xref: /openbmc/linux/kernel/kprobes.c (revision 22d55f02)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *		Probes initial implementation (includes suggestions from
10  *		Rusty Russell).
11  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *		hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *		interface to access function arguments.
15  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *		exceptions notifier to be first on the priority list.
17  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *		<prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38 
39 #include <asm/sections.h>
40 #include <asm/cacheflush.h>
41 #include <asm/errno.h>
42 #include <linux/uaccess.h>
43 
44 #define KPROBE_HASH_BITS 6
45 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
46 
47 
48 static int kprobes_initialized;
49 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
50 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
51 
52 /* NOTE: change this value only with kprobe_mutex held */
53 static bool kprobes_all_disarmed;
54 
55 /* This protects kprobe_table and optimizing_list */
56 static DEFINE_MUTEX(kprobe_mutex);
57 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
58 static struct {
59 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
60 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
61 
62 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
63 					unsigned int __unused)
64 {
65 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
66 }
67 
68 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
69 {
70 	return &(kretprobe_table_locks[hash].lock);
71 }
72 
73 /* Blacklist -- list of struct kprobe_blacklist_entry */
74 static LIST_HEAD(kprobe_blacklist);
75 
76 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
77 /*
78  * kprobe->ainsn.insn points to the copy of the instruction to be
79  * single-stepped. x86_64, POWER4 and above have no-exec support and
80  * stepping on the instruction on a vmalloced/kmalloced/data page
81  * is a recipe for disaster
82  */
83 struct kprobe_insn_page {
84 	struct list_head list;
85 	kprobe_opcode_t *insns;		/* Page of instruction slots */
86 	struct kprobe_insn_cache *cache;
87 	int nused;
88 	int ngarbage;
89 	char slot_used[];
90 };
91 
92 #define KPROBE_INSN_PAGE_SIZE(slots)			\
93 	(offsetof(struct kprobe_insn_page, slot_used) +	\
94 	 (sizeof(char) * (slots)))
95 
96 static int slots_per_page(struct kprobe_insn_cache *c)
97 {
98 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
99 }
100 
101 enum kprobe_slot_state {
102 	SLOT_CLEAN = 0,
103 	SLOT_DIRTY = 1,
104 	SLOT_USED = 2,
105 };
106 
107 void __weak *alloc_insn_page(void)
108 {
109 	return module_alloc(PAGE_SIZE);
110 }
111 
112 void __weak free_insn_page(void *page)
113 {
114 	module_memfree(page);
115 }
116 
117 struct kprobe_insn_cache kprobe_insn_slots = {
118 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
119 	.alloc = alloc_insn_page,
120 	.free = free_insn_page,
121 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
122 	.insn_size = MAX_INSN_SIZE,
123 	.nr_garbage = 0,
124 };
125 static int collect_garbage_slots(struct kprobe_insn_cache *c);
126 
127 /**
128  * __get_insn_slot() - Find a slot on an executable page for an instruction.
129  * We allocate an executable page if there's no room on existing ones.
130  */
131 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
132 {
133 	struct kprobe_insn_page *kip;
134 	kprobe_opcode_t *slot = NULL;
135 
136 	/* Since the slot array is not protected by rcu, we need a mutex */
137 	mutex_lock(&c->mutex);
138  retry:
139 	rcu_read_lock();
140 	list_for_each_entry_rcu(kip, &c->pages, list) {
141 		if (kip->nused < slots_per_page(c)) {
142 			int i;
143 			for (i = 0; i < slots_per_page(c); i++) {
144 				if (kip->slot_used[i] == SLOT_CLEAN) {
145 					kip->slot_used[i] = SLOT_USED;
146 					kip->nused++;
147 					slot = kip->insns + (i * c->insn_size);
148 					rcu_read_unlock();
149 					goto out;
150 				}
151 			}
152 			/* kip->nused is broken. Fix it. */
153 			kip->nused = slots_per_page(c);
154 			WARN_ON(1);
155 		}
156 	}
157 	rcu_read_unlock();
158 
159 	/* If there are any garbage slots, collect it and try again. */
160 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
161 		goto retry;
162 
163 	/* All out of space.  Need to allocate a new page. */
164 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
165 	if (!kip)
166 		goto out;
167 
168 	/*
169 	 * Use module_alloc so this page is within +/- 2GB of where the
170 	 * kernel image and loaded module images reside. This is required
171 	 * so x86_64 can correctly handle the %rip-relative fixups.
172 	 */
173 	kip->insns = c->alloc();
174 	if (!kip->insns) {
175 		kfree(kip);
176 		goto out;
177 	}
178 	INIT_LIST_HEAD(&kip->list);
179 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
180 	kip->slot_used[0] = SLOT_USED;
181 	kip->nused = 1;
182 	kip->ngarbage = 0;
183 	kip->cache = c;
184 	list_add_rcu(&kip->list, &c->pages);
185 	slot = kip->insns;
186 out:
187 	mutex_unlock(&c->mutex);
188 	return slot;
189 }
190 
191 /* Return 1 if all garbages are collected, otherwise 0. */
192 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
193 {
194 	kip->slot_used[idx] = SLOT_CLEAN;
195 	kip->nused--;
196 	if (kip->nused == 0) {
197 		/*
198 		 * Page is no longer in use.  Free it unless
199 		 * it's the last one.  We keep the last one
200 		 * so as not to have to set it up again the
201 		 * next time somebody inserts a probe.
202 		 */
203 		if (!list_is_singular(&kip->list)) {
204 			list_del_rcu(&kip->list);
205 			synchronize_rcu();
206 			kip->cache->free(kip->insns);
207 			kfree(kip);
208 		}
209 		return 1;
210 	}
211 	return 0;
212 }
213 
214 static int collect_garbage_slots(struct kprobe_insn_cache *c)
215 {
216 	struct kprobe_insn_page *kip, *next;
217 
218 	/* Ensure no-one is interrupted on the garbages */
219 	synchronize_rcu();
220 
221 	list_for_each_entry_safe(kip, next, &c->pages, list) {
222 		int i;
223 		if (kip->ngarbage == 0)
224 			continue;
225 		kip->ngarbage = 0;	/* we will collect all garbages */
226 		for (i = 0; i < slots_per_page(c); i++) {
227 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
228 				break;
229 		}
230 	}
231 	c->nr_garbage = 0;
232 	return 0;
233 }
234 
235 void __free_insn_slot(struct kprobe_insn_cache *c,
236 		      kprobe_opcode_t *slot, int dirty)
237 {
238 	struct kprobe_insn_page *kip;
239 	long idx;
240 
241 	mutex_lock(&c->mutex);
242 	rcu_read_lock();
243 	list_for_each_entry_rcu(kip, &c->pages, list) {
244 		idx = ((long)slot - (long)kip->insns) /
245 			(c->insn_size * sizeof(kprobe_opcode_t));
246 		if (idx >= 0 && idx < slots_per_page(c))
247 			goto out;
248 	}
249 	/* Could not find this slot. */
250 	WARN_ON(1);
251 	kip = NULL;
252 out:
253 	rcu_read_unlock();
254 	/* Mark and sweep: this may sleep */
255 	if (kip) {
256 		/* Check double free */
257 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
258 		if (dirty) {
259 			kip->slot_used[idx] = SLOT_DIRTY;
260 			kip->ngarbage++;
261 			if (++c->nr_garbage > slots_per_page(c))
262 				collect_garbage_slots(c);
263 		} else {
264 			collect_one_slot(kip, idx);
265 		}
266 	}
267 	mutex_unlock(&c->mutex);
268 }
269 
270 /*
271  * Check given address is on the page of kprobe instruction slots.
272  * This will be used for checking whether the address on a stack
273  * is on a text area or not.
274  */
275 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
276 {
277 	struct kprobe_insn_page *kip;
278 	bool ret = false;
279 
280 	rcu_read_lock();
281 	list_for_each_entry_rcu(kip, &c->pages, list) {
282 		if (addr >= (unsigned long)kip->insns &&
283 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
284 			ret = true;
285 			break;
286 		}
287 	}
288 	rcu_read_unlock();
289 
290 	return ret;
291 }
292 
293 #ifdef CONFIG_OPTPROBES
294 /* For optimized_kprobe buffer */
295 struct kprobe_insn_cache kprobe_optinsn_slots = {
296 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
297 	.alloc = alloc_insn_page,
298 	.free = free_insn_page,
299 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
300 	/* .insn_size is initialized later */
301 	.nr_garbage = 0,
302 };
303 #endif
304 #endif
305 
306 /* We have preemption disabled.. so it is safe to use __ versions */
307 static inline void set_kprobe_instance(struct kprobe *kp)
308 {
309 	__this_cpu_write(kprobe_instance, kp);
310 }
311 
312 static inline void reset_kprobe_instance(void)
313 {
314 	__this_cpu_write(kprobe_instance, NULL);
315 }
316 
317 /*
318  * This routine is called either:
319  * 	- under the kprobe_mutex - during kprobe_[un]register()
320  * 				OR
321  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
322  */
323 struct kprobe *get_kprobe(void *addr)
324 {
325 	struct hlist_head *head;
326 	struct kprobe *p;
327 
328 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
329 	hlist_for_each_entry_rcu(p, head, hlist) {
330 		if (p->addr == addr)
331 			return p;
332 	}
333 
334 	return NULL;
335 }
336 NOKPROBE_SYMBOL(get_kprobe);
337 
338 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
339 
340 /* Return true if the kprobe is an aggregator */
341 static inline int kprobe_aggrprobe(struct kprobe *p)
342 {
343 	return p->pre_handler == aggr_pre_handler;
344 }
345 
346 /* Return true(!0) if the kprobe is unused */
347 static inline int kprobe_unused(struct kprobe *p)
348 {
349 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
350 	       list_empty(&p->list);
351 }
352 
353 /*
354  * Keep all fields in the kprobe consistent
355  */
356 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
357 {
358 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
359 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
360 }
361 
362 #ifdef CONFIG_OPTPROBES
363 /* NOTE: change this value only with kprobe_mutex held */
364 static bool kprobes_allow_optimization;
365 
366 /*
367  * Call all pre_handler on the list, but ignores its return value.
368  * This must be called from arch-dep optimized caller.
