xref: /openbmc/linux/kernel/kprobes.c (revision 3dc4b6fb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *		Probes initial implementation (includes suggestions from
10  *		Rusty Russell).
11  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *		hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *		interface to access function arguments.
15  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *		exceptions notifier to be first on the priority list.
17  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *		<prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38 
39 #include <asm/sections.h>
40 #include <asm/cacheflush.h>
41 #include <asm/errno.h>
42 #include <linux/uaccess.h>
43 
44 #define KPROBE_HASH_BITS 6
45 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
46 
47 
48 static int kprobes_initialized;
49 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
50 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
51 
52 /* NOTE: change this value only with kprobe_mutex held */
53 static bool kprobes_all_disarmed;
54 
55 /* This protects kprobe_table and optimizing_list */
56 static DEFINE_MUTEX(kprobe_mutex);
57 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
58 static struct {
59 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
60 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
61 
62 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
63 					unsigned int __unused)
64 {
65 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
66 }
67 
68 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
69 {
70 	return &(kretprobe_table_locks[hash].lock);
71 }
72 
73 /* Blacklist -- list of struct kprobe_blacklist_entry */
74 static LIST_HEAD(kprobe_blacklist);
75 
76 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
77 /*
78  * kprobe->ainsn.insn points to the copy of the instruction to be
79  * single-stepped. x86_64, POWER4 and above have no-exec support and
80  * stepping on the instruction on a vmalloced/kmalloced/data page
81  * is a recipe for disaster
82  */
83 struct kprobe_insn_page {
84 	struct list_head list;
85 	kprobe_opcode_t *insns;		/* Page of instruction slots */
86 	struct kprobe_insn_cache *cache;
87 	int nused;
88 	int ngarbage;
89 	char slot_used[];
90 };
91 
92 #define KPROBE_INSN_PAGE_SIZE(slots)			\
93 	(offsetof(struct kprobe_insn_page, slot_used) +	\
94 	 (sizeof(char) * (slots)))
95 
96 static int slots_per_page(struct kprobe_insn_cache *c)
97 {
98 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
99 }
100 
101 enum kprobe_slot_state {
102 	SLOT_CLEAN = 0,
103 	SLOT_DIRTY = 1,
104 	SLOT_USED = 2,
105 };
106 
107 void __weak *alloc_insn_page(void)
108 {
109 	return module_alloc(PAGE_SIZE);
110 }
111 
112 void __weak free_insn_page(void *page)
113 {
114 	module_memfree(page);
115 }
116 
117 struct kprobe_insn_cache kprobe_insn_slots = {
118 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
119 	.alloc = alloc_insn_page,
120 	.free = free_insn_page,
121 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
122 	.insn_size = MAX_INSN_SIZE,
123 	.nr_garbage = 0,
124 };
125 static int collect_garbage_slots(struct kprobe_insn_cache *c);
126 
127 /**
128  * __get_insn_slot() - Find a slot on an executable page for an instruction.
129  * We allocate an executable page if there's no room on existing ones.
130  */
131 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
132 {
133 	struct kprobe_insn_page *kip;
134 	kprobe_opcode_t *slot = NULL;
135 
136 	/* Since the slot array is not protected by rcu, we need a mutex */
137 	mutex_lock(&c->mutex);
138  retry:
139 	rcu_read_lock();
140 	list_for_each_entry_rcu(kip, &c->pages, list) {
141 		if (kip->nused < slots_per_page(c)) {
142 			int i;
143 			for (i = 0; i < slots_per_page(c); i++) {
144 				if (kip->slot_used[i] == SLOT_CLEAN) {
145 					kip->slot_used[i] = SLOT_USED;
146 					kip->nused++;
147 					slot = kip->insns + (i * c->insn_size);
148 					rcu_read_unlock();
149 					goto out;
150 				}
151 			}
152 			/* kip->nused is broken. Fix it. */
153 			kip->nused = slots_per_page(c);
154 			WARN_ON(1);
155 		}
156 	}
157 	rcu_read_unlock();
158 
159 	/* If there are any garbage slots, collect it and try again. */
160 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
161 		goto retry;
162 
163 	/* All out of space.  Need to allocate a new page. */
164 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
165 	if (!kip)
166 		goto out;
167 
168 	/*
169 	 * Use module_alloc so this page is within +/- 2GB of where the
170 	 * kernel image and loaded module images reside. This is required
171 	 * so x86_64 can correctly handle the %rip-relative fixups.
172 	 */
173 	kip->insns = c->alloc();
174 	if (!kip->insns) {
175 		kfree(kip);
176 		goto out;
177 	}
178 	INIT_LIST_HEAD(&kip->list);
179 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
180 	kip->slot_used[0] = SLOT_USED;
181 	kip->nused = 1;
182 	kip->ngarbage = 0;
183 	kip->cache = c;
184 	list_add_rcu(&kip->list, &c->pages);
185 	slot = kip->insns;
186 out:
187 	mutex_unlock(&c->mutex);
188 	return slot;
189 }
190 
191 /* Return 1 if all garbages are collected, otherwise 0. */
192 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
193 {
194 	kip->slot_used[idx] = SLOT_CLEAN;
195 	kip->nused--;
196 	if (kip->nused == 0) {
197 		/*
198 		 * Page is no longer in use.  Free it unless
199 		 * it's the last one.  We keep the last one
200 		 * so as not to have to set it up again the
201 		 * next time somebody inserts a probe.
202 		 */
203 		if (!list_is_singular(&kip->list)) {
204 			list_del_rcu(&kip->list);
205 			synchronize_rcu();
206 			kip->cache->free(kip->insns);
207 			kfree(kip);
208 		}
209 		return 1;
210 	}
211 	return 0;
212 }
213 
214 static int collect_garbage_slots(struct kprobe_insn_cache *c)
215 {
216 	struct kprobe_insn_page *kip, *next;
217 
218 	/* Ensure no-one is interrupted on the garbages */
219 	synchronize_rcu();
220 
221 	list_for_each_entry_safe(kip, next, &c->pages, list) {
222 		int i;
223 		if (kip->ngarbage == 0)
224 			continue;
225 		kip->ngarbage = 0;	/* we will collect all garbages */
226 		for (i = 0; i < slots_per_page(c); i++) {
227 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
228 				break;
229 		}
230 	}
231 	c->nr_garbage = 0;
232 	return 0;
233 }
234 
235 void __free_insn_slot(struct kprobe_insn_cache *c,
236 		      kprobe_opcode_t *slot, int dirty)
237 {
238 	struct kprobe_insn_page *kip;
239 	long idx;
240 
241 	mutex_lock(&c->mutex);
242 	rcu_read_lock();
243 	list_for_each_entry_rcu(kip, &c->pages, list) {
244 		idx = ((long)slot - (long)kip->insns) /
245 			(c->insn_size * sizeof(kprobe_opcode_t));
246 		if (idx >= 0 && idx < slots_per_page(c))
247 			goto out;
248 	}
249 	/* Could not find this slot. */
250 	WARN_ON(1);
251 	kip = NULL;
252 out:
253 	rcu_read_unlock();
254 	/* Mark and sweep: this may sleep */
255 	if (kip) {
256 		/* Check double free */
257 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
258 		if (dirty) {
259 			kip->slot_used[idx] = SLOT_DIRTY;
260 			kip->ngarbage++;
261 			if (++c->nr_garbage > slots_per_page(c))
262 				collect_garbage_slots(c);
263 		} else {
264 			collect_one_slot(kip, idx);
265 		}
266 	}
267 	mutex_unlock(&c->mutex);
268 }
269 
270 /*
271  * Check given address is on the page of kprobe instruction slots.
272  * This will be used for checking whether the address on a stack
273  * is on a text area or not.
274  */
275 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
276 {
277 	struct kprobe_insn_page *kip;
278 	bool ret = false;
279 
280 	rcu_read_lock();
281 	list_for_each_entry_rcu(kip, &c->pages, list) {
282 		if (addr >= (unsigned long)kip->insns &&
283 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
284 			ret = true;
285 			break;
286 		}
287 	}
288 	rcu_read_unlock();
289 
290 	return ret;
291 }
292 
293 #ifdef CONFIG_OPTPROBES
294 /* For optimized_kprobe buffer */
295 struct kprobe_insn_cache kprobe_optinsn_slots = {
296 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
297 	.alloc = alloc_insn_page,
298 	.free = free_insn_page,
299 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
300 	/* .insn_size is initialized later */
301 	.nr_garbage = 0,
302 };
303 #endif
304 #endif
305 
306 /* We have preemption disabled.. so it is safe to use __ versions */
307 static inline void set_kprobe_instance(struct kprobe *kp)
308 {
309 	__this_cpu_write(kprobe_instance, kp);
310 }
311 
312 static inline void reset_kprobe_instance(void)
313 {
314 	__this_cpu_write(kprobe_instance, NULL);
315 }
316 
317 /*
318  * This routine is called either:
319  * 	- under the kprobe_mutex - during kprobe_[un]register()
320  * 				OR
321  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
322  */
323 struct kprobe *get_kprobe(void *addr)
324 {
325 	struct hlist_head *head;
326 	struct kprobe *p;
327 
328 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
329 	hlist_for_each_entry_rcu(p, head, hlist) {
330 		if (p->addr == addr)
331 			return p;
332 	}
333 
334 	return NULL;
335 }
336 NOKPROBE_SYMBOL(get_kprobe);
337 
338 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
339 
340 /* Return true if the kprobe is an aggregator */
341 static inline int kprobe_aggrprobe(struct kprobe *p)
342 {
343 	return p->pre_handler == aggr_pre_handler;
344 }
345 
346 /* Return true(!0) if the kprobe is unused */
347 static inline int kprobe_unused(struct kprobe *p)
348 {
349 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
350 	       list_empty(&p->list);
351 }
352 
353 /*
354  * Keep all fields in the kprobe consistent
355  */
356 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
357 {
358 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
359 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
360 }
361 
362 #ifdef CONFIG_OPTPROBES
363 /* NOTE: change this value only with kprobe_mutex held */
364 static bool kprobes_allow_optimization;
365 
366 /*
367  * Call all pre_handler on the list, but ignores its return value.
368  * This must be called from arch-dep optimized caller.
