xref: /openbmc/linux/kernel/kprobes.c (revision 3bf90eca)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *		Probes initial implementation (includes suggestions from
9  *		Rusty Russell).
10  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
11  *		hlists and exceptions notifier as suggested by Andi Kleen.
12  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
13  *		interface to access function arguments.
14  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
15  *		exceptions notifier to be first on the priority list.
16  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18  *		<prasanna@in.ibm.com> added function-return probes.
19  */
20 
21 #define pr_fmt(fmt) "kprobes: " fmt
22 
23 #include <linux/kprobes.h>
24 #include <linux/hash.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/stddef.h>
28 #include <linux/export.h>
29 #include <linux/moduleloader.h>
30 #include <linux/kallsyms.h>
31 #include <linux/freezer.h>
32 #include <linux/seq_file.h>
33 #include <linux/debugfs.h>
34 #include <linux/sysctl.h>
35 #include <linux/kdebug.h>
36 #include <linux/memory.h>
37 #include <linux/ftrace.h>
38 #include <linux/cpu.h>
39 #include <linux/jump_label.h>
40 #include <linux/static_call.h>
41 #include <linux/perf_event.h>
42 
43 #include <asm/sections.h>
44 #include <asm/cacheflush.h>
45 #include <asm/errno.h>
46 #include <linux/uaccess.h>
47 
48 #define KPROBE_HASH_BITS 6
49 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
50 
51 #if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
52 #define kprobe_sysctls_init() do { } while (0)
53 #endif
54 
55 static int kprobes_initialized;
56 /* kprobe_table can be accessed by
57  * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
58  * Or
59  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
60  */
61 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
62 
63 /* NOTE: change this value only with 'kprobe_mutex' held */
64 static bool kprobes_all_disarmed;
65 
66 /* This protects 'kprobe_table' and 'optimizing_list' */
67 static DEFINE_MUTEX(kprobe_mutex);
68 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
69 
70 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
71 					unsigned int __unused)
72 {
73 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
74 }
75 
76 /*
77  * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
78  * kprobes can not probe.
79  */
80 static LIST_HEAD(kprobe_blacklist);
81 
82 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
83 /*
84  * 'kprobe::ainsn.insn' points to the copy of the instruction to be
85  * single-stepped. x86_64, POWER4 and above have no-exec support and
86  * stepping on the instruction on a vmalloced/kmalloced/data page
87  * is a recipe for disaster
88  */
89 struct kprobe_insn_page {
90 	struct list_head list;
91 	kprobe_opcode_t *insns;		/* Page of instruction slots */
92 	struct kprobe_insn_cache *cache;
93 	int nused;
94 	int ngarbage;
95 	char slot_used[];
96 };
97 
98 #define KPROBE_INSN_PAGE_SIZE(slots)			\
99 	(offsetof(struct kprobe_insn_page, slot_used) +	\
100 	 (sizeof(char) * (slots)))
101 
102 static int slots_per_page(struct kprobe_insn_cache *c)
103 {
104 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
105 }
106 
107 enum kprobe_slot_state {
108 	SLOT_CLEAN = 0,
109 	SLOT_DIRTY = 1,
110 	SLOT_USED = 2,
111 };
112 
113 void __weak *alloc_insn_page(void)
114 {
115 	/*
116 	 * Use module_alloc() so this page is within +/- 2GB of where the
117 	 * kernel image and loaded module images reside. This is required
118 	 * for most of the architectures.
119 	 * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
120 	 */
121 	return module_alloc(PAGE_SIZE);
122 }
123 
124 static void free_insn_page(void *page)
125 {
126 	module_memfree(page);
127 }
128 
129 struct kprobe_insn_cache kprobe_insn_slots = {
130 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
131 	.alloc = alloc_insn_page,
132 	.free = free_insn_page,
133 	.sym = KPROBE_INSN_PAGE_SYM,
134 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 	.insn_size = MAX_INSN_SIZE,
136 	.nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139 
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146 	struct kprobe_insn_page *kip;
147 	kprobe_opcode_t *slot = NULL;
148 
149 	/* Since the slot array is not protected by rcu, we need a mutex */
150 	mutex_lock(&c->mutex);
151  retry:
152 	rcu_read_lock();
153 	list_for_each_entry_rcu(kip, &c->pages, list) {
154 		if (kip->nused < slots_per_page(c)) {
155 			int i;
156 
157 			for (i = 0; i < slots_per_page(c); i++) {
158 				if (kip->slot_used[i] == SLOT_CLEAN) {
159 					kip->slot_used[i] = SLOT_USED;
160 					kip->nused++;
161 					slot = kip->insns + (i * c->insn_size);
162 					rcu_read_unlock();
163 					goto out;
164 				}
165 			}
166 			/* kip->nused is broken. Fix it. */
167 			kip->nused = slots_per_page(c);
168 			WARN_ON(1);
169 		}
170 	}
171 	rcu_read_unlock();
172 
173 	/* If there are any garbage slots, collect it and try again. */
174 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
175 		goto retry;
176 
177 	/* All out of space.  Need to allocate a new page. */
178 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
179 	if (!kip)
180 		goto out;
181 
182 	kip->insns = c->alloc();
183 	if (!kip->insns) {
184 		kfree(kip);
185 		goto out;
186 	}
187 	INIT_LIST_HEAD(&kip->list);
188 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
189 	kip->slot_used[0] = SLOT_USED;
190 	kip->nused = 1;
191 	kip->ngarbage = 0;
192 	kip->cache = c;
193 	list_add_rcu(&kip->list, &c->pages);
194 	slot = kip->insns;
195 
196 	/* Record the perf ksymbol register event after adding the page */
197 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
198 			   PAGE_SIZE, false, c->sym);
199 out:
200 	mutex_unlock(&c->mutex);
201 	return slot;
202 }
203 
204 /* Return true if all garbages are collected, otherwise false. */
205 static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207 	kip->slot_used[idx] = SLOT_CLEAN;
208 	kip->nused--;
209 	if (kip->nused == 0) {
210 		/*
211 		 * Page is no longer in use.  Free it unless
212 		 * it's the last one.  We keep the last one
213 		 * so as not to have to set it up again the
214 		 * next time somebody inserts a probe.
215 		 */
216 		if (!list_is_singular(&kip->list)) {
217 			/*
218 			 * Record perf ksymbol unregister event before removing
219 			 * the page.
220 			 */
221 			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
222 					   (unsigned long)kip->insns, PAGE_SIZE, true,
223 					   kip->cache->sym);
224 			list_del_rcu(&kip->list);
225 			synchronize_rcu();
226 			kip->cache->free(kip->insns);
227 			kfree(kip);
228 		}
229 		return true;
230 	}
231 	return false;
232 }
233 
234 static int collect_garbage_slots(struct kprobe_insn_cache *c)
235 {
236 	struct kprobe_insn_page *kip, *next;
237 
238 	/* Ensure no-one is interrupted on the garbages */
239 	synchronize_rcu();
240 
241 	list_for_each_entry_safe(kip, next, &c->pages, list) {
242 		int i;
243 
244 		if (kip->ngarbage == 0)
245 			continue;
246 		kip->ngarbage = 0;	/* we will collect all garbages */
247 		for (i = 0; i < slots_per_page(c); i++) {
248 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
249 				break;
250 		}
251 	}
252 	c->nr_garbage = 0;
253 	return 0;
254 }
255 
256 void __free_insn_slot(struct kprobe_insn_cache *c,
257 		      kprobe_opcode_t *slot, int dirty)
258 {
259 	struct kprobe_insn_page *kip;
260 	long idx;
261 
262 	mutex_lock(&c->mutex);
263 	rcu_read_lock();
264 	list_for_each_entry_rcu(kip, &c->pages, list) {
265 		idx = ((long)slot - (long)kip->insns) /
266 			(c->insn_size * sizeof(kprobe_opcode_t));
267 		if (idx >= 0 && idx < slots_per_page(c))
268 			goto out;
269 	}
270 	/* Could not find this slot. */
271 	WARN_ON(1);
272 	kip = NULL;
273 out:
274 	rcu_read_unlock();
275 	/* Mark and sweep: this may sleep */
276 	if (kip) {
277 		/* Check double free */
278 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
279 		if (dirty) {
280 			kip->slot_used[idx] = SLOT_DIRTY;
281 			kip->ngarbage++;
282 			if (++c->nr_garbage > slots_per_page(c))
283 				collect_garbage_slots(c);
284 		} else {
285 			collect_one_slot(kip, idx);
286 		}
287 	}
288 	mutex_unlock(&c->mutex);
289 }
290 
291 /*
292  * Check given address is on the page of kprobe instruction slots.
293  * This will be used for checking whether the address on a stack
294  * is on a text area or not.
295  */
296 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
297 {
298 	struct kprobe_insn_page *kip;
299 	bool ret = false;
300 
301 	rcu_read_lock();
302 	list_for_each_entry_rcu(kip, &c->pages, list) {
303 		if (addr >= (unsigned long)kip->insns &&
304 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
305 			ret = true;
306 			break;
307 		}
308 	}
309 	rcu_read_unlock();
310 
311 	return ret;
312 }
313 
314 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
315 			     unsigned long *value, char *type, char *sym)
316 {
317 	struct kprobe_insn_page *kip;
318 	int ret = -ERANGE;
319 
320 	rcu_read_lock();
321 	list_for_each_entry_rcu(kip, &c->pages, list) {
322 		if ((*symnum)--)
323 			continue;
324 		strscpy(sym, c->sym, KSYM_NAME_LEN);
325 		*type = 't';
326 		*value = (unsigned long)kip->insns;
327 		ret = 0;
328 		break;
329 	}
330 	rcu_read_unlock();
331 
332 	return ret;
333 }
334 
335 #ifdef CONFIG_OPTPROBES
336 void __weak *alloc_optinsn_page(void)
337 {
338 	return alloc_insn_page();
339 }
340 
341 void __weak free_optinsn_page(void *page)
342 {
343 	free_insn_page(page);
344 }
345 
346 /* For optimized_kprobe buffer */
347 struct kprobe_insn_cache kprobe_optinsn_slots = {
348 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
349 	.alloc = alloc_optinsn_page,
350 	.free = free_optinsn_page,
351 	.sym = KPROBE_OPTINSN_PAGE_SYM,
352 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
353 	/* .insn_size is initialized later */
354 	.nr_garbage = 0,
355 };
356 #endif
357 #endif
358 
359 /* We have preemption disabled.. so it is safe to use __ versions */
360 static inline void set_kprobe_instance(struct kprobe *kp)
361 {
362 	__this_cpu_write(kprobe_instance, kp);
363 }
364 
365 static inline void reset_kprobe_instance(void)
366 {
367 	__this_cpu_write(kprobe_instance, NULL);
368 }
369 
370 /*
371  * This routine is called either:
372  *	- under the 'kprobe_mutex' - during kprobe_[un]register().
373  *				OR
374  *	- with preemption disabled - from architecture specific code.
375  */
376 struct kprobe *get_kprobe(void *addr)
377 {
378 	struct hlist_head *head;
379 	struct kprobe *p;
380 
381 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
382 	hlist_for_each_entry_rcu(p, head, hlist,
383 				 lockdep_is_held(&kprobe_mutex)) {
384 		if (p->addr == addr)
385 			return p;
386 	}
387 
388 	return NULL;
389 }
390 NOKPROBE_SYMBOL(get_kprobe);
391 
392 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
393 
394 /* Return true if 'p' is an aggregator */
395 static inline bool kprobe_aggrprobe(struct kprobe *p)
396 {
397 	return p->pre_handler == aggr_pre_handler;
398 }
399 
400 /* Return true if 'p' is unused */
401 static inline bool kprobe_unused(struct kprobe *p)
402 {
403 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
404 	       list_empty(&p->list);
405 }
406 
407 /* Keep all fields in the kprobe consistent. */
408 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
409 {
410 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
411 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
412 }
413 
414 #ifdef CONFIG_OPTPROBES
415 /* NOTE: This is protected by 'kprobe_mutex'. */
416 static bool kprobes_allow_optimization;
417 
418 /*
419  * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
420  * This must be called from arch-dep optimized caller.