369  */
370 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
371 {
372 	struct kprobe *kp;
373 
374 	list_for_each_entry_rcu(kp, &p->list, list) {
375 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
376 			set_kprobe_instance(kp);
377 			kp->pre_handler(kp, regs);
378 		}
379 		reset_kprobe_instance();
380 	}
381 }
382 NOKPROBE_SYMBOL(opt_pre_handler);
383 
384 /* Free optimized instructions and optimized_kprobe */
385 static void free_aggr_kprobe(struct kprobe *p)
386 {
387 	struct optimized_kprobe *op;
388 
389 	op = container_of(p, struct optimized_kprobe, kp);
390 	arch_remove_optimized_kprobe(op);
391 	arch_remove_kprobe(p);
392 	kfree(op);
393 }
394 
395 /* Return true(!0) if the kprobe is ready for optimization. */
396 static inline int kprobe_optready(struct kprobe *p)
397 {
398 	struct optimized_kprobe *op;
399 
400 	if (kprobe_aggrprobe(p)) {
401 		op = container_of(p, struct optimized_kprobe, kp);
402 		return arch_prepared_optinsn(&op->optinsn);
403 	}
404 
405 	return 0;
406 }
407 
408 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
409 static inline int kprobe_disarmed(struct kprobe *p)
410 {
411 	struct optimized_kprobe *op;
412 
413 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
414 	if (!kprobe_aggrprobe(p))
415 		return kprobe_disabled(p);
416 
417 	op = container_of(p, struct optimized_kprobe, kp);
418 
419 	return kprobe_disabled(p) && list_empty(&op->list);
420 }
421 
422 /* Return true(!0) if the probe is queued on (un)optimizing lists */
423 static int kprobe_queued(struct kprobe *p)
424 {
425 	struct optimized_kprobe *op;
426 
427 	if (kprobe_aggrprobe(p)) {
428 		op = container_of(p, struct optimized_kprobe, kp);
429 		if (!list_empty(&op->list))
430 			return 1;
431 	}
432 	return 0;
433 }
434 
435 /*
436  * Return an optimized kprobe whose optimizing code replaces
437  * instructions including addr (exclude breakpoint).
438  */
439 static struct kprobe *get_optimized_kprobe(unsigned long addr)
440 {
441 	int i;
442 	struct kprobe *p = NULL;
443 	struct optimized_kprobe *op;
444 
445 	/* Don't check i == 0, since that is a breakpoint case. */
446 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
447 		p = get_kprobe((void *)(addr - i));
448 
449 	if (p && kprobe_optready(p)) {
450 		op = container_of(p, struct optimized_kprobe, kp);
451 		if (arch_within_optimized_kprobe(op, addr))
452 			return p;
453 	}
454 
455 	return NULL;
456 }
457 
458 /* Optimization staging list, protected by kprobe_mutex */
459 static LIST_HEAD(optimizing_list);
460 static LIST_HEAD(unoptimizing_list);
461 static LIST_HEAD(freeing_list);
462 
463 static void kprobe_optimizer(struct work_struct *work);
464 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
465 #define OPTIMIZE_DELAY 5
466 
467 /*
468  * Optimize (replace a breakpoint with a jump) kprobes listed on
469  * optimizing_list.
470  */
471 static void do_optimize_kprobes(void)
472 {
473 	/*
474 	 * The optimization/unoptimization refers online_cpus via
475 	 * stop_machine() and cpu-hotplug modifies online_cpus.
476 	 * And same time, text_mutex will be held in cpu-hotplug and here.
477 	 * This combination can cause a deadlock (cpu-hotplug try to lock
478 	 * text_mutex but stop_machine can not be done because online_cpus
479 	 * has been changed)
480 	 * To avoid this deadlock, caller must have locked cpu hotplug
481 	 * for preventing cpu-hotplug outside of text_mutex locking.
482 	 */
483 	lockdep_assert_cpus_held();
484 
485 	/* Optimization never be done when disarmed */
486 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
487 	    list_empty(&optimizing_list))
488 		return;
489 
490 	mutex_lock(&text_mutex);
491 	arch_optimize_kprobes(&optimizing_list);
492 	mutex_unlock(&text_mutex);
493 }
494 
495 /*
496  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
497  * if need) kprobes listed on unoptimizing_list.
498  */
499 static void do_unoptimize_kprobes(void)
500 {
501 	struct optimized_kprobe *op, *tmp;
502 
503 	/* See comment in do_optimize_kprobes() */
504 	lockdep_assert_cpus_held();
505 
506 	/* Unoptimization must be done anytime */
507 	if (list_empty(&unoptimizing_list))
508 		return;
509 
510 	mutex_lock(&text_mutex);
511 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
512 	/* Loop free_list for disarming */
513 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
514 		/* Disarm probes if marked disabled */
515 		if (kprobe_disabled(&op->kp))
516 			arch_disarm_kprobe(&op->kp);
517 		if (kprobe_unused(&op->kp)) {
518 			/*
519 			 * Remove unused probes from hash list. After waiting
520 			 * for synchronization, these probes are reclaimed.
521 			 * (reclaiming is done by do_free_cleaned_kprobes.)
522 			 */
523 			hlist_del_rcu(&op->kp.hlist);
524 		} else
525 			list_del_init(&op->list);
526 	}
527 	mutex_unlock(&text_mutex);
528 }
529 
530 /* Reclaim all kprobes on the free_list */
531 static void do_free_cleaned_kprobes(void)
532 {
533 	struct optimized_kprobe *op, *tmp;
534 
535 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
536 		list_del_init(&op->list);
537 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
538 			/*
539 			 * This must not happen, but if there is a kprobe
540 			 * still in use, keep it on kprobes hash list.
541 			 */
542 			continue;
543 		}
544 		free_aggr_kprobe(&op->kp);
545 	}
546 }
547 
548 /* Start optimizer after OPTIMIZE_DELAY passed */
549 static void kick_kprobe_optimizer(void)
550 {
551 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
552 }
553 
554 /* Kprobe jump optimizer */
555 static void kprobe_optimizer(struct work_struct *work)
556 {
557 	mutex_lock(&kprobe_mutex);
558 	cpus_read_lock();
559 	/* Lock modules while optimizing kprobes */
560 	mutex_lock(&module_mutex);
561 
562 	/*
563 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
564 	 * kprobes before waiting for quiesence period.
565 	 */
566 	do_unoptimize_kprobes();
567 
568 	/*
569 	 * Step 2: Wait for quiesence period to ensure all potentially
570 	 * preempted tasks to have normally scheduled. Because optprobe
571 	 * may modify multiple instructions, there is a chance that Nth
572 	 * instruction is preempted. In that case, such tasks can return
573 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
574 	 * Note that on non-preemptive kernel, this is transparently converted
575 	 * to synchronoze_sched() to wait for all interrupts to have completed.
576 	 */
577 	synchronize_rcu_tasks();
578 
579 	/* Step 3: Optimize kprobes after quiesence period */
580 	do_optimize_kprobes();
581 
582 	/* Step 4: Free cleaned kprobes after quiesence period */
583 	do_free_cleaned_kprobes();
584 
585 	mutex_unlock(&module_mutex);
586 	cpus_read_unlock();
587 	mutex_unlock(&kprobe_mutex);
588 
589 	/* Step 5: Kick optimizer again if needed */
590 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
591 		kick_kprobe_optimizer();
592 }
593 
594 /* Wait for completing optimization and unoptimization */
595 void wait_for_kprobe_optimizer(void)
596 {
597 	mutex_lock(&kprobe_mutex);
598 
599 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
600 		mutex_unlock(&kprobe_mutex);
601 
602 		/* this will also make optimizing_work execute immmediately */
603 		flush_delayed_work(&optimizing_work);
604 		/* @optimizing_work might not have been queued yet, relax */
605 		cpu_relax();
606 
607 		mutex_lock(&kprobe_mutex);
608 	}
609 
610 	mutex_unlock(&kprobe_mutex);
611 }
612 
613 /* Optimize kprobe if p is ready to be optimized */
614 static void optimize_kprobe(struct kprobe *p)
615 {
616 	struct optimized_kprobe *op;
617 
618 	/* Check if the kprobe is disabled or not ready for optimization. */
619 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
620 	    (kprobe_disabled(p) || kprobes_all_disarmed))
621 		return;
622 
623 	/* kprobes with post_handler can not be optimized */
624 	if (p->post_handler)
625 		return;
626 
627 	op = container_of(p, struct optimized_kprobe, kp);
628 
629 	/* Check there is no other kprobes at the optimized instructions */
630 	if (arch_check_optimized_kprobe(op) < 0)
631 		return;
632 
633 	/* Check if it is already optimized. */
634 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
635 		return;
636 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
637 
638 	if (!list_empty(&op->list))
639 		/* This is under unoptimizing. Just dequeue the probe */
640 		list_del_init(&op->list);
641 	else {
642 		list_add(&op->list, &optimizing_list);
643 		kick_kprobe_optimizer();
644 	}
645 }
646 
647 /* Short cut to direct unoptimizing */
648 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
649 {
650 	lockdep_assert_cpus_held();
651 	arch_unoptimize_kprobe(op);
652 	if (kprobe_disabled(&op->kp))
653 		arch_disarm_kprobe(&op->kp);
654 }
655 
656 /* Unoptimize a kprobe if p is optimized */
657 static void unoptimize_kprobe(struct kprobe *p, bool force)
658 {
659 	struct optimized_kprobe *op;
660 
661 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
662 		return; /* This is not an optprobe nor optimized */
663 
664 	op = container_of(p, struct optimized_kprobe, kp);
665 	if (!kprobe_optimized(p)) {
666 		/* Unoptimized or unoptimizing case */
667 		if (force && !list_empty(&op->list)) {
668 			/*
669 			 * Only if this is unoptimizing kprobe and forced,
670 			 * forcibly unoptimize it. (No need to unoptimize
671 			 * unoptimized kprobe again :)
672 			 */
673 			list_del_init(&op->list);
674 			force_unoptimize_kprobe(op);
675 		}
676 		return;
677 	}
678 
679 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
680 	if (!list_empty(&op->list)) {
681 		/* Dequeue from the optimization queue */
682 		list_del_init(&op->list);
683 		return;
684 	}
685 	/* Optimized kprobe case */
686 	if (force)
687 		/* Forcibly update the code: this is a special case */
688 		force_unoptimize_kprobe(op);
689 	else {
690 		list_add(&op->list, &unoptimizing_list);
691 		kick_kprobe_optimizer();
692 	}
693 }
694 
695 /* Cancel unoptimizing for reusing */
696 static int reuse_unused_kprobe(struct kprobe *ap)
697 {
698 	struct optimized_kprobe *op;
699 
700 	/*
701 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
702 	 * there is still a relative jump) and disabled.