369  */
370 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
371 {
372 	struct kprobe *kp;
373 
374 	list_for_each_entry_rcu(kp, &p->list, list) {
375 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
376 			set_kprobe_instance(kp);
377 			kp->pre_handler(kp, regs);
378 		}
379 		reset_kprobe_instance();
380 	}
381 }
382 NOKPROBE_SYMBOL(opt_pre_handler);
383 
384 /* Free optimized instructions and optimized_kprobe */
385 static void free_aggr_kprobe(struct kprobe *p)
386 {
387 	struct optimized_kprobe *op;
388 
389 	op = container_of(p, struct optimized_kprobe, kp);
390 	arch_remove_optimized_kprobe(op);
391 	arch_remove_kprobe(p);
392 	kfree(op);
393 }
394 
395 /* Return true(!0) if the kprobe is ready for optimization. */
396 static inline int kprobe_optready(struct kprobe *p)
397 {
398 	struct optimized_kprobe *op;
399 
400 	if (kprobe_aggrprobe(p)) {
401 		op = container_of(p, struct optimized_kprobe, kp);
402 		return arch_prepared_optinsn(&op->optinsn);
403 	}
404 
405 	return 0;
406 }
407 
408 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
409 static inline int kprobe_disarmed(struct kprobe *p)
410 {
411 	struct optimized_kprobe *op;
412 
413 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
414 	if (!kprobe_aggrprobe(p))
415 		return kprobe_disabled(p);
416 
417 	op = container_of(p, struct optimized_kprobe, kp);
418 
419 	return kprobe_disabled(p) && list_empty(&op->list);
420 }
421 
422 /* Return true(!0) if the probe is queued on (un)optimizing lists */
423 static int kprobe_queued(struct kprobe *p)
424 {
425 	struct optimized_kprobe *op;
426 
427 	if (kprobe_aggrprobe(p)) {
428 		op = container_of(p, struct optimized_kprobe, kp);
429 		if (!list_empty(&op->list))
430 			return 1;
431 	}
432 	return 0;
433 }
434 
435 /*
436  * Return an optimized kprobe whose optimizing code replaces
437  * instructions including addr (exclude breakpoint).
438  */
439 static struct kprobe *get_optimized_kprobe(unsigned long addr)
440 {
441 	int i;
442 	struct kprobe *p = NULL;
443 	struct optimized_kprobe *op;
444 
445 	/* Don't check i == 0, since that is a breakpoint case. */
446 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
447 		p = get_kprobe((void *)(addr - i));
448 
449 	if (p && kprobe_optready(p)) {
450 		op = container_of(p, struct optimized_kprobe, kp);
451 		if (arch_within_optimized_kprobe(op, addr))
452 			return p;
453 	}
454 
455 	return NULL;
456 }
457 
458 /* Optimization staging list, protected by kprobe_mutex */
459 static LIST_HEAD(optimizing_list);
460 static LIST_HEAD(unoptimizing_list);
461 static LIST_HEAD(freeing_list);
462 
463 static void kprobe_optimizer(struct work_struct *work);
464 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
465 #define OPTIMIZE_DELAY 5
466 
467 /*
468  * Optimize (replace a breakpoint with a jump) kprobes listed on
469  * optimizing_list.
470  */
471 static void do_optimize_kprobes(void)
472 {
473 	lockdep_assert_held(&text_mutex);
474 	/*
475 	 * The optimization/unoptimization refers online_cpus via
476 	 * stop_machine() and cpu-hotplug modifies online_cpus.
477 	 * And same time, text_mutex will be held in cpu-hotplug and here.
478 	 * This combination can cause a deadlock (cpu-hotplug try to lock
479 	 * text_mutex but stop_machine can not be done because online_cpus
480 	 * has been changed)
481 	 * To avoid this deadlock, caller must have locked cpu hotplug
482 	 * for preventing cpu-hotplug outside of text_mutex locking.
483 	 */
484 	lockdep_assert_cpus_held();
485 
486 	/* Optimization never be done when disarmed */
487 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
488 	    list_empty(&optimizing_list))
489 		return;
490 
491 	arch_optimize_kprobes(&optimizing_list);
492 }
493 
494 /*
495  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
496  * if need) kprobes listed on unoptimizing_list.
497  */
498 static void do_unoptimize_kprobes(void)
499 {
500 	struct optimized_kprobe *op, *tmp;
501 
502 	lockdep_assert_held(&text_mutex);
503 	/* See comment in do_optimize_kprobes() */
504 	lockdep_assert_cpus_held();
505 
506 	/* Unoptimization must be done anytime */
507 	if (list_empty(&unoptimizing_list))
508 		return;
509 
510 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
511 	/* Loop free_list for disarming */
512 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
513 		/* Disarm probes if marked disabled */
514 		if (kprobe_disabled(&op->kp))
515 			arch_disarm_kprobe(&op->kp);
516 		if (kprobe_unused(&op->kp)) {
517 			/*
518 			 * Remove unused probes from hash list. After waiting
519 			 * for synchronization, these probes are reclaimed.
520 			 * (reclaiming is done by do_free_cleaned_kprobes.)
521 			 */
522 			hlist_del_rcu(&op->kp.hlist);
523 		} else
524 			list_del_init(&op->list);
525 	}
526 }
527 
528 /* Reclaim all kprobes on the free_list */
529 static void do_free_cleaned_kprobes(void)
530 {
531 	struct optimized_kprobe *op, *tmp;
532 
533 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
534 		list_del_init(&op->list);
535 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
536 			/*
537 			 * This must not happen, but if there is a kprobe
538 			 * still in use, keep it on kprobes hash list.
539 			 */
540 			continue;
541 		}
542 		free_aggr_kprobe(&op->kp);
543 	}
544 }
545 
546 /* Start optimizer after OPTIMIZE_DELAY passed */
547 static void kick_kprobe_optimizer(void)
548 {
549 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
550 }
551 
552 /* Kprobe jump optimizer */
553 static void kprobe_optimizer(struct work_struct *work)
554 {
555 	mutex_lock(&kprobe_mutex);
556 	cpus_read_lock();
557 	mutex_lock(&text_mutex);
558 	/* Lock modules while optimizing kprobes */
559 	mutex_lock(&module_mutex);
560 
561 	/*
562 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
563 	 * kprobes before waiting for quiesence period.
564 	 */
565 	do_unoptimize_kprobes();
566 
567 	/*
568 	 * Step 2: Wait for quiesence period to ensure all potentially
569 	 * preempted tasks to have normally scheduled. Because optprobe
570 	 * may modify multiple instructions, there is a chance that Nth
571 	 * instruction is preempted. In that case, such tasks can return
572 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
573 	 * Note that on non-preemptive kernel, this is transparently converted
574 	 * to synchronoze_sched() to wait for all interrupts to have completed.
575 	 */
576 	synchronize_rcu_tasks();
577 
578 	/* Step 3: Optimize kprobes after quiesence period */
579 	do_optimize_kprobes();
580 
581 	/* Step 4: Free cleaned kprobes after quiesence period */
582 	do_free_cleaned_kprobes();
583 
584 	mutex_unlock(&module_mutex);
585 	mutex_unlock(&text_mutex);
586 	cpus_read_unlock();
587 	mutex_unlock(&kprobe_mutex);
588 
589 	/* Step 5: Kick optimizer again if needed */
590 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
591 		kick_kprobe_optimizer();
592 }
593 
594 /* Wait for completing optimization and unoptimization */
595 void wait_for_kprobe_optimizer(void)
596 {
597 	mutex_lock(&kprobe_mutex);
598 
599 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
600 		mutex_unlock(&kprobe_mutex);
601 
602 		/* this will also make optimizing_work execute immmediately */
603 		flush_delayed_work(&optimizing_work);
604 		/* @optimizing_work might not have been queued yet, relax */
605 		cpu_relax();
606 
607 		mutex_lock(&kprobe_mutex);
608 	}
609 
610 	mutex_unlock(&kprobe_mutex);
611 }
612 
613 /* Optimize kprobe if p is ready to be optimized */
614 static void optimize_kprobe(struct kprobe *p)
615 {
616 	struct optimized_kprobe *op;
617 
618 	/* Check if the kprobe is disabled or not ready for optimization. */
619 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
620 	    (kprobe_disabled(p) || kprobes_all_disarmed))
621 		return;
622 
623 	/* kprobes with post_handler can not be optimized */
624 	if (p->post_handler)
625 		return;
626 
627 	op = container_of(p, struct optimized_kprobe, kp);
628 
629 	/* Check there is no other kprobes at the optimized instructions */
630 	if (arch_check_optimized_kprobe(op) < 0)
631 		return;
632 
633 	/* Check if it is already optimized. */
634 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
635 		return;
636 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
637 
638 	if (!list_empty(&op->list))
639 		/* This is under unoptimizing. Just dequeue the probe */
640 		list_del_init(&op->list);
641 	else {
642 		list_add(&op->list, &optimizing_list);
643 		kick_kprobe_optimizer();
644 	}
645 }
646 
647 /* Short cut to direct unoptimizing */
648 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
649 {
650 	lockdep_assert_cpus_held();
651 	arch_unoptimize_kprobe(op);
652 	if (kprobe_disabled(&op->kp))
653 		arch_disarm_kprobe(&op->kp);
654 }
655 
656 /* Unoptimize a kprobe if p is optimized */
657 static void unoptimize_kprobe(struct kprobe *p, bool force)
658 {
659 	struct optimized_kprobe *op;
660 
661 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
662 		return; /* This is not an optprobe nor optimized */
663 
664 	op = container_of(p, struct optimized_kprobe, kp);
665 	if (!kprobe_optimized(p)) {
666 		/* Unoptimized or unoptimizing case */
667 		if (force && !list_empty(&op->list)) {
668 			/*
669 			 * Only if this is unoptimizing kprobe and forced,
670 			 * forcibly unoptimize it. (No need to unoptimize
671 			 * unoptimized kprobe again :)
672 			 */
673 			list_del_init(&op->list);
674 			force_unoptimize_kprobe(op);
675 		}
676 		return;
677 	}
678 
679 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
680 	if (!list_empty(&op->list)) {
681 		/* Dequeue from the optimization queue */
682 		list_del_init(&op->list);
683 		return;
684 	}
685 	/* Optimized kprobe case */
686 	if (force)
687 		/* Forcibly update the code: this is a special case */
688 		force_unoptimize_kprobe(op);
689 	else {
690 		list_add(&op->list, &unoptimizing_list);
691 		kick_kprobe_optimizer();
692 	}
693 }
694 
695 /* Cancel unoptimizing for reusing */
696 static int reuse_unused_kprobe(struct kprobe *ap)
697 {
698 	struct optimized_kprobe *op;
699 
700 	/*
701 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
702 	 * there is still a relative jump) and disabled.