421  */
422 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
423 {
424 	struct kprobe *kp;
425 
426 	list_for_each_entry_rcu(kp, &p->list, list) {
427 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
428 			set_kprobe_instance(kp);
429 			kp->pre_handler(kp, regs);
430 		}
431 		reset_kprobe_instance();
432 	}
433 }
434 NOKPROBE_SYMBOL(opt_pre_handler);
435 
436 /* Free optimized instructions and optimized_kprobe */
437 static void free_aggr_kprobe(struct kprobe *p)
438 {
439 	struct optimized_kprobe *op;
440 
441 	op = container_of(p, struct optimized_kprobe, kp);
442 	arch_remove_optimized_kprobe(op);
443 	arch_remove_kprobe(p);
444 	kfree(op);
445 }
446 
447 /* Return true if the kprobe is ready for optimization. */
448 static inline int kprobe_optready(struct kprobe *p)
449 {
450 	struct optimized_kprobe *op;
451 
452 	if (kprobe_aggrprobe(p)) {
453 		op = container_of(p, struct optimized_kprobe, kp);
454 		return arch_prepared_optinsn(&op->optinsn);
455 	}
456 
457 	return 0;
458 }
459 
460 /* Return true if the kprobe is disarmed. Note: p must be on hash list */
461 static inline bool kprobe_disarmed(struct kprobe *p)
462 {
463 	struct optimized_kprobe *op;
464 
465 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
466 	if (!kprobe_aggrprobe(p))
467 		return kprobe_disabled(p);
468 
469 	op = container_of(p, struct optimized_kprobe, kp);
470 
471 	return kprobe_disabled(p) && list_empty(&op->list);
472 }
473 
474 /* Return true if the probe is queued on (un)optimizing lists */
475 static bool kprobe_queued(struct kprobe *p)
476 {
477 	struct optimized_kprobe *op;
478 
479 	if (kprobe_aggrprobe(p)) {
480 		op = container_of(p, struct optimized_kprobe, kp);
481 		if (!list_empty(&op->list))
482 			return true;
483 	}
484 	return false;
485 }
486 
487 /*
488  * Return an optimized kprobe whose optimizing code replaces
489  * instructions including 'addr' (exclude breakpoint).
490  */
491 static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
492 {
493 	int i;
494 	struct kprobe *p = NULL;
495 	struct optimized_kprobe *op;
496 
497 	/* Don't check i == 0, since that is a breakpoint case. */
498 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
499 		p = get_kprobe(addr - i);
500 
501 	if (p && kprobe_optready(p)) {
502 		op = container_of(p, struct optimized_kprobe, kp);
503 		if (arch_within_optimized_kprobe(op, addr))
504 			return p;
505 	}
506 
507 	return NULL;
508 }
509 
510 /* Optimization staging list, protected by 'kprobe_mutex' */
511 static LIST_HEAD(optimizing_list);
512 static LIST_HEAD(unoptimizing_list);
513 static LIST_HEAD(freeing_list);
514 
515 static void kprobe_optimizer(struct work_struct *work);
516 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
517 #define OPTIMIZE_DELAY 5
518 
519 /*
520  * Optimize (replace a breakpoint with a jump) kprobes listed on
521  * 'optimizing_list'.
522  */
523 static void do_optimize_kprobes(void)
524 {
525 	lockdep_assert_held(&text_mutex);
526 	/*
527 	 * The optimization/unoptimization refers 'online_cpus' via
528 	 * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
529 	 * And same time, 'text_mutex' will be held in cpu-hotplug and here.
530 	 * This combination can cause a deadlock (cpu-hotplug tries to lock
531 	 * 'text_mutex' but stop_machine() can not be done because
532 	 * the 'online_cpus' has been changed)
533 	 * To avoid this deadlock, caller must have locked cpu-hotplug
534 	 * for preventing cpu-hotplug outside of 'text_mutex' locking.
535 	 */
536 	lockdep_assert_cpus_held();
537 
538 	/* Optimization never be done when disarmed */
539 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
540 	    list_empty(&optimizing_list))
541 		return;
542 
543 	arch_optimize_kprobes(&optimizing_list);
544 }
545 
546 /*
547  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
548  * if need) kprobes listed on 'unoptimizing_list'.
549  */
550 static void do_unoptimize_kprobes(void)
551 {
552 	struct optimized_kprobe *op, *tmp;
553 
554 	lockdep_assert_held(&text_mutex);
555 	/* See comment in do_optimize_kprobes() */
556 	lockdep_assert_cpus_held();
557 
558 	/* Unoptimization must be done anytime */
559 	if (list_empty(&unoptimizing_list))
560 		return;
561 
562 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
563 	/* Loop on 'freeing_list' for disarming */
564 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
565 		/* Switching from detour code to origin */
566 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
567 		/* Disarm probes if marked disabled */
568 		if (kprobe_disabled(&op->kp))
569 			arch_disarm_kprobe(&op->kp);
570 		if (kprobe_unused(&op->kp)) {
571 			/*
572 			 * Remove unused probes from hash list. After waiting
573 			 * for synchronization, these probes are reclaimed.
574 			 * (reclaiming is done by do_free_cleaned_kprobes().)
575 			 */
576 			hlist_del_rcu(&op->kp.hlist);
577 		} else
578 			list_del_init(&op->list);
579 	}
580 }
581 
582 /* Reclaim all kprobes on the 'freeing_list' */
583 static void do_free_cleaned_kprobes(void)
584 {
585 	struct optimized_kprobe *op, *tmp;
586 
587 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
588 		list_del_init(&op->list);
589 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
590 			/*
591 			 * This must not happen, but if there is a kprobe
592 			 * still in use, keep it on kprobes hash list.
593 			 */
594 			continue;
595 		}
596 		free_aggr_kprobe(&op->kp);
597 	}
598 }
599 
600 /* Start optimizer after OPTIMIZE_DELAY passed */
601 static void kick_kprobe_optimizer(void)
602 {
603 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
604 }
605 
606 /* Kprobe jump optimizer */
607 static void kprobe_optimizer(struct work_struct *work)
608 {
609 	mutex_lock(&kprobe_mutex);
610 	cpus_read_lock();
611 	mutex_lock(&text_mutex);
612 
613 	/*
614 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
615 	 * kprobes before waiting for quiesence period.
616 	 */
617 	do_unoptimize_kprobes();
618 
619 	/*
620 	 * Step 2: Wait for quiesence period to ensure all potentially
621 	 * preempted tasks to have normally scheduled. Because optprobe
622 	 * may modify multiple instructions, there is a chance that Nth
623 	 * instruction is preempted. In that case, such tasks can return
624 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
625 	 * Note that on non-preemptive kernel, this is transparently converted
626 	 * to synchronoze_sched() to wait for all interrupts to have completed.
627 	 */
628 	synchronize_rcu_tasks();
629 
630 	/* Step 3: Optimize kprobes after quiesence period */
631 	do_optimize_kprobes();
632 
633 	/* Step 4: Free cleaned kprobes after quiesence period */
634 	do_free_cleaned_kprobes();
635 
636 	mutex_unlock(&text_mutex);
637 	cpus_read_unlock();
638 
639 	/* Step 5: Kick optimizer again if needed */
640 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
641 		kick_kprobe_optimizer();
642 
643 	mutex_unlock(&kprobe_mutex);
644 }
645 
646 /* Wait for completing optimization and unoptimization */
647 void wait_for_kprobe_optimizer(void)
648 {
649 	mutex_lock(&kprobe_mutex);
650 
651 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
652 		mutex_unlock(&kprobe_mutex);
653 
654 		/* This will also make 'optimizing_work' execute immmediately */
655 		flush_delayed_work(&optimizing_work);
656 		/* 'optimizing_work' might not have been queued yet, relax */
657 		cpu_relax();
658 
659 		mutex_lock(&kprobe_mutex);
660 	}
661 
662 	mutex_unlock(&kprobe_mutex);
663 }
664 
665 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
666 {
667 	struct optimized_kprobe *_op;
668 
669 	list_for_each_entry(_op, &unoptimizing_list, list) {
670 		if (op == _op)
671 			return true;
672 	}
673 
674 	return false;
675 }
676 
677 /* Optimize kprobe if p is ready to be optimized */
678 static void optimize_kprobe(struct kprobe *p)
679 {
680 	struct optimized_kprobe *op;
681 
682 	/* Check if the kprobe is disabled or not ready for optimization. */
683 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
684 	    (kprobe_disabled(p) || kprobes_all_disarmed))
685 		return;
686 
687 	/* kprobes with 'post_handler' can not be optimized */
688 	if (p->post_handler)
689 		return;
690 
691 	op = container_of(p, struct optimized_kprobe, kp);
692 
693 	/* Check there is no other kprobes at the optimized instructions */
694 	if (arch_check_optimized_kprobe(op) < 0)
695 		return;
696 
697 	/* Check if it is already optimized. */
698 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
699 		if (optprobe_queued_unopt(op)) {
700 			/* This is under unoptimizing. Just dequeue the probe */
701 			list_del_init(&op->list);
702 		}
703 		return;
704 	}
705 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
706 
707 	/*
708 	 * On the 'unoptimizing_list' and 'optimizing_list',
709 	 * 'op' must have OPTIMIZED flag
710 	 */
711 	if (WARN_ON_ONCE(!list_empty(&op->list)))
712 		return;
713 
714 	list_add(&op->list, &optimizing_list);
715 	kick_kprobe_optimizer();
716 }
717 
718 /* Short cut to direct unoptimizing */
719 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
720 {
721 	lockdep_assert_cpus_held();
722 	arch_unoptimize_kprobe(op);
723 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
724 }
725 
726 /* Unoptimize a kprobe if p is optimized */
727 static void unoptimize_kprobe(struct kprobe *p, bool force)
728 {
729 	struct optimized_kprobe *op;
730 
731 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
732 		return; /* This is not an optprobe nor optimized */
733 
734 	op = container_of(p, struct optimized_kprobe, kp);
735 	if (!kprobe_optimized(p))
736 		return;
737 
738 	if (!list_empty(&op->list)) {
739 		if (optprobe_queued_unopt(op)) {
740 			/* Queued in unoptimizing queue */
741 			if (force) {
742 				/*
743 				 * Forcibly unoptimize the kprobe here, and queue it
744 				 * in the freeing list for release afterwards.
745 				 */
746 				force_unoptimize_kprobe(op);
747 				list_move(&op->list, &freeing_list);
748 			}
749 		} else {
750 			/* Dequeue from the optimizing queue */
751 			list_del_init(&op->list);
752 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
753 		}
754 		return;
755 	}
756 
757 	/* Optimized kprobe case */
758 	if (force) {
759 		/* Forcibly update the code: this is a special case */
760 		force_unoptimize_kprobe(op);
761 	} else {
762 		list_add(&op->list, &unoptimizing_list);
763 		kick_kprobe_optimizer();
764 	}
765 }
766 
767 /* Cancel unoptimizing for reusing */
768 static int reuse_unused_kprobe(struct kprobe *ap)
769 {
770 	struct optimized_kprobe *op;
771 
772 	/*
773 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
774 	 * there is still a relative jump) and disabled.
775 	 */
776 	op = container_of(ap, struct optimized_kprobe, kp);
777 	WARN_ON_ONCE(list_empty(&op->list));
778 	/* Enable the probe again */
779 	ap->flags &= ~KPROBE_FLAG_DISABLED;
780 	/* Optimize it again. (remove from 'op->list') */
781 	if (!kprobe_optready(ap))
782 		return -EINVAL;
783 
784 	optimize_kprobe(ap);
785 	return 0;
786 }
787 
788 /* Remove optimized instructions */
789 static void kill_optimized_kprobe(struct kprobe *p)
790 {
791 	struct optimized_kprobe *op;
792 
793 	op = container_of(p, struct optimized_kprobe, kp);
794 	if (!list_empty(&op->list))
795 		/* Dequeue from the (un)optimization queue */
796 		list_del_init(&op->list);
797 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
798 
799 	if (kprobe_unused(p)) {
800 		/* Enqueue if it is unused */
801 		list_add(&op->list, &freeing_list);
802 		/*
803 		 * Remove unused probes from the hash list. After waiting
804 		 * for synchronization, this probe is reclaimed.