703 	 */
704 	op = container_of(ap, struct optimized_kprobe, kp);
705 	WARN_ON_ONCE(list_empty(&op->list));
706 	/* Enable the probe again */
707 	ap->flags &= ~KPROBE_FLAG_DISABLED;
708 	/* Optimize it again (remove from op->list) */
709 	if (!kprobe_optready(ap))
710 		return -EINVAL;
711 
712 	optimize_kprobe(ap);
713 	return 0;
714 }
715 
716 /* Remove optimized instructions */
717 static void kill_optimized_kprobe(struct kprobe *p)
718 {
719 	struct optimized_kprobe *op;
720 
721 	op = container_of(p, struct optimized_kprobe, kp);
722 	if (!list_empty(&op->list))
723 		/* Dequeue from the (un)optimization queue */
724 		list_del_init(&op->list);
725 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
726 
727 	if (kprobe_unused(p)) {
728 		/* Enqueue if it is unused */
729 		list_add(&op->list, &freeing_list);
730 		/*
731 		 * Remove unused probes from the hash list. After waiting
732 		 * for synchronization, this probe is reclaimed.
733 		 * (reclaiming is done by do_free_cleaned_kprobes().)
734 		 */
735 		hlist_del_rcu(&op->kp.hlist);
736 	}
737 
738 	/* Don't touch the code, because it is already freed. */
739 	arch_remove_optimized_kprobe(op);
740 }
741 
742 static inline
743 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
744 {
745 	if (!kprobe_ftrace(p))
746 		arch_prepare_optimized_kprobe(op, p);
747 }
748 
749 /* Try to prepare optimized instructions */
750 static void prepare_optimized_kprobe(struct kprobe *p)
751 {
752 	struct optimized_kprobe *op;
753 
754 	op = container_of(p, struct optimized_kprobe, kp);
755 	__prepare_optimized_kprobe(op, p);
756 }
757 
758 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
759 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
760 {
761 	struct optimized_kprobe *op;
762 
763 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
764 	if (!op)
765 		return NULL;
766 
767 	INIT_LIST_HEAD(&op->list);
768 	op->kp.addr = p->addr;
769 	__prepare_optimized_kprobe(op, p);
770 
771 	return &op->kp;
772 }
773 
774 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
775 
776 /*
777  * Prepare an optimized_kprobe and optimize it
778  * NOTE: p must be a normal registered kprobe
779  */
780 static void try_to_optimize_kprobe(struct kprobe *p)
781 {
782 	struct kprobe *ap;
783 	struct optimized_kprobe *op;
784 
785 	/* Impossible to optimize ftrace-based kprobe */
786 	if (kprobe_ftrace(p))
787 		return;
788 
789 	/* For preparing optimization, jump_label_text_reserved() is called */
790 	cpus_read_lock();
791 	jump_label_lock();
792 	mutex_lock(&text_mutex);
793 
794 	ap = alloc_aggr_kprobe(p);
795 	if (!ap)
796 		goto out;
797 
798 	op = container_of(ap, struct optimized_kprobe, kp);
799 	if (!arch_prepared_optinsn(&op->optinsn)) {
800 		/* If failed to setup optimizing, fallback to kprobe */
801 		arch_remove_optimized_kprobe(op);
802 		kfree(op);
803 		goto out;
804 	}
805 
806 	init_aggr_kprobe(ap, p);
807 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
808 
809 out:
810 	mutex_unlock(&text_mutex);
811 	jump_label_unlock();
812 	cpus_read_unlock();
813 }
814 
815 #ifdef CONFIG_SYSCTL
816 static void optimize_all_kprobes(void)
817 {
818 	struct hlist_head *head;
819 	struct kprobe *p;
820 	unsigned int i;
821 
822 	mutex_lock(&kprobe_mutex);
823 	/* If optimization is already allowed, just return */
824 	if (kprobes_allow_optimization)
825 		goto out;
826 
827 	cpus_read_lock();
828 	kprobes_allow_optimization = true;
829 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
830 		head = &kprobe_table[i];
831 		hlist_for_each_entry_rcu(p, head, hlist)
832 			if (!kprobe_disabled(p))
833 				optimize_kprobe(p);
834 	}
835 	cpus_read_unlock();
836 	printk(KERN_INFO "Kprobes globally optimized\n");
837 out:
838 	mutex_unlock(&kprobe_mutex);
839 }
840 
841 static void unoptimize_all_kprobes(void)
842 {
843 	struct hlist_head *head;
844 	struct kprobe *p;
845 	unsigned int i;
846 
847 	mutex_lock(&kprobe_mutex);
848 	/* If optimization is already prohibited, just return */
849 	if (!kprobes_allow_optimization) {
850 		mutex_unlock(&kprobe_mutex);
851 		return;
852 	}
853 
854 	cpus_read_lock();
855 	kprobes_allow_optimization = false;
856 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
857 		head = &kprobe_table[i];
858 		hlist_for_each_entry_rcu(p, head, hlist) {
859 			if (!kprobe_disabled(p))
860 				unoptimize_kprobe(p, false);
861 		}
862 	}
863 	cpus_read_unlock();
864 	mutex_unlock(&kprobe_mutex);
865 
866 	/* Wait for unoptimizing completion */
867 	wait_for_kprobe_optimizer();
868 	printk(KERN_INFO "Kprobes globally unoptimized\n");
869 }
870 
871 static DEFINE_MUTEX(kprobe_sysctl_mutex);
872 int sysctl_kprobes_optimization;
873 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
874 				      void __user *buffer, size_t *length,
875 				      loff_t *ppos)
876 {
877 	int ret;
878 
879 	mutex_lock(&kprobe_sysctl_mutex);
880 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
881 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
882 
883 	if (sysctl_kprobes_optimization)
884 		optimize_all_kprobes();
885 	else
886 		unoptimize_all_kprobes();
887 	mutex_unlock(&kprobe_sysctl_mutex);
888 
889 	return ret;
890 }
891 #endif /* CONFIG_SYSCTL */
892 
893 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
894 static void __arm_kprobe(struct kprobe *p)
895 {
896 	struct kprobe *_p;
897 
898 	/* Check collision with other optimized kprobes */
899 	_p = get_optimized_kprobe((unsigned long)p->addr);
900 	if (unlikely(_p))
901 		/* Fallback to unoptimized kprobe */
902 		unoptimize_kprobe(_p, true);
903 
904 	arch_arm_kprobe(p);
905 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
906 }
907 
908 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
909 static void __disarm_kprobe(struct kprobe *p, bool reopt)
910 {
911 	struct kprobe *_p;
912 
913 	/* Try to unoptimize */
914 	unoptimize_kprobe(p, kprobes_all_disarmed);
915 
916 	if (!kprobe_queued(p)) {
917 		arch_disarm_kprobe(p);
918 		/* If another kprobe was blocked, optimize it. */
919 		_p = get_optimized_kprobe((unsigned long)p->addr);
920 		if (unlikely(_p) && reopt)
921 			optimize_kprobe(_p);
922 	}
923 	/* TODO: reoptimize others after unoptimized this probe */
924 }
925 
926 #else /* !CONFIG_OPTPROBES */
927 
928 #define optimize_kprobe(p)			do {} while (0)
929 #define unoptimize_kprobe(p, f)			do {} while (0)
930 #define kill_optimized_kprobe(p)		do {} while (0)
931 #define prepare_optimized_kprobe(p)		do {} while (0)
932 #define try_to_optimize_kprobe(p)		do {} while (0)
933 #define __arm_kprobe(p)				arch_arm_kprobe(p)
934 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
935 #define kprobe_disarmed(p)			kprobe_disabled(p)
936 #define wait_for_kprobe_optimizer()		do {} while (0)
937 
938 static int reuse_unused_kprobe(struct kprobe *ap)
939 {
940 	/*
941 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
942 	 * released at the same time that the last aggregated kprobe is
943 	 * unregistered.
944 	 * Thus there should be no chance to reuse unused kprobe.
945 	 */
946 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
947 	return -EINVAL;
948 }
949 
950 static void free_aggr_kprobe(struct kprobe *p)
951 {
952 	arch_remove_kprobe(p);
953 	kfree(p);
954 }
955 
956 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
957 {
958 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
959 }
960 #endif /* CONFIG_OPTPROBES */
961 
962 #ifdef CONFIG_KPROBES_ON_FTRACE
963 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
964 	.func = kprobe_ftrace_handler,
965 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
966 };
967 static int kprobe_ftrace_enabled;
968 
969 /* Must ensure p->addr is really on ftrace */
970 static int prepare_kprobe(struct kprobe *p)
971 {
972 	if (!kprobe_ftrace(p))
973 		return arch_prepare_kprobe(p);
974 
975 	return arch_prepare_kprobe_ftrace(p);
976 }
977 
978 /* Caller must lock kprobe_mutex */
979 static int arm_kprobe_ftrace(struct kprobe *p)
980 {
981 	int ret = 0;
982 
983 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
984 				   (unsigned long)p->addr, 0, 0);
985 	if (ret) {
986 		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
987 			 p->addr, ret);
988 		return ret;
989 	}
990 
991 	if (kprobe_ftrace_enabled == 0) {
992 		ret = register_ftrace_function(&kprobe_ftrace_ops);
993 		if (ret) {
994 			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
995 			goto err_ftrace;
996 		}
997 	}
998 
999 	kprobe_ftrace_enabled++;
1000 	return ret;
1001 
1002 err_ftrace:
1003 	/*
1004 	 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1005 	 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1006 	 * empty filter_hash which would undesirably trace all functions.