703 	 */
704 	op = container_of(ap, struct optimized_kprobe, kp);
705 	WARN_ON_ONCE(list_empty(&op->list));
706 	/* Enable the probe again */
707 	ap->flags &= ~KPROBE_FLAG_DISABLED;
708 	/* Optimize it again (remove from op->list) */
709 	if (!kprobe_optready(ap))
710 		return -EINVAL;
711 
712 	optimize_kprobe(ap);
713 	return 0;
714 }
715 
716 /* Remove optimized instructions */
717 static void kill_optimized_kprobe(struct kprobe *p)
718 {
719 	struct optimized_kprobe *op;
720 
721 	op = container_of(p, struct optimized_kprobe, kp);
722 	if (!list_empty(&op->list))
723 		/* Dequeue from the (un)optimization queue */
724 		list_del_init(&op->list);
725 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
726 
727 	if (kprobe_unused(p)) {
728 		/* Enqueue if it is unused */
729 		list_add(&op->list, &freeing_list);
730 		/*
731 		 * Remove unused probes from the hash list. After waiting
732 		 * for synchronization, this probe is reclaimed.
733 		 * (reclaiming is done by do_free_cleaned_kprobes().)
734 		 */
735 		hlist_del_rcu(&op->kp.hlist);
736 	}
737 
738 	/* Don't touch the code, because it is already freed. */
739 	arch_remove_optimized_kprobe(op);
740 }
741 
742 static inline
743 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
744 {
745 	if (!kprobe_ftrace(p))
746 		arch_prepare_optimized_kprobe(op, p);
747 }
748 
749 /* Try to prepare optimized instructions */
750 static void prepare_optimized_kprobe(struct kprobe *p)
751 {
752 	struct optimized_kprobe *op;
753 
754 	op = container_of(p, struct optimized_kprobe, kp);
755 	__prepare_optimized_kprobe(op, p);
756 }
757 
758 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
759 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
760 {
761 	struct optimized_kprobe *op;
762 
763 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
764 	if (!op)
765 		return NULL;
766 
767 	INIT_LIST_HEAD(&op->list);
768 	op->kp.addr = p->addr;
769 	__prepare_optimized_kprobe(op, p);
770 
771 	return &op->kp;
772 }
773 
774 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
775 
776 /*
777  * Prepare an optimized_kprobe and optimize it
778  * NOTE: p must be a normal registered kprobe
779  */
780 static void try_to_optimize_kprobe(struct kprobe *p)
781 {
782 	struct kprobe *ap;
783 	struct optimized_kprobe *op;
784 
785 	/* Impossible to optimize ftrace-based kprobe */
786 	if (kprobe_ftrace(p))
787 		return;
788 
789 	/* For preparing optimization, jump_label_text_reserved() is called */
790 	cpus_read_lock();
791 	jump_label_lock();
792 	mutex_lock(&text_mutex);
793 
794 	ap = alloc_aggr_kprobe(p);
795 	if (!ap)
796 		goto out;
797 
798 	op = container_of(ap, struct optimized_kprobe, kp);
799 	if (!arch_prepared_optinsn(&op->optinsn)) {
800 		/* If failed to setup optimizing, fallback to kprobe */
801 		arch_remove_optimized_kprobe(op);
802 		kfree(op);
803 		goto out;
804 	}
805 
806 	init_aggr_kprobe(ap, p);
807 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
808 
809 out:
810 	mutex_unlock(&text_mutex);
811 	jump_label_unlock();
812 	cpus_read_unlock();
813 }
814 
815 #ifdef CONFIG_SYSCTL
816 static void optimize_all_kprobes(void)
817 {
818 	struct hlist_head *head;
819 	struct kprobe *p;
820 	unsigned int i;
821 
822 	mutex_lock(&kprobe_mutex);
823 	/* If optimization is already allowed, just return */
824 	if (kprobes_allow_optimization)
825 		goto out;
826 
827 	cpus_read_lock();
828 	kprobes_allow_optimization = true;
829 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
830 		head = &kprobe_table[i];
831 		hlist_for_each_entry_rcu(p, head, hlist)
832 			if (!kprobe_disabled(p))
833 				optimize_kprobe(p);
834 	}
835 	cpus_read_unlock();
836 	printk(KERN_INFO "Kprobes globally optimized\n");
837 out:
838 	mutex_unlock(&kprobe_mutex);
839 }
840 
841 static void unoptimize_all_kprobes(void)
842 {
843 	struct hlist_head *head;
844 	struct kprobe *p;
845 	unsigned int i;
846 
847 	mutex_lock(&kprobe_mutex);
848 	/* If optimization is already prohibited, just return */
849 	if (!kprobes_allow_optimization) {
850 		mutex_unlock(&kprobe_mutex);
851 		return;
852 	}
853 
854 	cpus_read_lock();
855 	kprobes_allow_optimization = false;
856 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
857 		head = &kprobe_table[i];
858 		hlist_for_each_entry_rcu(p, head, hlist) {
859 			if (!kprobe_disabled(p))
860 				unoptimize_kprobe(p, false);
861 		}
862 	}
863 	cpus_read_unlock();
864 	mutex_unlock(&kprobe_mutex);
865 
866 	/* Wait for unoptimizing completion */
867 	wait_for_kprobe_optimizer();
868 	printk(KERN_INFO "Kprobes globally unoptimized\n");
869 }
870 
871 static DEFINE_MUTEX(kprobe_sysctl_mutex);
872 int sysctl_kprobes_optimization;
873 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
874 				      void __user *buffer, size_t *length,
875 				      loff_t *ppos)
876 {
877 	int ret;
878 
879 	mutex_lock(&kprobe_sysctl_mutex);
880 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
881 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
882 
883 	if (sysctl_kprobes_optimization)
884 		optimize_all_kprobes();
885 	else
886 		unoptimize_all_kprobes();
887 	mutex_unlock(&kprobe_sysctl_mutex);
888 
889 	return ret;
890 }
891 #endif /* CONFIG_SYSCTL */
892 
893 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
894 static void __arm_kprobe(struct kprobe *p)
895 {
896 	struct kprobe *_p;
897 
898 	/* Check collision with other optimized kprobes */
899 	_p = get_optimized_kprobe((unsigned long)p->addr);
900 	if (unlikely(_p))
901 		/* Fallback to unoptimized kprobe */
902 		unoptimize_kprobe(_p, true);
903 
904 	arch_arm_kprobe(p);
905 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
906 }
907 
908 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
909 static void __disarm_kprobe(struct kprobe *p, bool reopt)
910 {
911 	struct kprobe *_p;
912 
913 	/* Try to unoptimize */
914 	unoptimize_kprobe(p, kprobes_all_disarmed);
915 
916 	if (!kprobe_queued(p)) {
917 		arch_disarm_kprobe(p);
918 		/* If another kprobe was blocked, optimize it. */
919 		_p = get_optimized_kprobe((unsigned long)p->addr);
920 		if (unlikely(_p) && reopt)
921 			optimize_kprobe(_p);
922 	}
923 	/* TODO: reoptimize others after unoptimized this probe */
924 }
925 
926 #else /* !CONFIG_OPTPROBES */
927 
928 #define optimize_kprobe(p)			do {} while (0)
929 #define unoptimize_kprobe(p, f)			do {} while (0)
930 #define kill_optimized_kprobe(p)		do {} while (0)
931 #define prepare_optimized_kprobe(p)		do {} while (0)
932 #define try_to_optimize_kprobe(p)		do {} while (0)
933 #define __arm_kprobe(p)				arch_arm_kprobe(p)
934 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
935 #define kprobe_disarmed(p)			kprobe_disabled(p)
936 #define wait_for_kprobe_optimizer()		do {} while (0)
937 
938 static int reuse_unused_kprobe(struct kprobe *ap)
939 {
940 	/*
941 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
942 	 * released at the same time that the last aggregated kprobe is
943 	 * unregistered.
944 	 * Thus there should be no chance to reuse unused kprobe.
945 	 */
946 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
947 	return -EINVAL;
948 }
949 
950 static void free_aggr_kprobe(struct kprobe *p)
951 {
952 	arch_remove_kprobe(p);
953 	kfree(p);
954 }
955 
956 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
957 {
958 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
959 }
960 #endif /* CONFIG_OPTPROBES */
961 
962 #ifdef CONFIG_KPROBES_ON_FTRACE
963 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
964 	.func = kprobe_ftrace_handler,
965 	.flags = FTRACE_OPS_FL_SAVE_REGS,
966 };
967 
968 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
969 	.func = kprobe_ftrace_handler,
970 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
971 };
972 
973 static int kprobe_ipmodify_enabled;
974 static int kprobe_ftrace_enabled;
975 
976 /* Must ensure p->addr is really on ftrace */
977 static int prepare_kprobe(struct kprobe *p)
978 {
979 	if (!kprobe_ftrace(p))
980 		return arch_prepare_kprobe(p);
981 
982 	return arch_prepare_kprobe_ftrace(p);
983 }
984 
985 /* Caller must lock kprobe_mutex */
986 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
987 			       int *cnt)
988 {
989 	int ret = 0;
990 
991 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
992 	if (ret) {
993 		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
994 			 p->addr, ret);
995 		return ret;
996 	}
997 
998 	if (*cnt == 0) {
999 		ret = register_ftrace_function(ops);
1000 		if (ret) {
1001 			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1002 			goto err_ftrace;
1003 		}
1004 	}
1005 
1006 	(*cnt)++;
1007 	return ret;
1008 
1009 err_ftrace:
1010 	/*
1011 	 * At this point, sinec ops is not registered, we should be sefe from
1012 	 * registering empty filter.