805 		 * (reclaiming is done by do_free_cleaned_kprobes().)
806 		 */
807 		hlist_del_rcu(&op->kp.hlist);
808 	}
809 
810 	/* Don't touch the code, because it is already freed. */
811 	arch_remove_optimized_kprobe(op);
812 }
813 
814 static inline
815 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
816 {
817 	if (!kprobe_ftrace(p))
818 		arch_prepare_optimized_kprobe(op, p);
819 }
820 
821 /* Try to prepare optimized instructions */
822 static void prepare_optimized_kprobe(struct kprobe *p)
823 {
824 	struct optimized_kprobe *op;
825 
826 	op = container_of(p, struct optimized_kprobe, kp);
827 	__prepare_optimized_kprobe(op, p);
828 }
829 
830 /* Allocate new optimized_kprobe and try to prepare optimized instructions. */
831 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
832 {
833 	struct optimized_kprobe *op;
834 
835 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
836 	if (!op)
837 		return NULL;
838 
839 	INIT_LIST_HEAD(&op->list);
840 	op->kp.addr = p->addr;
841 	__prepare_optimized_kprobe(op, p);
842 
843 	return &op->kp;
844 }
845 
846 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
847 
848 /*
849  * Prepare an optimized_kprobe and optimize it.
850  * NOTE: 'p' must be a normal registered kprobe.
851  */
852 static void try_to_optimize_kprobe(struct kprobe *p)
853 {
854 	struct kprobe *ap;
855 	struct optimized_kprobe *op;
856 
857 	/* Impossible to optimize ftrace-based kprobe. */
858 	if (kprobe_ftrace(p))
859 		return;
860 
861 	/* For preparing optimization, jump_label_text_reserved() is called. */
862 	cpus_read_lock();
863 	jump_label_lock();
864 	mutex_lock(&text_mutex);
865 
866 	ap = alloc_aggr_kprobe(p);
867 	if (!ap)
868 		goto out;
869 
870 	op = container_of(ap, struct optimized_kprobe, kp);
871 	if (!arch_prepared_optinsn(&op->optinsn)) {
872 		/* If failed to setup optimizing, fallback to kprobe. */
873 		arch_remove_optimized_kprobe(op);
874 		kfree(op);
875 		goto out;
876 	}
877 
878 	init_aggr_kprobe(ap, p);
879 	optimize_kprobe(ap);	/* This just kicks optimizer thread. */
880 
881 out:
882 	mutex_unlock(&text_mutex);
883 	jump_label_unlock();
884 	cpus_read_unlock();
885 }
886 
887 static void optimize_all_kprobes(void)
888 {
889 	struct hlist_head *head;
890 	struct kprobe *p;
891 	unsigned int i;
892 
893 	mutex_lock(&kprobe_mutex);
894 	/* If optimization is already allowed, just return. */
895 	if (kprobes_allow_optimization)
896 		goto out;
897 
898 	cpus_read_lock();
899 	kprobes_allow_optimization = true;
900 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
901 		head = &kprobe_table[i];
902 		hlist_for_each_entry(p, head, hlist)
903 			if (!kprobe_disabled(p))
904 				optimize_kprobe(p);
905 	}
906 	cpus_read_unlock();
907 	pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
908 out:
909 	mutex_unlock(&kprobe_mutex);
910 }
911 
912 #ifdef CONFIG_SYSCTL
913 static void unoptimize_all_kprobes(void)
914 {
915 	struct hlist_head *head;
916 	struct kprobe *p;
917 	unsigned int i;
918 
919 	mutex_lock(&kprobe_mutex);
920 	/* If optimization is already prohibited, just return. */
921 	if (!kprobes_allow_optimization) {
922 		mutex_unlock(&kprobe_mutex);
923 		return;
924 	}
925 
926 	cpus_read_lock();
927 	kprobes_allow_optimization = false;
928 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
929 		head = &kprobe_table[i];
930 		hlist_for_each_entry(p, head, hlist) {
931 			if (!kprobe_disabled(p))
932 				unoptimize_kprobe(p, false);
933 		}
934 	}
935 	cpus_read_unlock();
936 	mutex_unlock(&kprobe_mutex);
937 
938 	/* Wait for unoptimizing completion. */
939 	wait_for_kprobe_optimizer();
940 	pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
941 }
942 
943 static DEFINE_MUTEX(kprobe_sysctl_mutex);
944 static int sysctl_kprobes_optimization;
945 static int proc_kprobes_optimization_handler(struct ctl_table *table,
946 					     int write, void *buffer,
947 					     size_t *length, loff_t *ppos)
948 {
949 	int ret;
950 
951 	mutex_lock(&kprobe_sysctl_mutex);
952 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
953 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
954 
955 	if (sysctl_kprobes_optimization)
956 		optimize_all_kprobes();
957 	else
958 		unoptimize_all_kprobes();
959 	mutex_unlock(&kprobe_sysctl_mutex);
960 
961 	return ret;
962 }
963 
964 static struct ctl_table kprobe_sysctls[] = {
965 	{
966 		.procname	= "kprobes-optimization",
967 		.data		= &sysctl_kprobes_optimization,
968 		.maxlen		= sizeof(int),
969 		.mode		= 0644,
970 		.proc_handler	= proc_kprobes_optimization_handler,
971 		.extra1		= SYSCTL_ZERO,
972 		.extra2		= SYSCTL_ONE,
973 	},
974 	{}
975 };
976 
977 static void __init kprobe_sysctls_init(void)
978 {
979 	register_sysctl_init("debug", kprobe_sysctls);
980 }
981 #endif /* CONFIG_SYSCTL */
982 
983 /* Put a breakpoint for a probe. */
984 static void __arm_kprobe(struct kprobe *p)
985 {
986 	struct kprobe *_p;
987 
988 	lockdep_assert_held(&text_mutex);
989 
990 	/* Find the overlapping optimized kprobes. */
991 	_p = get_optimized_kprobe(p->addr);
992 	if (unlikely(_p))
993 		/* Fallback to unoptimized kprobe */
994 		unoptimize_kprobe(_p, true);
995 
996 	arch_arm_kprobe(p);
997 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
998 }
999 
1000 /* Remove the breakpoint of a probe. */
1001 static void __disarm_kprobe(struct kprobe *p, bool reopt)
1002 {
1003 	struct kprobe *_p;
1004 
1005 	lockdep_assert_held(&text_mutex);
1006 
1007 	/* Try to unoptimize */
1008 	unoptimize_kprobe(p, kprobes_all_disarmed);
1009 
1010 	if (!kprobe_queued(p)) {
1011 		arch_disarm_kprobe(p);
1012 		/* If another kprobe was blocked, re-optimize it. */
1013 		_p = get_optimized_kprobe(p->addr);
1014 		if (unlikely(_p) && reopt)
1015 			optimize_kprobe(_p);
1016 	}
1017 	/*
1018 	 * TODO: Since unoptimization and real disarming will be done by
1019 	 * the worker thread, we can not check whether another probe are
1020 	 * unoptimized because of this probe here. It should be re-optimized
1021 	 * by the worker thread.
1022 	 */
1023 }
1024 
1025 #else /* !CONFIG_OPTPROBES */
1026 
1027 #define optimize_kprobe(p)			do {} while (0)
1028 #define unoptimize_kprobe(p, f)			do {} while (0)
1029 #define kill_optimized_kprobe(p)		do {} while (0)
1030 #define prepare_optimized_kprobe(p)		do {} while (0)
1031 #define try_to_optimize_kprobe(p)		do {} while (0)
1032 #define __arm_kprobe(p)				arch_arm_kprobe(p)
1033 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
1034 #define kprobe_disarmed(p)			kprobe_disabled(p)
1035 #define wait_for_kprobe_optimizer()		do {} while (0)
1036 
1037 static int reuse_unused_kprobe(struct kprobe *ap)
1038 {
1039 	/*
1040 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
1041 	 * released at the same time that the last aggregated kprobe is
1042 	 * unregistered.
1043 	 * Thus there should be no chance to reuse unused kprobe.
1044 	 */
1045 	WARN_ON_ONCE(1);
1046 	return -EINVAL;
1047 }
1048 
1049 static void free_aggr_kprobe(struct kprobe *p)
1050 {
1051 	arch_remove_kprobe(p);
1052 	kfree(p);
1053 }
1054 
1055 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1056 {
1057 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1058 }
1059 #endif /* CONFIG_OPTPROBES */
1060 
1061 #ifdef CONFIG_KPROBES_ON_FTRACE
1062 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1063 	.func = kprobe_ftrace_handler,
1064 	.flags = FTRACE_OPS_FL_SAVE_REGS,
1065 };
1066 
1067 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1068 	.func = kprobe_ftrace_handler,
1069 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1070 };
1071 
1072 static int kprobe_ipmodify_enabled;
1073 static int kprobe_ftrace_enabled;
1074 
1075 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1076 			       int *cnt)
1077 {
1078 	int ret = 0;
1079 
1080 	lockdep_assert_held(&kprobe_mutex);
1081 
1082 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1083 	if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1084 		return ret;
1085 
1086 	if (*cnt == 0) {
1087 		ret = register_ftrace_function(ops);
1088 		if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
1089 			goto err_ftrace;
1090 	}
1091 
1092 	(*cnt)++;
1093 	return ret;
1094 
1095 err_ftrace:
1096 	/*
1097 	 * At this point, sinec ops is not registered, we should be sefe from
1098 	 * registering empty filter.