1007 	 */
1008 	ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1009 	return ret;
1010 }
1011 
1012 /* Caller must lock kprobe_mutex */
1013 static int disarm_kprobe_ftrace(struct kprobe *p)
1014 {
1015 	int ret = 0;
1016 
1017 	if (kprobe_ftrace_enabled == 1) {
1018 		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1019 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1020 			return ret;
1021 	}
1022 
1023 	kprobe_ftrace_enabled--;
1024 
1025 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1026 			   (unsigned long)p->addr, 1, 0);
1027 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1028 		  p->addr, ret);
1029 	return ret;
1030 }
1031 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1032 #define prepare_kprobe(p)	arch_prepare_kprobe(p)
1033 #define arm_kprobe_ftrace(p)	(-ENODEV)
1034 #define disarm_kprobe_ftrace(p)	(-ENODEV)
1035 #endif
1036 
1037 /* Arm a kprobe with text_mutex */
1038 static int arm_kprobe(struct kprobe *kp)
1039 {
1040 	if (unlikely(kprobe_ftrace(kp)))
1041 		return arm_kprobe_ftrace(kp);
1042 
1043 	cpus_read_lock();
1044 	mutex_lock(&text_mutex);
1045 	__arm_kprobe(kp);
1046 	mutex_unlock(&text_mutex);
1047 	cpus_read_unlock();
1048 
1049 	return 0;
1050 }
1051 
1052 /* Disarm a kprobe with text_mutex */
1053 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1054 {
1055 	if (unlikely(kprobe_ftrace(kp)))
1056 		return disarm_kprobe_ftrace(kp);
1057 
1058 	cpus_read_lock();
1059 	mutex_lock(&text_mutex);
1060 	__disarm_kprobe(kp, reopt);
1061 	mutex_unlock(&text_mutex);
1062 	cpus_read_unlock();
1063 
1064 	return 0;
1065 }
1066 
1067 /*
1068  * Aggregate handlers for multiple kprobes support - these handlers
1069  * take care of invoking the individual kprobe handlers on p->list
1070  */
1071 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1072 {
1073 	struct kprobe *kp;
1074 
1075 	list_for_each_entry_rcu(kp, &p->list, list) {
1076 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1077 			set_kprobe_instance(kp);
1078 			if (kp->pre_handler(kp, regs))
1079 				return 1;
1080 		}
1081 		reset_kprobe_instance();
1082 	}
1083 	return 0;
1084 }
1085 NOKPROBE_SYMBOL(aggr_pre_handler);
1086 
1087 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1088 			      unsigned long flags)
1089 {
1090 	struct kprobe *kp;
1091 
1092 	list_for_each_entry_rcu(kp, &p->list, list) {
1093 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1094 			set_kprobe_instance(kp);
1095 			kp->post_handler(kp, regs, flags);
1096 			reset_kprobe_instance();
1097 		}
1098 	}
1099 }
1100 NOKPROBE_SYMBOL(aggr_post_handler);
1101 
1102 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1103 			      int trapnr)
1104 {
1105 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1106 
1107 	/*
1108 	 * if we faulted "during" the execution of a user specified
1109 	 * probe handler, invoke just that probe's fault handler
1110 	 */
1111 	if (cur && cur->fault_handler) {
1112 		if (cur->fault_handler(cur, regs, trapnr))
1113 			return 1;
1114 	}
1115 	return 0;
1116 }
1117 NOKPROBE_SYMBOL(aggr_fault_handler);
1118 
1119 /* Walks the list and increments nmissed count for multiprobe case */
1120 void kprobes_inc_nmissed_count(struct kprobe *p)
1121 {
1122 	struct kprobe *kp;
1123 	if (!kprobe_aggrprobe(p)) {
1124 		p->nmissed++;
1125 	} else {
1126 		list_for_each_entry_rcu(kp, &p->list, list)
1127 			kp->nmissed++;
1128 	}
1129 	return;
1130 }
1131 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1132 
1133 void recycle_rp_inst(struct kretprobe_instance *ri,
1134 		     struct hlist_head *head)
1135 {
1136 	struct kretprobe *rp = ri->rp;
1137 
1138 	/* remove rp inst off the rprobe_inst_table */
1139 	hlist_del(&ri->hlist);
1140 	INIT_HLIST_NODE(&ri->hlist);
1141 	if (likely(rp)) {
1142 		raw_spin_lock(&rp->lock);
1143 		hlist_add_head(&ri->hlist, &rp->free_instances);
1144 		raw_spin_unlock(&rp->lock);
1145 	} else
1146 		/* Unregistering */
1147 		hlist_add_head(&ri->hlist, head);
1148 }
1149 NOKPROBE_SYMBOL(recycle_rp_inst);
1150 
1151 void kretprobe_hash_lock(struct task_struct *tsk,
1152 			 struct hlist_head **head, unsigned long *flags)
1153 __acquires(hlist_lock)
1154 {
1155 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1156 	raw_spinlock_t *hlist_lock;
1157 
1158 	*head = &kretprobe_inst_table[hash];
1159 	hlist_lock = kretprobe_table_lock_ptr(hash);
1160 	raw_spin_lock_irqsave(hlist_lock, *flags);
1161 }
1162 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1163 
1164 static void kretprobe_table_lock(unsigned long hash,
1165 				 unsigned long *flags)
1166 __acquires(hlist_lock)
1167 {
1168 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1169 	raw_spin_lock_irqsave(hlist_lock, *flags);
1170 }
1171 NOKPROBE_SYMBOL(kretprobe_table_lock);
1172 
1173 void kretprobe_hash_unlock(struct task_struct *tsk,
1174 			   unsigned long *flags)
1175 __releases(hlist_lock)
1176 {
1177 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1178 	raw_spinlock_t *hlist_lock;
1179 
1180 	hlist_lock = kretprobe_table_lock_ptr(hash);
1181 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1182 }
1183 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1184 
1185 static void kretprobe_table_unlock(unsigned long hash,
1186 				   unsigned long *flags)
1187 __releases(hlist_lock)
1188 {
1189 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1190 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1191 }
1192 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1193 
1194 /*
1195  * This function is called from finish_task_switch when task tk becomes dead,
1196  * so that we can recycle any function-return probe instances associated
1197  * with this task. These left over instances represent probed functions
1198  * that have been called but will never return.
1199  */
1200 void kprobe_flush_task(struct task_struct *tk)
1201 {
1202 	struct kretprobe_instance *ri;
1203 	struct hlist_head *head, empty_rp;
1204 	struct hlist_node *tmp;
1205 	unsigned long hash, flags = 0;
1206 
1207 	if (unlikely(!kprobes_initialized))
1208 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1209 		return;
1210 
1211 	INIT_HLIST_HEAD(&empty_rp);
1212 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1213 	head = &kretprobe_inst_table[hash];
1214 	kretprobe_table_lock(hash, &flags);
1215 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1216 		if (ri->task == tk)
1217 			recycle_rp_inst(ri, &empty_rp);
1218 	}
1219 	kretprobe_table_unlock(hash, &flags);
1220 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1221 		hlist_del(&ri->hlist);
1222 		kfree(ri);
1223 	}
1224 }
1225 NOKPROBE_SYMBOL(kprobe_flush_task);
1226 
1227 static inline void free_rp_inst(struct kretprobe *rp)
1228 {
1229 	struct kretprobe_instance *ri;
1230 	struct hlist_node *next;
1231 
1232 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1233 		hlist_del(&ri->hlist);
1234 		kfree(ri);
1235 	}
1236 }
1237 
1238 static void cleanup_rp_inst(struct kretprobe *rp)
1239 {
1240 	unsigned long flags, hash;
1241 	struct kretprobe_instance *ri;
1242 	struct hlist_node *next;
1243 	struct hlist_head *head;
1244 
1245 	/* No race here */
1246 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1247 		kretprobe_table_lock(hash, &flags);
1248 		head = &kretprobe_inst_table[hash];
1249 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1250 			if (ri->rp == rp)
1251 				ri->rp = NULL;
1252 		}
1253 		kretprobe_table_unlock(hash, &flags);
1254 	}
1255 	free_rp_inst(rp);
1256 }
1257 NOKPROBE_SYMBOL(cleanup_rp_inst);
1258 
1259 /* Add the new probe to ap->list */
1260 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1261 {
1262 	if (p->post_handler)
1263 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1264 
1265 	list_add_rcu(&p->list, &ap->list);
1266 	if (p->post_handler && !ap->post_handler)
1267 		ap->post_handler = aggr_post_handler;
1268 
1269 	return 0;
1270 }
1271 
1272 /*
1273  * Fill in the required fields of the "manager kprobe". Replace the
1274  * earlier kprobe in the hlist with the manager kprobe
1275  */
1276 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1277 {
1278 	/* Copy p's insn slot to ap */
1279 	copy_kprobe(p, ap);
1280 	flush_insn_slot(ap);
1281 	ap->addr = p->addr;
1282 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1283 	ap->pre_handler = aggr_pre_handler;
1284 	ap->fault_handler = aggr_fault_handler;
1285 	/* We don't care the kprobe which has gone. */
1286 	if (p->post_handler && !kprobe_gone(p))
1287 		ap->post_handler = aggr_post_handler;
1288 
1289 	INIT_LIST_HEAD(&ap->list);
1290 	INIT_HLIST_NODE(&ap->hlist);
1291 
1292 	list_add_rcu(&p->list, &ap->list);
1293 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1294 }
1295 
1296 /*
1297  * This is the second or subsequent kprobe at the address - handle
1298  * the intricacies
1299  */
1300 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1301 {
1302 	int ret = 0;
1303 	struct kprobe *ap = orig_p;
1304 
1305 	cpus_read_lock();
1306 
1307 	/* For preparing optimization, jump_label_text_reserved() is called */
1308 	jump_label_lock();
1309 	mutex_lock(&text_mutex);
1310 
1311 	if (!kprobe_aggrprobe(orig_p)) {
1312 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1313 		ap = alloc_aggr_kprobe(orig_p);
1314 		if (!ap) {
1315 			ret = -ENOMEM;
1316 			goto out;
1317 		}
1318 		init_aggr_kprobe(ap, orig_p);
1319 	} else if (kprobe_unused(ap)) {
1320 		/* This probe is going to die. Rescue it */
1321 		ret = reuse_unused_kprobe(ap);
1322 		if (ret)
1323 			goto out;
1324 	}
1325 
1326 	if (kprobe_gone(ap)) {
1327 		/*
1328 		 * Attempting to insert new probe at the same location that
1329 		 * had a probe in the module vaddr area which already
1330 		 * freed. So, the instruction slot has already been
1331 		 * released. We need a new slot for the new probe.