1013 	 */
1014 	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1015 	return ret;
1016 }
1017 
1018 static int arm_kprobe_ftrace(struct kprobe *p)
1019 {
1020 	bool ipmodify = (p->post_handler != NULL);
1021 
1022 	return __arm_kprobe_ftrace(p,
1023 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1024 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1025 }
1026 
1027 /* Caller must lock kprobe_mutex */
1028 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1029 				  int *cnt)
1030 {
1031 	int ret = 0;
1032 
1033 	if (*cnt == 1) {
1034 		ret = unregister_ftrace_function(ops);
1035 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1036 			return ret;
1037 	}
1038 
1039 	(*cnt)--;
1040 
1041 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1042 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1043 		  p->addr, ret);
1044 	return ret;
1045 }
1046 
1047 static int disarm_kprobe_ftrace(struct kprobe *p)
1048 {
1049 	bool ipmodify = (p->post_handler != NULL);
1050 
1051 	return __disarm_kprobe_ftrace(p,
1052 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1053 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1054 }
1055 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1056 #define prepare_kprobe(p)	arch_prepare_kprobe(p)
1057 #define arm_kprobe_ftrace(p)	(-ENODEV)
1058 #define disarm_kprobe_ftrace(p)	(-ENODEV)
1059 #endif
1060 
1061 /* Arm a kprobe with text_mutex */
1062 static int arm_kprobe(struct kprobe *kp)
1063 {
1064 	if (unlikely(kprobe_ftrace(kp)))
1065 		return arm_kprobe_ftrace(kp);
1066 
1067 	cpus_read_lock();
1068 	mutex_lock(&text_mutex);
1069 	__arm_kprobe(kp);
1070 	mutex_unlock(&text_mutex);
1071 	cpus_read_unlock();
1072 
1073 	return 0;
1074 }
1075 
1076 /* Disarm a kprobe with text_mutex */
1077 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1078 {
1079 	if (unlikely(kprobe_ftrace(kp)))
1080 		return disarm_kprobe_ftrace(kp);
1081 
1082 	cpus_read_lock();
1083 	mutex_lock(&text_mutex);
1084 	__disarm_kprobe(kp, reopt);
1085 	mutex_unlock(&text_mutex);
1086 	cpus_read_unlock();
1087 
1088 	return 0;
1089 }
1090 
1091 /*
1092  * Aggregate handlers for multiple kprobes support - these handlers
1093  * take care of invoking the individual kprobe handlers on p->list
1094  */
1095 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1096 {
1097 	struct kprobe *kp;
1098 
1099 	list_for_each_entry_rcu(kp, &p->list, list) {
1100 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1101 			set_kprobe_instance(kp);
1102 			if (kp->pre_handler(kp, regs))
1103 				return 1;
1104 		}
1105 		reset_kprobe_instance();
1106 	}
1107 	return 0;
1108 }
1109 NOKPROBE_SYMBOL(aggr_pre_handler);
1110 
1111 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1112 			      unsigned long flags)
1113 {
1114 	struct kprobe *kp;
1115 
1116 	list_for_each_entry_rcu(kp, &p->list, list) {
1117 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1118 			set_kprobe_instance(kp);
1119 			kp->post_handler(kp, regs, flags);
1120 			reset_kprobe_instance();
1121 		}
1122 	}
1123 }
1124 NOKPROBE_SYMBOL(aggr_post_handler);
1125 
1126 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1127 			      int trapnr)
1128 {
1129 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1130 
1131 	/*
1132 	 * if we faulted "during" the execution of a user specified
1133 	 * probe handler, invoke just that probe's fault handler
1134 	 */
1135 	if (cur && cur->fault_handler) {
1136 		if (cur->fault_handler(cur, regs, trapnr))
1137 			return 1;
1138 	}
1139 	return 0;
1140 }
1141 NOKPROBE_SYMBOL(aggr_fault_handler);
1142 
1143 /* Walks the list and increments nmissed count for multiprobe case */
1144 void kprobes_inc_nmissed_count(struct kprobe *p)
1145 {
1146 	struct kprobe *kp;
1147 	if (!kprobe_aggrprobe(p)) {
1148 		p->nmissed++;
1149 	} else {
1150 		list_for_each_entry_rcu(kp, &p->list, list)
1151 			kp->nmissed++;
1152 	}
1153 	return;
1154 }
1155 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1156 
1157 void recycle_rp_inst(struct kretprobe_instance *ri,
1158 		     struct hlist_head *head)
1159 {
1160 	struct kretprobe *rp = ri->rp;
1161 
1162 	/* remove rp inst off the rprobe_inst_table */
1163 	hlist_del(&ri->hlist);
1164 	INIT_HLIST_NODE(&ri->hlist);
1165 	if (likely(rp)) {
1166 		raw_spin_lock(&rp->lock);
1167 		hlist_add_head(&ri->hlist, &rp->free_instances);
1168 		raw_spin_unlock(&rp->lock);
1169 	} else
1170 		/* Unregistering */
1171 		hlist_add_head(&ri->hlist, head);
1172 }
1173 NOKPROBE_SYMBOL(recycle_rp_inst);
1174 
1175 void kretprobe_hash_lock(struct task_struct *tsk,
1176 			 struct hlist_head **head, unsigned long *flags)
1177 __acquires(hlist_lock)
1178 {
1179 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1180 	raw_spinlock_t *hlist_lock;
1181 
1182 	*head = &kretprobe_inst_table[hash];
1183 	hlist_lock = kretprobe_table_lock_ptr(hash);
1184 	raw_spin_lock_irqsave(hlist_lock, *flags);
1185 }
1186 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1187 
1188 static void kretprobe_table_lock(unsigned long hash,
1189 				 unsigned long *flags)
1190 __acquires(hlist_lock)
1191 {
1192 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1193 	raw_spin_lock_irqsave(hlist_lock, *flags);
1194 }
1195 NOKPROBE_SYMBOL(kretprobe_table_lock);
1196 
1197 void kretprobe_hash_unlock(struct task_struct *tsk,
1198 			   unsigned long *flags)
1199 __releases(hlist_lock)
1200 {
1201 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1202 	raw_spinlock_t *hlist_lock;
1203 
1204 	hlist_lock = kretprobe_table_lock_ptr(hash);
1205 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1206 }
1207 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1208 
1209 static void kretprobe_table_unlock(unsigned long hash,
1210 				   unsigned long *flags)
1211 __releases(hlist_lock)
1212 {
1213 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1214 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1215 }
1216 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1217 
1218 /*
1219  * This function is called from finish_task_switch when task tk becomes dead,
1220  * so that we can recycle any function-return probe instances associated
1221  * with this task. These left over instances represent probed functions
1222  * that have been called but will never return.
1223  */
1224 void kprobe_flush_task(struct task_struct *tk)
1225 {
1226 	struct kretprobe_instance *ri;
1227 	struct hlist_head *head, empty_rp;
1228 	struct hlist_node *tmp;
1229 	unsigned long hash, flags = 0;
1230 
1231 	if (unlikely(!kprobes_initialized))
1232 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1233 		return;
1234 
1235 	INIT_HLIST_HEAD(&empty_rp);
1236 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1237 	head = &kretprobe_inst_table[hash];
1238 	kretprobe_table_lock(hash, &flags);
1239 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1240 		if (ri->task == tk)
1241 			recycle_rp_inst(ri, &empty_rp);
1242 	}
1243 	kretprobe_table_unlock(hash, &flags);
1244 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1245 		hlist_del(&ri->hlist);
1246 		kfree(ri);
1247 	}
1248 }
1249 NOKPROBE_SYMBOL(kprobe_flush_task);
1250 
1251 static inline void free_rp_inst(struct kretprobe *rp)
1252 {
1253 	struct kretprobe_instance *ri;
1254 	struct hlist_node *next;
1255 
1256 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1257 		hlist_del(&ri->hlist);
1258 		kfree(ri);
1259 	}
1260 }
1261 
1262 static void cleanup_rp_inst(struct kretprobe *rp)
1263 {
1264 	unsigned long flags, hash;
1265 	struct kretprobe_instance *ri;
1266 	struct hlist_node *next;
1267 	struct hlist_head *head;
1268 
1269 	/* No race here */
1270 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1271 		kretprobe_table_lock(hash, &flags);
1272 		head = &kretprobe_inst_table[hash];
1273 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1274 			if (ri->rp == rp)
1275 				ri->rp = NULL;
1276 		}
1277 		kretprobe_table_unlock(hash, &flags);
1278 	}
1279 	free_rp_inst(rp);
1280 }
1281 NOKPROBE_SYMBOL(cleanup_rp_inst);
1282 
1283 /* Add the new probe to ap->list */
1284 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1285 {
1286 	if (p->post_handler)
1287 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1288 
1289 	list_add_rcu(&p->list, &ap->list);
1290 	if (p->post_handler && !ap->post_handler)
1291 		ap->post_handler = aggr_post_handler;
1292 
1293 	return 0;
1294 }
1295 
1296 /*
1297  * Fill in the required fields of the "manager kprobe". Replace the
1298  * earlier kprobe in the hlist with the manager kprobe
1299  */
1300 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1301 {
1302 	/* Copy p's insn slot to ap */
1303 	copy_kprobe(p, ap);
1304 	flush_insn_slot(ap);
1305 	ap->addr = p->addr;
1306 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1307 	ap->pre_handler = aggr_pre_handler;
1308 	ap->fault_handler = aggr_fault_handler;
1309 	/* We don't care the kprobe which has gone. */
1310 	if (p->post_handler && !kprobe_gone(p))
1311 		ap->post_handler = aggr_post_handler;
1312 
1313 	INIT_LIST_HEAD(&ap->list);
1314 	INIT_HLIST_NODE(&ap->hlist);
1315 
1316 	list_add_rcu(&p->list, &ap->list);
1317 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1318 }
1319 
1320 /*
1321  * This is the second or subsequent kprobe at the address - handle
1322  * the intricacies
1323  */
1324 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1325 {
1326 	int ret = 0;
1327 	struct kprobe *ap = orig_p;
1328 
1329 	cpus_read_lock();
1330 
1331 	/* For preparing optimization, jump_label_text_reserved() is called */
1332 	jump_label_lock();
1333 	mutex_lock(&text_mutex);
1334 
1335 	if (!kprobe_aggrprobe(orig_p)) {
1336 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1337 		ap = alloc_aggr_kprobe(orig_p);
1338 		if (!ap) {
1339 			ret = -ENOMEM;
1340 			goto out;
1341 		}
1342 		init_aggr_kprobe(ap, orig_p);
1343 	} else if (kprobe_unused(ap)) {
1344 		/* This probe is going to die. Rescue it */
1345 		ret = reuse_unused_kprobe(ap);
1346 		if (ret)
1347 			goto out;
1348 	}
1349 
1350 	if (kprobe_gone(ap)) {
1351 		/*
1352 		 * Attempting to insert new probe at the same location that
1353 		 * had a probe in the module vaddr area which already
1354 		 * freed. So, the instruction slot has already been
1355 		 * released. We need a new slot for the new probe.
