1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * kernel/kprobes.c 5 * 6 * Copyright (C) IBM Corporation, 2002, 2004 7 * 8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 9 * Probes initial implementation (includes suggestions from 10 * Rusty Russell). 11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 12 * hlists and exceptions notifier as suggested by Andi Kleen. 13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 14 * interface to access function arguments. 15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 16 * exceptions notifier to be first on the priority list. 17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 19 * <prasanna@in.ibm.com> added function-return probes. 20 */ 21 #include <linux/kprobes.h> 22 #include <linux/hash.h> 23 #include <linux/init.h> 24 #include <linux/slab.h> 25 #include <linux/stddef.h> 26 #include <linux/export.h> 27 #include <linux/moduleloader.h> 28 #include <linux/kallsyms.h> 29 #include <linux/freezer.h> 30 #include <linux/seq_file.h> 31 #include <linux/debugfs.h> 32 #include <linux/sysctl.h> 33 #include <linux/kdebug.h> 34 #include <linux/memory.h> 35 #include <linux/ftrace.h> 36 #include <linux/cpu.h> 37 #include <linux/jump_label.h> 38 39 #include <asm/sections.h> 40 #include <asm/cacheflush.h> 41 #include <asm/errno.h> 42 #include <linux/uaccess.h> 43 44 #define KPROBE_HASH_BITS 6 45 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 46 47 48 static int kprobes_initialized; 49 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 50 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 51 52 /* NOTE: change this value only with kprobe_mutex held */ 53 static bool kprobes_all_disarmed; 54 55 /* This protects kprobe_table and optimizing_list */ 56 static DEFINE_MUTEX(kprobe_mutex); 57 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 58 static struct { 59 raw_spinlock_t lock ____cacheline_aligned_in_smp; 60 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 61 62 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, 63 unsigned int __unused) 64 { 65 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); 66 } 67 68 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 69 { 70 return &(kretprobe_table_locks[hash].lock); 71 } 72 73 /* Blacklist -- list of struct kprobe_blacklist_entry */ 74 static LIST_HEAD(kprobe_blacklist); 75 76 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 77 /* 78 * kprobe->ainsn.insn points to the copy of the instruction to be 79 * single-stepped. x86_64, POWER4 and above have no-exec support and 80 * stepping on the instruction on a vmalloced/kmalloced/data page 81 * is a recipe for disaster 82 */ 83 struct kprobe_insn_page { 84 struct list_head list; 85 kprobe_opcode_t *insns; /* Page of instruction slots */ 86 struct kprobe_insn_cache *cache; 87 int nused; 88 int ngarbage; 89 char slot_used[]; 90 }; 91 92 #define KPROBE_INSN_PAGE_SIZE(slots) \ 93 (offsetof(struct kprobe_insn_page, slot_used) + \ 94 (sizeof(char) * (slots))) 95 96 static int slots_per_page(struct kprobe_insn_cache *c) 97 { 98 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 99 } 100 101 enum kprobe_slot_state { 102 SLOT_CLEAN = 0, 103 SLOT_DIRTY = 1, 104 SLOT_USED = 2, 105 }; 106 107 void __weak *alloc_insn_page(void) 108 { 109 return module_alloc(PAGE_SIZE); 110 } 111 112 void __weak free_insn_page(void *page) 113 { 114 module_memfree(page); 115 } 116 117 struct kprobe_insn_cache kprobe_insn_slots = { 118 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 119 .alloc = alloc_insn_page, 120 .free = free_insn_page, 121 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 122 .insn_size = MAX_INSN_SIZE, 123 .nr_garbage = 0, 124 }; 125 static int collect_garbage_slots(struct kprobe_insn_cache *c); 126 127 /** 128 * __get_insn_slot() - Find a slot on an executable page for an instruction. 129 * We allocate an executable page if there's no room on existing ones. 130 */ 131 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 132 { 133 struct kprobe_insn_page *kip; 134 kprobe_opcode_t *slot = NULL; 135 136 /* Since the slot array is not protected by rcu, we need a mutex */ 137 mutex_lock(&c->mutex); 138 retry: 139 rcu_read_lock(); 140 list_for_each_entry_rcu(kip, &c->pages, list) { 141 if (kip->nused < slots_per_page(c)) { 142 int i; 143 for (i = 0; i < slots_per_page(c); i++) { 144 if (kip->slot_used[i] == SLOT_CLEAN) { 145 kip->slot_used[i] = SLOT_USED; 146 kip->nused++; 147 slot = kip->insns + (i * c->insn_size); 148 rcu_read_unlock(); 149 goto out; 150 } 151 } 152 /* kip->nused is broken. Fix it. */ 153 kip->nused = slots_per_page(c); 154 WARN_ON(1); 155 } 156 } 157 rcu_read_unlock(); 158 159 /* If there are any garbage slots, collect it and try again. */ 160 if (c->nr_garbage && collect_garbage_slots(c) == 0) 161 goto retry; 162 163 /* All out of space. Need to allocate a new page. */ 164 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 165 if (!kip) 166 goto out; 167 168 /* 169 * Use module_alloc so this page is within +/- 2GB of where the 170 * kernel image and loaded module images reside. This is required 171 * so x86_64 can correctly handle the %rip-relative fixups. 