1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright (C) IBM Corporation, 2002, 2004 6 * 7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 8 * Probes initial implementation (includes suggestions from 9 * Rusty Russell). 10 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 11 * hlists and exceptions notifier as suggested by Andi Kleen. 12 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 13 * interface to access function arguments. 14 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 15 * exceptions notifier to be first on the priority list. 16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 18 * <prasanna@in.ibm.com> added function-return probes. 19 */ 20 21 #define pr_fmt(fmt) "kprobes: " fmt 22 23 #include <linux/kprobes.h> 24 #include <linux/hash.h> 25 #include <linux/init.h> 26 #include <linux/slab.h> 27 #include <linux/stddef.h> 28 #include <linux/export.h> 29 #include <linux/moduleloader.h> 30 #include <linux/kallsyms.h> 31 #include <linux/freezer.h> 32 #include <linux/seq_file.h> 33 #include <linux/debugfs.h> 34 #include <linux/sysctl.h> 35 #include <linux/kdebug.h> 36 #include <linux/memory.h> 37 #include <linux/ftrace.h> 38 #include <linux/cpu.h> 39 #include <linux/jump_label.h> 40 #include <linux/static_call.h> 41 #include <linux/perf_event.h> 42 43 #include <asm/sections.h> 44 #include <asm/cacheflush.h> 45 #include <asm/errno.h> 46 #include <linux/uaccess.h> 47 48 #define KPROBE_HASH_BITS 6 49 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 50 51 #if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL) 52 #define kprobe_sysctls_init() do { } while (0) 53 #endif 54 55 static int kprobes_initialized; 56 /* kprobe_table can be accessed by 57 * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held. 58 * Or 59 * - RCU hlist traversal under disabling preempt (breakpoint handlers) 60 */ 61 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 62 63 /* NOTE: change this value only with 'kprobe_mutex' held */ 64 static bool kprobes_all_disarmed; 65 66 /* This protects 'kprobe_table' and 'optimizing_list' */ 67 static DEFINE_MUTEX(kprobe_mutex); 68 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance); 69 70 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, 71 unsigned int __unused) 72 { 73 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); 74 } 75 76 /* 77 * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where 78 * kprobes can not probe. 79 */ 80 static LIST_HEAD(kprobe_blacklist); 81 82 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 83 /* 84 * 'kprobe::ainsn.insn' points to the copy of the instruction to be 85 * single-stepped. x86_64, POWER4 and above have no-exec support and 86 * stepping on the instruction on a vmalloced/kmalloced/data page 87 * is a recipe for disaster 88 */ 89 struct kprobe_insn_page { 90 struct list_head list; 91 kprobe_opcode_t *insns; /* Page of instruction slots */ 92 struct kprobe_insn_cache *cache; 93 int nused; 94 int ngarbage; 95 char slot_used[]; 96 }; 97 98 #define KPROBE_INSN_PAGE_SIZE(slots) \ 99 (offsetof(struct kprobe_insn_page, slot_used) + \ 100 (sizeof(char) * (slots))) 101 102 static int slots_per_page(struct kprobe_insn_cache *c) 103 { 104 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 105 } 106 107 enum kprobe_slot_state { 108 SLOT_CLEAN = 0, 109 SLOT_DIRTY = 1, 110 SLOT_USED = 2, 111 }; 112 113 void __weak *alloc_insn_page(void) 114 { 115 /* 116 * Use module_alloc() so this page is within +/- 2GB of where the 117 * kernel image and loaded module images reside. This is required 118 * for most of the architectures. 119 * (e.g. x86-64 needs this to handle the %rip-relative fixups.) 120 */ 121 return module_alloc(PAGE_SIZE); 122 } 123 124 static void free_insn_page(void *page) 125 { 126 module_memfree(page); 127 } 128 129 struct kprobe_insn_cache kprobe_insn_slots = { 130 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 131 .alloc = alloc_insn_page, 132 .free = free_insn_page, 133 .sym = KPROBE_INSN_PAGE_SYM, 134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 135 .insn_size = MAX_INSN_SIZE, 136 .nr_garbage = 0, 137 }; 138 static int collect_garbage_slots(struct kprobe_insn_cache *c); 139 140 /** 141 * __get_insn_slot() - Find a slot on an executable page for an instruction. 142 * We allocate an executable page if there's no room on existing ones. 143 */ 144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 145 { 146 struct kprobe_insn_page *kip; 147 kprobe_opcode_t *slot = NULL; 148 149 /* Since the slot array is not protected by rcu, we need a mutex */ 150 mutex_lock(&c->mutex); 151 retry: 152 rcu_read_lock(); 153 list_for_each_entry_rcu(kip, &c->pages, list) { 154 if (kip->nused < slots_per_page(c)) { 155 int i; 156 157 for (i = 0; i < slots_per_page(c); i++) { 158 if (kip->slot_used[i] == SLOT_CLEAN) { 159 kip->slot_used[i] = SLOT_USED; 160 kip->nused++; 161 slot = kip->insns + (i * c->insn_size); 162 rcu_read_unlock(); 163 goto out; 164 } 165 } 166 /* kip->nused is broken. Fix it. */ 167 kip->nused = slots_per_page(c); 168 WARN_ON(1); 169 } 170 } 171 rcu_read_unlock(); 172 173 /* If there are any garbage slots, collect it and try again. */ 174 if (c->nr_garbage && collect_garbage_slots(c) == 0) 175 goto retry; 176 177 /* All out of space. Need to allocate a new page. */ 178 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 179 if (!kip) 180 goto out; 181 182 kip->insns = c->alloc(); 183 if (!kip->insns) { 184 kfree(kip); 185 goto out; 186 } 187 INIT_LIST_HEAD(&kip->list); 188 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 189 kip->slot_used[0] = SLOT_USED; 190 kip->nused = 1; 191 kip->ngarbage = 0; 192 kip->cache = c; 193 list_add_rcu(&kip->list, &c->pages); 194 slot = kip->insns; 195 196 /* Record the perf ksymbol register event after adding the page */ 197 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns, 198 PAGE_SIZE, false, c->sym); 199 out: 200 mutex_unlock(&c->mutex); 201 return slot; 202 } 203 204 /* Return true if all garbages are collected, otherwise false. */ 205 static bool collect_one_slot(struct kprobe_insn_page *kip, int idx) 206 { 207 kip->slot_used[idx] = SLOT_CLEAN; 208 kip->nused--; 209 if (kip->nused == 0) { 210 /* 211 * Page is no longer in use. Free it unless 212 * it's the last one. We keep the last one 213 * so as not to have to set it up again the 214 * next time somebody inserts a probe. 215 */ 216 if (!list_is_singular(&kip->list)) { 217 /* 218 * Record perf ksymbol unregister event before removing 219 * the page. 220 */ 221 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 222 (unsigned long)kip->insns, PAGE_SIZE, true, 223 kip->cache->sym); 224 list_del_rcu(&kip->list); 225 synchronize_rcu(); 226 kip->cache->free(kip->insns); 227 kfree(kip); 228 } 229 return true; 230 } 231 return false; 232 } 233 234 static int collect_garbage_slots(struct kprobe_insn_cache *c) 235 { 236 struct kprobe_insn_page *kip, *next; 237 238 /* Ensure no-one is interrupted on the garbages */ 239 synchronize_rcu(); 240 241 list_for_each_entry_safe(kip, next, &c->pages, list) { 242 int i; 243 244 if (kip->ngarbage == 0) 245 continue; 246 kip->ngarbage = 0; /* we will collect all garbages */ 247 for (i = 0; i < slots_per_page(c); i++) { 248 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 249 break; 250 } 251 } 252 c->nr_garbage = 0; 253 return 0; 254 } 255 256 void __free_insn_slot(struct kprobe_insn_cache *c, 257 kprobe_opcode_t *slot, int dirty) 258 { 259 struct kprobe_insn_page *kip; 260 long idx; 261 262 mutex_lock(&c->mutex); 263 rcu_read_lock(); 264 list_for_each_entry_rcu(kip, &c->pages, list) { 265 idx = ((long)slot - (long)kip->insns) / 266 (c->insn_size * sizeof(kprobe_opcode_t)); 267 if (idx >= 0 && idx < slots_per_page(c)) 268 goto out; 269 } 270 /* Could not find this slot. */ 271 WARN_ON(1); 272 kip = NULL; 273 out: 274 rcu_read_unlock(); 275 /* Mark and sweep: this may sleep */ 276 if (kip) { 277 /* Check double free */ 278 WARN_ON(kip->slot_used[idx] != SLOT_USED); 279 if (dirty) { 280 kip->slot_used[idx] = SLOT_DIRTY; 281 kip->ngarbage++; 282 if (++c->nr_garbage > slots_per_page(c)) 283 collect_garbage_slots(c); 284 } else { 285 collect_one_slot(kip, idx); 286 } 287 } 288 mutex_unlock(&c->mutex); 289 } 290 291 /* 292 * Check given address is on the page of kprobe instruction slots. 293 * This will be used for checking whether the address on a stack 294 * is on a text area or not. 295 */ 296 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 297 { 298 struct kprobe_insn_page *kip; 299 bool ret = false; 300 301 rcu_read_lock(); 302 list_for_each_entry_rcu(kip, &c->pages, list) { 303 if (addr >= (unsigned long)kip->insns && 304 addr < (unsigned long)kip->insns + PAGE_SIZE) { 305 ret = true; 306 break; 307 } 308 } 309 rcu_read_unlock(); 310 311 return ret; 312 } 313 314 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum, 315 unsigned long *value, char *type, char *sym) 316 { 317 struct kprobe_insn_page *kip; 318 int ret = -ERANGE; 319 320 rcu_read_lock(); 321 list_for_each_entry_rcu(kip, &c->pages, list) { 322 if ((*symnum)--) 323 continue; 324 strscpy(sym, c->sym, KSYM_NAME_LEN); 325 *type = 't'; 326 *value = (unsigned long)kip->insns; 327 ret = 0; 328 break; 329 } 330 rcu_read_unlock(); 331 332 return ret; 333 } 334 335 #ifdef CONFIG_OPTPROBES 336 void __weak *alloc_optinsn_page(void) 337 { 338 return alloc_insn_page(); 339 } 340 341 void __weak free_optinsn_page(void *page) 342 { 343 free_insn_page(page); 344 } 345 346 /* For optimized_kprobe buffer */ 347 struct kprobe_insn_cache kprobe_optinsn_slots = { 348 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 349 .alloc = alloc_optinsn_page, 350 .free = free_optinsn_page, 351 .sym = KPROBE_OPTINSN_PAGE_SYM, 352 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 353 /* .insn_size is initialized later */ 354 .nr_garbage = 0, 355 }; 356 #endif 357 #endif 358 359 /* We have preemption disabled.. so it is safe to use __ versions */ 360 static inline void set_kprobe_instance(struct kprobe *kp) 361 { 362 __this_cpu_write(kprobe_instance, kp); 363 } 364 365 static inline void reset_kprobe_instance(void) 366 { 367 __this_cpu_write(kprobe_instance, NULL); 368 } 369 370 /* 371 * This routine is called either: 372 * - under the 'kprobe_mutex' - during kprobe_[un]register(). 