1099 	 */
1100 	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1101 	return ret;
1102 }
1103 
1104 static int arm_kprobe_ftrace(struct kprobe *p)
1105 {
1106 	bool ipmodify = (p->post_handler != NULL);
1107 
1108 	return __arm_kprobe_ftrace(p,
1109 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1110 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1111 }
1112 
1113 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1114 				  int *cnt)
1115 {
1116 	int ret = 0;
1117 
1118 	lockdep_assert_held(&kprobe_mutex);
1119 
1120 	if (*cnt == 1) {
1121 		ret = unregister_ftrace_function(ops);
1122 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1123 			return ret;
1124 	}
1125 
1126 	(*cnt)--;
1127 
1128 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1129 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1130 		  p->addr, ret);
1131 	return ret;
1132 }
1133 
1134 static int disarm_kprobe_ftrace(struct kprobe *p)
1135 {
1136 	bool ipmodify = (p->post_handler != NULL);
1137 
1138 	return __disarm_kprobe_ftrace(p,
1139 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1140 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1141 }
1142 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1143 static inline int arm_kprobe_ftrace(struct kprobe *p)
1144 {
1145 	return -ENODEV;
1146 }
1147 
1148 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1149 {
1150 	return -ENODEV;
1151 }
1152 #endif
1153 
1154 static int prepare_kprobe(struct kprobe *p)
1155 {
1156 	/* Must ensure p->addr is really on ftrace */
1157 	if (kprobe_ftrace(p))
1158 		return arch_prepare_kprobe_ftrace(p);
1159 
1160 	return arch_prepare_kprobe(p);
1161 }
1162 
1163 static int arm_kprobe(struct kprobe *kp)
1164 {
1165 	if (unlikely(kprobe_ftrace(kp)))
1166 		return arm_kprobe_ftrace(kp);
1167 
1168 	cpus_read_lock();
1169 	mutex_lock(&text_mutex);
1170 	__arm_kprobe(kp);
1171 	mutex_unlock(&text_mutex);
1172 	cpus_read_unlock();
1173 
1174 	return 0;
1175 }
1176 
1177 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1178 {
1179 	if (unlikely(kprobe_ftrace(kp)))
1180 		return disarm_kprobe_ftrace(kp);
1181 
1182 	cpus_read_lock();
1183 	mutex_lock(&text_mutex);
1184 	__disarm_kprobe(kp, reopt);
1185 	mutex_unlock(&text_mutex);
1186 	cpus_read_unlock();
1187 
1188 	return 0;
1189 }
1190 
1191 /*
1192  * Aggregate handlers for multiple kprobes support - these handlers
1193  * take care of invoking the individual kprobe handlers on p->list
1194  */
1195 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1196 {
1197 	struct kprobe *kp;
1198 
1199 	list_for_each_entry_rcu(kp, &p->list, list) {
1200 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1201 			set_kprobe_instance(kp);
1202 			if (kp->pre_handler(kp, regs))
1203 				return 1;
1204 		}
1205 		reset_kprobe_instance();
1206 	}
1207 	return 0;
1208 }
1209 NOKPROBE_SYMBOL(aggr_pre_handler);
1210 
1211 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1212 			      unsigned long flags)
1213 {
1214 	struct kprobe *kp;
1215 
1216 	list_for_each_entry_rcu(kp, &p->list, list) {
1217 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1218 			set_kprobe_instance(kp);
1219 			kp->post_handler(kp, regs, flags);
1220 			reset_kprobe_instance();
1221 		}
1222 	}
1223 }
1224 NOKPROBE_SYMBOL(aggr_post_handler);
1225 
1226 /* Walks the list and increments 'nmissed' if 'p' has child probes. */
1227 void kprobes_inc_nmissed_count(struct kprobe *p)
1228 {
1229 	struct kprobe *kp;
1230 
1231 	if (!kprobe_aggrprobe(p)) {
1232 		p->nmissed++;
1233 	} else {
1234 		list_for_each_entry_rcu(kp, &p->list, list)
1235 			kp->nmissed++;
1236 	}
1237 }
1238 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1239 
1240 static struct kprobe kprobe_busy = {
1241 	.addr = (void *) get_kprobe,
1242 };
1243 
1244 void kprobe_busy_begin(void)
1245 {
1246 	struct kprobe_ctlblk *kcb;
1247 
1248 	preempt_disable();
1249 	__this_cpu_write(current_kprobe, &kprobe_busy);
1250 	kcb = get_kprobe_ctlblk();
1251 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1252 }
1253 
1254 void kprobe_busy_end(void)
1255 {
1256 	__this_cpu_write(current_kprobe, NULL);
1257 	preempt_enable();
1258 }
1259 
1260 /* Add the new probe to 'ap->list'. */
1261 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1262 {
1263 	if (p->post_handler)
1264 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1265 
1266 	list_add_rcu(&p->list, &ap->list);
1267 	if (p->post_handler && !ap->post_handler)
1268 		ap->post_handler = aggr_post_handler;
1269 
1270 	return 0;
1271 }
1272 
1273 /*
1274  * Fill in the required fields of the aggregator kprobe. Replace the
1275  * earlier kprobe in the hlist with the aggregator kprobe.
1276  */
1277 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1278 {
1279 	/* Copy the insn slot of 'p' to 'ap'. */
1280 	copy_kprobe(p, ap);
1281 	flush_insn_slot(ap);
1282 	ap->addr = p->addr;
1283 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1284 	ap->pre_handler = aggr_pre_handler;
1285 	/* We don't care the kprobe which has gone. */
1286 	if (p->post_handler && !kprobe_gone(p))
1287 		ap->post_handler = aggr_post_handler;
1288 
1289 	INIT_LIST_HEAD(&ap->list);
1290 	INIT_HLIST_NODE(&ap->hlist);
1291 
1292 	list_add_rcu(&p->list, &ap->list);
1293 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1294 }
1295 
1296 /*
1297  * This registers the second or subsequent kprobe at the same address.
1298  */
1299 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1300 {
1301 	int ret = 0;
1302 	struct kprobe *ap = orig_p;
1303 
1304 	cpus_read_lock();
1305 
1306 	/* For preparing optimization, jump_label_text_reserved() is called */
1307 	jump_label_lock();
1308 	mutex_lock(&text_mutex);
1309 
1310 	if (!kprobe_aggrprobe(orig_p)) {
1311 		/* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1312 		ap = alloc_aggr_kprobe(orig_p);
1313 		if (!ap) {
1314 			ret = -ENOMEM;
1315 			goto out;
1316 		}
1317 		init_aggr_kprobe(ap, orig_p);
1318 	} else if (kprobe_unused(ap)) {
1319 		/* This probe is going to die. Rescue it */
1320 		ret = reuse_unused_kprobe(ap);
1321 		if (ret)
1322 			goto out;
1323 	}
1324 
1325 	if (kprobe_gone(ap)) {
1326 		/*
1327 		 * Attempting to insert new probe at the same location that
1328 		 * had a probe in the module vaddr area which already
1329 		 * freed. So, the instruction slot has already been
1330 		 * released. We need a new slot for the new probe.
1331 		 */
1332 		ret = arch_prepare_kprobe(ap);
1333 		if (ret)
1334 			/*
1335 			 * Even if fail to allocate new slot, don't need to
1336 			 * free the 'ap'. It will be used next time, or
1337 			 * freed by unregister_kprobe().
1338 			 */
1339 			goto out;
1340 
1341 		/* Prepare optimized instructions if possible. */
1342 		prepare_optimized_kprobe(ap);
1343 
1344 		/*
1345 		 * Clear gone flag to prevent allocating new slot again, and
1346 		 * set disabled flag because it is not armed yet.
1347 		 */
1348 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1349 			    | KPROBE_FLAG_DISABLED;
1350 	}
1351 
1352 	/* Copy the insn slot of 'p' to 'ap'. */
1353 	copy_kprobe(ap, p);
1354 	ret = add_new_kprobe(ap, p);
1355 
1356 out:
1357 	mutex_unlock(&text_mutex);
1358 	jump_label_unlock();
1359 	cpus_read_unlock();
1360 
1361 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1362 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1363 		if (!kprobes_all_disarmed) {
1364 			/* Arm the breakpoint again. */
1365 			ret = arm_kprobe(ap);
1366 			if (ret) {
1367 				ap->flags |= KPROBE_FLAG_DISABLED;
1368 				list_del_rcu(&p->list);
1369 				synchronize_rcu();
1370 			}
1371 		}
1372 	}
1373 	return ret;
1374 }
1375 
1376 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1377 {
1378 	/* The '__kprobes' functions and entry code must not be probed. */
1379 	return addr >= (unsigned long)__kprobes_text_start &&
1380 	       addr < (unsigned long)__kprobes_text_end;
1381 }
1382 
1383 static bool __within_kprobe_blacklist(unsigned long addr)
1384 {
1385 	struct kprobe_blacklist_entry *ent;
1386 
1387 	if (arch_within_kprobe_blacklist(addr))
1388 		return true;
1389 	/*
1390 	 * If 'kprobe_blacklist' is defined, check the address and
1391 	 * reject any probe registration in the prohibited area.
1392 	 */
1393 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1394 		if (addr >= ent->start_addr && addr < ent->end_addr)
1395 			return true;
1396 	}
1397 	return false;
1398 }
1399 
1400 bool within_kprobe_blacklist(unsigned long addr)
1401 {
1402 	char symname[KSYM_NAME_LEN], *p;
1403 
1404 	if (__within_kprobe_blacklist(addr))
1405 		return true;
1406 
1407 	/* Check if the address is on a suffixed-symbol */
1408 	if (!lookup_symbol_name(addr, symname)) {
1409 		p = strchr(symname, '.');
1410 		if (!p)
1411 			return false;
1412 		*p = '\0';
1413 		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1414 		if (addr)
1415 			return __within_kprobe_blacklist(addr);
1416 	}
1417 	return false;
1418 }
1419 
1420 /*
1421  * arch_adjust_kprobe_addr - adjust the address
1422  * @addr: symbol base address
1423  * @offset: offset within the symbol
1424  * @on_func_entry: was this @addr+@offset on the function entry
1425  *
1426  * Typically returns @addr + @offset, except for special cases where the
1427  * function might be prefixed by a CFI landing pad, in that case any offset
1428  * inside the landing pad is mapped to the first 'real' instruction of the
1429  * symbol.
1430  *
1431  * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1432  * instruction at +0.
1433  */
1434 kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1435 						unsigned long offset,
1436 						bool *on_func_entry)
1437 {
1438 	*on_func_entry = !offset;
1439 	return (kprobe_opcode_t *)(addr + offset);
1440 }
1441 
1442 /*
1443  * If 'symbol_name' is specified, look it up and add the 'offset'
1444  * to it. This way, we can specify a relative address to a symbol.
1445  * This returns encoded errors if it fails to look up symbol or invalid
1446  * combination of parameters.
1447  */
1448 static kprobe_opcode_t *
1449 _kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1450 	     unsigned long offset, bool *on_func_entry)
1451 {
1452 	if ((symbol_name && addr) || (!symbol_name && !addr))
1453 		goto invalid;
1454 
1455 	if (symbol_name) {
1456 		/*
1457 		 * Input: @sym + @offset
1458 		 * Output: @addr + @offset
1459 		 *
1460 		 * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1461 		 *       argument into it's output!
1462 		 */
1463 		addr = kprobe_lookup_name(symbol_name, offset);
1464 		if (!addr)
1465 			return ERR_PTR(-ENOENT);
1466 	}
1467 
1468 	/*
1469 	 * So here we have @addr + @offset, displace it into a new
1470 	 * @addr' + @offset' where @addr' is the symbol start address.
1471 	 */
1472 	addr = (void *)addr + offset;
1473 	if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1474 		return ERR_PTR(-ENOENT);
1475 	addr = (void *)addr - offset;
1476 
1477 	/*
1478 	 * Then ask the architecture to re-combine them, taking care of
1479 	 * magical function entry details while telling us if this was indeed
1480 	 * at the start of the function.
1481 	 */
1482 	addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1483 	if (addr)
1484 		return addr;
1485 
1486 invalid:
1487 	return ERR_PTR(-EINVAL);
1488 }
1489 
1490 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1491 {
1492 	bool on_func_entry;
1493 	return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1494 }
1495 
1496 /*
1497  * Check the 'p' is valid and return the aggregator kprobe
1498  * at the same address.
1499  */
1500 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1501 {
1502 	struct kprobe *ap, *list_p;
1503 
1504 	lockdep_assert_held(&kprobe_mutex);
1505 
1506 	ap = get_kprobe(p->addr);
1507 	if (unlikely(!ap))
1508 		return NULL;
1509 
1510 	if (p != ap) {
1511 		list_for_each_entry(list_p, &ap->list, list)
1512 			if (list_p == p)
1513 			/* kprobe p is a valid probe */
1514 				goto valid;
1515 		return NULL;
1516 	}
1517 valid:
1518 	return ap;
1519 }
1520 
1521 /*
1522  * Warn and return error if the kprobe is being re-registered since
1523  * there must be a software bug.
