869 unsigned long __weak arch_deref_entry_point(void *entry) 1870 { 1871 return (unsigned long)entry; 1872 } 1873 1874 #ifdef CONFIG_KRETPROBES 1875 1876 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs, 1877 void *trampoline_address, 1878 void *frame_pointer) 1879 { 1880 kprobe_opcode_t *correct_ret_addr = NULL; 1881 struct kretprobe_instance *ri = NULL; 1882 struct llist_node *first, *node; 1883 struct kretprobe *rp; 1884 1885 /* Find all nodes for this frame. */ 1886 first = node = current->kretprobe_instances.first; 1887 while (node) { 1888 ri = container_of(node, struct kretprobe_instance, llist); 1889 1890 BUG_ON(ri->fp != frame_pointer); 1891 1892 if (ri->ret_addr != trampoline_address) { 1893 correct_ret_addr = ri->ret_addr; 1894 /* 1895 * This is the real return address. Any other 1896 * instances associated with this task are for 1897 * other calls deeper on the call stack 1898 */ 1899 goto found; 1900 } 1901 1902 node = node->next; 1903 } 1904 pr_err("Oops! Kretprobe fails to find correct return address.\n"); 1905 BUG_ON(1); 1906 1907 found: 1908 /* Unlink all nodes for this frame. */ 1909 current->kretprobe_instances.first = node->next; 1910 node->next = NULL; 1911 1912 /* Run them.. */ 1913 while (first) { 1914 ri = container_of(first, struct kretprobe_instance, llist); 1915 first = first->next; 1916 1917 rp = get_kretprobe(ri); 1918 if (rp && rp->handler) { 1919 struct kprobe *prev = kprobe_running(); 1920 1921 __this_cpu_write(current_kprobe, &rp->kp); 1922 ri->ret_addr = correct_ret_addr; 1923 rp->handler(ri, regs); 1924 __this_cpu_write(current_kprobe, prev); 1925 } 1926 1927 recycle_rp_inst(ri); 1928 } 1929 1930 return (unsigned long)correct_ret_addr; 1931 } 1932 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler) 1933 1934 /* 1935 * This kprobe pre_handler is registered with every kretprobe. When probe 1936 * hits it will set up the return probe. 1937 */ 1938 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 1939 { 1940 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1941 struct kretprobe_instance *ri; 1942 struct freelist_node *fn; 1943 1944 fn = freelist_try_get(&rp->freelist); 1945 if (!fn) { 1946 rp->nmissed++; 1947 return 0; 1948 } 1949 1950 ri = container_of(fn, struct kretprobe_instance, freelist); 1951 1952 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 1953 freelist_add(&ri->freelist, &rp->freelist); 1954 return 0; 1955 } 1956 1957 arch_prepare_kretprobe(ri, regs); 1958 1959 __llist_add(&ri->llist, ¤t->kretprobe_instances); 1960 1961 return 0; 1962 } 1963 NOKPROBE_SYMBOL(pre_handler_kretprobe); 1964 1965 bool __weak arch_kprobe_on_func_entry(unsigned long offset) 1966 { 1967 return !offset; 1968 } 1969 1970 /** 1971 * kprobe_on_func_entry() -- check whether given address is function entry 1972 * @addr: Target address 1973 * @sym: Target symbol name 1974 * @offset: The offset from the symbol or the address 1975 * 1976 * This checks whether the given @addr+@offset or @sym+@offset is on the 1977 * function entry address or not. 1978 * This returns 0 if it is the function entry, or -EINVAL if it is not. 1979 * And also it returns -ENOENT if it fails the symbol or address lookup. 1980 * Caller must pass @addr or @sym (either one must be NULL), or this 1981 * returns -EINVAL. 