373 * OR 374 * - with preemption disabled - from architecture specific code. 375 */ 376 struct kprobe *get_kprobe(void *addr) 377 { 378 struct hlist_head *head; 379 struct kprobe *p; 380 381 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 382 hlist_for_each_entry_rcu(p, head, hlist, 383 lockdep_is_held(&kprobe_mutex)) { 384 if (p->addr == addr) 385 return p; 386 } 387 388 return NULL; 389 } 390 NOKPROBE_SYMBOL(get_kprobe); 391 392 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 393 394 /* Return true if 'p' is an aggregator */ 395 static inline bool kprobe_aggrprobe(struct kprobe *p) 396 { 397 return p->pre_handler == aggr_pre_handler; 398 } 399 400 /* Return true if 'p' is unused */ 401 static inline bool kprobe_unused(struct kprobe *p) 402 { 403 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 404 list_empty(&p->list); 405 } 406 407 /* Keep all fields in the kprobe consistent. */ 408 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 409 { 410 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 411 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 412 } 413 414 #ifdef CONFIG_OPTPROBES 415 /* NOTE: This is protected by 'kprobe_mutex'. */ 416 static bool kprobes_allow_optimization; 417 418 /* 419 * Call all 'kprobe::pre_handler' on the list, but ignores its return value. 420 * This must be called from arch-dep optimized caller. 421 */ 422 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 423 { 424 struct kprobe *kp; 425 426 list_for_each_entry_rcu(kp, &p->list, list) { 427 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 428 set_kprobe_instance(kp); 429 kp->pre_handler(kp, regs); 430 } 431 reset_kprobe_instance(); 432 } 433 } 434 NOKPROBE_SYMBOL(opt_pre_handler); 435 436 /* Free optimized instructions and optimized_kprobe */ 437 static void free_aggr_kprobe(struct kprobe *p) 438 { 439 struct optimized_kprobe *op; 440 441 op = container_of(p, struct optimized_kprobe, kp); 442 arch_remove_optimized_kprobe(op); 443 arch_remove_kprobe(p); 444 kfree(op); 445 } 446 447 /* Return true if the kprobe is ready for optimization. */ 448 static inline int kprobe_optready(struct kprobe *p) 449 { 450 struct optimized_kprobe *op; 451 452 if (kprobe_aggrprobe(p)) { 453 op = container_of(p, struct optimized_kprobe, kp); 454 return arch_prepared_optinsn(&op->optinsn); 455 } 456 457 return 0; 458 } 459 460 /* Return true if the kprobe is disarmed. Note: p must be on hash list */ 461 bool kprobe_disarmed(struct kprobe *p) 462 { 463 struct optimized_kprobe *op; 464 465 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 466 if (!kprobe_aggrprobe(p)) 467 return kprobe_disabled(p); 468 469 op = container_of(p, struct optimized_kprobe, kp); 470 471 return kprobe_disabled(p) && list_empty(&op->list); 472 } 473 474 /* Return true if the probe is queued on (un)optimizing lists */ 475 static bool kprobe_queued(struct kprobe *p) 476 { 477 struct optimized_kprobe *op; 478 479 if (kprobe_aggrprobe(p)) { 480 op = container_of(p, struct optimized_kprobe, kp); 481 if (!list_empty(&op->list)) 482 return true; 483 } 484 return false; 485 } 486 487 /* 488 * Return an optimized kprobe whose optimizing code replaces 489 * instructions including 'addr' (exclude breakpoint). 490 */ 491 static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr) 492 { 493 int i; 494 struct kprobe *p = NULL; 495 struct optimized_kprobe *op; 496 497 /* Don't check i == 0, since that is a breakpoint case. */ 498 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++) 499 p = get_kprobe(addr - i); 500 501 if (p && kprobe_optready(p)) { 502 op = container_of(p, struct optimized_kprobe, kp); 503 if (arch_within_optimized_kprobe(op, addr)) 504 return p; 505 } 506 507 return NULL; 508 } 509 510 /* Optimization staging list, protected by 'kprobe_mutex' */ 511 static LIST_HEAD(optimizing_list); 512 static LIST_HEAD(unoptimizing_list); 513 static LIST_HEAD(freeing_list); 514 515 static void kprobe_optimizer(struct work_struct *work); 516 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 517 #define OPTIMIZE_DELAY 5 518 519 /* 520 * Optimize (replace a breakpoint with a jump) kprobes listed on 521 * 'optimizing_list'. 522 */ 523 static void do_optimize_kprobes(void) 524 { 525 lockdep_assert_held(&text_mutex); 526 /* 527 * The optimization/unoptimization refers 'online_cpus' via 528 * stop_machine() and cpu-hotplug modifies the 'online_cpus'. 529 * And same time, 'text_mutex' will be held in cpu-hotplug and here. 530 * This combination can cause a deadlock (cpu-hotplug tries to lock 531 * 'text_mutex' but stop_machine() can not be done because 532 * the 'online_cpus' has been changed) 533 * To avoid this deadlock, caller must have locked cpu-hotplug 534 * for preventing cpu-hotplug outside of 'text_mutex' locking. 535 */ 536 lockdep_assert_cpus_held(); 537 538 /* Optimization never be done when disarmed */ 539 if (kprobes_all_disarmed || !kprobes_allow_optimization || 540 list_empty(&optimizing_list)) 541 return; 542 543 arch_optimize_kprobes(&optimizing_list); 544 } 545 546 /* 547 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 548 * if need) kprobes listed on 'unoptimizing_list'. 549 */ 550 static void do_unoptimize_kprobes(void) 551 { 552 struct optimized_kprobe *op, *tmp; 553 554 lockdep_assert_held(&text_mutex); 555 /* See comment in do_optimize_kprobes() */ 556 lockdep_assert_cpus_held(); 557 558 if (!list_empty(&unoptimizing_list)) 559 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 560 561 /* Loop on 'freeing_list' for disarming and removing from kprobe hash list */ 562 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 563 /* Switching from detour code to origin */ 564 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 565 /* Disarm probes if marked disabled and not gone */ 566 if (kprobe_disabled(&op->kp) && !kprobe_gone(&op->kp)) 567 arch_disarm_kprobe(&op->kp); 568 if (kprobe_unused(&op->kp)) { 569 /* 570 * Remove unused probes from hash list. After waiting 571 * for synchronization, these probes are reclaimed. 572 * (reclaiming is done by do_free_cleaned_kprobes().) 573 */ 574 hlist_del_rcu(&op->kp.hlist); 575 } else 576 list_del_init(&op->list); 577 } 578 } 579 580 /* Reclaim all kprobes on the 'freeing_list' */ 581 static void do_free_cleaned_kprobes(void) 582 { 583 struct optimized_kprobe *op, *tmp; 584 585 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 586 list_del_init(&op->list); 587 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) { 588 /* 589 * This must not happen, but if there is a kprobe 590 * still in use, keep it on kprobes hash list. 591 */ 592 continue; 593 } 594 free_aggr_kprobe(&op->kp); 595 } 596 } 597 598 /* Start optimizer after OPTIMIZE_DELAY passed */ 599 static void kick_kprobe_optimizer(void) 600 { 601 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 602 } 603 604 /* Kprobe jump optimizer */ 605 static void kprobe_optimizer(struct work_struct *work) 606 { 607 mutex_lock(&kprobe_mutex); 608 cpus_read_lock(); 609 mutex_lock(&text_mutex); 610 611 /* 612 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 613 * kprobes before waiting for quiesence period. 614 */ 615 do_unoptimize_kprobes(); 616 617 /* 618 * Step 2: Wait for quiesence period to ensure all potentially 619 * preempted tasks to have normally scheduled. Because optprobe 620 * may modify multiple instructions, there is a chance that Nth 621 * instruction is preempted. In that case, such tasks can return 622 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. 623 * Note that on non-preemptive kernel, this is transparently converted 624 * to synchronoze_sched() to wait for all interrupts to have completed. 625 */ 626 synchronize_rcu_tasks(); 627 628 /* Step 3: Optimize kprobes after quiesence period */ 629 do_optimize_kprobes(); 630 631 /* Step 4: Free cleaned kprobes after quiesence period */ 632 do_free_cleaned_kprobes(); 633 634 mutex_unlock(&text_mutex); 635 cpus_read_unlock(); 636 637 /* Step 5: Kick optimizer again if needed */ 638 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 639 kick_kprobe_optimizer(); 640 641 mutex_unlock(&kprobe_mutex); 642 } 643 644 /* Wait for completing optimization and unoptimization */ 645 void wait_for_kprobe_optimizer(void) 646 { 647 mutex_lock(&kprobe_mutex); 648 649 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 650 mutex_unlock(&kprobe_mutex); 651 652 /* This will also make 'optimizing_work' execute immmediately */ 653 flush_delayed_work(&optimizing_work); 654 /* 'optimizing_work' might not have been queued yet, relax */ 655 cpu_relax(); 656 657 mutex_lock(&kprobe_mutex); 658 } 659 660 mutex_unlock(&kprobe_mutex); 661 } 662 663 bool optprobe_queued_unopt(struct optimized_kprobe *op) 664 { 665 struct optimized_kprobe *_op; 666 667 list_for_each_entry(_op, &unoptimizing_list, list) { 668 if (op == _op) 669 return true; 670 } 671 672 return false; 673 } 674 675 /* Optimize kprobe if p is ready to be optimized */ 676 static void optimize_kprobe(struct kprobe *p) 677 { 678 struct optimized_kprobe *op; 679 680 /* Check if the kprobe is disabled or not ready for optimization. */ 681 if (!kprobe_optready(p) || !kprobes_allow_optimization || 682 (kprobe_disabled(p) || kprobes_all_disarmed)) 683 return; 684 685 /* kprobes with 'post_handler' can not be optimized */ 686 if (p->post_handler) 687 return; 688 689 op = container_of(p, struct optimized_kprobe, kp); 690 691 /* Check there is no other kprobes at the optimized instructions */ 692 if (arch_check_optimized_kprobe(op) < 0) 693 return; 694 695 /* Check if it is already optimized. */ 696 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) { 697 if (optprobe_queued_unopt(op)) { 698 /* This is under unoptimizing. Just dequeue the probe */ 699 list_del_init(&op->list); 700 } 701 return; 702 } 703 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 704 705 /* 706 * On the 'unoptimizing_list' and 'optimizing_list', 707 * 'op' must have OPTIMIZED flag 708 */ 709 if (WARN_ON_ONCE(!list_empty(&op->list))) 710 return; 711 712 list_add(&op->list, &optimizing_list); 713 kick_kprobe_optimizer(); 714 } 715 716 /* Short cut to direct unoptimizing */ 717 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 718 { 719 lockdep_assert_cpus_held(); 720 arch_unoptimize_kprobe(op); 721 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 722 } 723 724 /* Unoptimize a kprobe if p is optimized */ 725 static void unoptimize_kprobe(struct kprobe *p, bool force) 726 { 727 struct optimized_kprobe *op; 728 729 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 730 return; /* This is not an optprobe nor optimized */ 731 732 op = container_of(p, struct optimized_kprobe, kp); 733 if (!kprobe_optimized(p)) 734 return; 735 736 if (!list_empty(&op->list)) { 737 if (optprobe_queued_unopt(op)) { 738 /* Queued in unoptimizing queue */ 739 if (force) { 740 /* 741 * Forcibly unoptimize the kprobe here, and queue it 742 * in the freeing list for release afterwards. 