1356 		 */
1357 		ret = arch_prepare_kprobe(ap);
1358 		if (ret)
1359 			/*
1360 			 * Even if fail to allocate new slot, don't need to
1361 			 * free aggr_probe. It will be used next time, or
1362 			 * freed by unregister_kprobe.
1363 			 */
1364 			goto out;
1365 
1366 		/* Prepare optimized instructions if possible. */
1367 		prepare_optimized_kprobe(ap);
1368 
1369 		/*
1370 		 * Clear gone flag to prevent allocating new slot again, and
1371 		 * set disabled flag because it is not armed yet.
1372 		 */
1373 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1374 			    | KPROBE_FLAG_DISABLED;
1375 	}
1376 
1377 	/* Copy ap's insn slot to p */
1378 	copy_kprobe(ap, p);
1379 	ret = add_new_kprobe(ap, p);
1380 
1381 out:
1382 	mutex_unlock(&text_mutex);
1383 	jump_label_unlock();
1384 	cpus_read_unlock();
1385 
1386 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1387 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1388 		if (!kprobes_all_disarmed) {
1389 			/* Arm the breakpoint again. */
1390 			ret = arm_kprobe(ap);
1391 			if (ret) {
1392 				ap->flags |= KPROBE_FLAG_DISABLED;
1393 				list_del_rcu(&p->list);
1394 				synchronize_rcu();
1395 			}
1396 		}
1397 	}
1398 	return ret;
1399 }
1400 
1401 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1402 {
1403 	/* The __kprobes marked functions and entry code must not be probed */
1404 	return addr >= (unsigned long)__kprobes_text_start &&
1405 	       addr < (unsigned long)__kprobes_text_end;
1406 }
1407 
1408 static bool __within_kprobe_blacklist(unsigned long addr)
1409 {
1410 	struct kprobe_blacklist_entry *ent;
1411 
1412 	if (arch_within_kprobe_blacklist(addr))
1413 		return true;
1414 	/*
1415 	 * If there exists a kprobe_blacklist, verify and
1416 	 * fail any probe registration in the prohibited area
1417 	 */
1418 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1419 		if (addr >= ent->start_addr && addr < ent->end_addr)
1420 			return true;
1421 	}
1422 	return false;
1423 }
1424 
1425 bool within_kprobe_blacklist(unsigned long addr)
1426 {
1427 	char symname[KSYM_NAME_LEN], *p;
1428 
1429 	if (__within_kprobe_blacklist(addr))
1430 		return true;
1431 
1432 	/* Check if the address is on a suffixed-symbol */
1433 	if (!lookup_symbol_name(addr, symname)) {
1434 		p = strchr(symname, '.');
1435 		if (!p)
1436 			return false;
1437 		*p = '\0';
1438 		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1439 		if (addr)
1440 			return __within_kprobe_blacklist(addr);
1441 	}
1442 	return false;
1443 }
1444 
1445 /*
1446  * If we have a symbol_name argument, look it up and add the offset field
1447  * to it. This way, we can specify a relative address to a symbol.
1448  * This returns encoded errors if it fails to look up symbol or invalid
1449  * combination of parameters.
1450  */
1451 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1452 			const char *symbol_name, unsigned int offset)
1453 {
1454 	if ((symbol_name && addr) || (!symbol_name && !addr))
1455 		goto invalid;
1456 
1457 	if (symbol_name) {
1458 		addr = kprobe_lookup_name(symbol_name, offset);
1459 		if (!addr)
1460 			return ERR_PTR(-ENOENT);
1461 	}
1462 
1463 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1464 	if (addr)
1465 		return addr;
1466 
1467 invalid:
1468 	return ERR_PTR(-EINVAL);
1469 }
1470 
1471 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1472 {
1473 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1474 }
1475 
1476 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1477 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1478 {
1479 	struct kprobe *ap, *list_p;
1480 
1481 	ap = get_kprobe(p->addr);
1482 	if (unlikely(!ap))
1483 		return NULL;
1484 
1485 	if (p != ap) {
1486 		list_for_each_entry_rcu(list_p, &ap->list, list)
1487 			if (list_p == p)
1488 			/* kprobe p is a valid probe */
1489 				goto valid;
1490 		return NULL;
1491 	}
1492 valid:
1493 	return ap;
1494 }
1495 
1496 /* Return error if the kprobe is being re-registered */
1497 static inline int check_kprobe_rereg(struct kprobe *p)
1498 {
1499 	int ret = 0;
1500 
1501 	mutex_lock(&kprobe_mutex);
1502 	if (__get_valid_kprobe(p))
1503 		ret = -EINVAL;
1504 	mutex_unlock(&kprobe_mutex);
1505 
1506 	return ret;
1507 }
1508 
1509 int __weak arch_check_ftrace_location(struct kprobe *p)
1510 {
1511 	unsigned long ftrace_addr;
1512 
1513 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1514 	if (ftrace_addr) {
1515 #ifdef CONFIG_KPROBES_ON_FTRACE
1516 		/* Given address is not on the instruction boundary */
1517 		if ((unsigned long)p->addr != ftrace_addr)
1518 			return -EILSEQ;
1519 		p->flags |= KPROBE_FLAG_FTRACE;
1520 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1521 		return -EINVAL;
1522 #endif
1523 	}
1524 	return 0;
1525 }
1526 
1527 static int check_kprobe_address_safe(struct kprobe *p,
1528 				     struct module **probed_mod)
1529 {
1530 	int ret;
1531 
1532 	ret = arch_check_ftrace_location(p);
1533 	if (ret)
1534 		return ret;
1535 	jump_label_lock();
1536 	preempt_disable();
1537 
1538 	/* Ensure it is not in reserved area nor out of text */
1539 	if (!kernel_text_address((unsigned long) p->addr) ||
1540 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1541 	    jump_label_text_reserved(p->addr, p->addr) ||
1542 	    find_bug((unsigned long)p->addr)) {
1543 		ret = -EINVAL;
1544 		goto out;
1545 	}
1546 
1547 	/* Check if are we probing a module */
1548 	*probed_mod = __module_text_address((unsigned long) p->addr);
1549 	if (*probed_mod) {
1550 		/*
1551 		 * We must hold a refcount of the probed module while updating
1552 		 * its code to prohibit unexpected unloading.
1553 		 */
1554 		if (unlikely(!try_module_get(*probed_mod))) {
1555 			ret = -ENOENT;
1556 			goto out;
1557 		}
1558 
1559 		/*
1560 		 * If the module freed .init.text, we couldn't insert
1561 		 * kprobes in there.
1562 		 */
1563 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1564 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1565 			module_put(*probed_mod);
1566 			*probed_mod = NULL;
1567 			ret = -ENOENT;
1568 		}
1569 	}
1570 out:
1571 	preempt_enable();
1572 	jump_label_unlock();
1573 
1574 	return ret;
1575 }
1576 
1577 int register_kprobe(struct kprobe *p)
1578 {
1579 	int ret;
1580 	struct kprobe *old_p;
1581 	struct module *probed_mod;
1582 	kprobe_opcode_t *addr;
1583 
1584 	/* Adjust probe address from symbol */
1585 	addr = kprobe_addr(p);
1586 	if (IS_ERR(addr))
1587 		return PTR_ERR(addr);
1588 	p->addr = addr;
1589 
1590 	ret = check_kprobe_rereg(p);
1591 	if (ret)
1592 		return ret;
1593 
1594 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1595 	p->flags &= KPROBE_FLAG_DISABLED;
1596 	p->nmissed = 0;
1597 	INIT_LIST_HEAD(&p->list);
1598 
1599 	ret = check_kprobe_address_safe(p, &probed_mod);
1600 	if (ret)
1601 		return ret;
1602 
1603 	mutex_lock(&kprobe_mutex);
1604 
1605 	old_p = get_kprobe(p->addr);
1606 	if (old_p) {
1607 		/* Since this may unoptimize old_p, locking text_mutex. */
1608 		ret = register_aggr_kprobe(old_p, p);
1609 		goto out;
1610 	}
1611 
1612 	cpus_read_lock();
1613 	/* Prevent text modification */
1614 	mutex_lock(&text_mutex);
1615 	ret = prepare_kprobe(p);
1616 	mutex_unlock(&text_mutex);
1617 	cpus_read_unlock();
1618 	if (ret)
1619 		goto out;
1620 
1621 	INIT_HLIST_NODE(&p->hlist);
1622 	hlist_add_head_rcu(&p->hlist,
1623 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1624 
1625 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1626 		ret = arm_kprobe(p);
1627 		if (ret) {
1628 			hlist_del_rcu(&p->hlist);
1629 			synchronize_rcu();
1630 			goto out;
1631 		}
1632 	}
1633 
1634 	/* Try to optimize kprobe */
1635 	try_to_optimize_kprobe(p);
1636 out:
1637 	mutex_unlock(&kprobe_mutex);
1638 
1639 	if (probed_mod)
1640 		module_put(probed_mod);
1641 
1642 	return ret;
1643 }
1644 EXPORT_SYMBOL_GPL(register_kprobe);
1645 
1646 /* Check if all probes on the aggrprobe are disabled */
1647 static int aggr_kprobe_disabled(struct kprobe *ap)
1648 {
1649 	struct kprobe *kp;
1650 
1651 	list_for_each_entry_rcu(kp, &ap->list, list)
1652 		if (!kprobe_disabled(kp))
1653 			/*
1654 			 * There is an active probe on the list.
1655 			 * We can't disable this ap.