1332 		 */
1333 		ret = arch_prepare_kprobe(ap);
1334 		if (ret)
1335 			/*
1336 			 * Even if fail to allocate new slot, don't need to
1337 			 * free aggr_probe. It will be used next time, or
1338 			 * freed by unregister_kprobe.
1339 			 */
1340 			goto out;
1341 
1342 		/* Prepare optimized instructions if possible. */
1343 		prepare_optimized_kprobe(ap);
1344 
1345 		/*
1346 		 * Clear gone flag to prevent allocating new slot again, and
1347 		 * set disabled flag because it is not armed yet.
1348 		 */
1349 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1350 			    | KPROBE_FLAG_DISABLED;
1351 	}
1352 
1353 	/* Copy ap's insn slot to p */
1354 	copy_kprobe(ap, p);
1355 	ret = add_new_kprobe(ap, p);
1356 
1357 out:
1358 	mutex_unlock(&text_mutex);
1359 	jump_label_unlock();
1360 	cpus_read_unlock();
1361 
1362 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1363 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1364 		if (!kprobes_all_disarmed) {
1365 			/* Arm the breakpoint again. */
1366 			ret = arm_kprobe(ap);
1367 			if (ret) {
1368 				ap->flags |= KPROBE_FLAG_DISABLED;
1369 				list_del_rcu(&p->list);
1370 				synchronize_rcu();
1371 			}
1372 		}
1373 	}
1374 	return ret;
1375 }
1376 
1377 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1378 {
1379 	/* The __kprobes marked functions and entry code must not be probed */
1380 	return addr >= (unsigned long)__kprobes_text_start &&
1381 	       addr < (unsigned long)__kprobes_text_end;
1382 }
1383 
1384 static bool __within_kprobe_blacklist(unsigned long addr)
1385 {
1386 	struct kprobe_blacklist_entry *ent;
1387 
1388 	if (arch_within_kprobe_blacklist(addr))
1389 		return true;
1390 	/*
1391 	 * If there exists a kprobe_blacklist, verify and
1392 	 * fail any probe registration in the prohibited area
1393 	 */
1394 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1395 		if (addr >= ent->start_addr && addr < ent->end_addr)
1396 			return true;
1397 	}
1398 	return false;
1399 }
1400 
1401 bool within_kprobe_blacklist(unsigned long addr)
1402 {
1403 	char symname[KSYM_NAME_LEN], *p;
1404 
1405 	if (__within_kprobe_blacklist(addr))
1406 		return true;
1407 
1408 	/* Check if the address is on a suffixed-symbol */
1409 	if (!lookup_symbol_name(addr, symname)) {
1410 		p = strchr(symname, '.');
1411 		if (!p)
1412 			return false;
1413 		*p = '\0';
1414 		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1415 		if (addr)
1416 			return __within_kprobe_blacklist(addr);
1417 	}
1418 	return false;
1419 }
1420 
1421 /*
1422  * If we have a symbol_name argument, look it up and add the offset field
1423  * to it. This way, we can specify a relative address to a symbol.
1424  * This returns encoded errors if it fails to look up symbol or invalid
1425  * combination of parameters.
1426  */
1427 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1428 			const char *symbol_name, unsigned int offset)
1429 {
1430 	if ((symbol_name && addr) || (!symbol_name && !addr))
1431 		goto invalid;
1432 
1433 	if (symbol_name) {
1434 		addr = kprobe_lookup_name(symbol_name, offset);
1435 		if (!addr)
1436 			return ERR_PTR(-ENOENT);
1437 	}
1438 
1439 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1440 	if (addr)
1441 		return addr;
1442 
1443 invalid:
1444 	return ERR_PTR(-EINVAL);
1445 }
1446 
1447 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1448 {
1449 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1450 }
1451 
1452 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1453 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1454 {
1455 	struct kprobe *ap, *list_p;
1456 
1457 	ap = get_kprobe(p->addr);
1458 	if (unlikely(!ap))
1459 		return NULL;
1460 
1461 	if (p != ap) {
1462 		list_for_each_entry_rcu(list_p, &ap->list, list)
1463 			if (list_p == p)
1464 			/* kprobe p is a valid probe */
1465 				goto valid;
1466 		return NULL;
1467 	}
1468 valid:
1469 	return ap;
1470 }
1471 
1472 /* Return error if the kprobe is being re-registered */
1473 static inline int check_kprobe_rereg(struct kprobe *p)
1474 {
1475 	int ret = 0;
1476 
1477 	mutex_lock(&kprobe_mutex);
1478 	if (__get_valid_kprobe(p))
1479 		ret = -EINVAL;
1480 	mutex_unlock(&kprobe_mutex);
1481 
1482 	return ret;
1483 }
1484 
1485 int __weak arch_check_ftrace_location(struct kprobe *p)
1486 {
1487 	unsigned long ftrace_addr;
1488 
1489 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1490 	if (ftrace_addr) {
1491 #ifdef CONFIG_KPROBES_ON_FTRACE
1492 		/* Given address is not on the instruction boundary */
1493 		if ((unsigned long)p->addr != ftrace_addr)
1494 			return -EILSEQ;
1495 		p->flags |= KPROBE_FLAG_FTRACE;
1496 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1497 		return -EINVAL;
1498 #endif
1499 	}
1500 	return 0;
1501 }
1502 
1503 static int check_kprobe_address_safe(struct kprobe *p,
1504 				     struct module **probed_mod)
1505 {
1506 	int ret;
1507 
1508 	ret = arch_check_ftrace_location(p);
1509 	if (ret)
1510 		return ret;
1511 	jump_label_lock();
1512 	preempt_disable();
1513 
1514 	/* Ensure it is not in reserved area nor out of text */
1515 	if (!kernel_text_address((unsigned long) p->addr) ||
1516 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1517 	    jump_label_text_reserved(p->addr, p->addr)) {
1518 		ret = -EINVAL;
1519 		goto out;
1520 	}
1521 
1522 	/* Check if are we probing a module */
1523 	*probed_mod = __module_text_address((unsigned long) p->addr);
1524 	if (*probed_mod) {
1525 		/*
1526 		 * We must hold a refcount of the probed module while updating
1527 		 * its code to prohibit unexpected unloading.
1528 		 */
1529 		if (unlikely(!try_module_get(*probed_mod))) {
1530 			ret = -ENOENT;
1531 			goto out;
1532 		}
1533 
1534 		/*
1535 		 * If the module freed .init.text, we couldn't insert
1536 		 * kprobes in there.
1537 		 */
1538 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1539 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1540 			module_put(*probed_mod);
1541 			*probed_mod = NULL;
1542 			ret = -ENOENT;
1543 		}
1544 	}
1545 out:
1546 	preempt_enable();
1547 	jump_label_unlock();
1548 
1549 	return ret;
1550 }
1551 
1552 int register_kprobe(struct kprobe *p)
1553 {
1554 	int ret;
1555 	struct kprobe *old_p;
1556 	struct module *probed_mod;
1557 	kprobe_opcode_t *addr;
1558 
1559 	/* Adjust probe address from symbol */
1560 	addr = kprobe_addr(p);
1561 	if (IS_ERR(addr))
1562 		return PTR_ERR(addr);
1563 	p->addr = addr;
1564 
1565 	ret = check_kprobe_rereg(p);
1566 	if (ret)
1567 		return ret;
1568 
1569 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1570 	p->flags &= KPROBE_FLAG_DISABLED;
1571 	p->nmissed = 0;
1572 	INIT_LIST_HEAD(&p->list);
1573 
1574 	ret = check_kprobe_address_safe(p, &probed_mod);
1575 	if (ret)
1576 		return ret;
1577 
1578 	mutex_lock(&kprobe_mutex);
1579 
1580 	old_p = get_kprobe(p->addr);
1581 	if (old_p) {
1582 		/* Since this may unoptimize old_p, locking text_mutex. */
1583 		ret = register_aggr_kprobe(old_p, p);
1584 		goto out;
1585 	}
1586 
1587 	cpus_read_lock();
1588 	/* Prevent text modification */
1589 	mutex_lock(&text_mutex);
1590 	ret = prepare_kprobe(p);
1591 	mutex_unlock(&text_mutex);
1592 	cpus_read_unlock();
1593 	if (ret)
1594 		goto out;
1595 
1596 	INIT_HLIST_NODE(&p->hlist);
1597 	hlist_add_head_rcu(&p->hlist,
1598 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1599 
1600 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1601 		ret = arm_kprobe(p);
1602 		if (ret) {
1603 			hlist_del_rcu(&p->hlist);
1604 			synchronize_rcu();
1605 			goto out;
1606 		}
1607 	}
1608 
1609 	/* Try to optimize kprobe */
1610 	try_to_optimize_kprobe(p);
1611 out:
1612 	mutex_unlock(&kprobe_mutex);
1613 
1614 	if (probed_mod)
1615 		module_put(probed_mod);
1616 
1617 	return ret;
1618 }
1619 EXPORT_SYMBOL_GPL(register_kprobe);
1620 
1621 /* Check if all probes on the aggrprobe are disabled */
1622 static int aggr_kprobe_disabled(struct kprobe *ap)
1623 {
1624 	struct kprobe *kp;
1625 
1626 	list_for_each_entry_rcu(kp, &ap->list, list)
1627 		if (!kprobe_disabled(kp))
1628 			/*
1629 			 * There is an active probe on the list.
1630 			 * We can't disable this ap.
1631 			 */
1632 			return 0;
1633 
1634 	return 1;
1635 }
1636 
1637 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1638 static struct kprobe *__disable_kprobe(struct kprobe *p)
1639 {
1640 	struct kprobe *orig_p;
1641 	int ret;
1642 
1643 	/* Get an original kprobe for return */
1644 	orig_p = __get_valid_kprobe(p);
1645 	if (unlikely(orig_p == NULL))
1646 		return ERR_PTR(-EINVAL);
1647 
1648 	if (!kprobe_disabled(p)) {
1649 		/* Disable probe if it is a child probe */
1650 		if (p != orig_p)
1651 			p->flags |= KPROBE_FLAG_DISABLED;
1652 
1653 		/* Try to disarm and disable this/parent probe */
1654 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1655 			/*
1656 			 * If kprobes_all_disarmed is set, orig_p
1657 			 * should have already been disarmed, so
1658 			 * skip unneed disarming process.