1982 */ 1983 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 1984 { 1985 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset); 1986 1987 if (IS_ERR(kp_addr)) 1988 return PTR_ERR(kp_addr); 1989 1990 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset)) 1991 return -ENOENT; 1992 1993 if (!arch_kprobe_on_func_entry(offset)) 1994 return -EINVAL; 1995 1996 return 0; 1997 } 1998 1999 int register_kretprobe(struct kretprobe *rp) 2000 { 2001 int ret; 2002 struct kretprobe_instance *inst; 2003 int i; 2004 void *addr; 2005 2006 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset); 2007 if (ret) 2008 return ret; 2009 2010 /* If only rp->kp.addr is specified, check reregistering kprobes */ 2011 if (rp->kp.addr && warn_kprobe_rereg(&rp->kp)) 2012 return -EINVAL; 2013 2014 if (kretprobe_blacklist_size) { 2015 addr = kprobe_addr(&rp->kp); 2016 if (IS_ERR(addr)) 2017 return PTR_ERR(addr); 2018 2019 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2020 if (kretprobe_blacklist[i].addr == addr) 2021 return -EINVAL; 2022 } 2023 } 2024 2025 rp->kp.pre_handler = pre_handler_kretprobe; 2026 rp->kp.post_handler = NULL; 2027 rp->kp.fault_handler = NULL; 2028 2029 /* Pre-allocate memory for max kretprobe instances */ 2030 if (rp->maxactive <= 0) { 2031 #ifdef CONFIG_PREEMPTION 2032 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 2033 #else 2034 rp->maxactive = num_possible_cpus(); 2035 #endif 2036 } 2037 rp->freelist.head = NULL; 2038 rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL); 2039 if (!rp->rph) 2040 return -ENOMEM; 2041 2042 rp->rph->rp = rp; 2043 for (i = 0; i < rp->maxactive; i++) { 2044 inst = kzalloc(sizeof(struct kretprobe_instance) + 2045 rp->data_size, GFP_KERNEL); 2046 if (inst == NULL) { 2047 refcount_set(&rp->rph->ref, i); 2048 free_rp_inst(rp); 2049 return -ENOMEM; 2050 } 2051 inst->rph = rp->rph; 2052 freelist_add(&inst->freelist, &rp->freelist); 2053 } 2054 refcount_set(&rp->rph->ref, i); 2055 2056 rp->nmissed = 0; 2057 /* Establish function entry probe point */ 2058 ret = register_kprobe(&rp->kp); 2059 if (ret != 0) 2060 free_rp_inst(rp); 2061 return ret; 2062 } 2063 EXPORT_SYMBOL_GPL(register_kretprobe); 2064 2065 int register_kretprobes(struct kretprobe **rps, int num) 2066 { 2067 int ret = 0, i; 2068 2069 if (num <= 0) 2070 return -EINVAL; 2071 for (i = 0; i < num; i++) { 2072 ret = register_kretprobe(rps[i]); 2073 if (ret < 0) { 2074 if (i > 0) 2075 unregister_kretprobes(rps, i); 2076 break; 2077 } 2078 } 2079 return ret; 2080 } 2081 EXPORT_SYMBOL_GPL(register_kretprobes); 2082 2083 void unregister_kretprobe(struct kretprobe *rp) 2084 { 2085 unregister_kretprobes(&rp, 1); 2086 } 2087 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2088 2089 void unregister_kretprobes(struct kretprobe **rps, int num) 2090 { 2091 int i; 2092 2093 if (num <= 0) 2094 return; 2095 mutex_lock(&kprobe_mutex); 2096 for (i = 0; i < num; i++) { 2097 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 2098 rps[i]->kp.addr = NULL; 2099 rps[i]->rph->rp = NULL; 2100 } 2101 mutex_unlock(&kprobe_mutex); 2102 2103 synchronize_rcu(); 2104 for (i = 0; i < num; i++) { 2105 if (rps[i]->kp.addr) { 2106 __unregister_kprobe_bottom(&rps[i]->kp); 2107 free_rp_inst(rps[i]); 2108 } 2109 } 2110 } 2111 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2112 2113 #else /* CONFIG_KRETPROBES */ 2114 int register_kretprobe(struct