1656 			 */
1657 			return 0;
1658 
1659 	return 1;
1660 }
1661 
1662 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1663 static struct kprobe *__disable_kprobe(struct kprobe *p)
1664 {
1665 	struct kprobe *orig_p;
1666 	int ret;
1667 
1668 	/* Get an original kprobe for return */
1669 	orig_p = __get_valid_kprobe(p);
1670 	if (unlikely(orig_p == NULL))
1671 		return ERR_PTR(-EINVAL);
1672 
1673 	if (!kprobe_disabled(p)) {
1674 		/* Disable probe if it is a child probe */
1675 		if (p != orig_p)
1676 			p->flags |= KPROBE_FLAG_DISABLED;
1677 
1678 		/* Try to disarm and disable this/parent probe */
1679 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1680 			/*
1681 			 * If kprobes_all_disarmed is set, orig_p
1682 			 * should have already been disarmed, so
1683 			 * skip unneed disarming process.
1684 			 */
1685 			if (!kprobes_all_disarmed) {
1686 				ret = disarm_kprobe(orig_p, true);
1687 				if (ret) {
1688 					p->flags &= ~KPROBE_FLAG_DISABLED;
1689 					return ERR_PTR(ret);
1690 				}
1691 			}
1692 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1693 		}
1694 	}
1695 
1696 	return orig_p;
1697 }
1698 
1699 /*
1700  * Unregister a kprobe without a scheduler synchronization.
1701  */
1702 static int __unregister_kprobe_top(struct kprobe *p)
1703 {
1704 	struct kprobe *ap, *list_p;
1705 
1706 	/* Disable kprobe. This will disarm it if needed. */
1707 	ap = __disable_kprobe(p);
1708 	if (IS_ERR(ap))
1709 		return PTR_ERR(ap);
1710 
1711 	if (ap == p)
1712 		/*
1713 		 * This probe is an independent(and non-optimized) kprobe
1714 		 * (not an aggrprobe). Remove from the hash list.
1715 		 */
1716 		goto disarmed;
1717 
1718 	/* Following process expects this probe is an aggrprobe */
1719 	WARN_ON(!kprobe_aggrprobe(ap));
1720 
1721 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1722 		/*
1723 		 * !disarmed could be happen if the probe is under delayed
1724 		 * unoptimizing.
1725 		 */
1726 		goto disarmed;
1727 	else {
1728 		/* If disabling probe has special handlers, update aggrprobe */
1729 		if (p->post_handler && !kprobe_gone(p)) {
1730 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1731 				if ((list_p != p) && (list_p->post_handler))
1732 					goto noclean;
1733 			}
1734 			ap->post_handler = NULL;
1735 		}
1736 noclean:
1737 		/*
1738 		 * Remove from the aggrprobe: this path will do nothing in
1739 		 * __unregister_kprobe_bottom().
1740 		 */
1741 		list_del_rcu(&p->list);
1742 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1743 			/*
1744 			 * Try to optimize this probe again, because post
1745 			 * handler may have been changed.
1746 			 */
1747 			optimize_kprobe(ap);
1748 	}
1749 	return 0;
1750 
1751 disarmed:
1752 	hlist_del_rcu(&ap->hlist);
1753 	return 0;
1754 }
1755 
1756 static void __unregister_kprobe_bottom(struct kprobe *p)
1757 {
1758 	struct kprobe *ap;
1759 
1760 	if (list_empty(&p->list))
1761 		/* This is an independent kprobe */
1762 		arch_remove_kprobe(p);
1763 	else if (list_is_singular(&p->list)) {
1764 		/* This is the last child of an aggrprobe */
1765 		ap = list_entry(p->list.next, struct kprobe, list);
1766 		list_del(&p->list);
1767 		free_aggr_kprobe(ap);
1768 	}
1769 	/* Otherwise, do nothing. */
1770 }
1771 
1772 int register_kprobes(struct kprobe **kps, int num)
1773 {
1774 	int i, ret = 0;
1775 
1776 	if (num <= 0)
1777 		return -EINVAL;
1778 	for (i = 0; i < num; i++) {
1779 		ret = register_kprobe(kps[i]);
1780 		if (ret < 0) {
1781 			if (i > 0)
1782 				unregister_kprobes(kps, i);
1783 			break;
1784 		}
1785 	}
1786 	return ret;
1787 }
1788 EXPORT_SYMBOL_GPL(register_kprobes);
1789 
1790 void unregister_kprobe(struct kprobe *p)
1791 {
1792 	unregister_kprobes(&p, 1);
1793 }
1794 EXPORT_SYMBOL_GPL(unregister_kprobe);
1795 
1796 void unregister_kprobes(struct kprobe **kps, int num)
1797 {
1798 	int i;
1799 
1800 	if (num <= 0)
1801 		return;
1802 	mutex_lock(&kprobe_mutex);
1803 	for (i = 0; i < num; i++)
1804 		if (__unregister_kprobe_top(kps[i]) < 0)
1805 			kps[i]->addr = NULL;
1806 	mutex_unlock(&kprobe_mutex);
1807 
1808 	synchronize_rcu();
1809 	for (i = 0; i < num; i++)
1810 		if (kps[i]->addr)
1811 			__unregister_kprobe_bottom(kps[i]);
1812 }
1813 EXPORT_SYMBOL_GPL(unregister_kprobes);
1814 
1815 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1816 					unsigned long val, void *data)
1817 {
1818 	return NOTIFY_DONE;
1819 }
1820 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1821 
1822 static struct notifier_block kprobe_exceptions_nb = {
1823 	.notifier_call = kprobe_exceptions_notify,
1824 	.priority = 0x7fffffff /* we need to be notified first */
1825 };
1826 
1827 unsigned long __weak arch_deref_entry_point(void *entry)
1828 {
1829 	return (unsigned long)entry;
1830 }
1831 
1832 #ifdef CONFIG_KRETPROBES
1833 /*
1834  * This kprobe pre_handler is registered with every kretprobe. When probe
1835  * hits it will set up the return probe.
1836  */
1837 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1838 {
1839 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1840 	unsigned long hash, flags = 0;
1841 	struct kretprobe_instance *ri;
1842 
1843 	/*
1844 	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1845 	 * just skip the probe and increase the (inexact) 'nmissed'
1846 	 * statistical counter, so that the user is informed that
1847 	 * something happened:
1848 	 */
1849 	if (unlikely(in_nmi())) {
1850 		rp->nmissed++;
1851 		return 0;
1852 	}
1853 
1854 	/* TODO: consider to only swap the RA after the last pre_handler fired */
1855 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1856 	raw_spin_lock_irqsave(&rp->lock, flags);
1857 	if (!hlist_empty(&rp->free_instances)) {
1858 		ri = hlist_entry(rp->free_instances.first,
1859 				struct kretprobe_instance, hlist);
1860 		hlist_del(&ri->hlist);
1861 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1862 
1863 		ri->rp = rp;
1864 		ri->task = current;
1865 
1866 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1867 			raw_spin_lock_irqsave(&rp->lock, flags);
1868 			hlist_add_head(&ri->hlist, &rp->free_instances);
1869 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1870 			return 0;
1871 		}
1872 
1873 		arch_prepare_kretprobe(ri, regs);
1874 
1875 		/* XXX(hch): why is there no hlist_move_head? */
1876 		INIT_HLIST_NODE(&ri->hlist);
1877 		kretprobe_table_lock(hash, &flags);
1878 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1879 		kretprobe_table_unlock(hash, &flags);
1880 	} else {
1881 		rp->nmissed++;
1882 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1883 	}
1884 	return 0;
1885 }
1886 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1887 
1888 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1889 {
1890 	return !offset;
1891 }
1892 
1893 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1894 {
1895 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1896 
1897 	if (IS_ERR(kp_addr))
1898 		return false;
1899 
1900 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1901 						!arch_kprobe_on_func_entry(offset))
1902 		return false;
1903 
1904 	return true;
1905 }
1906 
1907 int register_kretprobe(struct kretprobe *rp)
1908 {
1909 	int ret = 0;
1910 	struct kretprobe_instance *inst;
1911 	int i;
1912 	void *addr;
1913 
1914 	if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1915 		return -EINVAL;
1916 
1917 	if (kretprobe_blacklist_size) {
1918 		addr = kprobe_addr(&rp->kp);
1919 		if (IS_ERR(addr))
1920 			return PTR_ERR(addr);
1921 
1922 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1923 			if (kretprobe_blacklist[i].addr == addr)
1924 				return -EINVAL;
1925 		}
1926 	}
1927 
1928 	rp->kp.pre_handler = pre_handler_kretprobe;
1929 	rp->kp.post_handler = NULL;
1930 	rp->kp.fault_handler = NULL;
1931 
1932 	/* Pre-allocate memory for max kretprobe instances */
1933 	if (rp->maxactive <= 0) {
1934 #ifdef CONFIG_PREEMPTION
1935 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1936 #else
1937 		rp->maxactive = num_possible_cpus();
1938 #endif
1939 	}
1940 	raw_spin_lock_init(&rp->lock);
1941 	INIT_HLIST_HEAD(&rp->free_instances);
1942 	for (i = 0; i < rp->maxactive; i++) {
1943 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1944 			       rp->data_size, GFP_KERNEL);
1945 		if (inst == NULL) {
1946 			free_rp_inst(rp);
1947 			return -ENOMEM;
1948 		}
1949 		INIT_HLIST_NODE(&inst->hlist);
1950 		hlist_add_head(&inst->hlist, &rp->free_instances);
1951 	}
1952 
1953 	rp->nmissed = 0;
1954 	/* Establish function entry probe point */
1955 	ret = register_kprobe(&rp->kp);
1956 	if (ret != 0)
1957 		free_rp_inst(rp);
1958 	return ret;
1959 }
1960 EXPORT_SYMBOL_GPL(register_kretprobe);
1961 
1962 int register_kretprobes(struct kretprobe **rps, int num)
1963 {
1964 	int ret = 0, i;
1965 
1966 	if (num <= 0)
1967 		return -EINVAL;
1968 	for (i = 0; i < num; i++) {
1969 		ret = register_kretprobe(rps[i]);
1970 		if (ret < 0) {
1971 			if (i > 0)
1972 				unregister_kretprobes(rps, i);
1973 			break;
1974 		}
1975 	}
1976 	return ret;
1977 }
1978 EXPORT_SYMBOL_GPL(register_kretprobes);
1979 
1980 void unregister_kretprobe(struct kretprobe *rp)
1981 {
1982 	unregister_kretprobes(&rp, 1);
1983 }
1984 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1985 
1986 void unregister_kretprobes(struct kretprobe **rps, int num)
1987 {
1988 	int i;
1989 
1990 	if (num <= 0)
1991 		return;
1992 	mutex_lock(&kprobe_mutex);
1993 	for (i = 0; i < num; i++)
1994 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1995 			rps[i]->kp.addr = NULL;
1996 	mutex_unlock(&kprobe_mutex);
1997 
1998 	synchronize_rcu();
1999 	for (i = 0; i < num; i++) {
2000 		if (rps[i]->kp.addr) {
2001 			__unregister_kprobe_bottom(&rps[i]->kp);
2002 			cleanup_rp_inst(rps[i]);
2003 		}
2004 	}
2005 }
2006 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2007 
2008 #else /* CONFIG_KRETPROBES */
2009 int register_kretprobe(struct kretprobe *rp)
2010 {
2011 	return -ENOSYS;
2012 }
2013 EXPORT_SYMBOL_GPL(register_kretprobe);
2014 
2015 int register_kretprobes(struct kretprobe **rps, int num)
2016 {
2017 	return -ENOSYS;
2018 }
2019 EXPORT_SYMBOL_GPL(register_kretprobes);
2020 
2021 void unregister_kretprobe(struct kretprobe *rp)
2022 {
2023 }
2024 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2025 
2026 void unregister_kretprobes(struct kretprobe **rps, int num)
2027 {
2028 }
2029 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2030 
2031 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2032 {
2033 	return 0;
2034 }
2035 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2036 
2037 #endif /* CONFIG_KRETPROBES */
2038 
2039 /* Set the kprobe gone and remove its instruction buffer. */
2040 static void kill_kprobe(struct kprobe *p)
2041 {
2042 	struct kprobe *kp;
2043 
2044 	p->flags |= KPROBE_FLAG_GONE;
2045 	if (kprobe_aggrprobe(p)) {
2046 		/*
2047 		 * If this is an aggr_kprobe, we have to list all the
2048 		 * chained probes and mark them GONE.