1659 			 */
1660 			if (!kprobes_all_disarmed) {
1661 				ret = disarm_kprobe(orig_p, true);
1662 				if (ret) {
1663 					p->flags &= ~KPROBE_FLAG_DISABLED;
1664 					return ERR_PTR(ret);
1665 				}
1666 			}
1667 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1668 		}
1669 	}
1670 
1671 	return orig_p;
1672 }
1673 
1674 /*
1675  * Unregister a kprobe without a scheduler synchronization.
1676  */
1677 static int __unregister_kprobe_top(struct kprobe *p)
1678 {
1679 	struct kprobe *ap, *list_p;
1680 
1681 	/* Disable kprobe. This will disarm it if needed. */
1682 	ap = __disable_kprobe(p);
1683 	if (IS_ERR(ap))
1684 		return PTR_ERR(ap);
1685 
1686 	if (ap == p)
1687 		/*
1688 		 * This probe is an independent(and non-optimized) kprobe
1689 		 * (not an aggrprobe). Remove from the hash list.
1690 		 */
1691 		goto disarmed;
1692 
1693 	/* Following process expects this probe is an aggrprobe */
1694 	WARN_ON(!kprobe_aggrprobe(ap));
1695 
1696 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1697 		/*
1698 		 * !disarmed could be happen if the probe is under delayed
1699 		 * unoptimizing.
1700 		 */
1701 		goto disarmed;
1702 	else {
1703 		/* If disabling probe has special handlers, update aggrprobe */
1704 		if (p->post_handler && !kprobe_gone(p)) {
1705 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1706 				if ((list_p != p) && (list_p->post_handler))
1707 					goto noclean;
1708 			}
1709 			ap->post_handler = NULL;
1710 		}
1711 noclean:
1712 		/*
1713 		 * Remove from the aggrprobe: this path will do nothing in
1714 		 * __unregister_kprobe_bottom().
1715 		 */
1716 		list_del_rcu(&p->list);
1717 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1718 			/*
1719 			 * Try to optimize this probe again, because post
1720 			 * handler may have been changed.
1721 			 */
1722 			optimize_kprobe(ap);
1723 	}
1724 	return 0;
1725 
1726 disarmed:
1727 	hlist_del_rcu(&ap->hlist);
1728 	return 0;
1729 }
1730 
1731 static void __unregister_kprobe_bottom(struct kprobe *p)
1732 {
1733 	struct kprobe *ap;
1734 
1735 	if (list_empty(&p->list))
1736 		/* This is an independent kprobe */
1737 		arch_remove_kprobe(p);
1738 	else if (list_is_singular(&p->list)) {
1739 		/* This is the last child of an aggrprobe */
1740 		ap = list_entry(p->list.next, struct kprobe, list);
1741 		list_del(&p->list);
1742 		free_aggr_kprobe(ap);
1743 	}
1744 	/* Otherwise, do nothing. */
1745 }
1746 
1747 int register_kprobes(struct kprobe **kps, int num)
1748 {
1749 	int i, ret = 0;
1750 
1751 	if (num <= 0)
1752 		return -EINVAL;
1753 	for (i = 0; i < num; i++) {
1754 		ret = register_kprobe(kps[i]);
1755 		if (ret < 0) {
1756 			if (i > 0)
1757 				unregister_kprobes(kps, i);
1758 			break;
1759 		}
1760 	}
1761 	return ret;
1762 }
1763 EXPORT_SYMBOL_GPL(register_kprobes);
1764 
1765 void unregister_kprobe(struct kprobe *p)
1766 {
1767 	unregister_kprobes(&p, 1);
1768 }
1769 EXPORT_SYMBOL_GPL(unregister_kprobe);
1770 
1771 void unregister_kprobes(struct kprobe **kps, int num)
1772 {
1773 	int i;
1774 
1775 	if (num <= 0)
1776 		return;
1777 	mutex_lock(&kprobe_mutex);
1778 	for (i = 0; i < num; i++)
1779 		if (__unregister_kprobe_top(kps[i]) < 0)
1780 			kps[i]->addr = NULL;
1781 	mutex_unlock(&kprobe_mutex);
1782 
1783 	synchronize_rcu();
1784 	for (i = 0; i < num; i++)
1785 		if (kps[i]->addr)
1786 			__unregister_kprobe_bottom(kps[i]);
1787 }
1788 EXPORT_SYMBOL_GPL(unregister_kprobes);
1789 
1790 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1791 					unsigned long val, void *data)
1792 {
1793 	return NOTIFY_DONE;
1794 }
1795 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1796 
1797 static struct notifier_block kprobe_exceptions_nb = {
1798 	.notifier_call = kprobe_exceptions_notify,
1799 	.priority = 0x7fffffff /* we need to be notified first */
1800 };
1801 
1802 unsigned long __weak arch_deref_entry_point(void *entry)
1803 {
1804 	return (unsigned long)entry;
1805 }
1806 
1807 #ifdef CONFIG_KRETPROBES
1808 /*
1809  * This kprobe pre_handler is registered with every kretprobe. When probe
1810  * hits it will set up the return probe.
1811  */
1812 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1813 {
1814 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1815 	unsigned long hash, flags = 0;
1816 	struct kretprobe_instance *ri;
1817 
1818 	/*
1819 	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1820 	 * just skip the probe and increase the (inexact) 'nmissed'
1821 	 * statistical counter, so that the user is informed that
1822 	 * something happened:
1823 	 */
1824 	if (unlikely(in_nmi())) {
1825 		rp->nmissed++;
1826 		return 0;
1827 	}
1828 
1829 	/* TODO: consider to only swap the RA after the last pre_handler fired */
1830 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1831 	raw_spin_lock_irqsave(&rp->lock, flags);
1832 	if (!hlist_empty(&rp->free_instances)) {
1833 		ri = hlist_entry(rp->free_instances.first,
1834 				struct kretprobe_instance, hlist);
1835 		hlist_del(&ri->hlist);
1836 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1837 
1838 		ri->rp = rp;
1839 		ri->task = current;
1840 
1841 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1842 			raw_spin_lock_irqsave(&rp->lock, flags);
1843 			hlist_add_head(&ri->hlist, &rp->free_instances);
1844 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1845 			return 0;
1846 		}
1847 
1848 		arch_prepare_kretprobe(ri, regs);
1849 
1850 		/* XXX(hch): why is there no hlist_move_head? */
1851 		INIT_HLIST_NODE(&ri->hlist);
1852 		kretprobe_table_lock(hash, &flags);
1853 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1854 		kretprobe_table_unlock(hash, &flags);
1855 	} else {
1856 		rp->nmissed++;
1857 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1858 	}
1859 	return 0;
1860 }
1861 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1862 
1863 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1864 {
1865 	return !offset;
1866 }
1867 
1868 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1869 {
1870 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1871 
1872 	if (IS_ERR(kp_addr))
1873 		return false;
1874 
1875 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1876 						!arch_kprobe_on_func_entry(offset))
1877 		return false;
1878 
1879 	return true;
1880 }
1881 
1882 int register_kretprobe(struct kretprobe *rp)
1883 {
1884 	int ret = 0;
1885 	struct kretprobe_instance *inst;
1886 	int i;
1887 	void *addr;
1888 
1889 	if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1890 		return -EINVAL;
1891 
1892 	if (kretprobe_blacklist_size) {
1893 		addr = kprobe_addr(&rp->kp);
1894 		if (IS_ERR(addr))
1895 			return PTR_ERR(addr);
1896 
1897 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1898 			if (kretprobe_blacklist[i].addr == addr)
1899 				return -EINVAL;
1900 		}
1901 	}
1902 
1903 	rp->kp.pre_handler = pre_handler_kretprobe;
1904 	rp->kp.post_handler = NULL;
1905 	rp->kp.fault_handler = NULL;
1906 
1907 	/* Pre-allocate memory for max kretprobe instances */
1908 	if (rp->maxactive <= 0) {
1909 #ifdef CONFIG_PREEMPT
1910 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1911 #else
1912 		rp->maxactive = num_possible_cpus();
1913 #endif
1914 	}
1915 	raw_spin_lock_init(&rp->lock);
1916 	INIT_HLIST_HEAD(&rp->free_instances);
1917 	for (i = 0; i < rp->maxactive; i++) {
1918 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1919 			       rp->data_size, GFP_KERNEL);
1920 		if (inst == NULL) {
1921 			free_rp_inst(rp);
1922 			return -ENOMEM;
1923 		}
1924 		INIT_HLIST_NODE(&inst->hlist);
1925 		hlist_add_head(&inst->hlist, &rp->free_instances);
1926 	}
1927 
1928 	rp->nmissed = 0;
1929 	/* Establish function entry probe point */
1930 	ret = register_kprobe(&rp->kp);
1931 	if (ret != 0)
1932 		free_rp_inst(rp);
1933 	return ret;
1934 }
1935 EXPORT_SYMBOL_GPL(register_kretprobe);
1936 
1937 int register_kretprobes(struct kretprobe **rps, int num)
1938 {
1939 	int ret = 0, i;
1940 
1941 	if (num <= 0)
1942 		return -EINVAL;
1943 	for (i = 0; i < num; i++) {
1944 		ret = register_kretprobe(rps[i]);
1945 		if (ret < 0) {
1946 			if (i > 0)
1947 				unregister_kretprobes(rps, i);
1948 			break;
1949 		}
1950 	}
1951 	return ret;
1952 }
1953 EXPORT_SYMBOL_GPL(register_kretprobes);
1954 
1955 void unregister_kretprobe(struct kretprobe *rp)
1956 {
1957 	unregister_kretprobes(&rp, 1);
1958 }
1959 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1960 
1961 void unregister_kretprobes(struct kretprobe **rps, int num)
1962 {
1963 	int i;
1964 
1965 	if (num <= 0)
1966 		return;
1967 	mutex_lock(&kprobe_mutex);
1968 	for (i = 0; i < num; i++)
1969 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1970 			rps[i]->kp.addr = NULL;
1971 	mutex_unlock(&kprobe_mutex);
1972 
1973 	synchronize_rcu();
1974 	for (i = 0; i < num; i++) {
1975 		if (rps[i]->kp.addr) {
1976 			__unregister_kprobe_bottom(&rps[i]->kp);
1977 			cleanup_rp_inst(rps[i]);
1978 		}
1979 	}
1980 }
1981 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1982 
1983 #else /* CONFIG_KRETPROBES */
1984 int register_kretprobe(struct kretprobe *rp)
1985 {
1986 	return -ENOSYS;
1987 }
1988 EXPORT_SYMBOL_GPL(register_kretprobe);
1989 
1990 int register_kretprobes(struct kretprobe **rps, int num)
1991 {
1992 	return -ENOSYS;
1993 }
1994 EXPORT_SYMBOL_GPL(register_kretprobes);
1995 
1996 void unregister_kretprobe(struct kretprobe *rp)
1997 {
1998 }
1999 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2000 
2001 void unregister_kretprobes(struct kretprobe **rps, int num)
2002 {
2003 }
2004 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2005 
2006 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2007 {
2008 	return 0;
2009 }
2010 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2011 
2012 #endif /* CONFIG_KRETPROBES */
2013 
2014 /* Set the kprobe gone and remove its instruction buffer. */
2015 static void kill_kprobe(struct kprobe *p)
2016 {
2017 	struct kprobe *kp;
2018 
2019 	p->flags |= KPROBE_FLAG_GONE;
2020 	if (kprobe_aggrprobe(p)) {
2021 		/*
2022 		 * If this is an aggr_kprobe, we have to list all the
2023 		 * chained probes and mark them GONE.