743 */ 744 force_unoptimize_kprobe(op); 745 list_move(&op->list, &freeing_list); 746 } 747 } else { 748 /* Dequeue from the optimizing queue */ 749 list_del_init(&op->list); 750 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 751 } 752 return; 753 } 754 755 /* Optimized kprobe case */ 756 if (force) { 757 /* Forcibly update the code: this is a special case */ 758 force_unoptimize_kprobe(op); 759 } else { 760 list_add(&op->list, &unoptimizing_list); 761 kick_kprobe_optimizer(); 762 } 763 } 764 765 /* Cancel unoptimizing for reusing */ 766 static int reuse_unused_kprobe(struct kprobe *ap) 767 { 768 struct optimized_kprobe *op; 769 770 /* 771 * Unused kprobe MUST be on the way of delayed unoptimizing (means 772 * there is still a relative jump) and disabled. 773 */ 774 op = container_of(ap, struct optimized_kprobe, kp); 775 WARN_ON_ONCE(list_empty(&op->list)); 776 /* Enable the probe again */ 777 ap->flags &= ~KPROBE_FLAG_DISABLED; 778 /* Optimize it again. (remove from 'op->list') */ 779 if (!kprobe_optready(ap)) 780 return -EINVAL; 781 782 optimize_kprobe(ap); 783 return 0; 784 } 785 786 /* Remove optimized instructions */ 787 static void kill_optimized_kprobe(struct kprobe *p) 788 { 789 struct optimized_kprobe *op; 790 791 op = container_of(p, struct optimized_kprobe, kp); 792 if (!list_empty(&op->list)) 793 /* Dequeue from the (un)optimization queue */ 794 list_del_init(&op->list); 795 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 796 797 if (kprobe_unused(p)) { 798 /* 799 * Unused kprobe is on unoptimizing or freeing list. We move it 800 * to freeing_list and let the kprobe_optimizer() remove it from 801 * the kprobe hash list and free it. 802 */ 803 if (optprobe_queued_unopt(op)) 804 list_move(&op->list, &freeing_list); 805 } 806 807 /* Don't touch the code, because it is already freed. */ 808 arch_remove_optimized_kprobe(op); 809 } 810 811 static inline 812 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) 813 { 814 if (!kprobe_ftrace(p)) 815 arch_prepare_optimized_kprobe(op, p); 816 } 817 818 /* Try to prepare optimized instructions */ 819 static void prepare_optimized_kprobe(struct kprobe *p) 820 { 821 struct optimized_kprobe *op; 822 823 op = container_of(p, struct optimized_kprobe, kp); 824 __prepare_optimized_kprobe(op, p); 825 } 826 827 /* Allocate new optimized_kprobe and try to prepare optimized instructions. */ 828 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 829 { 830 struct optimized_kprobe *op; 831 832 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 833 if (!op) 834 return NULL; 835 836 INIT_LIST_HEAD(&op->list); 837 op->kp.addr = p->addr; 838 __prepare_optimized_kprobe(op, p); 839 840 return &op->kp; 841 } 842 843 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 844 845 /* 846 * Prepare an optimized_kprobe and optimize it. 847 * NOTE: 'p' must be a normal registered kprobe. 848 */ 849 static void try_to_optimize_kprobe(struct kprobe *p) 850 { 851 struct kprobe *ap; 852 struct optimized_kprobe *op; 853 854 /* Impossible to optimize ftrace-based kprobe. */ 855 if (kprobe_ftrace(p)) 856 return; 857 858 /* For preparing optimization, jump_label_text_reserved() is called. */ 859 cpus_read_lock(); 860 jump_label_lock(); 861 mutex_lock(&text_mutex); 862 863 ap = alloc_aggr_kprobe(p); 864 if (!ap) 865 goto out; 866 867 op = container_of(ap, struct optimized_kprobe, kp); 868 if (!arch_prepared_optinsn(&op->optinsn)) { 869 /* If failed to setup optimizing, fallback to kprobe. */ 870 arch_remove_optimized_kprobe(op); 871 kfree(op); 872 goto out; 873 } 874 875 init_aggr_kprobe(ap, p); 876 optimize_kprobe(ap); /* This just kicks optimizer thread. */ 877 878 out: 879 mutex_unlock(&text_mutex); 880 jump_label_unlock(); 881 cpus_read_unlock(); 882 } 883 884 static void optimize_all_kprobes(void) 885 { 886 struct hlist_head *head; 887 struct kprobe *p; 888 unsigned int i; 889 890 mutex_lock(&kprobe_mutex); 891 /* If optimization is already allowed, just return. */ 892 if (kprobes_allow_optimization) 893 goto out; 894 895 cpus_read_lock(); 896 kprobes_allow_optimization = true; 897 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 898 head = &kprobe_table[i]; 899 hlist_for_each_entry(p, head, hlist) 900 if (!kprobe_disabled(p)) 901 optimize_kprobe(p); 902 } 903 cpus_read_unlock(); 904 pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n"); 905 out: 906 mutex_unlock(&kprobe_mutex); 907 } 908 909 #ifdef CONFIG_SYSCTL 910 static void unoptimize_all_kprobes(void) 911 { 912 struct hlist_head *head; 913 struct kprobe *p; 914 unsigned int i; 915 916 mutex_lock(&kprobe_mutex); 917 /* If optimization is already prohibited, just return. */ 918 if (!kprobes_allow_optimization) { 919 mutex_unlock(&kprobe_mutex); 920 return; 921 } 922 923 cpus_read_lock(); 924 kprobes_allow_optimization = false; 925 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 926 head = &kprobe_table[i]; 927 hlist_for_each_entry(p, head, hlist) { 928 if (!kprobe_disabled(p)) 929 unoptimize_kprobe(p, false); 930 } 931 } 932 cpus_read_unlock(); 933 mutex_unlock(&kprobe_mutex); 934 935 /* Wait for unoptimizing completion. */ 936 wait_for_kprobe_optimizer(); 937 pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n"); 938 } 939 940 static DEFINE_MUTEX(kprobe_sysctl_mutex); 941 static int sysctl_kprobes_optimization; 942 static int proc_kprobes_optimization_handler(struct ctl_table *table, 943 int write, void *buffer, 944 size_t *length, loff_t *ppos) 945 { 946 int ret; 947 948 mutex_lock(&kprobe_sysctl_mutex); 949 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 950 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 951 952 if (sysctl_kprobes_optimization) 953 optimize_all_kprobes(); 954 else 955 unoptimize_all_kprobes(); 956 mutex_unlock(&kprobe_sysctl_mutex); 957 958 return ret; 959 } 960 961 static struct ctl_table kprobe_sysctls[] = { 962 { 963 .procname = "kprobes-optimization", 964 .data = &sysctl_kprobes_optimization, 965 .maxlen = sizeof(int), 966 .mode = 0644, 967 .proc_handler = proc_kprobes_optimization_handler, 968 .extra1 = SYSCTL_ZERO, 969 .extra2 = SYSCTL_ONE, 970 }, 971 {} 972 }; 973 974 static void __init kprobe_sysctls_init(void) 975 { 976 register_sysctl_init("debug", kprobe_sysctls); 977 } 978 #endif /* CONFIG_SYSCTL */ 979 980 /* Put a breakpoint for a probe. */ 981 static void __arm_kprobe(struct kprobe *p) 982 { 983 struct kprobe *_p; 984 985 lockdep_assert_held(&text_mutex); 986 987 /* Find the overlapping optimized kprobes. */ 988 _p = get_optimized_kprobe(p->addr); 989 if (unlikely(_p)) 990 /* Fallback to unoptimized kprobe */ 991 unoptimize_kprobe(_p, true); 992 993 arch_arm_kprobe(p); 994 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 995 } 996 997 /* Remove the breakpoint of a probe. */ 998 static void __disarm_kprobe(struct kprobe *p, bool reopt) 999 { 1000 struct kprobe *_p; 1001 1002 lockdep_assert_held(&text_mutex); 1003 1004 /* Try to unoptimize */ 1005 unoptimize_kprobe(p, kprobes_all_disarmed); 1006 1007 if (!kprobe_queued(p)) { 1008 arch_disarm_kprobe(p); 1009 /* If another kprobe was blocked, re-optimize it. */ 1010 _p = get_optimized_kprobe(p->addr); 1011 if (unlikely(_p) && reopt) 1012 optimize_kprobe(_p); 1013 } 1014 /* 1015 * TODO: Since unoptimization and real disarming will be done by 1016 * the worker thread, we can not check whether another probe are 1017 * unoptimized because of this probe here. It should be re-optimized 1018 * by the worker thread. 1019 */ 1020 } 1021 1022 #else /* !CONFIG_OPTPROBES */ 1023 1024 #define optimize_kprobe(p) do {} while (0) 1025 #define unoptimize_kprobe(p, f) do {} while (0) 1026 #define kill_optimized_kprobe(p) do {} while (0) 1027 #define prepare_optimized_kprobe(p) do {} while (0) 1028 #define try_to_optimize_kprobe(p) do {} while (0) 1029 #define __arm_kprobe(p) arch_arm_kprobe(p) 1030 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 1031 #define kprobe_disarmed(p) kprobe_disabled(p) 1032 #define wait_for_kprobe_optimizer() do {} while (0) 1033 1034 static int reuse_unused_kprobe(struct kprobe *ap) 1035 { 1036 /* 1037 * If the optimized kprobe is NOT supported, the aggr kprobe is 1038 * released at the same time that the last aggregated kprobe is 1039 * unregistered. 1040 * Thus there should be no chance to reuse unused kprobe. 1041 */ 1042 WARN_ON_ONCE(1); 1043 return -EINVAL; 1044 } 1045 1046 static void free_aggr_kprobe(struct kprobe *p) 1047 { 1048 arch_remove_kprobe(p); 1049 kfree(p); 1050 } 1051 1052 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 1053 { 1054 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 1055 } 1056 #endif /* CONFIG_OPTPROBES */ 1057 1058 #ifdef CONFIG_KPROBES_ON_FTRACE 1059 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 1060 .func = kprobe_ftrace_handler, 1061 .flags = FTRACE_OPS_FL_SAVE_REGS, 1062 }; 1063 1064 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = { 1065 .func = kprobe_ftrace_handler, 1066 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 1067 }; 1068 1069 static int kprobe_ipmodify_enabled; 1070 static int kprobe_ftrace_enabled; 1071 1072 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1073 int *cnt) 1074 { 1075 int ret = 0; 1076 1077 lockdep_assert_held(&kprobe_mutex); 1078 1079 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0); 1080 if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret)) 1081 return ret; 1082 1083 if (*cnt == 0) { 1084 ret = register_ftrace_function(ops); 1085 if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret)) 1086 goto err_ftrace; 1087 } 1088 1089 (*cnt)++; 1090 return ret; 1091 1092 err_ftrace: 1093 /* 1094 * At this point, sinec ops is not registered, we should be sefe from 1095 * registering empty filter. 