1524  */
1525 static inline int warn_kprobe_rereg(struct kprobe *p)
1526 {
1527 	int ret = 0;
1528 
1529 	mutex_lock(&kprobe_mutex);
1530 	if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1531 		ret = -EINVAL;
1532 	mutex_unlock(&kprobe_mutex);
1533 
1534 	return ret;
1535 }
1536 
1537 static int check_ftrace_location(struct kprobe *p)
1538 {
1539 	unsigned long addr = (unsigned long)p->addr;
1540 
1541 	if (ftrace_location(addr) == addr) {
1542 #ifdef CONFIG_KPROBES_ON_FTRACE
1543 		p->flags |= KPROBE_FLAG_FTRACE;
1544 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1545 		return -EINVAL;
1546 #endif
1547 	}
1548 	return 0;
1549 }
1550 
1551 static int check_kprobe_address_safe(struct kprobe *p,
1552 				     struct module **probed_mod)
1553 {
1554 	int ret;
1555 
1556 	ret = check_ftrace_location(p);
1557 	if (ret)
1558 		return ret;
1559 	jump_label_lock();
1560 	preempt_disable();
1561 
1562 	/* Ensure it is not in reserved area nor out of text */
1563 	if (!(core_kernel_text((unsigned long) p->addr) ||
1564 	    is_module_text_address((unsigned long) p->addr)) ||
1565 	    in_gate_area_no_mm((unsigned long) p->addr) ||
1566 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1567 	    jump_label_text_reserved(p->addr, p->addr) ||
1568 	    static_call_text_reserved(p->addr, p->addr) ||
1569 	    find_bug((unsigned long)p->addr)) {
1570 		ret = -EINVAL;
1571 		goto out;
1572 	}
1573 
1574 	/* Check if 'p' is probing a module. */
1575 	*probed_mod = __module_text_address((unsigned long) p->addr);
1576 	if (*probed_mod) {
1577 		/*
1578 		 * We must hold a refcount of the probed module while updating
1579 		 * its code to prohibit unexpected unloading.
1580 		 */
1581 		if (unlikely(!try_module_get(*probed_mod))) {
1582 			ret = -ENOENT;
1583 			goto out;
1584 		}
1585 
1586 		/*
1587 		 * If the module freed '.init.text', we couldn't insert
1588 		 * kprobes in there.
1589 		 */
1590 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1591 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1592 			module_put(*probed_mod);
1593 			*probed_mod = NULL;
1594 			ret = -ENOENT;
1595 		}
1596 	}
1597 out:
1598 	preempt_enable();
1599 	jump_label_unlock();
1600 
1601 	return ret;
1602 }
1603 
1604 int register_kprobe(struct kprobe *p)
1605 {
1606 	int ret;
1607 	struct kprobe *old_p;
1608 	struct module *probed_mod;
1609 	kprobe_opcode_t *addr;
1610 	bool on_func_entry;
1611 
1612 	/* Adjust probe address from symbol */
1613 	addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1614 	if (IS_ERR(addr))
1615 		return PTR_ERR(addr);
1616 	p->addr = addr;
1617 
1618 	ret = warn_kprobe_rereg(p);
1619 	if (ret)
1620 		return ret;
1621 
1622 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1623 	p->flags &= KPROBE_FLAG_DISABLED;
1624 	p->nmissed = 0;
1625 	INIT_LIST_HEAD(&p->list);
1626 
1627 	ret = check_kprobe_address_safe(p, &probed_mod);
1628 	if (ret)
1629 		return ret;
1630 
1631 	mutex_lock(&kprobe_mutex);
1632 
1633 	if (on_func_entry)
1634 		p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY;
1635 
1636 	old_p = get_kprobe(p->addr);
1637 	if (old_p) {
1638 		/* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1639 		ret = register_aggr_kprobe(old_p, p);
1640 		goto out;
1641 	}
1642 
1643 	cpus_read_lock();
1644 	/* Prevent text modification */
1645 	mutex_lock(&text_mutex);
1646 	ret = prepare_kprobe(p);
1647 	mutex_unlock(&text_mutex);
1648 	cpus_read_unlock();
1649 	if (ret)
1650 		goto out;
1651 
1652 	INIT_HLIST_NODE(&p->hlist);
1653 	hlist_add_head_rcu(&p->hlist,
1654 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1655 
1656 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1657 		ret = arm_kprobe(p);
1658 		if (ret) {
1659 			hlist_del_rcu(&p->hlist);
1660 			synchronize_rcu();
1661 			goto out;
1662 		}
1663 	}
1664 
1665 	/* Try to optimize kprobe */
1666 	try_to_optimize_kprobe(p);
1667 out:
1668 	mutex_unlock(&kprobe_mutex);
1669 
1670 	if (probed_mod)
1671 		module_put(probed_mod);
1672 
1673 	return ret;
1674 }
1675 EXPORT_SYMBOL_GPL(register_kprobe);
1676 
1677 /* Check if all probes on the 'ap' are disabled. */
1678 static bool aggr_kprobe_disabled(struct kprobe *ap)
1679 {
1680 	struct kprobe *kp;
1681 
1682 	lockdep_assert_held(&kprobe_mutex);
1683 
1684 	list_for_each_entry(kp, &ap->list, list)
1685 		if (!kprobe_disabled(kp))
1686 			/*
1687 			 * Since there is an active probe on the list,
1688 			 * we can't disable this 'ap'.
1689 			 */
1690 			return false;
1691 
1692 	return true;
1693 }
1694 
1695 static struct kprobe *__disable_kprobe(struct kprobe *p)
1696 {
1697 	struct kprobe *orig_p;
1698 	int ret;
1699 
1700 	lockdep_assert_held(&kprobe_mutex);
1701 
1702 	/* Get an original kprobe for return */
1703 	orig_p = __get_valid_kprobe(p);
1704 	if (unlikely(orig_p == NULL))
1705 		return ERR_PTR(-EINVAL);
1706 
1707 	if (!kprobe_disabled(p)) {
1708 		/* Disable probe if it is a child probe */
1709 		if (p != orig_p)
1710 			p->flags |= KPROBE_FLAG_DISABLED;
1711 
1712 		/* Try to disarm and disable this/parent probe */
1713 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1714 			/*
1715 			 * Don't be lazy here.  Even if 'kprobes_all_disarmed'
1716 			 * is false, 'orig_p' might not have been armed yet.
1717 			 * Note arm_all_kprobes() __tries__ to arm all kprobes
1718 			 * on the best effort basis.
1719 			 */
1720 			if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1721 				ret = disarm_kprobe(orig_p, true);
1722 				if (ret) {
1723 					p->flags &= ~KPROBE_FLAG_DISABLED;
1724 					return ERR_PTR(ret);
1725 				}
1726 			}
1727 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1728 		}
1729 	}
1730 
1731 	return orig_p;
1732 }
1733 
1734 /*
1735  * Unregister a kprobe without a scheduler synchronization.
1736  */
1737 static int __unregister_kprobe_top(struct kprobe *p)
1738 {
1739 	struct kprobe *ap, *list_p;
1740 
1741 	/* Disable kprobe. This will disarm it if needed. */
1742 	ap = __disable_kprobe(p);
1743 	if (IS_ERR(ap))
1744 		return PTR_ERR(ap);
1745 
1746 	if (ap == p)
1747 		/*
1748 		 * This probe is an independent(and non-optimized) kprobe
1749 		 * (not an aggrprobe). Remove from the hash list.
1750 		 */
1751 		goto disarmed;
1752 
1753 	/* Following process expects this probe is an aggrprobe */
1754 	WARN_ON(!kprobe_aggrprobe(ap));
1755 
1756 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1757 		/*
1758 		 * !disarmed could be happen if the probe is under delayed
1759 		 * unoptimizing.
1760 		 */
1761 		goto disarmed;
1762 	else {
1763 		/* If disabling probe has special handlers, update aggrprobe */
1764 		if (p->post_handler && !kprobe_gone(p)) {
1765 			list_for_each_entry(list_p, &ap->list, list) {
1766 				if ((list_p != p) && (list_p->post_handler))
1767 					goto noclean;
1768 			}
1769 			/*
1770 			 * For the kprobe-on-ftrace case, we keep the
1771 			 * post_handler setting to identify this aggrprobe
1772 			 * armed with kprobe_ipmodify_ops.
1773 			 */
1774 			if (!kprobe_ftrace(ap))
1775 				ap->post_handler = NULL;
1776 		}
1777 noclean:
1778 		/*
1779 		 * Remove from the aggrprobe: this path will do nothing in
1780 		 * __unregister_kprobe_bottom().
1781 		 */
1782 		list_del_rcu(&p->list);
1783 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1784 			/*
1785 			 * Try to optimize this probe again, because post
1786 			 * handler may have been changed.
1787 			 */
1788 			optimize_kprobe(ap);
1789 	}
1790 	return 0;
1791 
1792 disarmed:
1793 	hlist_del_rcu(&ap->hlist);
1794 	return 0;
1795 }
1796 
1797 static void __unregister_kprobe_bottom(struct kprobe *p)
1798 {
1799 	struct kprobe *ap;
1800 
1801 	if (list_empty(&p->list))
1802 		/* This is an independent kprobe */
1803 		arch_remove_kprobe(p);
1804 	else if (list_is_singular(&p->list)) {
1805 		/* This is the last child of an aggrprobe */
1806 		ap = list_entry(p->list.next, struct kprobe, list);
1807 		list_del(&p->list);
1808 		free_aggr_kprobe(ap);
1809 	}
1810 	/* Otherwise, do nothing. */
1811 }
1812 
1813 int register_kprobes(struct kprobe **kps, int num)
1814 {
1815 	int i, ret = 0;
1816 
1817 	if (num <= 0)
1818 		return -EINVAL;
1819 	for (i = 0; i < num; i++) {
1820 		ret = register_kprobe(kps[i]);
1821 		if (ret < 0) {
1822 			if (i > 0)
1823 				unregister_kprobes(kps, i);
1824 			break;
1825 		}
1826 	}
1827 	return ret;
1828 }
1829 EXPORT_SYMBOL_GPL(register_kprobes);
1830 
1831 void unregister_kprobe(struct kprobe *p)
1832 {
1833 	unregister_kprobes(&p, 1);
1834 }
1835 EXPORT_SYMBOL_GPL(unregister_kprobe);
1836 
1837 void unregister_kprobes(struct kprobe **kps, int num)
1838 {
1839 	int i;
1840 
1841 	if (num <= 0)
1842 		return;
1843 	mutex_lock(&kprobe_mutex);
1844 	for (i = 0; i < num; i++)
1845 		if (__unregister_kprobe_top(kps[i]) < 0)
1846 			kps[i]->addr = NULL;
1847 	mutex_unlock(&kprobe_mutex);
1848 
1849 	synchronize_rcu();
1850 	for (i = 0; i < num; i++)
1851 		if (kps[i]->addr)
1852 			__unregister_kprobe_bottom(kps[i]);
1853 }
1854 EXPORT_SYMBOL_GPL(unregister_kprobes);
1855 
1856 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1857 					unsigned long val, void *data)
1858 {
1859 	return NOTIFY_DONE;
1860 }
1861 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1862 
1863 static struct notifier_block kprobe_exceptions_nb = {
1864 	.notifier_call = kprobe_exceptions_notify,
1865 	.priority = 0x7fffffff /* we need to be notified first */
1866 };
1867 
1868 #ifdef CONFIG_KRETPROBES
1869 
1870 #if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
1871 static void free_rp_inst_rcu(struct rcu_head *head)
1872 {
1873 	struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1874 
1875 	if (refcount_dec_and_test(&ri->rph->ref))
1876 		kfree(ri->rph);
1877 	kfree(ri);
1878 }
1879 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1880 
1881 static void recycle_rp_inst(struct kretprobe_instance *ri)
1882 {
1883 	struct kretprobe *rp = get_kretprobe(ri);
1884 
1885 	if (likely(rp))
1886 		freelist_add(&ri->freelist, &rp->freelist);
1887 	else
1888 		call_rcu(&ri->rcu, free_rp_inst_rcu);
1889 }
1890 NOKPROBE_SYMBOL(recycle_rp_inst);
1891 
1892 /*
1893  * This function is called from delayed_put_task_struct() when a task is
1894  * dead and cleaned up to recycle any kretprobe instances associated with
1895  * this task. These left over instances represent probed functions that
1896  * have been called but will never return.