2024 		 */
2025 		list_for_each_entry_rcu(kp, &p->list, list)
2026 			kp->flags |= KPROBE_FLAG_GONE;
2027 		p->post_handler = NULL;
2028 		kill_optimized_kprobe(p);
2029 	}
2030 	/*
2031 	 * Here, we can remove insn_slot safely, because no thread calls
2032 	 * the original probed function (which will be freed soon) any more.
2033 	 */
2034 	arch_remove_kprobe(p);
2035 }
2036 
2037 /* Disable one kprobe */
2038 int disable_kprobe(struct kprobe *kp)
2039 {
2040 	int ret = 0;
2041 	struct kprobe *p;
2042 
2043 	mutex_lock(&kprobe_mutex);
2044 
2045 	/* Disable this kprobe */
2046 	p = __disable_kprobe(kp);
2047 	if (IS_ERR(p))
2048 		ret = PTR_ERR(p);
2049 
2050 	mutex_unlock(&kprobe_mutex);
2051 	return ret;
2052 }
2053 EXPORT_SYMBOL_GPL(disable_kprobe);
2054 
2055 /* Enable one kprobe */
2056 int enable_kprobe(struct kprobe *kp)
2057 {
2058 	int ret = 0;
2059 	struct kprobe *p;
2060 
2061 	mutex_lock(&kprobe_mutex);
2062 
2063 	/* Check whether specified probe is valid. */
2064 	p = __get_valid_kprobe(kp);
2065 	if (unlikely(p == NULL)) {
2066 		ret = -EINVAL;
2067 		goto out;
2068 	}
2069 
2070 	if (kprobe_gone(kp)) {
2071 		/* This kprobe has gone, we couldn't enable it. */
2072 		ret = -EINVAL;
2073 		goto out;
2074 	}
2075 
2076 	if (p != kp)
2077 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2078 
2079 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2080 		p->flags &= ~KPROBE_FLAG_DISABLED;
2081 		ret = arm_kprobe(p);
2082 		if (ret)
2083 			p->flags |= KPROBE_FLAG_DISABLED;
2084 	}
2085 out:
2086 	mutex_unlock(&kprobe_mutex);
2087 	return ret;
2088 }
2089 EXPORT_SYMBOL_GPL(enable_kprobe);
2090 
2091 /* Caller must NOT call this in usual path. This is only for critical case */
2092 void dump_kprobe(struct kprobe *kp)
2093 {
2094 	pr_err("Dumping kprobe:\n");
2095 	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2096 	       kp->symbol_name, kp->offset, kp->addr);
2097 }
2098 NOKPROBE_SYMBOL(dump_kprobe);
2099 
2100 int kprobe_add_ksym_blacklist(unsigned long entry)
2101 {
2102 	struct kprobe_blacklist_entry *ent;
2103 	unsigned long offset = 0, size = 0;
2104 
2105 	if (!kernel_text_address(entry) ||
2106 	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2107 		return -EINVAL;
2108 
2109 	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2110 	if (!ent)
2111 		return -ENOMEM;
2112 	ent->start_addr = entry;
2113 	ent->end_addr = entry + size;
2114 	INIT_LIST_HEAD(&ent->list);
2115 	list_add_tail(&ent->list, &kprobe_blacklist);
2116 
2117 	return (int)size;
2118 }
2119 
2120 /* Add all symbols in given area into kprobe blacklist */
2121 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2122 {
2123 	unsigned long entry;
2124 	int ret = 0;
2125 
2126 	for (entry = start; entry < end; entry += ret) {
2127 		ret = kprobe_add_ksym_blacklist(entry);
2128 		if (ret < 0)
2129 			return ret;
2130 		if (ret == 0)	/* In case of alias symbol */
2131 			ret = 1;
2132 	}
2133 	return 0;
2134 }
2135 
2136 int __init __weak arch_populate_kprobe_blacklist(void)
2137 {
2138 	return 0;
2139 }
2140 
2141 /*
2142  * Lookup and populate the kprobe_blacklist.
2143  *
2144  * Unlike the kretprobe blacklist, we'll need to determine
2145  * the range of addresses that belong to the said functions,
2146  * since a kprobe need not necessarily be at the beginning
2147  * of a function.
2148  */
2149 static int __init populate_kprobe_blacklist(unsigned long *start,
2150 					     unsigned long *end)
2151 {
2152 	unsigned long entry;
2153 	unsigned long *iter;
2154 	int ret;
2155 
2156 	for (iter = start; iter < end; iter++) {
2157 		entry = arch_deref_entry_point((void *)*iter);
2158 		ret = kprobe_add_ksym_blacklist(entry);
2159 		if (ret == -EINVAL)
2160 			continue;
2161 		if (ret < 0)
2162 			return ret;
2163 	}
2164 
2165 	/* Symbols in __kprobes_text are blacklisted */
2166 	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2167 					(unsigned long)__kprobes_text_end);
2168 
2169 	return ret ? : arch_populate_kprobe_blacklist();
2170 }
2171 
2172 /* Module notifier call back, checking kprobes on the module */
2173 static int kprobes_module_callback(struct notifier_block *nb,
2174 				   unsigned long val, void *data)
2175 {
2176 	struct module *mod = data;
2177 	struct hlist_head *head;
2178 	struct kprobe *p;
2179 	unsigned int i;
2180 	int checkcore = (val == MODULE_STATE_GOING);
2181 
2182 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2183 		return NOTIFY_DONE;
2184 
2185 	/*
2186 	 * When MODULE_STATE_GOING was notified, both of module .text and
2187 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2188 	 * notified, only .init.text section would be freed. We need to
2189 	 * disable kprobes which have been inserted in the sections.
2190 	 */
2191 	mutex_lock(&kprobe_mutex);
2192 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2193 		head = &kprobe_table[i];
2194 		hlist_for_each_entry_rcu(p, head, hlist)
2195 			if (within_module_init((unsigned long)p->addr, mod) ||
2196 			    (checkcore &&
2197 			     within_module_core((unsigned long)p->addr, mod))) {
2198 				/*
2199 				 * The vaddr this probe is installed will soon
2200 				 * be vfreed buy not synced to disk. Hence,
2201 				 * disarming the breakpoint isn't needed.
2202 				 *
2203 				 * Note, this will also move any optimized probes
2204 				 * that are pending to be removed from their
2205 				 * corresponding lists to the freeing_list and
2206 				 * will not be touched by the delayed
2207 				 * kprobe_optimizer work handler.