1096 */ 1097 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1098 return ret; 1099 } 1100 1101 static int arm_kprobe_ftrace(struct kprobe *p) 1102 { 1103 bool ipmodify = (p->post_handler != NULL); 1104 1105 return __arm_kprobe_ftrace(p, 1106 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1107 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1108 } 1109 1110 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1111 int *cnt) 1112 { 1113 int ret = 0; 1114 1115 lockdep_assert_held(&kprobe_mutex); 1116 1117 if (*cnt == 1) { 1118 ret = unregister_ftrace_function(ops); 1119 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret)) 1120 return ret; 1121 } 1122 1123 (*cnt)--; 1124 1125 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1126 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n", 1127 p->addr, ret); 1128 return ret; 1129 } 1130 1131 static int disarm_kprobe_ftrace(struct kprobe *p) 1132 { 1133 bool ipmodify = (p->post_handler != NULL); 1134 1135 return __disarm_kprobe_ftrace(p, 1136 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1137 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1138 } 1139 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1140 static inline int arm_kprobe_ftrace(struct kprobe *p) 1141 { 1142 return -ENODEV; 1143 } 1144 1145 static inline int disarm_kprobe_ftrace(struct kprobe *p) 1146 { 1147 return -ENODEV; 1148 } 1149 #endif 1150 1151 static int prepare_kprobe(struct kprobe *p) 1152 { 1153 /* Must ensure p->addr is really on ftrace */ 1154 if (kprobe_ftrace(p)) 1155 return arch_prepare_kprobe_ftrace(p); 1156 1157 return arch_prepare_kprobe(p); 1158 } 1159 1160 static int arm_kprobe(struct kprobe *kp) 1161 { 1162 if (unlikely(kprobe_ftrace(kp))) 1163 return arm_kprobe_ftrace(kp); 1164 1165 cpus_read_lock(); 1166 mutex_lock(&text_mutex); 1167 __arm_kprobe(kp); 1168 mutex_unlock(&text_mutex); 1169 cpus_read_unlock(); 1170 1171 return 0; 1172 } 1173 1174 static int disarm_kprobe(struct kprobe *kp, bool reopt) 1175 { 1176 if (unlikely(kprobe_ftrace(kp))) 1177 return disarm_kprobe_ftrace(kp); 1178 1179 cpus_read_lock(); 1180 mutex_lock(&text_mutex); 1181 __disarm_kprobe(kp, reopt); 1182 mutex_unlock(&text_mutex); 1183 cpus_read_unlock(); 1184 1185 return 0; 1186 } 1187 1188 /* 1189 * Aggregate handlers for multiple kprobes support - these handlers 1190 * take care of invoking the individual kprobe handlers on p->list 1191 */ 1192 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1193 { 1194 struct kprobe *kp; 1195 1196 list_for_each_entry_rcu(kp, &p->list, list) { 1197 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1198 set_kprobe_instance(kp); 1199 if (kp->pre_handler(kp, regs)) 1200 return 1; 1201 } 1202 reset_kprobe_instance(); 1203 } 1204 return 0; 1205 } 1206 NOKPROBE_SYMBOL(aggr_pre_handler); 1207 1208 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1209 unsigned long flags) 1210 { 1211 struct kprobe *kp; 1212 1213 list_for_each_entry_rcu(kp, &p->list, list) { 1214 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1215 set_kprobe_instance(kp); 1216 kp->post_handler(kp, regs, flags); 1217 reset_kprobe_instance(); 1218 } 1219 } 1220 } 1221 NOKPROBE_SYMBOL(aggr_post_handler); 1222 1223 /* Walks the list and increments 'nmissed' if 'p' has child probes. */ 1224 void kprobes_inc_nmissed_count(struct kprobe *p) 1225 { 1226 struct kprobe *kp; 1227 1228 if (!kprobe_aggrprobe(p)) { 1229 p->nmissed++; 1230 } else { 1231 list_for_each_entry_rcu(kp, &p->list, list) 1232 kp->nmissed++; 1233 } 1234 } 1235 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1236 1237 static struct kprobe kprobe_busy = { 1238 .addr = (void *) get_kprobe, 1239 }; 1240 1241 void kprobe_busy_begin(void) 1242 { 1243 struct kprobe_ctlblk *kcb; 1244 1245 preempt_disable(); 1246 __this_cpu_write(current_kprobe, &kprobe_busy); 1247 kcb = get_kprobe_ctlblk(); 1248 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 1249 } 1250 1251 void kprobe_busy_end(void) 1252 { 1253 __this_cpu_write(current_kprobe, NULL); 1254 preempt_enable(); 1255 } 1256 1257 /* Add the new probe to 'ap->list'. */ 1258 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1259 { 1260 if (p->post_handler) 1261 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1262 1263 list_add_rcu(&p->list, &ap->list); 1264 if (p->post_handler && !ap->post_handler) 1265 ap->post_handler = aggr_post_handler; 1266 1267 return 0; 1268 } 1269 1270 /* 1271 * Fill in the required fields of the aggregator kprobe. Replace the 1272 * earlier kprobe in the hlist with the aggregator kprobe. 1273 */ 1274 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1275 { 1276 /* Copy the insn slot of 'p' to 'ap'. */ 1277 copy_kprobe(p, ap); 1278 flush_insn_slot(ap); 1279 ap->addr = p->addr; 1280 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1281 ap->pre_handler = aggr_pre_handler; 1282 /* We don't care the kprobe which has gone. */ 1283 if (p->post_handler && !kprobe_gone(p)) 1284 ap->post_handler = aggr_post_handler; 1285 1286 INIT_LIST_HEAD(&ap->list); 1287 INIT_HLIST_NODE(&ap->hlist); 1288 1289 list_add_rcu(&p->list, &ap->list); 1290 hlist_replace_rcu(&p->hlist, &ap->hlist); 1291 } 1292 1293 /* 1294 * This registers the second or subsequent kprobe at the same address. 1295 */ 1296 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1297 { 1298 int ret = 0; 1299 struct kprobe *ap = orig_p; 1300 1301 cpus_read_lock(); 1302 1303 /* For preparing optimization, jump_label_text_reserved() is called */ 1304 jump_label_lock(); 1305 mutex_lock(&text_mutex); 1306 1307 if (!kprobe_aggrprobe(orig_p)) { 1308 /* If 'orig_p' is not an 'aggr_kprobe', create new one. */ 1309 ap = alloc_aggr_kprobe(orig_p); 1310 if (!ap) { 1311 ret = -ENOMEM; 1312 goto out; 1313 } 1314 init_aggr_kprobe(ap, orig_p); 1315 } else if (kprobe_unused(ap)) { 1316 /* This probe is going to die. Rescue it */ 1317 ret = reuse_unused_kprobe(ap); 1318 if (ret) 1319 goto out; 1320 } 1321 1322 if (kprobe_gone(ap)) { 1323 /* 1324 * Attempting to insert new probe at the same location that 1325 * had a probe in the module vaddr area which already 1326 * freed. So, the instruction slot has already been 1327 * released. We need a new slot for the new probe. 1328 */ 1329 ret = arch_prepare_kprobe(ap); 1330 if (ret) 1331 /* 1332 * Even if fail to allocate new slot, don't need to 1333 * free the 'ap'. It will be used next time, or 1334 * freed by unregister_kprobe(). 1335 */ 1336 goto out; 1337 1338 /* Prepare optimized instructions if possible. */ 1339 prepare_optimized_kprobe(ap); 1340 1341 /* 1342 * Clear gone flag to prevent allocating new slot again, and 1343 * set disabled flag because it is not armed yet. 1344 */ 1345 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1346 | KPROBE_FLAG_DISABLED; 1347 } 1348 1349 /* Copy the insn slot of 'p' to 'ap'. */ 1350 copy_kprobe(ap, p); 1351 ret = add_new_kprobe(ap, p); 1352 1353 out: 1354 mutex_unlock(&text_mutex); 1355 jump_label_unlock(); 1356 cpus_read_unlock(); 1357 1358 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1359 ap->flags &= ~KPROBE_FLAG_DISABLED; 1360 if (!kprobes_all_disarmed) { 1361 /* Arm the breakpoint again. */ 1362 ret = arm_kprobe(ap); 1363 if (ret) { 1364 ap->flags |= KPROBE_FLAG_DISABLED; 1365 list_del_rcu(&p->list); 1366 synchronize_rcu(); 1367 } 1368 } 1369 } 1370 return ret; 1371 } 1372 1373 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1374 { 1375 /* The '__kprobes' functions and entry code must not be probed. */ 1376 return addr >= (unsigned long)__kprobes_text_start && 1377 addr < (unsigned long)__kprobes_text_end; 1378 } 1379 1380 static bool __within_kprobe_blacklist(unsigned long addr) 1381 { 1382 struct kprobe_blacklist_entry *ent; 1383 1384 if (arch_within_kprobe_blacklist(addr)) 1385 return true; 1386 /* 1387 * If 'kprobe_blacklist' is defined, check the address and 1388 * reject any probe registration in the prohibited area. 1389 */ 1390 list_for_each_entry(ent, &kprobe_blacklist, list) { 1391 if (addr >= ent->start_addr && addr < ent->end_addr) 1392 return true; 1393 } 1394 return false; 1395 } 1396 1397 bool within_kprobe_blacklist(unsigned long addr) 1398 { 1399 char symname[KSYM_NAME_LEN], *p; 1400 1401 if (__within_kprobe_blacklist(addr)) 1402 return true; 1403 1404 /* Check if the address is on a suffixed-symbol */ 1405 if (!lookup_symbol_name(addr, symname)) { 1406 p = strchr(symname, '.'); 1407 if (!p) 1408 return false; 1409 *p = '\0'; 1410 addr = (unsigned long)kprobe_lookup_name(symname, 0); 1411 if (addr) 1412 return __within_kprobe_blacklist(addr); 1413 } 1414 return false; 1415 } 1416 1417 /* 1418 * arch_adjust_kprobe_addr - adjust the address 1419 * @addr: symbol base address 1420 * @offset: offset within the symbol 1421 * @on_func_entry: was this @addr+@offset on the function entry 1422 * 1423 * Typically returns @addr + @offset, except for special cases where the 1424 * function might be prefixed by a CFI landing pad, in that case any offset 1425 * inside the landing pad is mapped to the first 'real' instruction of the 1426 * symbol. 1427 * 1428 * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C 1429 * instruction at +0. 1430 */ 1431 kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr, 1432 unsigned long offset, 1433 bool *on_func_entry) 1434 { 1435 *on_func_entry = !offset; 1436 return (kprobe_opcode_t *)(addr + offset); 1437 } 1438 1439 /* 1440 * If 'symbol_name' is specified, look it up and add the 'offset' 1441 * to it. This way, we can specify a relative address to a symbol. 1442 * This returns encoded errors if it fails to look up symbol or invalid 1443 * combination of parameters. 1444 */ 1445 static kprobe_opcode_t * 1446 _kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name, 1447 unsigned long offset, bool *on_func_entry) 1448 { 1449 if ((symbol_name && addr) || (!symbol_name && !addr)) 1450 goto invalid; 1451 1452 if (symbol_name) { 1453 /* 1454 * Input: @sym + @offset 1455 * Output: @addr + @offset 1456 * 1457 * NOTE: kprobe_lookup_name() does *NOT* fold the offset 1458 * argument into it's output! 1459 */ 1460 addr = kprobe_lookup_name(symbol_name, offset); 1461 if (!addr) 1462 return ERR_PTR(-ENOENT); 1463 } 1464 1465 /* 1466 * So here we have @addr + @offset, displace it into a new 1467 * @addr' + @offset' where @addr' is the symbol start address. 1468 */ 1469 addr = (void *)addr + offset; 1470 if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset)) 1471 return ERR_PTR(-ENOENT); 1472 addr = (void *)addr - offset; 1473 1474 /* 1475 * Then ask the architecture to re-combine them, taking care of 1476 * magical function entry details while telling us if this was indeed 1477 * at the start of the function. 1478 */ 1479 addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry); 1480 if (addr) 1481 return addr; 1482 1483 invalid: 1484 return ERR_PTR(-EINVAL); 1485 } 1486 1487 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1488 { 1489 bool on_func_entry; 1490 return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry); 1491 } 1492 1493 /* 1494 * Check the 'p' is valid and return the aggregator kprobe 1495 * at the same address. 