kretprobe *rp) 2115 { 2116 return -ENOSYS; 2117 } 2118 EXPORT_SYMBOL_GPL(register_kretprobe); 2119 2120 int register_kretprobes(struct kretprobe **rps, int num) 2121 { 2122 return -ENOSYS; 2123 } 2124 EXPORT_SYMBOL_GPL(register_kretprobes); 2125 2126 void unregister_kretprobe(struct kretprobe *rp) 2127 { 2128 } 2129 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2130 2131 void unregister_kretprobes(struct kretprobe **rps, int num) 2132 { 2133 } 2134 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2135 2136 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2137 { 2138 return 0; 2139 } 2140 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2141 2142 #endif /* CONFIG_KRETPROBES */ 2143 2144 /* Set the kprobe gone and remove its instruction buffer. */ 2145 static void kill_kprobe(struct kprobe *p) 2146 { 2147 struct kprobe *kp; 2148 2149 lockdep_assert_held(&kprobe_mutex); 2150 2151 p->flags |= KPROBE_FLAG_GONE; 2152 if (kprobe_aggrprobe(p)) { 2153 /* 2154 * If this is an aggr_kprobe, we have to list all the 2155 * chained probes and mark them GONE. 2156 */ 2157 list_for_each_entry(kp, &p->list, list) 2158 kp->flags |= KPROBE_FLAG_GONE; 2159 p->post_handler = NULL; 2160 kill_optimized_kprobe(p); 2161 } 2162 /* 2163 * Here, we can remove insn_slot safely, because no thread calls 2164 * the original probed function (which will be freed soon) any more. 2165 */ 2166 arch_remove_kprobe(p); 2167 2168 /* 2169 * The module is going away. We should disarm the kprobe which 2170 * is using ftrace, because ftrace framework is still available at 2171 * MODULE_STATE_GOING notification. 2172 */ 2173 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed) 2174 disarm_kprobe_ftrace(p); 2175 } 2176 2177 /* Disable one kprobe */ 2178 int disable_kprobe(struct kprobe *kp) 2179 { 2180 int ret = 0; 2181 struct kprobe *p; 2182 2183 mutex_lock(&kprobe_mutex); 2184 2185 /* Disable this kprobe */ 2186 p = __disable_kprobe(kp); 2187 if (IS_ERR(p)) 2188 ret = PTR_ERR(p); 2189 2190 mutex_unlock(&kprobe_mutex); 2191 return ret; 2192 } 2193 EXPORT_SYMBOL_GPL(disable_kprobe); 2194 2195 /* Enable one kprobe */ 2196 int enable_kprobe(struct kprobe *kp) 2197 { 2198 int ret = 0; 2199 struct kprobe *p; 2200 2201 mutex_lock(&kprobe_mutex); 2202 2203 /* Check whether specified probe is valid. */ 2204 p = __get_valid_kprobe(kp); 2205 if (unlikely(p == NULL)) { 2206 ret = -EINVAL; 2207 goto out; 2208 } 2209 2210 if (kprobe_gone(kp)) { 2211 /* This kprobe has gone, we couldn't enable it. */ 2212 ret = -EINVAL; 2213 goto out; 2214 } 2215 2216 if (p != kp) 2217 kp->flags &= ~KPROBE_FLAG_DISABLED; 2218 2219 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2220 p->flags &= ~KPROBE_FLAG_DISABLED; 2221 ret = arm_kprobe(p); 2222 if (ret) 2223 p->flags |= KPROBE_FLAG_DISABLED; 2224 } 2225 out: 2226 mutex_unlock(&kprobe_mutex); 2227 return ret; 2228 } 2229 EXPORT_SYMBOL_GPL(enable_kprobe); 2230 2231 /* Caller must NOT call this in usual path. This is only for critical case */ 2232 void dump_kprobe(struct kprobe *kp) 2233 { 2234 pr_err("Dumping kprobe:\n"); 2235 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n", 2236 kp->symbol_name, kp->offset, kp->addr); 2237 } 2238 NOKPROBE_SYMBOL(dump_kprobe); 2239 2240 int kprobe_add_ksym_blacklist(unsigned long entry) 2241 { 2242 struct kprobe_blacklist_entry *ent; 