2049 		 */
2050 		list_for_each_entry_rcu(kp, &p->list, list)
2051 			kp->flags |= KPROBE_FLAG_GONE;
2052 		p->post_handler = NULL;
2053 		kill_optimized_kprobe(p);
2054 	}
2055 	/*
2056 	 * Here, we can remove insn_slot safely, because no thread calls
2057 	 * the original probed function (which will be freed soon) any more.
2058 	 */
2059 	arch_remove_kprobe(p);
2060 }
2061 
2062 /* Disable one kprobe */
2063 int disable_kprobe(struct kprobe *kp)
2064 {
2065 	int ret = 0;
2066 	struct kprobe *p;
2067 
2068 	mutex_lock(&kprobe_mutex);
2069 
2070 	/* Disable this kprobe */
2071 	p = __disable_kprobe(kp);
2072 	if (IS_ERR(p))
2073 		ret = PTR_ERR(p);
2074 
2075 	mutex_unlock(&kprobe_mutex);
2076 	return ret;
2077 }
2078 EXPORT_SYMBOL_GPL(disable_kprobe);
2079 
2080 /* Enable one kprobe */
2081 int enable_kprobe(struct kprobe *kp)
2082 {
2083 	int ret = 0;
2084 	struct kprobe *p;
2085 
2086 	mutex_lock(&kprobe_mutex);
2087 
2088 	/* Check whether specified probe is valid. */
2089 	p = __get_valid_kprobe(kp);
2090 	if (unlikely(p == NULL)) {
2091 		ret = -EINVAL;
2092 		goto out;
2093 	}
2094 
2095 	if (kprobe_gone(kp)) {
2096 		/* This kprobe has gone, we couldn't enable it. */
2097 		ret = -EINVAL;
2098 		goto out;
2099 	}
2100 
2101 	if (p != kp)
2102 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2103 
2104 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2105 		p->flags &= ~KPROBE_FLAG_DISABLED;
2106 		ret = arm_kprobe(p);
2107 		if (ret)
2108 			p->flags |= KPROBE_FLAG_DISABLED;
2109 	}
2110 out:
2111 	mutex_unlock(&kprobe_mutex);
2112 	return ret;
2113 }
2114 EXPORT_SYMBOL_GPL(enable_kprobe);
2115 
2116 /* Caller must NOT call this in usual path. This is only for critical case */
2117 void dump_kprobe(struct kprobe *kp)
2118 {
2119 	pr_err("Dumping kprobe:\n");
2120 	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2121 	       kp->symbol_name, kp->offset, kp->addr);
2122 }
2123 NOKPROBE_SYMBOL(dump_kprobe);
2124 
2125 int kprobe_add_ksym_blacklist(unsigned long entry)
2126 {
2127 	struct kprobe_blacklist_entry *ent;
2128 	unsigned long offset = 0, size = 0;
2129 
2130 	if (!kernel_text_address(entry) ||
2131 	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2132 		return -EINVAL;
2133 
2134 	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2135 	if (!ent)
2136 		return -ENOMEM;
2137 	ent->start_addr = entry;
2138 	ent->end_addr = entry + size;
2139 	INIT_LIST_HEAD(&ent->list);
2140 	list_add_tail(&ent->list, &kprobe_blacklist);
2141 
2142 	return (int)size;
2143 }
2144 
2145 /* Add all symbols in given area into kprobe blacklist */
2146 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2147 {
2148 	unsigned long entry;
2149 	int ret = 0;
2150 
2151 	for (entry = start; entry < end; entry += ret) {
2152 		ret = kprobe_add_ksym_blacklist(entry);
2153 		if (ret < 0)
2154 			return ret;
2155 		if (ret == 0)	/* In case of alias symbol */
2156 			ret = 1;
2157 	}
2158 	return 0;
2159 }
2160 
2161 int __init __weak arch_populate_kprobe_blacklist(void)
2162 {
2163 	return 0;
2164 }
2165 
2166 /*
2167  * Lookup and populate the kprobe_blacklist.
2168  *
2169  * Unlike the kretprobe blacklist, we'll need to determine
2170  * the range of addresses that belong to the said functions,
2171  * since a kprobe need not necessarily be at the beginning
2172  * of a function.
2173  */
2174 static int __init populate_kprobe_blacklist(unsigned long *start,
2175 					     unsigned long *end)
2176 {
2177 	unsigned long entry;
2178 	unsigned long *iter;
2179 	int ret;
2180 
2181 	for (iter = start; iter < end; iter++) {
2182 		entry = arch_deref_entry_point((void *)*iter);
2183 		ret = kprobe_add_ksym_blacklist(entry);
2184 		if (ret == -EINVAL)
2185 			continue;
2186 		if (ret < 0)
2187 			return ret;
2188 	}
2189 
2190 	/* Symbols in __kprobes_text are blacklisted */
2191 	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2192 					(unsigned long)__kprobes_text_end);
2193 
2194 	return ret ? : arch_populate_kprobe_blacklist();
2195 }
2196 
2197 /* Module notifier call back, checking kprobes on the module */
2198 static int kprobes_module_callback(struct notifier_block *nb,
2199 				   unsigned long val, void *data)
2200 {
2201 	struct module *mod = data;
2202 	struct hlist_head *head;
2203 	struct kprobe *p;
2204 	unsigned int i;
2205 	int checkcore = (val == MODULE_STATE_GOING);
2206 
2207 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2208 		return NOTIFY_DONE;
2209 
2210 	/*
2211 	 * When MODULE_STATE_GOING was notified, both of module .text and
2212 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2213 	 * notified, only .init.text section would be freed. We need to
2214 	 * disable kprobes which have been inserted in the sections.
2215 	 */
2216 	mutex_lock(&kprobe_mutex);
2217 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2218 		head = &kprobe_table[i];
2219 		hlist_for_each_entry_rcu(p, head, hlist)
2220 			if (within_module_init((unsigned long)p->addr, mod) ||
2221 			    (checkcore &&
2222 			     within_module_core((unsigned long)p->addr, mod))) {
2223 				/*
2224 				 * The vaddr this probe is installed will soon
2225 				 * be vfreed buy not synced to disk. Hence,
2226 				 * disarming the breakpoint isn't needed.
2227 				 *
2228 				 * Note, this will also move any optimized probes
2229 				 * that are pending to be removed from their
2230 				 * corresponding lists to the freeing_list and
2231 				 * will not be touched by the delayed
2232 				 * kprobe_optimizer work handler.