1496 */ 1497 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1498 { 1499 struct kprobe *ap, *list_p; 1500 1501 lockdep_assert_held(&kprobe_mutex); 1502 1503 ap = get_kprobe(p->addr); 1504 if (unlikely(!ap)) 1505 return NULL; 1506 1507 if (p != ap) { 1508 list_for_each_entry(list_p, &ap->list, list) 1509 if (list_p == p) 1510 /* kprobe p is a valid probe */ 1511 goto valid; 1512 return NULL; 1513 } 1514 valid: 1515 return ap; 1516 } 1517 1518 /* 1519 * Warn and return error if the kprobe is being re-registered since 1520 * there must be a software bug. 1521 */ 1522 static inline int warn_kprobe_rereg(struct kprobe *p) 1523 { 1524 int ret = 0; 1525 1526 mutex_lock(&kprobe_mutex); 1527 if (WARN_ON_ONCE(__get_valid_kprobe(p))) 1528 ret = -EINVAL; 1529 mutex_unlock(&kprobe_mutex); 1530 1531 return ret; 1532 } 1533 1534 static int check_ftrace_location(struct kprobe *p) 1535 { 1536 unsigned long addr = (unsigned long)p->addr; 1537 1538 if (ftrace_location(addr) == addr) { 1539 #ifdef CONFIG_KPROBES_ON_FTRACE 1540 p->flags |= KPROBE_FLAG_FTRACE; 1541 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1542 return -EINVAL; 1543 #endif 1544 } 1545 return 0; 1546 } 1547 1548 static int check_kprobe_address_safe(struct kprobe *p, 1549 struct module **probed_mod) 1550 { 1551 int ret; 1552 1553 ret = check_ftrace_location(p); 1554 if (ret) 1555 return ret; 1556 jump_label_lock(); 1557 preempt_disable(); 1558 1559 /* Ensure it is not in reserved area nor out of text */ 1560 if (!(core_kernel_text((unsigned long) p->addr) || 1561 is_module_text_address((unsigned long) p->addr)) || 1562 in_gate_area_no_mm((unsigned long) p->addr) || 1563 within_kprobe_blacklist((unsigned long) p->addr) || 1564 jump_label_text_reserved(p->addr, p->addr) || 1565 static_call_text_reserved(p->addr, p->addr) || 1566 find_bug((unsigned long)p->addr)) { 1567 ret = -EINVAL; 1568 goto out; 1569 } 1570 1571 /* Check if 'p' is probing a module. */ 1572 *probed_mod = __module_text_address((unsigned long) p->addr); 1573 if (*probed_mod) { 1574 /* 1575 * We must hold a refcount of the probed module while updating 1576 * its code to prohibit unexpected unloading. 1577 */ 1578 if (unlikely(!try_module_get(*probed_mod))) { 1579 ret = -ENOENT; 1580 goto out; 1581 } 1582 1583 /* 1584 * If the module freed '.init.text', we couldn't insert 1585 * kprobes in there. 1586 */ 1587 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1588 (*probed_mod)->state != MODULE_STATE_COMING) { 1589 module_put(*probed_mod); 1590 *probed_mod = NULL; 1591 ret = -ENOENT; 1592 } 1593 } 1594 out: 1595 preempt_enable(); 1596 jump_label_unlock(); 1597 1598 return ret; 1599 } 1600 1601 int register_kprobe(struct kprobe *p) 1602 { 1603 int ret; 1604 struct kprobe *old_p; 1605 struct module *probed_mod; 1606 kprobe_opcode_t *addr; 1607 bool on_func_entry; 1608 1609 /* Adjust probe address from symbol */ 1610 addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry); 1611 if (IS_ERR(addr)) 1612 return PTR_ERR(addr); 1613 p->addr = addr; 1614 1615 ret = warn_kprobe_rereg(p); 1616 if (ret) 1617 return ret; 1618 1619 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1620 p->flags &= KPROBE_FLAG_DISABLED; 1621 p->nmissed = 0; 1622 INIT_LIST_HEAD(&p->list); 1623 1624 ret = check_kprobe_address_safe(p, &probed_mod); 1625 if (ret) 1626 return ret; 1627 1628 mutex_lock(&kprobe_mutex); 1629 1630 if (on_func_entry) 1631 p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY; 1632 1633 old_p = get_kprobe(p->addr); 1634 if (old_p) { 1635 /* Since this may unoptimize 'old_p', locking 'text_mutex'. */ 1636 ret = register_aggr_kprobe(old_p, p); 1637 goto out; 1638 } 1639 1640 cpus_read_lock(); 1641 /* Prevent text modification */ 1642 mutex_lock(&text_mutex); 1643 ret = prepare_kprobe(p); 1644 mutex_unlock(&text_mutex); 1645 cpus_read_unlock(); 1646 if (ret) 1647 goto out; 1648 1649 INIT_HLIST_NODE(&p->hlist); 1650 hlist_add_head_rcu(&p->hlist, 1651 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1652 1653 if (!kprobes_all_disarmed && !kprobe_disabled(p)) { 1654 ret = arm_kprobe(p); 1655 if (ret) { 1656 hlist_del_rcu(&p->hlist); 1657 synchronize_rcu(); 1658 goto out; 1659 } 1660 } 1661 1662 /* Try to optimize kprobe */ 1663 try_to_optimize_kprobe(p); 1664 out: 1665 mutex_unlock(&kprobe_mutex); 1666 1667 if (probed_mod) 1668 module_put(probed_mod); 1669 1670 return ret; 1671 } 1672 EXPORT_SYMBOL_GPL(register_kprobe); 1673 1674 /* Check if all probes on the 'ap' are disabled. */ 1675 static bool aggr_kprobe_disabled(struct kprobe *ap) 1676 { 1677 struct kprobe *kp; 1678 1679 lockdep_assert_held(&kprobe_mutex); 1680 1681 list_for_each_entry(kp, &ap->list, list) 1682 if (!kprobe_disabled(kp)) 1683 /* 1684 * Since there is an active probe on the list, 1685 * we can't disable this 'ap'. 1686 */ 1687 return false; 1688 1689 return true; 1690 } 1691 1692 static struct kprobe *__disable_kprobe(struct kprobe *p) 1693 { 1694 struct kprobe *orig_p; 1695 int ret; 1696 1697 lockdep_assert_held(&kprobe_mutex); 1698 1699 /* Get an original kprobe for return */ 1700 orig_p = __get_valid_kprobe(p); 1701 if (unlikely(orig_p == NULL)) 1702 return ERR_PTR(-EINVAL); 1703 1704 if (!kprobe_disabled(p)) { 1705 /* Disable probe if it is a child probe */ 1706 if (p != orig_p) 1707 p->flags |= KPROBE_FLAG_DISABLED; 1708 1709 /* Try to disarm and disable this/parent probe */ 1710 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1711 /* 1712 * Don't be lazy here. Even if 'kprobes_all_disarmed' 1713 * is false, 'orig_p' might not have been armed yet. 1714 * Note arm_all_kprobes() __tries__ to arm all kprobes 1715 * on the best effort basis. 1716 */ 1717 if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) { 1718 ret = disarm_kprobe(orig_p, true); 1719 if (ret) { 1720 p->flags &= ~KPROBE_FLAG_DISABLED; 1721 return ERR_PTR(ret); 1722 } 1723 } 1724 orig_p->flags |= KPROBE_FLAG_DISABLED; 1725 } 1726 } 1727 1728 return orig_p; 1729 } 1730 1731 /* 1732 * Unregister a kprobe without a scheduler synchronization. 1733 */ 1734 static int __unregister_kprobe_top(struct kprobe *p) 1735 { 1736 struct kprobe *ap, *list_p; 1737 1738 /* Disable kprobe. This will disarm it if needed. */ 1739 ap = __disable_kprobe(p); 1740 if (IS_ERR(ap)) 1741 return PTR_ERR(ap); 1742 1743 if (ap == p) 1744 /* 1745 * This probe is an independent(and non-optimized) kprobe 1746 * (not an aggrprobe). Remove from the hash list. 1747 */ 1748 goto disarmed; 1749 1750 /* Following process expects this probe is an aggrprobe */ 1751 WARN_ON(!kprobe_aggrprobe(ap)); 1752 1753 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1754 /* 1755 * !disarmed could be happen if the probe is under delayed 1756 * unoptimizing. 1757 */ 1758 goto disarmed; 1759 else { 1760 /* If disabling probe has special handlers, update aggrprobe */ 1761 if (p->post_handler && !kprobe_gone(p)) { 1762 list_for_each_entry(list_p, &ap->list, list) { 1763 if ((list_p != p) && (list_p->post_handler)) 1764 goto noclean; 1765 } 1766 /* 1767 * For the kprobe-on-ftrace case, we keep the 1768 * post_handler setting to identify this aggrprobe 1769 * armed with kprobe_ipmodify_ops. 1770 */ 1771 if (!kprobe_ftrace(ap)) 1772 ap->post_handler = NULL; 1773 } 1774 noclean: 1775 /* 1776 * Remove from the aggrprobe: this path will do nothing in 1777 * __unregister_kprobe_bottom(). 1778 */ 1779 list_del_rcu(&p->list); 1780 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1781 /* 1782 * Try to optimize this probe again, because post 1783 * handler may have been changed. 1784 */ 1785 optimize_kprobe(ap); 1786 } 1787 return 0; 1788 1789 disarmed: 1790 hlist_del_rcu(&ap->hlist); 1791 return 0; 1792 } 1793 1794 static void __unregister_kprobe_bottom(struct kprobe *p) 1795 { 1796 struct kprobe *ap; 1797 1798 if (list_empty(&p->list)) 1799 /* This is an independent kprobe */ 1800 arch_remove_kprobe(p); 1801 else if (list_is_singular(&p->list)) { 1802 /* This is the last child of an aggrprobe */ 1803 ap = list_entry(p->list.next, struct kprobe, list); 1804 list_del(&p->list); 1805 free_aggr_kprobe(ap); 1806 } 1807 /* Otherwise, do nothing. */ 1808 } 1809 1810 int register_kprobes(struct kprobe **kps, int num) 1811 { 1812 int i, ret = 0; 1813 1814 if (num <= 0) 1815 return -EINVAL; 1816 for (i = 0; i < num; i++) { 1817 ret = register_kprobe(kps[i]); 1818 if (ret < 0) { 1819 if (i > 0) 1820 unregister_kprobes(kps, i); 1821 break; 1822 } 1823 } 1824 return ret; 1825 } 1826 EXPORT_SYMBOL_GPL(register_kprobes); 1827 1828 void unregister_kprobe(struct kprobe *p) 1829 { 1830 unregister_kprobes(&p, 1); 1831 } 1832 EXPORT_SYMBOL_GPL(unregister_kprobe); 1833 1834 void unregister_kprobes(struct kprobe **kps, int num) 1835 { 1836 int i; 1837 1838 if (num <= 0) 1839 return; 1840 mutex_lock(&kprobe_mutex); 1841 for (i = 0; i < num; i++) 1842 if (__unregister_kprobe_top(kps[i]) < 0) 1843 kps[i]->addr = NULL; 1844 mutex_unlock(&kprobe_mutex); 1845 1846 synchronize_rcu(); 1847 for (i = 0; i < num; i++) 1848 if (kps[i]->addr) 1849 __unregister_kprobe_bottom(kps[i]); 1850 } 1851 EXPORT_SYMBOL_GPL(unregister_kprobes); 1852 1853 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1854 unsigned long val, void *data) 1855 { 1856 return NOTIFY_DONE; 1857 } 1858 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1859 1860 static struct notifier_block kprobe_exceptions_nb = { 1861 .notifier_call = kprobe_exceptions_notify, 1862 .priority = 0x7fffffff /* we need to be notified first */ 1863 }; 1864 1865 #ifdef CONFIG_KRETPROBES 1866 1867 #if !defined(CONFIG_KRETPROBE_ON_RETHOOK) 1868 static void free_rp_inst_rcu(struct rcu_head *head) 1869 { 1870 struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu); 1871 1872 if (refcount_dec_and_test(&ri->rph->ref)) 1873 kfree(ri->rph); 1874 kfree(ri); 1875 } 1876 NOKPROBE_SYMBOL(free_rp_inst_rcu); 1877 1878 static void recycle_rp_inst(struct kretprobe_instance *ri) 1879 { 1880 struct kretprobe *rp = get_kretprobe(ri); 1881 1882 if (likely(rp)) 1883 freelist_add(&ri->freelist, &rp->freelist); 1884 else 1885 call_rcu(&ri->rcu, free_rp_inst_rcu); 1886 } 1887 NOKPROBE_SYMBOL(recycle_rp_inst); 1888 1889 /* 1890 * This function is called from delayed_put_task_struct() when a task is 1891 * dead and cleaned up to recycle any kretprobe instances associated with 1892 * this task. These left over instances represent probed functions that 1893 * have been called but will never return. 