1897  */
1898 void kprobe_flush_task(struct task_struct *tk)
1899 {
1900 	struct kretprobe_instance *ri;
1901 	struct llist_node *node;
1902 
1903 	/* Early boot, not yet initialized. */
1904 	if (unlikely(!kprobes_initialized))
1905 		return;
1906 
1907 	kprobe_busy_begin();
1908 
1909 	node = __llist_del_all(&tk->kretprobe_instances);
1910 	while (node) {
1911 		ri = container_of(node, struct kretprobe_instance, llist);
1912 		node = node->next;
1913 
1914 		recycle_rp_inst(ri);
1915 	}
1916 
1917 	kprobe_busy_end();
1918 }
1919 NOKPROBE_SYMBOL(kprobe_flush_task);
1920 
1921 static inline void free_rp_inst(struct kretprobe *rp)
1922 {
1923 	struct kretprobe_instance *ri;
1924 	struct freelist_node *node;
1925 	int count = 0;
1926 
1927 	node = rp->freelist.head;
1928 	while (node) {
1929 		ri = container_of(node, struct kretprobe_instance, freelist);
1930 		node = node->next;
1931 
1932 		kfree(ri);
1933 		count++;
1934 	}
1935 
1936 	if (refcount_sub_and_test(count, &rp->rph->ref)) {
1937 		kfree(rp->rph);
1938 		rp->rph = NULL;
1939 	}
1940 }
1941 
1942 /* This assumes the 'tsk' is the current task or the is not running. */
1943 static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1944 						  struct llist_node **cur)
1945 {
1946 	struct kretprobe_instance *ri = NULL;
1947 	struct llist_node *node = *cur;
1948 
1949 	if (!node)
1950 		node = tsk->kretprobe_instances.first;
1951 	else
1952 		node = node->next;
1953 
1954 	while (node) {
1955 		ri = container_of(node, struct kretprobe_instance, llist);
1956 		if (ri->ret_addr != kretprobe_trampoline_addr()) {
1957 			*cur = node;
1958 			return ri->ret_addr;
1959 		}
1960 		node = node->next;
1961 	}
1962 	return NULL;
1963 }
1964 NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1965 
1966 /**
1967  * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1968  * @tsk: Target task
1969  * @fp: A frame pointer
1970  * @cur: a storage of the loop cursor llist_node pointer for next call
1971  *
1972  * Find the correct return address modified by a kretprobe on @tsk in unsigned
1973  * long type. If it finds the return address, this returns that address value,
1974  * or this returns 0.
1975  * The @tsk must be 'current' or a task which is not running. @fp is a hint
1976  * to get the currect return address - which is compared with the
1977  * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1978  * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
1979  * first call, but '@cur' itself must NOT NULL.
1980  */
1981 unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
1982 				      struct llist_node **cur)
1983 {
1984 	struct kretprobe_instance *ri = NULL;
1985 	kprobe_opcode_t *ret;
1986 
1987 	if (WARN_ON_ONCE(!cur))
1988 		return 0;
1989 
1990 	do {
1991 		ret = __kretprobe_find_ret_addr(tsk, cur);
1992 		if (!ret)
1993 			break;
1994 		ri = container_of(*cur, struct kretprobe_instance, llist);
1995 	} while (ri->fp != fp);
1996 
1997 	return (unsigned long)ret;
1998 }
1999 NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
2000 
2001 void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
2002 					kprobe_opcode_t *correct_ret_addr)
2003 {
2004 	/*
2005 	 * Do nothing by default. Please fill this to update the fake return
2006 	 * address on the stack with the correct one on each arch if possible.
2007 	 */
2008 }
2009 
2010 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
2011 					     void *frame_pointer)
2012 {
2013 	kprobe_opcode_t *correct_ret_addr = NULL;
2014 	struct kretprobe_instance *ri = NULL;
2015 	struct llist_node *first, *node = NULL;
2016 	struct kretprobe *rp;
2017 
2018 	/* Find correct address and all nodes for this frame. */
2019 	correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2020 	if (!correct_ret_addr) {
2021 		pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2022 		BUG_ON(1);
2023 	}
2024 
2025 	/*
2026 	 * Set the return address as the instruction pointer, because if the
2027 	 * user handler calls stack_trace_save_regs() with this 'regs',
2028 	 * the stack trace will start from the instruction pointer.
2029 	 */
2030 	instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
2031 
2032 	/* Run the user handler of the nodes. */
2033 	first = current->kretprobe_instances.first;
2034 	while (first) {
2035 		ri = container_of(first, struct kretprobe_instance, llist);
2036 
2037 		if (WARN_ON_ONCE(ri->fp != frame_pointer))
2038 			break;
2039 
2040 		rp = get_kretprobe(ri);
2041 		if (rp && rp->handler) {
2042 			struct kprobe *prev = kprobe_running();
2043 
2044 			__this_cpu_write(current_kprobe, &rp->kp);
2045 			ri->ret_addr = correct_ret_addr;
2046 			rp->handler(ri, regs);
2047 			__this_cpu_write(current_kprobe, prev);
2048 		}
2049 		if (first == node)
2050 			break;
2051 
2052 		first = first->next;
2053 	}
2054 
2055 	arch_kretprobe_fixup_return(regs, correct_ret_addr);
2056 
2057 	/* Unlink all nodes for this frame. */
2058 	first = current->kretprobe_instances.first;
2059 	current->kretprobe_instances.first = node->next;
2060 	node->next = NULL;
2061 
2062 	/* Recycle free instances. */
2063 	while (first) {
2064 		ri = container_of(first, struct kretprobe_instance, llist);
2065 		first = first->next;
2066 
2067 		recycle_rp_inst(ri);
2068 	}
2069 
2070 	return (unsigned long)correct_ret_addr;
2071 }
2072 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2073 
2074 /*
2075  * This kprobe pre_handler is registered with every kretprobe. When probe
2076  * hits it will set up the return probe.
2077  */
2078 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2079 {
2080 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2081 	struct kretprobe_instance *ri;
2082 	struct freelist_node *fn;
2083 
2084 	fn = freelist_try_get(&rp->freelist);
2085 	if (!fn) {
2086 		rp->nmissed++;
2087 		return 0;
2088 	}
2089 
2090 	ri = container_of(fn, struct kretprobe_instance, freelist);
2091 
2092 	if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2093 		freelist_add(&ri->freelist, &rp->freelist);
2094 		return 0;
2095 	}
2096 
2097 	arch_prepare_kretprobe(ri, regs);
2098 
2099 	__llist_add(&ri->llist, &current->kretprobe_instances);
2100 
2101 	return 0;
2102 }
2103 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2104 #else /* CONFIG_KRETPROBE_ON_RETHOOK */
2105 /*
2106  * This kprobe pre_handler is registered with every kretprobe. When probe
2107  * hits it will set up the return probe.
2108  */
2109 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2110 {
2111 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2112 	struct kretprobe_instance *ri;
2113 	struct rethook_node *rhn;
2114 
2115 	rhn = rethook_try_get(rp->rh);
2116 	if (!rhn) {
2117 		rp->nmissed++;
2118 		return 0;
2119 	}
2120 
2121 	ri = container_of(rhn, struct kretprobe_instance, node);
2122 
2123 	if (rp->entry_handler && rp->entry_handler(ri, regs))
2124 		rethook_recycle(rhn);
2125 	else
2126 		rethook_hook(rhn, regs, kprobe_ftrace(p));
2127 
2128 	return 0;
2129 }
2130 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2131 
2132 static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2133 				      struct pt_regs *regs)
2134 {
2135 	struct kretprobe *rp = (struct kretprobe *)data;
2136 	struct kretprobe_instance *ri;
2137 	struct kprobe_ctlblk *kcb;
2138 
2139 	/* The data must NOT be null. This means rethook data structure is broken. */
2140 	if (WARN_ON_ONCE(!data) || !rp->handler)
2141 		return;
2142 
2143 	__this_cpu_write(current_kprobe, &rp->kp);
2144 	kcb = get_kprobe_ctlblk();
2145 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2146 
2147 	ri = container_of(rh, struct kretprobe_instance, node);
2148 	rp->handler(ri, regs);
2149 
2150 	__this_cpu_write(current_kprobe, NULL);
2151 }
2152 NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2153 
2154 #endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2155 
2156 /**
2157  * kprobe_on_func_entry() -- check whether given address is function entry
2158  * @addr: Target address
2159  * @sym:  Target symbol name
2160  * @offset: The offset from the symbol or the address
2161  *
2162  * This checks whether the given @addr+@offset or @sym+@offset is on the
2163  * function entry address or not.
2164  * This returns 0 if it is the function entry, or -EINVAL if it is not.
2165  * And also it returns -ENOENT if it fails the symbol or address lookup.
2166  * Caller must pass @addr or @sym (either one must be NULL), or this
2167  * returns -EINVAL.
2168  */
2169 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2170 {
2171 	bool on_func_entry;
2172 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2173 
2174 	if (IS_ERR(kp_addr))
2175 		return PTR_ERR(kp_addr);
2176 
2177 	if (!on_func_entry)
2178 		return -EINVAL;
2179 
2180 	return 0;
2181 }
2182 
2183 int register_kretprobe(struct kretprobe *rp)
2184 {
2185 	int ret;
2186 	struct kretprobe_instance *inst;
2187 	int i;
2188 	void *addr;
2189 
2190 	ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2191 	if (ret)
2192 		return ret;
2193 
2194 	/* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2195 	if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2196 		return -EINVAL;
2197 
2198 	if (kretprobe_blacklist_size) {
2199 		addr = kprobe_addr(&rp->kp);
2200 		if (IS_ERR(addr))
2201 			return PTR_ERR(addr);
2202 
2203 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2204 			if (kretprobe_blacklist[i].addr == addr)
2205 				return -EINVAL;
2206 		}
2207 	}
2208 
2209 	if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2210 		return -E2BIG;
2211 
2212 	rp->kp.pre_handler = pre_handler_kretprobe;
2213 	rp->kp.post_handler = NULL;
2214 
2215 	/* Pre-allocate memory for max kretprobe instances */
2216 	if (rp->maxactive <= 0)
2217 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2218 
2219 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2220 	rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler);
2221 	if (!rp->rh)
2222 		return -ENOMEM;
2223 
2224 	for (i = 0; i < rp->maxactive; i++) {
2225 		inst = kzalloc(sizeof(struct kretprobe_instance) +
2226 			       rp->data_size, GFP_KERNEL);
2227 		if (inst == NULL) {
2228 			rethook_free(rp->rh);
2229 			rp->rh = NULL;
2230 			return -ENOMEM;
2231 		}
2232 		rethook_add_node(rp->rh, &inst->node);
2233 	}
2234 	rp->nmissed = 0;
2235 	/* Establish function entry probe point */
2236 	ret = register_kprobe(&rp->kp);
2237 	if (ret != 0) {
2238 		rethook_free(rp->rh);
2239 		rp->rh = NULL;
2240 	}
2241 #else	/* !CONFIG_KRETPROBE_ON_RETHOOK */
2242 	rp->freelist.head = NULL;
2243 	rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2244 	if (!rp->rph)
2245 		return -ENOMEM;
2246 
2247 	rp->rph->rp = rp;
2248 	for (i = 0; i < rp->maxactive; i++) {
2249 		inst = kzalloc(sizeof(struct kretprobe_instance) +
2250 			       rp->data_size, GFP_KERNEL);
2251 		if (inst == NULL) {
2252 			refcount_set(&rp->rph->ref, i);
2253 			free_rp_inst(rp);
2254 			return -ENOMEM;
2255 		}
2256 		inst->rph = rp->rph;
2257 		freelist_add(&inst->freelist, &rp->freelist);
2258 	}
2259 	refcount_set(&rp->rph->ref, i);
2260 
2261 	rp->nmissed = 0;
2262 	/* Establish function entry probe point */
2263 	ret = register_kprobe(&rp->kp);
2264 	if (ret != 0)
2265 		free_rp_inst(rp);
2266 #endif
2267 	return ret;
2268 }
2269 EXPORT_SYMBOL_GPL(register_kretprobe);
2270 
2271 int register_kretprobes(struct kretprobe **rps, int num)
2272 {
2273 	int ret = 0, i;
2274 
2275 	if (num <= 0)
2276 		return -EINVAL;
2277 	for (i = 0; i < num; i++) {
2278 		ret = register_kretprobe(rps[i]);
2279 		if (ret < 0) {
2280 			if (i > 0)
2281 				unregister_kretprobes(rps, i);
2282 			break;
2283 		}
2284 	}
2285 	return ret;
2286 }
2287 EXPORT_SYMBOL_GPL(register_kretprobes);
2288 
2289 void unregister_kretprobe(struct kretprobe *rp)
2290 {
2291 	unregister_kretprobes(&rp, 1);
2292 }
2293 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2294 
2295 void unregister_kretprobes(struct kretprobe **rps, int num)
2296 {
2297 	int i;
2298 
2299 	if (num <= 0)
2300 		return;
2301 	mutex_lock(&kprobe_mutex);
2302 	for (i = 0; i < num; i++) {
2303 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2304 			rps[i]->kp.addr = NULL;
2305 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2306 		rethook_free(rps[i]->rh);
2307 #else
2308 		rps[i]->rph->rp = NULL;
2309 #endif
2310 	}
2311 	mutex_unlock(&kprobe_mutex);
2312 
2313 	synchronize_rcu();
2314 	for (i = 0; i < num; i++) {
2315 		if (rps[i]->kp.addr) {
2316 			__unregister_kprobe_bottom(&rps[i]->kp);
2317 #ifndef CONFIG_KRETPROBE_ON_RETHOOK
2318 			free_rp_inst(rps[i]);
2319 #endif
2320 		}
2321 	}
2322 }
2323 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2324 
2325 #else /* CONFIG_KRETPROBES */
2326 int register_kretprobe(struct kretprobe *rp)
2327 {
2328 	return -EOPNOTSUPP;
2329 }
2330 EXPORT_SYMBOL_GPL(register_kretprobe);
2331 
2332 int register_kretprobes(struct kretprobe **rps, int num)
2333 {
2334 	return -EOPNOTSUPP;
2335 }
2336 EXPORT_SYMBOL_GPL(register_kretprobes);
2337 
2338 void unregister_kretprobe(struct kretprobe *rp)
2339 {
2340 }
2341 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2342 
2343 void unregister_kretprobes(struct kretprobe **rps, int num)
2344 {
2345 }
2346 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2347 
2348 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2349 {
2350 	return 0;
2351 }
2352 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2353 
2354 #endif /* CONFIG_KRETPROBES */
2355 
2356 /* Set the kprobe gone and remove its instruction buffer. */
2357 static void kill_kprobe(struct kprobe *p)
2358 {
2359 	struct kprobe *kp;
2360 
2361 	lockdep_assert_held(&kprobe_mutex);
2362 
2363 	/*
2364 	 * The module is going away. We should disarm the kprobe which
2365 	 * is using ftrace, because ftrace framework is still available at
2366 	 * 'MODULE_STATE_GOING' notification.