2243 unsigned long offset = 0, size = 0; 2244 2245 if (!kernel_text_address(entry) || 2246 !kallsyms_lookup_size_offset(entry, &size, &offset)) 2247 return -EINVAL; 2248 2249 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2250 if (!ent) 2251 return -ENOMEM; 2252 ent->start_addr = entry; 2253 ent->end_addr = entry + size; 2254 INIT_LIST_HEAD(&ent->list); 2255 list_add_tail(&ent->list, &kprobe_blacklist); 2256 2257 return (int)size; 2258 } 2259 2260 /* Add all symbols in given area into kprobe blacklist */ 2261 int kprobe_add_area_blacklist(unsigned long start, unsigned long end) 2262 { 2263 unsigned long entry; 2264 int ret = 0; 2265 2266 for (entry = start; entry < end; entry += ret) { 2267 ret = kprobe_add_ksym_blacklist(entry); 2268 if (ret < 0) 2269 return ret; 2270 if (ret == 0) /* In case of alias symbol */ 2271 ret = 1; 2272 } 2273 return 0; 2274 } 2275 2276 /* Remove all symbols in given area from kprobe blacklist */ 2277 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end) 2278 { 2279 struct kprobe_blacklist_entry *ent, *n; 2280 2281 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) { 2282 if (ent->start_addr < start || ent->start_addr >= end) 2283 continue; 2284 list_del(&ent->list); 2285 kfree(ent); 2286 } 2287 } 2288 2289 static void kprobe_remove_ksym_blacklist(unsigned long entry) 2290 { 2291 kprobe_remove_area_blacklist(entry, entry + 1); 2292 } 2293 2294 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value, 2295 char *type, char *sym) 2296 { 2297 return -ERANGE; 2298 } 2299 2300 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 2301 char *sym) 2302 { 2303 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 2304 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym)) 2305 return 0; 2306 #ifdef CONFIG_OPTPROBES 2307 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym)) 2308 return 0; 2309 #endif 2310 #endif 2311 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym)) 2312 return 0; 2313 return -ERANGE; 2314 } 2315 2316 int __init __weak arch_populate_kprobe_blacklist(void) 2317 { 2318 return 0; 2319 } 2320 2321 /* 2322 * Lookup and populate the kprobe_blacklist. 2323 * 2324 * Unlike the kretprobe blacklist, we'll need to determine 2325 * the range of addresses that belong to the said functions, 2326 * since a kprobe need not necessarily be at the beginning 2327 * of a function. 2328 */ 2329 static int __init populate_kprobe_blacklist(unsigned long *start, 2330 unsigned long *end) 2331 { 2332 unsigned long entry; 2333 unsigned long *iter; 2334 int ret; 2335 2336 for (iter = start; iter < end; iter++) { 2337 entry = arch_deref_entry_point((void *)*iter); 2338 ret = kprobe_add_ksym_blacklist(entry); 2339 if (ret == -EINVAL) 2340 continue; 2341 if (ret < 0) 2342 return ret; 2343 } 2344 2345 /* Symbols in __kprobes_text are blacklisted */ 2346 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start, 2347 (unsigned long)__kprobes_text_end); 2348 if (ret) 2349 return ret; 2350 2351 /* Symbols in noinstr section are blacklisted */ 2352 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start, 2353 (unsigned long)__noinstr_text_end); 2354 2355 return ret ? : arch_populate_kprobe_blacklist(); 2356 } 2357 2358 static void add_module_kprobe_blacklist(struct module *mod) 2359 { 2360 unsigned long start, end; 2361 int i; 2362 2363 if (mod->kprobe_blacklist) { 2364 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2365 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]); 2366 } 2367 2368 start = (unsigned long)mod->kprobes_text_start; 2369 if (start) { 2370 end = start + mod->kprobes_text_size; 2371 kprobe_add_area_blacklist(start, end); 2372 } 2373 2374 start = (unsigned long)mod->noinstr_text_start; 2375 if (start) { 2376 end = start + mod->noinstr_text_size; 2377 kprobe_add_area_blacklist(start, end); 2378 } 2379 } 2380 2381 static void remove_module_kprobe_blacklist(struct module *mod) 2382 { 2383 unsigned long start, end; 2384 int i; 2385 2386 if (mod->kprobe_blacklist) { 2387 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2388 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]); 2389 } 2390 2391 start = (unsigned long)mod->kprobes_text_start; 2392 if (start) { 2393 end = start + mod->kprobes_text_size; 2394 kprobe_remove_area_blacklist(start, end); 2395 } 2396 2397 start = (unsigned long)mod->noinstr_text_start; 2398 if (start) { 2399 end = start + mod->noinstr_text_size; 2400 kprobe_remove_area_blacklist(start, end); 2401 } 2402 } 2403 2404 /* Module notifier call back, checking kprobes on the module */ 2405 static int kprobes_module_callback(struct notifier_block *nb, 2406 unsigned long val, void *data) 2407 { 2408 struct module *mod = data; 2409 struct hlist_head *head; 2410 struct kprobe *p; 2411 unsigned int i; 2412 int checkcore = (val == MODULE_STATE_GOING); 2413 2414 if (val == MODULE_STATE_COMING) { 2415 mutex_lock(&kprobe_mutex); 2416 add_module_kprobe_blacklist(mod); 2417 mutex_unlock(&kprobe_mutex); 2418 } 2419 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2420 return NOTIFY_DONE; 2421 2422 /* 2423 * When MODULE_STATE_GOING was notified, both of module .text and 2424 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2425 * notified, only .init.text section would be freed. We need to 2426 * disable kprobes which have been inserted in the sections. 2427 */ 2428 mutex_lock(&kprobe_mutex); 2429 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2430 head = &kprobe_table[i]; 2431 hlist_for_each_entry(p, head, hlist) 2432 if (within_module_init((unsigned long)p->addr, mod) || 2433 (checkcore && 2434 within_module_core((unsigned long)p->addr, mod))) { 2435 /* 2436 * The vaddr this probe is installed will soon 2437 * be vfreed buy not synced to disk. Hence, 2438 * disarming the breakpoint isn't needed. 2439 * 2440 * Note, this will also move any optimized probes 2441 * that are pending to be removed from their 2442 * corresponding lists to the freeing_list and 2443 * will not be touched by the delayed 2444 * kprobe_optimizer work handler. 2445 */ 2446 kill_kprobe(p); 2447 } 2448 } 2449 if (val == MODULE_STATE_GOING) 2450 remove_module_kprobe_blacklist(mod); 2451 mutex_unlock(&kprobe_mutex); 2452 return NOTIFY_DONE; 2453 } 2454 2455 static struct notifier_block kprobe_module_nb = { 2456 .notifier_call = kprobes_module_callback, 2457 .priority = 0 2458 }; 2459 2460 /* Markers of _kprobe_blacklist section */ 2461 extern unsigned long __start_kprobe_blacklist[]; 2462 extern unsigned long __stop_kprobe_blacklist[]; 2463 2464 void kprobe_free_init_mem(void) 2465 { 2466 void *start = (void *)(&__init_begin); 2467 void *end = (void *)(&__init_end); 2468 struct hlist_head *head; 