1894 */ 1895 void kprobe_flush_task(struct task_struct *tk) 1896 { 1897 struct kretprobe_instance *ri; 1898 struct llist_node *node; 1899 1900 /* Early boot, not yet initialized. */ 1901 if (unlikely(!kprobes_initialized)) 1902 return; 1903 1904 kprobe_busy_begin(); 1905 1906 node = __llist_del_all(&tk->kretprobe_instances); 1907 while (node) { 1908 ri = container_of(node, struct kretprobe_instance, llist); 1909 node = node->next; 1910 1911 recycle_rp_inst(ri); 1912 } 1913 1914 kprobe_busy_end(); 1915 } 1916 NOKPROBE_SYMBOL(kprobe_flush_task); 1917 1918 static inline void free_rp_inst(struct kretprobe *rp) 1919 { 1920 struct kretprobe_instance *ri; 1921 struct freelist_node *node; 1922 int count = 0; 1923 1924 node = rp->freelist.head; 1925 while (node) { 1926 ri = container_of(node, struct kretprobe_instance, freelist); 1927 node = node->next; 1928 1929 kfree(ri); 1930 count++; 1931 } 1932 1933 if (refcount_sub_and_test(count, &rp->rph->ref)) { 1934 kfree(rp->rph); 1935 rp->rph = NULL; 1936 } 1937 } 1938 1939 /* This assumes the 'tsk' is the current task or the is not running. */ 1940 static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk, 1941 struct llist_node **cur) 1942 { 1943 struct kretprobe_instance *ri = NULL; 1944 struct llist_node *node = *cur; 1945 1946 if (!node) 1947 node = tsk->kretprobe_instances.first; 1948 else 1949 node = node->next; 1950 1951 while (node) { 1952 ri = container_of(node, struct kretprobe_instance, llist); 1953 if (ri->ret_addr != kretprobe_trampoline_addr()) { 1954 *cur = node; 1955 return ri->ret_addr; 1956 } 1957 node = node->next; 1958 } 1959 return NULL; 1960 } 1961 NOKPROBE_SYMBOL(__kretprobe_find_ret_addr); 1962 1963 /** 1964 * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe 1965 * @tsk: Target task 1966 * @fp: A frame pointer 1967 * @cur: a storage of the loop cursor llist_node pointer for next call 1968 * 1969 * Find the correct return address modified by a kretprobe on @tsk in unsigned 1970 * long type. If it finds the return address, this returns that address value, 1971 * or this returns 0. 1972 * The @tsk must be 'current' or a task which is not running. @fp is a hint 1973 * to get the currect return address - which is compared with the 1974 * kretprobe_instance::fp field. The @cur is a loop cursor for searching the 1975 * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the 1976 * first call, but '@cur' itself must NOT NULL. 1977 */ 1978 unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp, 1979 struct llist_node **cur) 1980 { 1981 struct kretprobe_instance *ri = NULL; 1982 kprobe_opcode_t *ret; 1983 1984 if (WARN_ON_ONCE(!cur)) 1985 return 0; 1986 1987 do { 1988 ret = __kretprobe_find_ret_addr(tsk, cur); 1989 if (!ret) 1990 break; 1991 ri = container_of(*cur, struct kretprobe_instance, llist); 1992 } while (ri->fp != fp); 1993 1994 return (unsigned long)ret; 1995 } 1996 NOKPROBE_SYMBOL(kretprobe_find_ret_addr); 1997 1998 void __weak arch_kretprobe_fixup_return(struct pt_regs *regs, 1999 kprobe_opcode_t *correct_ret_addr) 2000 { 2001 /* 2002 * Do nothing by default. Please fill this to update the fake return 2003 * address on the stack with the correct one on each arch if possible. 2004 */ 2005 } 2006 2007 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs, 2008 void *frame_pointer) 2009 { 2010 kprobe_opcode_t *correct_ret_addr = NULL; 2011 struct kretprobe_instance *ri = NULL; 2012 struct llist_node *first, *node = NULL; 2013 struct kretprobe *rp; 2014 2015 /* Find correct address and all nodes for this frame. */ 2016 correct_ret_addr = __kretprobe_find_ret_addr(current, &node); 2017 if (!correct_ret_addr) { 2018 pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n"); 2019 BUG_ON(1); 2020 } 2021 2022 /* 2023 * Set the return address as the instruction pointer, because if the 2024 * user handler calls stack_trace_save_regs() with this 'regs', 2025 * the stack trace will start from the instruction pointer. 2026 */ 2027 instruction_pointer_set(regs, (unsigned long)correct_ret_addr); 2028 2029 /* Run the user handler of the nodes. */ 2030 first = current->kretprobe_instances.first; 2031 while (first) { 2032 ri = container_of(first, struct kretprobe_instance, llist); 2033 2034 if (WARN_ON_ONCE(ri->fp != frame_pointer)) 2035 break; 2036 2037 rp = get_kretprobe(ri); 2038 if (rp && rp->handler) { 2039 struct kprobe *prev = kprobe_running(); 2040 2041 __this_cpu_write(current_kprobe, &rp->kp); 2042 ri->ret_addr = correct_ret_addr; 2043 rp->handler(ri, regs); 2044 __this_cpu_write(current_kprobe, prev); 2045 } 2046 if (first == node) 2047 break; 2048 2049 first = first->next; 2050 } 2051 2052 arch_kretprobe_fixup_return(regs, correct_ret_addr); 2053 2054 /* Unlink all nodes for this frame. */ 2055 first = current->kretprobe_instances.first; 2056 current->kretprobe_instances.first = node->next; 2057 node->next = NULL; 2058 2059 /* Recycle free instances. */ 2060 while (first) { 2061 ri = container_of(first, struct kretprobe_instance, llist); 2062 first = first->next; 2063 2064 recycle_rp_inst(ri); 2065 } 2066 2067 return (unsigned long)correct_ret_addr; 2068 } 2069 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler) 2070 2071 /* 2072 * This kprobe pre_handler is registered with every kretprobe. When probe 2073 * hits it will set up the return probe. 2074 */ 2075 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2076 { 2077 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 2078 struct kretprobe_instance *ri; 2079 struct freelist_node *fn; 2080 2081 fn = freelist_try_get(&rp->freelist); 2082 if (!fn) { 2083 rp->nmissed++; 2084 return 0; 2085 } 2086 2087 ri = container_of(fn, struct kretprobe_instance, freelist); 2088 2089 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 2090 freelist_add(&ri->freelist, &rp->freelist); 2091 return 0; 2092 } 2093 2094 arch_prepare_kretprobe(ri, regs); 2095 2096 __llist_add(&ri->llist, ¤t->kretprobe_instances); 2097 2098 return 0; 2099 } 2100 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2101 #else /* CONFIG_KRETPROBE_ON_RETHOOK */ 2102 /* 2103 * This kprobe pre_handler is registered with every kretprobe. When probe 2104 * hits it will set up the return probe. 2105 */ 2106 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2107 { 2108 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 2109 struct kretprobe_instance *ri; 2110 struct rethook_node *rhn; 2111 2112 rhn = rethook_try_get(rp->rh); 2113 if (!rhn) { 2114 rp->nmissed++; 2115 return 0; 2116 } 2117 2118 ri = container_of(rhn, struct kretprobe_instance, node); 2119 2120 if (rp->entry_handler && rp->entry_handler(ri, regs)) 2121 rethook_recycle(rhn); 2122 else 2123 rethook_hook(rhn, regs, kprobe_ftrace(p)); 2124 2125 return 0; 2126 } 2127 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2128 2129 static void kretprobe_rethook_handler(struct rethook_node *rh, void *data, 2130 struct pt_regs *regs) 2131 { 2132 struct kretprobe *rp = (struct kretprobe *)data; 2133 struct kretprobe_instance *ri; 2134 struct kprobe_ctlblk *kcb; 2135 2136 /* The data must NOT be null. This means rethook data structure is broken. */ 2137 if (WARN_ON_ONCE(!data) || !rp->handler) 2138 return; 2139 2140 __this_cpu_write(current_kprobe, &rp->kp); 2141 kcb = get_kprobe_ctlblk(); 2142 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 2143 2144 ri = container_of(rh, struct kretprobe_instance, node); 2145 rp->handler(ri, regs); 2146 2147 __this_cpu_write(current_kprobe, NULL); 2148 } 2149 NOKPROBE_SYMBOL(kretprobe_rethook_handler); 2150 2151 #endif /* !CONFIG_KRETPROBE_ON_RETHOOK */ 2152 2153 /** 2154 * kprobe_on_func_entry() -- check whether given address is function entry 2155 * @addr: Target address 2156 * @sym: Target symbol name 2157 * @offset: The offset from the symbol or the address 2158 * 2159 * This checks whether the given @addr+@offset or @sym+@offset is on the 2160 * function entry address or not. 2161 * This returns 0 if it is the function entry, or -EINVAL if it is not. 2162 * And also it returns -ENOENT if it fails the symbol or address lookup. 2163 * Caller must pass @addr or @sym (either one must be NULL), or this 2164 * returns -EINVAL. 2165 */ 2166 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 2167 { 2168 bool on_func_entry; 2169 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry); 2170 2171 if (IS_ERR(kp_addr)) 2172 return PTR_ERR(kp_addr); 2173 2174 if (!on_func_entry) 2175 return -EINVAL; 2176 2177 return 0; 2178 } 2179 2180 int register_kretprobe(struct kretprobe *rp) 2181 { 2182 int ret; 2183 struct kretprobe_instance *inst; 2184 int i; 2185 void *addr; 2186 2187 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset); 2188 if (ret) 2189 return ret; 2190 2191 /* If only 'rp->kp.addr' is specified, check reregistering kprobes */ 2192 if (rp->kp.addr && warn_kprobe_rereg(&rp->kp)) 2193 return -EINVAL; 2194 2195 if (kretprobe_blacklist_size) { 2196 addr = kprobe_addr(&rp->kp); 2197 if (IS_ERR(addr)) 2198 return PTR_ERR(addr); 2199 2200 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2201 if (kretprobe_blacklist[i].addr == addr) 2202 return -EINVAL; 2203 } 2204 } 2205 2206 if (rp->data_size > KRETPROBE_MAX_DATA_SIZE) 2207 return -E2BIG; 2208 2209 rp->kp.pre_handler = pre_handler_kretprobe; 2210 rp->kp.post_handler = NULL; 2211 2212 /* Pre-allocate memory for max kretprobe instances */ 2213 if (rp->maxactive <= 0) 2214 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 2215 2216 #ifdef CONFIG_KRETPROBE_ON_RETHOOK 2217 rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler); 2218 if (!rp->rh) 2219 return -ENOMEM; 2220 2221 for (i = 0; i < rp->maxactive; i++) { 2222 inst = kzalloc(sizeof(struct kretprobe_instance) + 2223 rp->data_size, GFP_KERNEL); 2224 if (inst == NULL) { 2225 rethook_free(rp->rh); 2226 rp->rh = NULL; 2227 return -ENOMEM; 2228 } 2229 rethook_add_node(rp->rh, &inst->node); 2230 } 2231 rp->nmissed = 0; 2232 /* Establish function entry probe point */ 2233 ret = register_kprobe(&rp->kp); 2234 if (ret != 0) { 2235 rethook_free(rp->rh); 2236 rp->rh = NULL; 2237 } 2238 #else /* !CONFIG_KRETPROBE_ON_RETHOOK */ 2239 rp->freelist.head = NULL; 2240 rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL); 2241 if (!rp->rph) 2242 return -ENOMEM; 2243 2244 rp->rph->rp = rp; 2245 for (i = 0; i < rp->maxactive; i++) { 2246 inst = kzalloc(sizeof(struct kretprobe_instance) + 2247 rp->data_size, GFP_KERNEL); 2248 if (inst == NULL) { 2249 refcount_set(&rp->rph->ref, i); 2250 free_rp_inst(rp); 2251 return -ENOMEM; 2252 } 2253 inst->rph = rp->rph; 2254 freelist_add(&inst->freelist, &rp->freelist); 2255 } 2256 refcount_set(&rp->rph->ref, i); 2257 2258 rp->nmissed = 0; 2259 /* Establish function entry probe point */ 2260 ret = register_kprobe(&rp->kp); 2261 if (ret != 0) 