2367 	 */
2368 	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2369 		disarm_kprobe_ftrace(p);
2370 
2371 	p->flags |= KPROBE_FLAG_GONE;
2372 	if (kprobe_aggrprobe(p)) {
2373 		/*
2374 		 * If this is an aggr_kprobe, we have to list all the
2375 		 * chained probes and mark them GONE.
2376 		 */
2377 		list_for_each_entry(kp, &p->list, list)
2378 			kp->flags |= KPROBE_FLAG_GONE;
2379 		p->post_handler = NULL;
2380 		kill_optimized_kprobe(p);
2381 	}
2382 	/*
2383 	 * Here, we can remove insn_slot safely, because no thread calls
2384 	 * the original probed function (which will be freed soon) any more.
2385 	 */
2386 	arch_remove_kprobe(p);
2387 }
2388 
2389 /* Disable one kprobe */
2390 int disable_kprobe(struct kprobe *kp)
2391 {
2392 	int ret = 0;
2393 	struct kprobe *p;
2394 
2395 	mutex_lock(&kprobe_mutex);
2396 
2397 	/* Disable this kprobe */
2398 	p = __disable_kprobe(kp);
2399 	if (IS_ERR(p))
2400 		ret = PTR_ERR(p);
2401 
2402 	mutex_unlock(&kprobe_mutex);
2403 	return ret;
2404 }
2405 EXPORT_SYMBOL_GPL(disable_kprobe);
2406 
2407 /* Enable one kprobe */
2408 int enable_kprobe(struct kprobe *kp)
2409 {
2410 	int ret = 0;
2411 	struct kprobe *p;
2412 
2413 	mutex_lock(&kprobe_mutex);
2414 
2415 	/* Check whether specified probe is valid. */
2416 	p = __get_valid_kprobe(kp);
2417 	if (unlikely(p == NULL)) {
2418 		ret = -EINVAL;
2419 		goto out;
2420 	}
2421 
2422 	if (kprobe_gone(kp)) {
2423 		/* This kprobe has gone, we couldn't enable it. */
2424 		ret = -EINVAL;
2425 		goto out;
2426 	}
2427 
2428 	if (p != kp)
2429 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2430 
2431 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2432 		p->flags &= ~KPROBE_FLAG_DISABLED;
2433 		ret = arm_kprobe(p);
2434 		if (ret) {
2435 			p->flags |= KPROBE_FLAG_DISABLED;
2436 			if (p != kp)
2437 				kp->flags |= KPROBE_FLAG_DISABLED;
2438 		}
2439 	}
2440 out:
2441 	mutex_unlock(&kprobe_mutex);
2442 	return ret;
2443 }
2444 EXPORT_SYMBOL_GPL(enable_kprobe);
2445 
2446 /* Caller must NOT call this in usual path. This is only for critical case */
2447 void dump_kprobe(struct kprobe *kp)
2448 {
2449 	pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2450 	       kp->symbol_name, kp->offset, kp->addr);
2451 }
2452 NOKPROBE_SYMBOL(dump_kprobe);
2453 
2454 int kprobe_add_ksym_blacklist(unsigned long entry)
2455 {
2456 	struct kprobe_blacklist_entry *ent;
2457 	unsigned long offset = 0, size = 0;
2458 
2459 	if (!kernel_text_address(entry) ||
2460 	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2461 		return -EINVAL;
2462 
2463 	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2464 	if (!ent)
2465 		return -ENOMEM;
2466 	ent->start_addr = entry;
2467 	ent->end_addr = entry + size;
2468 	INIT_LIST_HEAD(&ent->list);
2469 	list_add_tail(&ent->list, &kprobe_blacklist);
2470 
2471 	return (int)size;
2472 }
2473 
2474 /* Add all symbols in given area into kprobe blacklist */
2475 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2476 {
2477 	unsigned long entry;
2478 	int ret = 0;
2479 
2480 	for (entry = start; entry < end; entry += ret) {
2481 		ret = kprobe_add_ksym_blacklist(entry);
2482 		if (ret < 0)
2483 			return ret;
2484 		if (ret == 0)	/* In case of alias symbol */
2485 			ret = 1;
2486 	}
2487 	return 0;
2488 }
2489 
2490 /* Remove all symbols in given area from kprobe blacklist */
2491 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2492 {
2493 	struct kprobe_blacklist_entry *ent, *n;
2494 
2495 	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2496 		if (ent->start_addr < start || ent->start_addr >= end)
2497 			continue;
2498 		list_del(&ent->list);
2499 		kfree(ent);
2500 	}
2501 }
2502 
2503 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2504 {
2505 	kprobe_remove_area_blacklist(entry, entry + 1);
2506 }
2507 
2508 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2509 				   char *type, char *sym)
2510 {
2511 	return -ERANGE;
2512 }
2513 
2514 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2515 		       char *sym)
2516 {
2517 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2518 	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2519 		return 0;
2520 #ifdef CONFIG_OPTPROBES
2521 	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2522 		return 0;
2523 #endif
2524 #endif
2525 	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2526 		return 0;
2527 	return -ERANGE;
2528 }
2529 
2530 int __init __weak arch_populate_kprobe_blacklist(void)
2531 {
2532 	return 0;
2533 }
2534 
2535 /*
2536  * Lookup and populate the kprobe_blacklist.
2537  *
2538  * Unlike the kretprobe blacklist, we'll need to determine
2539  * the range of addresses that belong to the said functions,
2540  * since a kprobe need not necessarily be at the beginning
2541  * of a function.
2542  */
2543 static int __init populate_kprobe_blacklist(unsigned long *start,
2544 					     unsigned long *end)
2545 {
2546 	unsigned long entry;
2547 	unsigned long *iter;
2548 	int ret;
2549 
2550 	for (iter = start; iter < end; iter++) {
2551 		entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2552 		ret = kprobe_add_ksym_blacklist(entry);
2553 		if (ret == -EINVAL)
2554 			continue;
2555 		if (ret < 0)
2556 			return ret;
2557 	}
2558 
2559 	/* Symbols in '__kprobes_text' are blacklisted */
2560 	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2561 					(unsigned long)__kprobes_text_end);
2562 	if (ret)
2563 		return ret;
2564 
2565 	/* Symbols in 'noinstr' section are blacklisted */
2566 	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2567 					(unsigned long)__noinstr_text_end);
2568 
2569 	return ret ? : arch_populate_kprobe_blacklist();
2570 }
2571 
2572 static void add_module_kprobe_blacklist(struct module *mod)
2573 {
2574 	unsigned long start, end;
2575 	int i;
2576 
2577 	if (mod->kprobe_blacklist) {
2578 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2579 			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2580 	}
2581 
2582 	start = (unsigned long)mod->kprobes_text_start;
2583 	if (start) {
2584 		end = start + mod->kprobes_text_size;
2585 		kprobe_add_area_blacklist(start, end);
2586 	}
2587 
2588 	start = (unsigned long)mod->noinstr_text_start;
2589 	if (start) {
2590 		end = start + mod->noinstr_text_size;
2591 		kprobe_add_area_blacklist(start, end);
2592 	}
2593 }
2594 
2595 static void remove_module_kprobe_blacklist(struct module *mod)
2596 {
2597 	unsigned long start, end;
2598 	int i;
2599 
2600 	if (mod->kprobe_blacklist) {
2601 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2602 			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2603 	}
2604 
2605 	start = (unsigned long)mod->kprobes_text_start;
2606 	if (start) {
2607 		end = start + mod->kprobes_text_size;
2608 		kprobe_remove_area_blacklist(start, end);
2609 	}
2610 
2611 	start = (unsigned long)mod->noinstr_text_start;
2612 	if (start) {
2613 		end = start + mod->noinstr_text_size;
2614 		kprobe_remove_area_blacklist(start, end);
2615 	}
2616 }
2617 
2618 /* Module notifier call back, checking kprobes on the module */
2619 static int kprobes_module_callback(struct notifier_block *nb,
2620 				   unsigned long val, void *data)
2621 {
2622 	struct module *mod = data;
2623 	struct hlist_head *head;
2624 	struct kprobe *p;
2625 	unsigned int i;
2626 	int checkcore = (val == MODULE_STATE_GOING);
2627 
2628 	if (val == MODULE_STATE_COMING) {
2629 		mutex_lock(&kprobe_mutex);
2630 		add_module_kprobe_blacklist(mod);
2631 		mutex_unlock(&kprobe_mutex);
2632 	}
2633 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2634 		return NOTIFY_DONE;
2635 
2636 	/*
2637 	 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2638 	 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2639 	 * notified, only '.init.text' section would be freed. We need to
2640 	 * disable kprobes which have been inserted in the sections.
2641 	 */
2642 	mutex_lock(&kprobe_mutex);
2643 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2644 		head = &kprobe_table[i];
2645 		hlist_for_each_entry(p, head, hlist)
2646 			if (within_module_init((unsigned long)p->addr, mod) ||
2647 			    (checkcore &&
2648 			     within_module_core((unsigned long)p->addr, mod))) {
2649 				/*
2650 				 * The vaddr this probe is installed will soon
2651 				 * be vfreed buy not synced to disk. Hence,
2652 				 * disarming the breakpoint isn't needed.