2233 				 */
2234 				kill_kprobe(p);
2235 			}
2236 	}
2237 	mutex_unlock(&kprobe_mutex);
2238 	return NOTIFY_DONE;
2239 }
2240 
2241 static struct notifier_block kprobe_module_nb = {
2242 	.notifier_call = kprobes_module_callback,
2243 	.priority = 0
2244 };
2245 
2246 /* Markers of _kprobe_blacklist section */
2247 extern unsigned long __start_kprobe_blacklist[];
2248 extern unsigned long __stop_kprobe_blacklist[];
2249 
2250 static int __init init_kprobes(void)
2251 {
2252 	int i, err = 0;
2253 
2254 	/* FIXME allocate the probe table, currently defined statically */
2255 	/* initialize all list heads */
2256 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2257 		INIT_HLIST_HEAD(&kprobe_table[i]);
2258 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2259 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2260 	}
2261 
2262 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2263 					__stop_kprobe_blacklist);
2264 	if (err) {
2265 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2266 		pr_err("Please take care of using kprobes.\n");
2267 	}
2268 
2269 	if (kretprobe_blacklist_size) {
2270 		/* lookup the function address from its name */
2271 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2272 			kretprobe_blacklist[i].addr =
2273 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2274 			if (!kretprobe_blacklist[i].addr)
2275 				printk("kretprobe: lookup failed: %s\n",
2276 				       kretprobe_blacklist[i].name);
2277 		}
2278 	}
2279 
2280 #if defined(CONFIG_OPTPROBES)
2281 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2282 	/* Init kprobe_optinsn_slots */
2283 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2284 #endif
2285 	/* By default, kprobes can be optimized */
2286 	kprobes_allow_optimization = true;
2287 #endif
2288 
2289 	/* By default, kprobes are armed */
2290 	kprobes_all_disarmed = false;
2291 
2292 	err = arch_init_kprobes();
2293 	if (!err)
2294 		err = register_die_notifier(&kprobe_exceptions_nb);
2295 	if (!err)
2296 		err = register_module_notifier(&kprobe_module_nb);
2297 
2298 	kprobes_initialized = (err == 0);
2299 
2300 	if (!err)
2301 		init_test_probes();
2302 	return err;
2303 }
2304 subsys_initcall(init_kprobes);
2305 
2306 #ifdef CONFIG_DEBUG_FS
2307 static void report_probe(struct seq_file *pi, struct kprobe *p,
2308 		const char *sym, int offset, char *modname, struct kprobe *pp)
2309 {
2310 	char *kprobe_type;
2311 	void *addr = p->addr;
2312 
2313 	if (p->pre_handler == pre_handler_kretprobe)
2314 		kprobe_type = "r";
2315 	else
2316 		kprobe_type = "k";
2317 
2318 	if (!kallsyms_show_value())
2319 		addr = NULL;
2320 
2321 	if (sym)
2322 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2323 			addr, kprobe_type, sym, offset,
2324 			(modname ? modname : " "));
2325 	else	/* try to use %pS */
2326 		seq_printf(pi, "%px  %s  %pS ",
2327 			addr, kprobe_type, p->addr);
2328 
2329 	if (!pp)
2330 		pp = p;
2331 	seq_printf(pi, "%s%s%s%s\n",
2332 		(kprobe_gone(p) ? "[GONE]" : ""),
2333 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2334 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2335 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2336 }
2337 
2338 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2339 {
2340 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2341 }
2342 
2343 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2344 {
2345 	(*pos)++;
2346 	if (*pos >= KPROBE_TABLE_SIZE)
2347 		return NULL;
2348 	return pos;
2349 }
2350 
2351 static void kprobe_seq_stop(struct seq_file *f, void *v)
2352 {
2353 	/* Nothing to do */
2354 }
2355 
2356 static int show_kprobe_addr(struct seq_file *pi, void *v)
2357 {
2358 	struct hlist_head *head;
2359 	struct kprobe *p, *kp;
2360 	const char *sym = NULL;
2361 	unsigned int i = *(loff_t *) v;
2362 	unsigned long offset = 0;
2363 	char *modname, namebuf[KSYM_NAME_LEN];
2364 
2365 	head = &kprobe_table[i];
2366 	preempt_disable();
2367 	hlist_for_each_entry_rcu(p, head, hlist) {
2368 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2369 					&offset, &modname, namebuf);
2370 		if (kprobe_aggrprobe(p)) {
2371 			list_for_each_entry_rcu(kp, &p->list, list)
2372 				report_probe(pi, kp, sym, offset, modname, p);
2373 		} else
2374 			report_probe(pi, p, sym, offset, modname, NULL);
2375 	}
2376 	preempt_enable();
2377 	return 0;
2378 }
2379 
2380 static const struct seq_operations kprobes_seq_ops = {
2381 	.start = kprobe_seq_start,
2382 	.next  = kprobe_seq_next,
2383 	.stop  = kprobe_seq_stop,
2384 	.show  = show_kprobe_addr
2385 };
2386 
2387 static int kprobes_open(struct inode *inode, struct file *filp)
2388 {
2389 	return seq_open(filp, &kprobes_seq_ops);
2390 }
2391 
2392 static const struct file_operations debugfs_kprobes_operations = {
2393 	.open           = kprobes_open,
2394 	.read           = seq_read,
2395 	.llseek         = seq_lseek,
2396 	.release        = seq_release,
2397 };
2398 
2399 /* kprobes/blacklist -- shows which functions can not be probed */
2400 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2401 {
2402 	return seq_list_start(&kprobe_blacklist, *pos);
2403 }
2404 
2405 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2406 {
2407 	return seq_list_next(v, &kprobe_blacklist, pos);
2408 }
2409 
2410 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2411 {
2412 	struct kprobe_blacklist_entry *ent =
2413 		list_entry(v, struct kprobe_blacklist_entry, list);
2414 
2415 	/*
2416 	 * If /proc/kallsyms is not showing kernel address, we won't
2417 	 * show them here either.
2418 	 */
2419 	if (!kallsyms_show_value())
2420 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2421 			   (void *)ent->start_addr);
2422 	else
2423 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2424 			   (void *)ent->end_addr, (void *)ent->start_addr);
2425 	return 0;
2426 }
2427 
2428 static const struct seq_operations kprobe_blacklist_seq_ops = {
2429 	.start = kprobe_blacklist_seq_start,
2430 	.next  = kprobe_blacklist_seq_next,
2431 	.stop  = kprobe_seq_stop,	/* Reuse void function */
2432 	.show  = kprobe_blacklist_seq_show,
2433 };
2434 
2435 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2436 {
2437 	return seq_open(filp, &kprobe_blacklist_seq_ops);
2438 }
2439 
2440 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2441 	.open           = kprobe_blacklist_open,
2442 	.read           = seq_read,
2443 	.llseek         = seq_lseek,
2444 	.release        = seq_release,
2445 };
2446 
2447 static int arm_all_kprobes(void)
2448 {
2449 	struct hlist_head *head;
2450 	struct kprobe *p;
2451 	unsigned int i, total = 0, errors = 0;
2452 	int err, ret = 0;
2453 
2454 	mutex_lock(&kprobe_mutex);
2455 
2456 	/* If kprobes are armed, just return */
2457 	if (!kprobes_all_disarmed)
2458 		goto already_enabled;
2459 
2460 	/*
2461 	 * optimize_kprobe() called by arm_kprobe() checks
2462 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2463 	 * arm_kprobe.
2464 	 */
2465 	kprobes_all_disarmed = false;
2466 	/* Arming kprobes doesn't optimize kprobe itself */
2467 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2468 		head = &kprobe_table[i];
2469 		/* Arm all kprobes on a best-effort basis */
2470 		hlist_for_each_entry_rcu(p, head, hlist) {
2471 			if (!kprobe_disabled(p)) {
2472 				err = arm_kprobe(p);
2473 				if (err)  {
2474 					errors++;
2475 					ret = err;
2476 				}
2477 				total++;
2478 			}
2479 		}
2480 	}
2481 
2482 	if (errors)
2483 		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2484 			errors, total);
2485 	else
2486 		pr_info("Kprobes globally enabled\n");
2487 
2488 already_enabled:
2489 	mutex_unlock(&kprobe_mutex);
2490 	return ret;
2491 }
2492 
2493 static int disarm_all_kprobes(void)
2494 {
2495 	struct hlist_head *head;
2496 	struct kprobe *p;
2497 	unsigned int i, total = 0, errors = 0;
2498 	int err, ret = 0;
2499 
2500 	mutex_lock(&kprobe_mutex);
2501 
2502 	/* If kprobes are already disarmed, just return */
2503 	if (kprobes_all_disarmed) {
2504 		mutex_unlock(&kprobe_mutex);
2505 		return 0;
2506 	}
2507 
2508 	kprobes_all_disarmed = true;
2509 
2510 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2511 		head = &kprobe_table[i];
2512 		/* Disarm all kprobes on a best-effort basis */
2513 		hlist_for_each_entry_rcu(p, head, hlist) {
2514 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2515 				err = disarm_kprobe(p, false);
2516 				if (err) {
2517 					errors++;
2518 					ret = err;
2519 				}
2520 				total++;
2521 			}
2522 		}
2523 	}
2524 
2525 	if (errors)
2526 		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2527 			errors, total);
2528 	else
2529 		pr_info("Kprobes globally disabled\n");
2530 
2531 	mutex_unlock(&kprobe_mutex);
2532 
2533 	/* Wait for disarming all kprobes by optimizer */
2534 	wait_for_kprobe_optimizer();
2535 
2536 	return ret;
2537 }
2538 
2539 /*
2540  * XXX: The debugfs bool file interface doesn't allow for callbacks
2541  * when the bool state is switched. We can reuse that facility when
2542  * available
2543  */
2544 static ssize_t read_enabled_file_bool(struct file *file,
2545 	       char __user *user_buf, size_t count, loff_t *ppos)
2546 {
2547 	char buf[3];
2548 
2549 	if (!kprobes_all_disarmed)
2550 		buf[0] = '1';
2551 	else
2552 		buf[0] = '0';
2553 	buf[1] = '\n';
2554 	buf[2] = 0x00;
2555 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2556 }
2557 
2558 static ssize_t write_enabled_file_bool(struct file *file,
2559 	       const char __user *user_buf, size_t count, loff_t *ppos)
2560 {
2561 	char buf[32];
2562 	size_t buf_size;
2563 	int ret = 0;
2564 
2565 	buf_size = min(count, (sizeof(buf)-1));
2566 	if (copy_from_user(buf, user_buf, buf_size))
2567 		return -EFAULT;
2568 
2569 	buf[buf_size] = '\0';
2570 	switch (buf[0]) {
2571 	case 'y':
2572 	case 'Y':
2573 	case '1':
2574 		ret = arm_all_kprobes();
2575 		break;
2576 	case 'n':
2577 	case 'N':
2578 	case '0':
2579 		ret = disarm_all_kprobes();
2580 		break;
2581 	default:
2582 		return -EINVAL;
2583 	}
2584 
2585 	if (ret)
2586 		return ret;
2587 
2588 	return count;
2589 }
2590 
2591 static const struct file_operations fops_kp = {
2592 	.read =         read_enabled_file_bool,
2593 	.write =        write_enabled_file_bool,
2594 	.llseek =	default_llseek,
2595 };
2596 
2597 static int __init debugfs_kprobe_init(void)
2598 {
2599 	struct dentry *dir;
2600 	unsigned int value = 1;
2601 
2602 	dir = debugfs_create_dir("kprobes", NULL);
2603 
2604 	debugfs_create_file("list", 0400, dir, NULL,
2605 			    &debugfs_kprobes_operations);
2606 
2607 	debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2608 
2609 	debugfs_create_file("blacklist", 0400, dir, NULL,
2610 			    &debugfs_kprobe_blacklist_ops);
2611 
2612 	return 0;
2613 }
2614 
2615 late_initcall(debugfs_kprobe_init);
2616 #endif /* CONFIG_DEBUG_FS */
2617