2469 struct kprobe *p; 2470 int i; 2471 2472 mutex_lock(&kprobe_mutex); 2473 2474 /* Kill all kprobes on initmem */ 2475 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2476 head = &kprobe_table[i]; 2477 hlist_for_each_entry(p, head, hlist) { 2478 if (start <= (void *)p->addr && (void *)p->addr < end) 2479 kill_kprobe(p); 2480 } 2481 } 2482 2483 mutex_unlock(&kprobe_mutex); 2484 } 2485 2486 static int __init init_kprobes(void) 2487 { 2488 int i, err = 0; 2489 2490 /* FIXME allocate the probe table, currently defined statically */ 2491 /* initialize all list heads */ 2492 for (i = 0; i < KPROBE_TABLE_SIZE; i++) 2493 INIT_HLIST_HEAD(&kprobe_table[i]); 2494 2495 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2496 __stop_kprobe_blacklist); 2497 if (err) { 2498 pr_err("kprobes: failed to populate blacklist: %d\n", err); 2499 pr_err("Please take care of using kprobes.\n"); 2500 } 2501 2502 if (kretprobe_blacklist_size) { 2503 /* lookup the function address from its name */ 2504 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2505 kretprobe_blacklist[i].addr = 2506 kprobe_lookup_name(kretprobe_blacklist[i].name, 0); 2507 if (!kretprobe_blacklist[i].addr) 2508 printk("kretprobe: lookup failed: %s\n", 2509 kretprobe_blacklist[i].name); 2510 } 2511 } 2512 2513 /* By default, kprobes are armed */ 2514 kprobes_all_disarmed = false; 2515 2516 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2517 /* Init kprobe_optinsn_slots for allocation */ 2518 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2519 #endif 2520 2521 err = arch_init_kprobes(); 2522 if (!err) 2523 err = register_die_notifier(&kprobe_exceptions_nb); 2524 if (!err) 2525 err = register_module_notifier(&kprobe_module_nb); 2526 2527 kprobes_initialized = (err == 0); 2528 2529 if (!err) 2530 init_test_probes(); 2531 return err; 2532 } 2533 early_initcall(init_kprobes); 2534 2535 #if defined(CONFIG_OPTPROBES) 2536 static int __init init_optprobes(void) 2537 { 2538 /* 2539 * Enable kprobe optimization - this kicks the optimizer which 2540 * depends on synchronize_rcu_tasks() and ksoftirqd, that is 2541 * not spawned in early initcall. So delay the optimization. 2542 */ 2543 optimize_all_kprobes(); 2544 2545 return 0; 2546 } 2547 subsys_initcall(init_optprobes); 2548 #endif 2549 2550 #ifdef CONFIG_DEBUG_FS 2551 static void report_probe(struct seq_file *pi, struct kprobe *p, 2552 const char *sym, int offset, char *modname, struct kprobe *pp) 2553 { 2554 char *kprobe_type; 2555 void *addr = p->addr; 2556 2557 if (p->pre_handler == pre_handler_kretprobe) 2558 kprobe_type = "r"; 2559 else 2560 kprobe_type = "k"; 2561 2562 if (!kallsyms_show_value(pi->file->f_cred)) 2563 addr = NULL; 2564 2565 if (sym) 2566 seq_printf(pi, "%px %s %s+0x%x %s ", 2567 addr, kprobe_type, sym, offset, 2568 (modname ? modname : " ")); 2569 else /* try to use %pS */ 2570 seq_printf(pi, "%px %s %pS ", 2571 addr, kprobe_type, p->addr); 2572 2573 if (!pp) 2574 pp = p; 2575 seq_printf(pi, "%s%s%s%s\n", 2576 (kprobe_gone(p) ? "[GONE]" : ""), 2577 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2578 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2579 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2580 } 2581 2582 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2583 { 2584 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2585 } 2586 2587 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2588 { 2589 (*pos)++; 2590 if (*pos >= KPROBE_TABLE_SIZE) 2591 return NULL; 2592 return pos; 2593 } 2594 2595 static void kprobe_seq_stop(struct seq_file *f, void *v) 2596 { 2597 /* Nothing to do */ 2598 } 2599 2600 static int show_kprobe_addr(struct seq_file *pi, void *v) 2601 { 2602 struct hlist_head *head; 2603 struct kprobe *p, *kp; 2604 const char *sym = NULL; 2605 unsigned int i = *(loff_t *) v; 2606 unsigned long offset = 0; 2607 char *modname, namebuf[KSYM_NAME_LEN]; 2608 2609 head = &kprobe_table[i]; 2610 preempt_disable(); 2611 hlist_for_each_entry_rcu(p, head, hlist) { 2612 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2613 &offset, &modname, namebuf); 2614 if (kprobe_aggrprobe(p)) { 2615 list_for_each_entry_rcu(kp, &p->list, list) 2616 report_probe(pi, kp, sym, offset, modname, p); 2617 } else 2618 report_probe(pi, p, sym, offset, modname, NULL); 2619 } 2620 preempt_enable(); 2621 return 0; 2622 } 2623 2624 static const struct seq_operations kprobes_sops = { 2625 .start = kprobe_seq_start, 2626 .next = kprobe_seq_next, 2627 .stop = kprobe_seq_stop, 2628 .show = show_kprobe_addr 2629 }; 2630 2631 DEFINE_SEQ_ATTRIBUTE(kprobes); 2632 2633 /* kprobes/blacklist -- shows which functions can not be probed */ 2634 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2635 { 2636 mutex_lock(&kprobe_mutex); 2637 return seq_list_start(&kprobe_blacklist, *pos); 2638 } 2639 2640 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2641 { 2642 return seq_list_next(v, &kprobe_blacklist, pos); 2643 } 2644 2645 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2646 { 2647 struct kprobe_blacklist_entry *ent = 2648 list_entry(v, struct kprobe_blacklist_entry, list); 2649 2650 /* 2651 * If /proc/kallsyms is not showing kernel address, we won't 2652 * show them here either. 2653 */ 2654 if (!kallsyms_show_value(m->file->f_cred)) 2655 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL, 2656 (void *)ent->start_addr); 2657 else 2658 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr, 2659 (void *)ent->end_addr, (void *)ent->start_addr); 2660 return 0; 2661 } 2662 2663 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v) 2664 { 2665 mutex_unlock(&kprobe_mutex); 2666 } 2667 2668 static const struct seq_operations kprobe_blacklist_sops = { 2669 .start = kprobe_blacklist_seq_start, 2670 .next = kprobe_blacklist_seq_next, 2671 .stop = kprobe_blacklist_seq_stop, 2672 .show = kprobe_blacklist_seq_show, 2673 }; 2674 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist); 2675 2676 static int arm_all_kprobes(void) 2677 { 2678 struct hlist_head *head; 2679 struct kprobe *p; 2680 unsigned int i, total = 0, errors = 0; 2681 int err, ret = 0; 2682 2683 mutex_lock(&kprobe_mutex); 2684 2685 /* If kprobes are armed, just return */ 2686 if (!kprobes_all_disarmed) 2687 goto already_enabled; 2688 2689 /* 2690 * optimize_kprobe() called by arm_kprobe() checks 2691 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2692 * arm_kprobe. 