2262 free_rp_inst(rp); 2263 #endif 2264 return ret; 2265 } 2266 EXPORT_SYMBOL_GPL(register_kretprobe); 2267 2268 int register_kretprobes(struct kretprobe **rps, int num) 2269 { 2270 int ret = 0, i; 2271 2272 if (num <= 0) 2273 return -EINVAL; 2274 for (i = 0; i < num; i++) { 2275 ret = register_kretprobe(rps[i]); 2276 if (ret < 0) { 2277 if (i > 0) 2278 unregister_kretprobes(rps, i); 2279 break; 2280 } 2281 } 2282 return ret; 2283 } 2284 EXPORT_SYMBOL_GPL(register_kretprobes); 2285 2286 void unregister_kretprobe(struct kretprobe *rp) 2287 { 2288 unregister_kretprobes(&rp, 1); 2289 } 2290 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2291 2292 void unregister_kretprobes(struct kretprobe **rps, int num) 2293 { 2294 int i; 2295 2296 if (num <= 0) 2297 return; 2298 mutex_lock(&kprobe_mutex); 2299 for (i = 0; i < num; i++) { 2300 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 2301 rps[i]->kp.addr = NULL; 2302 #ifdef CONFIG_KRETPROBE_ON_RETHOOK 2303 rethook_free(rps[i]->rh); 2304 #else 2305 rps[i]->rph->rp = NULL; 2306 #endif 2307 } 2308 mutex_unlock(&kprobe_mutex); 2309 2310 synchronize_rcu(); 2311 for (i = 0; i < num; i++) { 2312 if (rps[i]->kp.addr) { 2313 __unregister_kprobe_bottom(&rps[i]->kp); 2314 #ifndef CONFIG_KRETPROBE_ON_RETHOOK 2315 free_rp_inst(rps[i]); 2316 #endif 2317 } 2318 } 2319 } 2320 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2321 2322 #else /* CONFIG_KRETPROBES */ 2323 int register_kretprobe(struct kretprobe *rp) 2324 { 2325 return -EOPNOTSUPP; 2326 } 2327 EXPORT_SYMBOL_GPL(register_kretprobe); 2328 2329 int register_kretprobes(struct kretprobe **rps, int num) 2330 { 2331 return -EOPNOTSUPP; 2332 } 2333 EXPORT_SYMBOL_GPL(register_kretprobes); 2334 2335 void unregister_kretprobe(struct kretprobe *rp) 2336 { 2337 } 2338 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2339 2340 void unregister_kretprobes(struct kretprobe **rps, int num) 2341 { 2342 } 2343 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2344 2345 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2346 { 2347 return 0; 2348 } 2349 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2350 2351 #endif /* CONFIG_KRETPROBES */ 2352 2353 /* Set the kprobe gone and remove its instruction buffer. */ 2354 static void kill_kprobe(struct kprobe *p) 2355 { 2356 struct kprobe *kp; 2357 2358 lockdep_assert_held(&kprobe_mutex); 2359 2360 /* 2361 * The module is going away. We should disarm the kprobe which 2362 * is using ftrace, because ftrace framework is still available at 2363 * 'MODULE_STATE_GOING' notification. 2364 */ 2365 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed) 2366 disarm_kprobe_ftrace(p); 2367 2368 p->flags |= KPROBE_FLAG_GONE; 2369 if (kprobe_aggrprobe(p)) { 2370 /* 2371 * If this is an aggr_kprobe, we have to list all the 2372 * chained probes and mark them GONE. 2373 */ 2374 list_for_each_entry(kp, &p->list, list) 2375 kp->flags |= KPROBE_FLAG_GONE; 2376 p->post_handler = NULL; 2377 kill_optimized_kprobe(p); 2378 } 2379 /* 2380 * Here, we can remove insn_slot safely, because no thread calls 2381 * the original probed function (which will be freed soon) any more. 2382 */ 2383 arch_remove_kprobe(p); 2384 } 2385 2386 /* Disable one kprobe */ 2387 int disable_kprobe(struct kprobe *kp) 2388 { 2389 int ret = 0; 2390 struct kprobe *p; 2391 2392 mutex_lock(&kprobe_mutex); 2393 2394 /* Disable this kprobe */ 2395 p = __disable_kprobe(kp); 2396 if (IS_ERR(p)) 2397 ret = PTR_ERR(p); 2398 2399 mutex_unlock(&kprobe_mutex); 2400 return ret; 2401 } 2402 EXPORT_SYMBOL_GPL(disable_kprobe); 2403 2404 /* Enable one kprobe */ 2405 int enable_kprobe(struct kprobe *kp) 2406 { 2407 int ret = 0; 2408 struct kprobe *p; 2409 2410 mutex_lock(&kprobe_mutex); 2411 2412 /* Check whether specified probe is valid. */ 2413 p = __get_valid_kprobe(kp); 2414 if (unlikely(p == NULL)) { 2415 ret = -EINVAL; 2416 goto out; 2417 } 2418 2419 if (kprobe_gone(kp)) { 2420 /* This kprobe has gone, we couldn't enable it. */ 2421 ret = -EINVAL; 2422 goto out; 2423 } 2424 2425 if (p != kp) 2426 kp->flags &= ~KPROBE_FLAG_DISABLED; 2427 2428 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2429 p->flags &= ~KPROBE_FLAG_DISABLED; 2430 ret = arm_kprobe(p); 2431 if (ret) { 2432 p->flags |= KPROBE_FLAG_DISABLED; 2433 if (p != kp) 2434 kp->flags |= KPROBE_FLAG_DISABLED; 2435 } 2436 } 2437 out: 2438 mutex_unlock(&kprobe_mutex); 2439 return ret; 2440 } 2441 EXPORT_SYMBOL_GPL(enable_kprobe); 2442 2443 /* Caller must NOT call this in usual path. This is only for critical case */ 2444 void dump_kprobe(struct kprobe *kp) 2445 { 2446 pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n", 2447 kp->symbol_name, kp->offset, kp->addr); 2448 } 2449 NOKPROBE_SYMBOL(dump_kprobe); 2450 2451 int kprobe_add_ksym_blacklist(unsigned long entry) 2452 { 2453 struct kprobe_blacklist_entry *ent; 2454 unsigned long offset = 0, size = 0; 2455 2456 if (!kernel_text_address(entry) || 2457 !kallsyms_lookup_size_offset(entry, &size, &offset)) 2458 return -EINVAL; 2459 2460 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2461 if (!ent) 2462 return -ENOMEM; 2463 ent->start_addr = entry; 2464 ent->end_addr = entry + size; 2465 INIT_LIST_HEAD(&ent->list); 2466 list_add_tail(&ent->list, &kprobe_blacklist); 2467 2468 return (int)size; 2469 } 2470 2471 /* Add all symbols in given area into kprobe blacklist */ 2472 int kprobe_add_area_blacklist(unsigned long start, unsigned long end) 2473 { 2474 unsigned long entry; 2475 int ret = 0; 2476 2477 for (entry = start; entry < end; entry += ret) { 2478 ret = kprobe_add_ksym_blacklist(entry); 2479 if (ret < 0) 2480 return ret; 2481 if (ret == 0) /* In case of alias symbol */ 2482 ret = 1; 2483 } 2484 return 0; 2485 } 2486 2487 /* Remove all symbols in given area from kprobe blacklist */ 2488 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end) 2489 { 2490 struct kprobe_blacklist_entry *ent, *n; 2491 2492 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) { 2493 if (ent->start_addr < start || ent->start_addr >= end) 2494 continue; 2495 list_del(&ent->list); 2496 kfree(ent); 2497 } 2498 } 2499 2500 static void kprobe_remove_ksym_blacklist(unsigned long entry) 2501 { 2502 kprobe_remove_area_blacklist(entry, entry + 1); 2503 } 2504 2505 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value, 2506 char *type, char *sym) 2507 { 2508 return -ERANGE; 2509 } 2510 2511 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 2512 char *sym) 2513 { 2514 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 2515 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym)) 2516 return 0; 2517 #ifdef CONFIG_OPTPROBES 2518 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym)) 2519 return 0; 2520 #endif 2521 #endif 2522 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym)) 2523 return 0; 2524 return -ERANGE; 2525 } 2526 2527 int __init __weak arch_populate_kprobe_blacklist(void) 2528 { 2529 return 0; 2530 } 2531 2532 /* 2533 * Lookup and populate the kprobe_blacklist. 2534 * 2535 * Unlike the kretprobe blacklist, we'll need to determine 2536 * the range of addresses that belong to the said functions, 2537 * since a kprobe need not necessarily be at the beginning 2538 * of a function. 2539 */ 2540 static int __init populate_kprobe_blacklist(unsigned long *start, 2541 unsigned long *end) 2542 { 2543 unsigned long entry; 2544 unsigned long *iter; 2545 int ret; 2546 2547 for (iter = start; iter < end; iter++) { 2548 entry = (unsigned long)dereference_symbol_descriptor((void *)*iter); 2549 ret = kprobe_add_ksym_blacklist(entry); 2550 if (ret == -EINVAL) 2551 continue; 2552 if (ret < 0) 2553 return ret; 2554 } 2555 2556 /* Symbols in '__kprobes_text' are blacklisted */ 2557 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start, 2558 (unsigned long)__kprobes_text_end); 2559 if (ret) 2560 return ret; 2561 2562 /* Symbols in 'noinstr' section are blacklisted */ 2563 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start, 2564 (unsigned long)__noinstr_text_end); 2565 2566 return ret ? : arch_populate_kprobe_blacklist(); 2567 } 2568 2569 static void add_module_kprobe_blacklist(struct module *mod) 2570 { 2571 unsigned long start, end; 2572 int i; 2573 2574 if (mod->kprobe_blacklist) { 2575 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2576 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]); 2577 } 2578 2579 start = (unsigned long)mod->kprobes_text_start; 2580 if (start) { 2581 end = start + mod->kprobes_text_size; 2582 kprobe_add_area_blacklist(start, end); 2583 } 2584 2585 start = (unsigned long)mod->noinstr_text_start; 2586 if (start) { 2587 end = start + mod->noinstr_text_size; 2588 kprobe_add_area_blacklist(start, end); 2589 } 2590 } 2591 2592 static void remove_module_kprobe_blacklist(struct module *mod) 2593 { 2594 unsigned long start, end; 2595 int i; 2596 2597 if (mod->kprobe_blacklist) { 2598 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2599 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]); 2600 } 2601 2602 start = (unsigned long)mod->kprobes_text_start; 2603 if (start) { 2604 end = start + mod->kprobes_text_size; 2605 kprobe_remove_area_blacklist(start, end); 2606 } 2607 2608 start = (unsigned long)mod->noinstr_text_start; 2609 if (start) { 2610 end = start + mod->noinstr_text_size; 2611 kprobe_remove_area_blacklist(start, end); 2612 } 2613 } 2614 2615 /* Module notifier call back, checking kprobes on the module */ 2616 static int kprobes_module_callback(struct notifier_block *nb, 2617 unsigned long val, void *data) 2618 { 2619 struct module *mod = data; 2620 struct hlist_head *head; 2621 struct kprobe *p; 2622 unsigned int i; 2623 int checkcore = (val == MODULE_STATE_GOING); 2624 2625 if (val == MODULE_STATE_COMING) { 2626 mutex_lock(&kprobe_mutex); 2627 add_module_kprobe_blacklist(mod); 2628 mutex_unlock(&kprobe_mutex); 2629 } 2630 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2631 return NOTIFY_DONE; 2632 2633 /* 2634 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and 2635 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was 2636 * notified, only '.init.text' section would be freed. We need to 2637 * disable kprobes which have been inserted in the sections. 2638 */ 2639 mutex_lock(&kprobe_mutex); 2640 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2641 head = &kprobe_table[i]; 2642 hlist_for_each_entry(p, head, hlist) 2643 if (within_module_init((unsigned long)p->addr, mod) || 2644 (checkcore && 2645 within_module_core((unsigned long)p->addr, mod))) { 2646 /* 2647 * The vaddr this probe is installed will soon 2648 * be vfreed buy not synced to disk. Hence, 2649 * disarming the breakpoint isn't needed. 