2653 				 *
2654 				 * Note, this will also move any optimized probes
2655 				 * that are pending to be removed from their
2656 				 * corresponding lists to the 'freeing_list' and
2657 				 * will not be touched by the delayed
2658 				 * kprobe_optimizer() work handler.
2659 				 */
2660 				kill_kprobe(p);
2661 			}
2662 	}
2663 	if (val == MODULE_STATE_GOING)
2664 		remove_module_kprobe_blacklist(mod);
2665 	mutex_unlock(&kprobe_mutex);
2666 	return NOTIFY_DONE;
2667 }
2668 
2669 static struct notifier_block kprobe_module_nb = {
2670 	.notifier_call = kprobes_module_callback,
2671 	.priority = 0
2672 };
2673 
2674 void kprobe_free_init_mem(void)
2675 {
2676 	void *start = (void *)(&__init_begin);
2677 	void *end = (void *)(&__init_end);
2678 	struct hlist_head *head;
2679 	struct kprobe *p;
2680 	int i;
2681 
2682 	mutex_lock(&kprobe_mutex);
2683 
2684 	/* Kill all kprobes on initmem because the target code has been freed. */
2685 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2686 		head = &kprobe_table[i];
2687 		hlist_for_each_entry(p, head, hlist) {
2688 			if (start <= (void *)p->addr && (void *)p->addr < end)
2689 				kill_kprobe(p);
2690 		}
2691 	}
2692 
2693 	mutex_unlock(&kprobe_mutex);
2694 }
2695 
2696 static int __init init_kprobes(void)
2697 {
2698 	int i, err = 0;
2699 
2700 	/* FIXME allocate the probe table, currently defined statically */
2701 	/* initialize all list heads */
2702 	for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2703 		INIT_HLIST_HEAD(&kprobe_table[i]);
2704 
2705 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2706 					__stop_kprobe_blacklist);
2707 	if (err)
2708 		pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2709 
2710 	if (kretprobe_blacklist_size) {
2711 		/* lookup the function address from its name */
2712 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2713 			kretprobe_blacklist[i].addr =
2714 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2715 			if (!kretprobe_blacklist[i].addr)
2716 				pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2717 				       kretprobe_blacklist[i].name);
2718 		}
2719 	}
2720 
2721 	/* By default, kprobes are armed */
2722 	kprobes_all_disarmed = false;
2723 
2724 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2725 	/* Init 'kprobe_optinsn_slots' for allocation */
2726 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2727 #endif
2728 
2729 	err = arch_init_kprobes();
2730 	if (!err)
2731 		err = register_die_notifier(&kprobe_exceptions_nb);
2732 	if (!err)
2733 		err = register_module_notifier(&kprobe_module_nb);
2734 
2735 	kprobes_initialized = (err == 0);
2736 	kprobe_sysctls_init();
2737 	return err;
2738 }
2739 early_initcall(init_kprobes);
2740 
2741 #if defined(CONFIG_OPTPROBES)
2742 static int __init init_optprobes(void)
2743 {
2744 	/*
2745 	 * Enable kprobe optimization - this kicks the optimizer which
2746 	 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2747 	 * not spawned in early initcall. So delay the optimization.
2748 	 */
2749 	optimize_all_kprobes();
2750 
2751 	return 0;
2752 }
2753 subsys_initcall(init_optprobes);
2754 #endif
2755 
2756 #ifdef CONFIG_DEBUG_FS
2757 static void report_probe(struct seq_file *pi, struct kprobe *p,
2758 		const char *sym, int offset, char *modname, struct kprobe *pp)
2759 {
2760 	char *kprobe_type;
2761 	void *addr = p->addr;
2762 
2763 	if (p->pre_handler == pre_handler_kretprobe)
2764 		kprobe_type = "r";
2765 	else
2766 		kprobe_type = "k";
2767 
2768 	if (!kallsyms_show_value(pi->file->f_cred))
2769 		addr = NULL;
2770 
2771 	if (sym)
2772 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2773 			addr, kprobe_type, sym, offset,
2774 			(modname ? modname : " "));
2775 	else	/* try to use %pS */
2776 		seq_printf(pi, "%px  %s  %pS ",
2777 			addr, kprobe_type, p->addr);
2778 
2779 	if (!pp)
2780 		pp = p;
2781 	seq_printf(pi, "%s%s%s%s\n",
2782 		(kprobe_gone(p) ? "[GONE]" : ""),
2783 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2784 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2785 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2786 }
2787 
2788 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2789 {
2790 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2791 }
2792 
2793 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2794 {
2795 	(*pos)++;
2796 	if (*pos >= KPROBE_TABLE_SIZE)
2797 		return NULL;
2798 	return pos;
2799 }
2800 
2801 static void kprobe_seq_stop(struct seq_file *f, void *v)
2802 {
2803 	/* Nothing to do */
2804 }
2805 
2806 static int show_kprobe_addr(struct seq_file *pi, void *v)
2807 {
2808 	struct hlist_head *head;
2809 	struct kprobe *p, *kp;
2810 	const char *sym = NULL;
2811 	unsigned int i = *(loff_t *) v;
2812 	unsigned long offset = 0;
2813 	char *modname, namebuf[KSYM_NAME_LEN];
2814 
2815 	head = &kprobe_table[i];
2816 	preempt_disable();
2817 	hlist_for_each_entry_rcu(p, head, hlist) {
2818 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2819 					&offset, &modname, namebuf);
2820 		if (kprobe_aggrprobe(p)) {
2821 			list_for_each_entry_rcu(kp, &p->list, list)
2822 				report_probe(pi, kp, sym, offset, modname, p);
2823 		} else
2824 			report_probe(pi, p, sym, offset, modname, NULL);
2825 	}
2826 	preempt_enable();
2827 	return 0;
2828 }
2829 
2830 static const struct seq_operations kprobes_sops = {
2831 	.start = kprobe_seq_start,
2832 	.next  = kprobe_seq_next,
2833 	.stop  = kprobe_seq_stop,
2834 	.show  = show_kprobe_addr
2835 };
2836 
2837 DEFINE_SEQ_ATTRIBUTE(kprobes);
2838 
2839 /* kprobes/blacklist -- shows which functions can not be probed */
2840 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2841 {
2842 	mutex_lock(&kprobe_mutex);
2843 	return seq_list_start(&kprobe_blacklist, *pos);
2844 }
2845 
2846 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2847 {
2848 	return seq_list_next(v, &kprobe_blacklist, pos);
2849 }
2850 
2851 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2852 {
2853 	struct kprobe_blacklist_entry *ent =
2854 		list_entry(v, struct kprobe_blacklist_entry, list);
2855 
2856 	/*
2857 	 * If '/proc/kallsyms' is not showing kernel address, we won't
2858 	 * show them here either.
2859 	 */
2860 	if (!kallsyms_show_value(m->file->f_cred))
2861 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2862 			   (void *)ent->start_addr);
2863 	else
2864 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2865 			   (void *)ent->end_addr, (void *)ent->start_addr);
2866 	return 0;
2867 }
2868 
2869 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2870 {
2871 	mutex_unlock(&kprobe_mutex);
2872 }
2873 
2874 static const struct seq_operations kprobe_blacklist_sops = {
2875 	.start = kprobe_blacklist_seq_start,
2876 	.next  = kprobe_blacklist_seq_next,
2877 	.stop  = kprobe_blacklist_seq_stop,
2878 	.show  = kprobe_blacklist_seq_show,
2879 };
2880 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2881 
2882 static int arm_all_kprobes(void)
2883 {
2884 	struct hlist_head *head;
2885 	struct kprobe *p;
2886 	unsigned int i, total = 0, errors = 0;
2887 	int err, ret = 0;
2888 
2889 	mutex_lock(&kprobe_mutex);
2890 
2891 	/* If kprobes are armed, just return */
2892 	if (!kprobes_all_disarmed)
2893 		goto already_enabled;
2894 
2895 	/*
2896 	 * optimize_kprobe() called by arm_kprobe() checks
2897 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2898 	 * arm_kprobe.
2899 	 */
2900 	kprobes_all_disarmed = false;
2901 	/* Arming kprobes doesn't optimize kprobe itself */
2902 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2903 		head = &kprobe_table[i];
2904 		/* Arm all kprobes on a best-effort basis */
2905 		hlist_for_each_entry(p, head, hlist) {
2906 			if (!kprobe_disabled(p)) {
2907 				err = arm_kprobe(p);
2908 				if (err)  {
2909 					errors++;
2910 					ret = err;
2911 				}
2912 				total++;
2913 			}
2914 		}
2915 	}
2916 
2917 	if (errors)
2918 		pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2919 			errors, total);
2920 	else
2921 		pr_info("Kprobes globally enabled\n");
2922 
2923 already_enabled:
2924 	mutex_unlock(&kprobe_mutex);
2925 	return ret;
2926 }
2927 
2928 static int disarm_all_kprobes(void)
2929 {
2930 	struct hlist_head *head;
2931 	struct kprobe *p;
2932 	unsigned int i, total = 0, errors = 0;
2933 	int err, ret = 0;
2934 
2935 	mutex_lock(&kprobe_mutex);
2936 
2937 	/* If kprobes are already disarmed, just return */
2938 	if (kprobes_all_disarmed) {
2939 		mutex_unlock(&kprobe_mutex);
2940 		return 0;
2941 	}
2942 
2943 	kprobes_all_disarmed = true;
2944 
2945 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2946 		head = &kprobe_table[i];
2947 		/* Disarm all kprobes on a best-effort basis */
2948 		hlist_for_each_entry(p, head, hlist) {
2949 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2950 				err = disarm_kprobe(p, false);
2951 				if (err) {
2952 					errors++;
2953 					ret = err;
2954 				}
2955 				total++;
2956 			}
2957 		}
2958 	}
2959 
2960 	if (errors)
2961 		pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2962 			errors, total);
2963 	else
2964 		pr_info("Kprobes globally disabled\n");
2965 
2966 	mutex_unlock(&kprobe_mutex);
2967 
2968 	/* Wait for disarming all kprobes by optimizer */
2969 	wait_for_kprobe_optimizer();
2970 
2971 	return ret;
2972 }
2973 
2974 /*
2975  * XXX: The debugfs bool file interface doesn't allow for callbacks
2976  * when the bool state is switched. We can reuse that facility when
2977  * available
2978  */
2979 static ssize_t read_enabled_file_bool(struct file *file,
2980 	       char __user *user_buf, size_t count, loff_t *ppos)
2981 {
2982 	char buf[3];
2983 
2984 	if (!kprobes_all_disarmed)
2985 		buf[0] = '1';
2986 	else
2987 		buf[0] = '0';
2988 	buf[1] = '\n';
2989 	buf[2] = 0x00;
2990 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2991 }
2992 
2993 static ssize_t write_enabled_file_bool(struct file *file,
2994 	       const char __user *user_buf, size_t count, loff_t *ppos)
2995 {
2996 	bool enable;
2997 	int ret;
2998 
2999 	ret = kstrtobool_from_user(user_buf, count, &enable);
3000 	if (ret)
3001 		return ret;
3002 
3003 	ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
3004 	if (ret)
3005 		return ret;
3006 
3007 	return count;
3008 }
3009 
3010 static const struct file_operations fops_kp = {
3011 	.read =         read_enabled_file_bool,
3012 	.write =        write_enabled_file_bool,
3013 	.llseek =	default_llseek,
3014 };
3015 
3016 static int __init debugfs_kprobe_init(void)
3017 {
3018 	struct dentry *dir;
3019 
3020 	dir = debugfs_create_dir("kprobes", NULL);
3021 
3022 	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
3023 
3024 	debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
3025 
3026 	debugfs_create_file("blacklist", 0400, dir, NULL,
3027 			    &kprobe_blacklist_fops);
3028 
3029 	return 0;
3030 }
3031 
3032 late_initcall(debugfs_kprobe_init);
3033 #endif /* CONFIG_DEBUG_FS */
3034