2693 */ 2694 kprobes_all_disarmed = false; 2695 /* Arming kprobes doesn't optimize kprobe itself */ 2696 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2697 head = &kprobe_table[i]; 2698 /* Arm all kprobes on a best-effort basis */ 2699 hlist_for_each_entry(p, head, hlist) { 2700 if (!kprobe_disabled(p)) { 2701 err = arm_kprobe(p); 2702 if (err) { 2703 errors++; 2704 ret = err; 2705 } 2706 total++; 2707 } 2708 } 2709 } 2710 2711 if (errors) 2712 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n", 2713 errors, total); 2714 else 2715 pr_info("Kprobes globally enabled\n"); 2716 2717 already_enabled: 2718 mutex_unlock(&kprobe_mutex); 2719 return ret; 2720 } 2721 2722 static int disarm_all_kprobes(void) 2723 { 2724 struct hlist_head *head; 2725 struct kprobe *p; 2726 unsigned int i, total = 0, errors = 0; 2727 int err, ret = 0; 2728 2729 mutex_lock(&kprobe_mutex); 2730 2731 /* If kprobes are already disarmed, just return */ 2732 if (kprobes_all_disarmed) { 2733 mutex_unlock(&kprobe_mutex); 2734 return 0; 2735 } 2736 2737 kprobes_all_disarmed = true; 2738 2739 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2740 head = &kprobe_table[i]; 2741 /* Disarm all kprobes on a best-effort basis */ 2742 hlist_for_each_entry(p, head, hlist) { 2743 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { 2744 err = disarm_kprobe(p, false); 2745 if (err) { 2746 errors++; 2747 ret = err; 2748 } 2749 total++; 2750 } 2751 } 2752 } 2753 2754 if (errors) 2755 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n", 2756 errors, total); 2757 else 2758 pr_info("Kprobes globally disabled\n"); 2759 2760 mutex_unlock(&kprobe_mutex); 2761 2762 /* Wait for disarming all kprobes by optimizer */ 2763 wait_for_kprobe_optimizer(); 2764 2765 return ret; 2766 } 2767 2768 /* 2769 * XXX: The debugfs bool file interface doesn't allow for callbacks 2770 * when the bool state is switched. We can reuse that facility when 2771 * available 2772 */ 2773 static ssize_t read_enabled_file_bool(struct file *file, 2774 char __user *user_buf, size_t count, loff_t *ppos) 2775 { 2776 char buf[3]; 2777 2778 if (!kprobes_all_disarmed) 2779 buf[0] = '1'; 2780 else 2781 buf[0] = '0'; 2782 buf[1] = '\n'; 2783 buf[2] = 0x00; 2784 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2785 } 2786 2787 static ssize_t write_enabled_file_bool(struct file *file, 2788 const char __user *user_buf, size_t count, loff_t *ppos) 2789 { 2790 char buf[32]; 2791 size_t buf_size; 2792 int ret = 0; 2793 2794 buf_size = min(count, (sizeof(buf)-1)); 2795 if (copy_from_user(buf, user_buf, buf_size)) 2796 return -EFAULT; 2797 2798 buf[buf_size] = '\0'; 2799 switch (buf[0]) { 2800 case 'y': 2801 case 'Y': 2802 case '1': 2803 ret = arm_all_kprobes(); 2804 break; 2805 case 'n': 2806 case 'N': 2807 case '0': 2808 ret = disarm_all_kprobes(); 2809 break; 2810 default: 2811 return -EINVAL; 2812 } 2813 2814 if (ret) 2815 return ret; 2816 2817 return count; 2818 } 2819 2820 static const struct file_operations fops_kp = { 2821 .read = read_enabled_file_bool, 2822 .write = write_enabled_file_bool, 2823 .llseek = default_llseek, 2824 }; 2825 2826 static int __init debugfs_kprobe_init(void) 2827 { 2828 struct dentry *dir; 2829 unsigned int value = 1; 2830 2831 dir = debugfs_create_dir("kprobes", NULL); 2832 2833 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops); 2834 2835 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp); 2836 2837 debugfs_create_file("blacklist", 0400, dir, NULL, 2838 &kprobe_blacklist_fops); 2839 2840 return 0; 2841 } 2842 2843 late_initcall(debugfs_kprobe_init); 2844 #endif /* CONFIG_DEBUG_FS */ 2845