2650 * 2651 * Note, this will also move any optimized probes 2652 * that are pending to be removed from their 2653 * corresponding lists to the 'freeing_list' and 2654 * will not be touched by the delayed 2655 * kprobe_optimizer() work handler. 2656 */ 2657 kill_kprobe(p); 2658 } 2659 } 2660 if (val == MODULE_STATE_GOING) 2661 remove_module_kprobe_blacklist(mod); 2662 mutex_unlock(&kprobe_mutex); 2663 return NOTIFY_DONE; 2664 } 2665 2666 static struct notifier_block kprobe_module_nb = { 2667 .notifier_call = kprobes_module_callback, 2668 .priority = 0 2669 }; 2670 2671 void kprobe_free_init_mem(void) 2672 { 2673 void *start = (void *)(&__init_begin); 2674 void *end = (void *)(&__init_end); 2675 struct hlist_head *head; 2676 struct kprobe *p; 2677 int i; 2678 2679 mutex_lock(&kprobe_mutex); 2680 2681 /* Kill all kprobes on initmem because the target code has been freed. */ 2682 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2683 head = &kprobe_table[i]; 2684 hlist_for_each_entry(p, head, hlist) { 2685 if (start <= (void *)p->addr && (void *)p->addr < end) 2686 kill_kprobe(p); 2687 } 2688 } 2689 2690 mutex_unlock(&kprobe_mutex); 2691 } 2692 2693 static int __init init_kprobes(void) 2694 { 2695 int i, err = 0; 2696 2697 /* FIXME allocate the probe table, currently defined statically */ 2698 /* initialize all list heads */ 2699 for (i = 0; i < KPROBE_TABLE_SIZE; i++) 2700 INIT_HLIST_HEAD(&kprobe_table[i]); 2701 2702 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2703 __stop_kprobe_blacklist); 2704 if (err) 2705 pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err); 2706 2707 if (kretprobe_blacklist_size) { 2708 /* lookup the function address from its name */ 2709 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2710 kretprobe_blacklist[i].addr = 2711 kprobe_lookup_name(kretprobe_blacklist[i].name, 0); 2712 if (!kretprobe_blacklist[i].addr) 2713 pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n", 2714 kretprobe_blacklist[i].name); 2715 } 2716 } 2717 2718 /* By default, kprobes are armed */ 2719 kprobes_all_disarmed = false; 2720 2721 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2722 /* Init 'kprobe_optinsn_slots' for allocation */ 2723 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2724 #endif 2725 2726 err = arch_init_kprobes(); 2727 if (!err) 2728 err = register_die_notifier(&kprobe_exceptions_nb); 2729 if (!err) 2730 err = register_module_notifier(&kprobe_module_nb); 2731 2732 kprobes_initialized = (err == 0); 2733 kprobe_sysctls_init(); 2734 return err; 2735 } 2736 early_initcall(init_kprobes); 2737 2738 #if defined(CONFIG_OPTPROBES) 2739 static int __init init_optprobes(void) 2740 { 2741 /* 2742 * Enable kprobe optimization - this kicks the optimizer which 2743 * depends on synchronize_rcu_tasks() and ksoftirqd, that is 2744 * not spawned in early initcall. So delay the optimization. 2745 */ 2746 optimize_all_kprobes(); 2747 2748 return 0; 2749 } 2750 subsys_initcall(init_optprobes); 2751 #endif 2752 2753 #ifdef CONFIG_DEBUG_FS 2754 static void report_probe(struct seq_file *pi, struct kprobe *p, 2755 const char *sym, int offset, char *modname, struct kprobe *pp) 2756 { 2757 char *kprobe_type; 2758 void *addr = p->addr; 2759 2760 if (p->pre_handler == pre_handler_kretprobe) 2761 kprobe_type = "r"; 2762 else 2763 kprobe_type = "k"; 2764 2765 if (!kallsyms_show_value(pi->file->f_cred)) 2766 addr = NULL; 2767 2768 if (sym) 2769 seq_printf(pi, "%px %s %s+0x%x %s ", 2770 addr, kprobe_type, sym, offset, 2771 (modname ? modname : " ")); 2772 else /* try to use %pS */ 2773 seq_printf(pi, "%px %s %pS ", 2774 addr, kprobe_type, p->addr); 2775 2776 if (!pp) 2777 pp = p; 2778 seq_printf(pi, "%s%s%s%s\n", 2779 (kprobe_gone(p) ? "[GONE]" : ""), 2780 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2781 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2782 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2783 } 2784 2785 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2786 { 2787 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2788 } 2789 2790 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2791 { 2792 (*pos)++; 2793 if (*pos >= KPROBE_TABLE_SIZE) 2794 return NULL; 2795 return pos; 2796 } 2797 2798 static void kprobe_seq_stop(struct seq_file *f, void *v) 2799 { 2800 /* Nothing to do */ 2801 } 2802 2803 static int show_kprobe_addr(struct seq_file *pi, void *v) 2804 { 2805 struct hlist_head *head; 2806 struct kprobe *p, *kp; 2807 const char *sym = NULL; 2808 unsigned int i = *(loff_t *) v; 2809 unsigned long offset = 0; 2810 char *modname, namebuf[KSYM_NAME_LEN]; 2811 2812 head = &kprobe_table[i]; 2813 preempt_disable(); 2814 hlist_for_each_entry_rcu(p, head, hlist) { 2815 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2816 &offset, &modname, namebuf); 2817 if (kprobe_aggrprobe(p)) { 2818 list_for_each_entry_rcu(kp, &p->list, list) 2819 report_probe(pi, kp, sym, offset, modname, p); 2820 } else 2821 report_probe(pi, p, sym, offset, modname, NULL); 2822 } 2823 preempt_enable(); 2824 return 0; 2825 } 2826 2827 static const struct seq_operations kprobes_sops = { 2828 .start = kprobe_seq_start, 2829 .next = kprobe_seq_next, 2830 .stop = kprobe_seq_stop, 2831 .show = show_kprobe_addr 2832 }; 2833 2834 DEFINE_SEQ_ATTRIBUTE(kprobes); 2835 2836 /* kprobes/blacklist -- shows which functions can not be probed */ 2837 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2838 { 2839 mutex_lock(&kprobe_mutex); 2840 return seq_list_start(&kprobe_blacklist, *pos); 2841 } 2842 2843 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2844 { 2845 return seq_list_next(v, &kprobe_blacklist, pos); 2846 } 2847 2848 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2849 { 2850 struct kprobe_blacklist_entry *ent = 2851 list_entry(v, struct kprobe_blacklist_entry, list); 2852 2853 /* 2854 * If '/proc/kallsyms' is not showing kernel address, we won't 2855 * show them here either. 2856 */ 2857 if (!kallsyms_show_value(m->file->f_cred)) 2858 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL, 2859 (void *)ent->start_addr); 2860 else 2861 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr, 2862 (void *)ent->end_addr, (void *)ent->start_addr); 2863 return 0; 2864 } 2865 2866 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v) 2867 { 2868 mutex_unlock(&kprobe_mutex); 2869 } 2870 2871 static const struct seq_operations kprobe_blacklist_sops = { 2872 .start = kprobe_blacklist_seq_start, 2873 .next = kprobe_blacklist_seq_next, 2874 .stop = kprobe_blacklist_seq_stop, 2875 .show = kprobe_blacklist_seq_show, 2876 }; 2877 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist); 2878 2879 static int arm_all_kprobes(void) 2880 { 2881 struct hlist_head *head; 2882 struct kprobe *p; 2883 unsigned int i, total = 0, errors = 0; 2884 int err, ret = 0; 2885 2886 mutex_lock(&kprobe_mutex); 2887 2888 /* If kprobes are armed, just return */ 2889 if (!kprobes_all_disarmed) 2890 goto already_enabled; 2891 2892 /* 2893 * optimize_kprobe() called by arm_kprobe() checks 2894 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2895 * arm_kprobe. 2896 */ 2897 kprobes_all_disarmed = false; 2898 /* Arming kprobes doesn't optimize kprobe itself */ 2899 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2900 head = &kprobe_table[i]; 2901 /* Arm all kprobes on a best-effort basis */ 2902 hlist_for_each_entry(p, head, hlist) { 2903 if (!kprobe_disabled(p)) { 2904 err = arm_kprobe(p); 2905 if (err) { 2906 errors++; 2907 ret = err; 2908 } 2909 total++; 2910 } 2911 } 2912 } 2913 2914 if (errors) 2915 pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n", 2916 errors, total); 2917 else 2918 pr_info("Kprobes globally enabled\n"); 2919 2920 already_enabled: 2921 mutex_unlock(&kprobe_mutex); 2922 return ret; 2923 } 2924 2925 static int disarm_all_kprobes(void) 2926 { 2927 struct hlist_head *head; 2928 struct kprobe *p; 2929 unsigned int i, total = 0, errors = 0; 2930 int err, ret = 0; 2931 2932 mutex_lock(&kprobe_mutex); 2933 2934 /* If kprobes are already disarmed, just return */ 2935 if (kprobes_all_disarmed) { 2936 mutex_unlock(&kprobe_mutex); 2937 return 0; 2938 } 2939 2940 kprobes_all_disarmed = true; 2941 2942 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2943 head = &kprobe_table[i]; 2944 /* Disarm all kprobes on a best-effort basis */ 2945 hlist_for_each_entry(p, head, hlist) { 2946 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { 2947 err = disarm_kprobe(p, false); 2948 if (err) { 2949 errors++; 2950 ret = err; 2951 } 2952 total++; 2953 } 2954 } 2955 } 2956 2957 if (errors) 2958 pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n", 2959 errors, total); 2960 else 2961 pr_info("Kprobes globally disabled\n"); 2962 2963 mutex_unlock(&kprobe_mutex); 2964 2965 /* Wait for disarming all kprobes by optimizer */ 2966 wait_for_kprobe_optimizer(); 2967 2968 return ret; 2969 } 2970 2971 /* 2972 * XXX: The debugfs bool file interface doesn't allow for callbacks 2973 * when the bool state is switched. We can reuse that facility when 2974 * available 2975 */ 2976 static ssize_t read_enabled_file_bool(struct file *file, 2977 char __user *user_buf, size_t count, loff_t *ppos) 2978 { 2979 char buf[3]; 2980 2981 if (!kprobes_all_disarmed) 2982 buf[0] = '1'; 2983 else 2984 buf[0] = '0'; 2985 buf[1] = '\n'; 2986 buf[2] = 0x00; 2987 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2988 } 2989 2990 static ssize_t write_enabled_file_bool(struct file *file, 2991 const char __user *user_buf, size_t count, loff_t *ppos) 2992 { 2993 bool enable; 2994 int ret; 2995 2996 ret = kstrtobool_from_user(user_buf, count, &enable); 2997 if (ret) 2998 return ret; 2999 3000 ret = enable ? arm_all_kprobes() : disarm_all_kprobes(); 3001 if (ret) 3002 return ret; 3003 3004 return count; 3005 } 3006 3007 static const struct file_operations fops_kp = { 3008 .read = read_enabled_file_bool, 3009 .write = write_enabled_file_bool, 3010 .llseek = default_llseek, 3011 }; 3012 3013 static int __init debugfs_kprobe_init(void) 3014 { 3015 struct dentry *dir; 3016 3017 dir = debugfs_create_dir("kprobes", NULL); 3018 3019 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops); 3020 3021 debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp); 3022 3023 debugfs_create_file("blacklist", 0400, dir, NULL, 3024 &kprobe_blacklist_fops); 3025 3026 return 0; 3027 } 3028 3029 late_initcall(debugfs_kprobe_init); 3030 #endif /* CONFIG_DEBUG_FS */ 3031