2208 				 */
2209 				kill_kprobe(p);
2210 			}
2211 	}
2212 	mutex_unlock(&kprobe_mutex);
2213 	return NOTIFY_DONE;
2214 }
2215 
2216 static struct notifier_block kprobe_module_nb = {
2217 	.notifier_call = kprobes_module_callback,
2218 	.priority = 0
2219 };
2220 
2221 /* Markers of _kprobe_blacklist section */
2222 extern unsigned long __start_kprobe_blacklist[];
2223 extern unsigned long __stop_kprobe_blacklist[];
2224 
2225 static int __init init_kprobes(void)
2226 {
2227 	int i, err = 0;
2228 
2229 	/* FIXME allocate the probe table, currently defined statically */
2230 	/* initialize all list heads */
2231 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2232 		INIT_HLIST_HEAD(&kprobe_table[i]);
2233 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2234 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2235 	}
2236 
2237 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2238 					__stop_kprobe_blacklist);
2239 	if (err) {
2240 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2241 		pr_err("Please take care of using kprobes.\n");
2242 	}
2243 
2244 	if (kretprobe_blacklist_size) {
2245 		/* lookup the function address from its name */
2246 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2247 			kretprobe_blacklist[i].addr =
2248 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2249 			if (!kretprobe_blacklist[i].addr)
2250 				printk("kretprobe: lookup failed: %s\n",
2251 				       kretprobe_blacklist[i].name);
2252 		}
2253 	}
2254 
2255 #if defined(CONFIG_OPTPROBES)
2256 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2257 	/* Init kprobe_optinsn_slots */
2258 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2259 #endif
2260 	/* By default, kprobes can be optimized */
2261 	kprobes_allow_optimization = true;
2262 #endif
2263 
2264 	/* By default, kprobes are armed */
2265 	kprobes_all_disarmed = false;
2266 
2267 	err = arch_init_kprobes();
2268 	if (!err)
2269 		err = register_die_notifier(&kprobe_exceptions_nb);
2270 	if (!err)
2271 		err = register_module_notifier(&kprobe_module_nb);
2272 
2273 	kprobes_initialized = (err == 0);
2274 
2275 	if (!err)
2276 		init_test_probes();
2277 	return err;
2278 }
2279 
2280 #ifdef CONFIG_DEBUG_FS
2281 static void report_probe(struct seq_file *pi, struct kprobe *p,
2282 		const char *sym, int offset, char *modname, struct kprobe *pp)
2283 {
2284 	char *kprobe_type;
2285 	void *addr = p->addr;
2286 
2287 	if (p->pre_handler == pre_handler_kretprobe)
2288 		kprobe_type = "r";
2289 	else
2290 		kprobe_type = "k";
2291 
2292 	if (!kallsyms_show_value())
2293 		addr = NULL;
2294 
2295 	if (sym)
2296 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2297 			addr, kprobe_type, sym, offset,
2298 			(modname ? modname : " "));
2299 	else	/* try to use %pS */
2300 		seq_printf(pi, "%px  %s  %pS ",
2301 			addr, kprobe_type, p->addr);
2302 
2303 	if (!pp)
2304 		pp = p;
2305 	seq_printf(pi, "%s%s%s%s\n",
2306 		(kprobe_gone(p) ? "[GONE]" : ""),
2307 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2308 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2309 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2310 }
2311 
2312 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2313 {
2314 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2315 }
2316 
2317 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2318 {
2319 	(*pos)++;
2320 	if (*pos >= KPROBE_TABLE_SIZE)
2321 		return NULL;
2322 	return pos;
2323 }
2324 
2325 static void kprobe_seq_stop(struct seq_file *f, void *v)
2326 {
2327 	/* Nothing to do */
2328 }
2329 
2330 static int show_kprobe_addr(struct seq_file *pi, void *v)
2331 {
2332 	struct hlist_head *head;
2333 	struct kprobe *p, *kp;
2334 	const char *sym = NULL;
2335 	unsigned int i = *(loff_t *) v;
2336 	unsigned long offset = 0;
2337 	char *modname, namebuf[KSYM_NAME_LEN];
2338 
2339 	head = &kprobe_table[i];
2340 	preempt_disable();
2341 	hlist_for_each_entry_rcu(p, head, hlist) {
2342 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2343 					&offset, &modname, namebuf);
2344 		if (kprobe_aggrprobe(p)) {
2345 			list_for_each_entry_rcu(kp, &p->list, list)
2346 				report_probe(pi, kp, sym, offset, modname, p);
2347 		} else
2348 			report_probe(pi, p, sym, offset, modname, NULL);
2349 	}
2350 	preempt_enable();
2351 	return 0;
2352 }
2353 
2354 static const struct seq_operations kprobes_seq_ops = {
2355 	.start = kprobe_seq_start,
2356 	.next  = kprobe_seq_next,
2357 	.stop  = kprobe_seq_stop,
2358 	.show  = show_kprobe_addr
2359 };
2360 
2361 static int kprobes_open(struct inode *inode, struct file *filp)
2362 {
2363 	return seq_open(filp, &kprobes_seq_ops);
2364 }
2365 
2366 static const struct file_operations debugfs_kprobes_operations = {
2367 	.open           = kprobes_open,
2368 	.read           = seq_read,
2369 	.llseek         = seq_lseek,
2370 	.release        = seq_release,
2371 };
2372 
2373 /* kprobes/blacklist -- shows which functions can not be probed */
2374 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2375 {
2376 	return seq_list_start(&kprobe_blacklist, *pos);
2377 }
2378 
2379 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2380 {
2381 	return seq_list_next(v, &kprobe_blacklist, pos);
2382 }
2383 
2384 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2385 {
2386 	struct kprobe_blacklist_entry *ent =
2387 		list_entry(v, struct kprobe_blacklist_entry, list);
2388 
2389 	/*
2390 	 * If /proc/kallsyms is not showing kernel address, we won't
2391 	 * show them here either.
2392 	 */
2393 	if (!kallsyms_show_value())
2394 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2395 			   (void *)ent->start_addr);
2396 	else
2397 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2398 			   (void *)ent->end_addr, (void *)ent->start_addr);
2399 	return 0;
2400 }
2401 
2402 static const struct seq_operations kprobe_blacklist_seq_ops = {
2403 	.start = kprobe_blacklist_seq_start,
2404 	.next  = kprobe_blacklist_seq_next,
2405 	.stop  = kprobe_seq_stop,	/* Reuse void function */
2406 	.show  = kprobe_blacklist_seq_show,
2407 };
2408 
2409 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2410 {
2411 	return seq_open(filp, &kprobe_blacklist_seq_ops);
2412 }
2413 
2414 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2415 	.open           = kprobe_blacklist_open,
2416 	.read           = seq_read,
2417 	.llseek         = seq_lseek,
2418 	.release        = seq_release,
2419 };
2420 
2421 static int arm_all_kprobes(void)
2422 {
2423 	struct hlist_head *head;
2424 	struct kprobe *p;
2425 	unsigned int i, total = 0, errors = 0;
2426 	int err, ret = 0;
2427 
2428 	mutex_lock(&kprobe_mutex);
2429 
2430 	/* If kprobes are armed, just return */
2431 	if (!kprobes_all_disarmed)
2432 		goto already_enabled;
2433 
2434 	/*
2435 	 * optimize_kprobe() called by arm_kprobe() checks
2436 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2437 	 * arm_kprobe.
2438 	 */
2439 	kprobes_all_disarmed = false;
2440 	/* Arming kprobes doesn't optimize kprobe itself */
2441 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2442 		head = &kprobe_table[i];
2443 		/* Arm all kprobes on a best-effort basis */
2444 		hlist_for_each_entry_rcu(p, head, hlist) {
2445 			if (!kprobe_disabled(p)) {
2446 				err = arm_kprobe(p);
2447 				if (err)  {
2448 					errors++;
2449 					ret = err;
2450 				}
2451 				total++;
2452 			}
2453 		}
2454 	}
2455 
2456 	if (errors)
2457 		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2458 			errors, total);
2459 	else
2460 		pr_info("Kprobes globally enabled\n");
2461 
2462 already_enabled:
2463 	mutex_unlock(&kprobe_mutex);
2464 	return ret;
2465 }
2466 
2467 static int disarm_all_kprobes(void)
2468 {
2469 	struct hlist_head *head;
2470 	struct kprobe *p;
2471 	unsigned int i, total = 0, errors = 0;
2472 	int err, ret = 0;
2473 
2474 	mutex_lock(&kprobe_mutex);
2475 
2476 	/* If kprobes are already disarmed, just return */
2477 	if (kprobes_all_disarmed) {
2478 		mutex_unlock(&kprobe_mutex);
2479 		return 0;
2480 	}
2481 
2482 	kprobes_all_disarmed = true;
2483 
2484 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2485 		head = &kprobe_table[i];
2486 		/* Disarm all kprobes on a best-effort basis */
2487 		hlist_for_each_entry_rcu(p, head, hlist) {
2488 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2489 				err = disarm_kprobe(p, false);
2490 				if (err) {
2491 					errors++;
2492 					ret = err;
2493 				}
2494 				total++;
2495 			}
2496 		}
2497 	}
2498 
2499 	if (errors)
2500 		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2501 			errors, total);
2502 	else
2503 		pr_info("Kprobes globally disabled\n");
2504 
2505 	mutex_unlock(&kprobe_mutex);
2506 
2507 	/* Wait for disarming all kprobes by optimizer */
2508 	wait_for_kprobe_optimizer();
2509 
2510 	return ret;
2511 }
2512 
2513 /*
2514  * XXX: The debugfs bool file interface doesn't allow for callbacks
2515  * when the bool state is switched. We can reuse that facility when
2516  * available
2517  */
2518 static ssize_t read_enabled_file_bool(struct file *file,
2519 	       char __user *user_buf, size_t count, loff_t *ppos)
2520 {
2521 	char buf[3];
2522 
2523 	if (!kprobes_all_disarmed)
2524 		buf[0] = '1';
2525 	else
2526 		buf[0] = '0';
2527 	buf[1] = '\n';
2528 	buf[2] = 0x00;
2529 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2530 }
2531 
2532 static ssize_t write_enabled_file_bool(struct file *file,
2533 	       const char __user *user_buf, size_t count, loff_t *ppos)
2534 {
2535 	char buf[32];
2536 	size_t buf_size;
2537 	int ret = 0;
2538 
2539 	buf_size = min(count, (sizeof(buf)-1));
2540 	if (copy_from_user(buf, user_buf, buf_size))
2541 		return -EFAULT;
2542 
2543 	buf[buf_size] = '\0';
2544 	switch (buf[0]) {
2545 	case 'y':
2546 	case 'Y':
2547 	case '1':
2548 		ret = arm_all_kprobes();
2549 		break;
2550 	case 'n':
2551 	case 'N':
2552 	case '0':
2553 		ret = disarm_all_kprobes();
2554 		break;
2555 	default:
2556 		return -EINVAL;
2557 	}
2558 
2559 	if (ret)
2560 		return ret;
2561 
2562 	return count;
2563 }
2564 
2565 static const struct file_operations fops_kp = {
2566 	.read =         read_enabled_file_bool,
2567 	.write =        write_enabled_file_bool,
2568 	.llseek =	default_llseek,
2569 };
2570 
2571 static int __init debugfs_kprobe_init(void)
2572 {
2573 	struct dentry *dir, *file;
2574 	unsigned int value = 1;
2575 
2576 	dir = debugfs_create_dir("kprobes", NULL);
2577 	if (!dir)
2578 		return -ENOMEM;
2579 
2580 	file = debugfs_create_file("list", 0400, dir, NULL,
2581 				&debugfs_kprobes_operations);
2582 	if (!file)
2583 		goto error;
2584 
2585 	file = debugfs_create_file("enabled", 0600, dir,
2586 					&value, &fops_kp);
2587 	if (!file)
2588 		goto error;
2589 
2590 	file = debugfs_create_file("blacklist", 0400, dir, NULL,
2591 				&debugfs_kprobe_blacklist_ops);
2592 	if (!file)
2593 		goto error;
2594 
2595 	return 0;
2596 
2597 error:
2598 	debugfs_remove(dir);
2599 	return -ENOMEM;
2600 }
2601 
2602 late_initcall(debugfs_kprobe_init);
2603 #endif /* CONFIG_DEBUG_FS */
2604 
2605 module_init(init_kprobes);
2606