172 */ 173 kip->insns = c->alloc(); 174 if (!kip->insns) { 175 kfree(kip); 176 goto out; 177 } 178 INIT_LIST_HEAD(&kip->list); 179 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 180 kip->slot_used[0] = SLOT_USED; 181 kip->nused = 1; 182 kip->ngarbage = 0; 183 kip->cache = c; 184 list_add_rcu(&kip->list, &c->pages); 185 slot = kip->insns; 186 out: 187 mutex_unlock(&c->mutex); 188 return slot; 189 } 190 191 /* Return 1 if all garbages are collected, otherwise 0. */ 192 static int collect_one_slot(struct kprobe_insn_page *kip, int idx) 193 { 194 kip->slot_used[idx] = SLOT_CLEAN; 195 kip->nused--; 196 if (kip->nused == 0) { 197 /* 198 * Page is no longer in use. Free it unless 199 * it's the last one. We keep the last one 200 * so as not to have to set it up again the 201 * next time somebody inserts a probe. 202 */ 203 if (!list_is_singular(&kip->list)) { 204 list_del_rcu(&kip->list); 205 synchronize_rcu(); 206 kip->cache->free(kip->insns); 207 kfree(kip); 208 } 209 return 1; 210 } 211 return 0; 212 } 213 214 static int collect_garbage_slots(struct kprobe_insn_cache *c) 215 { 216 struct kprobe_insn_page *kip, *next; 217 218 /* Ensure no-one is interrupted on the garbages */ 219 synchronize_rcu(); 220 221 list_for_each_entry_safe(kip, next, &c->pages, list) { 222 int i; 223 if (kip->ngarbage == 0) 224 continue; 225 kip->ngarbage = 0; /* we will collect all garbages */ 226 for (i = 0; i < slots_per_page(c); i++) { 227 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 228 break; 229 } 230 } 231 c->nr_garbage = 0; 232 return 0; 233 } 234 235 void __free_insn_slot(struct kprobe_insn_cache *c, 236 kprobe_opcode_t *slot, int dirty) 237 { 238 struct kprobe_insn_page *kip; 239 long idx; 240 241 mutex_lock(&c->mutex); 242 rcu_read_lock(); 243 list_for_each_entry_rcu(kip, &c->pages, list) { 244 idx = ((long)slot - (long)kip->insns) / 245 (c->insn_size * sizeof(kprobe_opcode_t)); 246 if (idx >= 0 && idx < slots_per_page(c)) 247 goto out; 248 } 249 /* Could not find this slot. */ 250 WARN_ON(1); 251 kip = NULL; 252 out: 253 rcu_read_unlock(); 254 /* Mark and sweep: this may sleep */ 255 if (kip) { 256 /* Check double free */ 257 WARN_ON(kip->slot_used[idx] != SLOT_USED); 258 if (dirty) { 259 kip->slot_used[idx] = SLOT_DIRTY; 260 kip->ngarbage++; 261 if (++c->nr_garbage > slots_per_page(c)) 262 collect_garbage_slots(c); 263 } else { 264 collect_one_slot(kip, idx); 265 } 266 } 267 mutex_unlock(&c->mutex); 268 } 269 270 /* 271 * Check given address is on the page of kprobe instruction slots. 272 * This will be used for checking whether the address on a stack 273 * is on a text area or not. 274 */ 275 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 276 { 277 struct kprobe_insn_page *kip; 278 bool ret = false; 279 280 rcu_read_lock(); 281 list_for_each_entry_rcu(kip, &c->pages, list) { 282 if (addr >= (unsigned long)kip->insns && 283 addr < (unsigned long)kip->insns + PAGE_SIZE) { 284 ret = true; 285 break; 286 } 287 } 288 rcu_read_unlock(); 289 290 return ret; 291 } 292 293 #ifdef CONFIG_OPTPROBES 294 /* For optimized_kprobe buffer */ 295 struct kprobe_insn_cache kprobe_optinsn_slots = { 296 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 297 .alloc = alloc_insn_page, 298 .free = free_insn_page, 299 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 300 /* .insn_size is initialized later */ 301 .nr_garbage = 0, 302 }; 303 #endif 304 #endif 305 306 /* We have preemption disabled.. so it is safe to use __ versions */ 307 static inline void set_kprobe_instance(struct kprobe *kp) 308 { 309 __this_cpu_write(kprobe_instance, kp); 310 } 311 312 static inline void reset_kprobe_instance(void) 313 { 314 __this_cpu_write(kprobe_instance, NULL); 315 } 316 317 /* 318 * This routine is called either: 319 * - under the kprobe_mutex - during kprobe_[un]register() 320 * OR 321 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 322 */ 323 struct kprobe *get_kprobe(void *addr) 324 { 325 struct hlist_head *head; 326 struct kprobe *p; 327 328 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 329 hlist_for_each_entry_rcu(p, head, hlist) { 330 if (p->addr == addr) 331 return p; 332 } 333 334 return NULL; 335 } 336 NOKPROBE_SYMBOL(get_kprobe); 337 338 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 339 340 /* Return true if the kprobe is an aggregator */ 341 static inline int kprobe_aggrprobe(struct kprobe *p) 342 { 343 return p->pre_handler == aggr_pre_handler; 344 } 345 346 /* Return true(!0) if the kprobe is unused */ 347 static inline int kprobe_unused(struct kprobe *p) 348 { 349 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 350 list_empty(&p->list); 351 } 352 353 /* 354 * Keep all fields in the kprobe consistent 355 */ 356 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 357 { 358 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 359 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 360 } 361 362 #ifdef CONFIG_OPTPROBES 363 /* NOTE: change this value only with kprobe_mutex held */ 364 static bool kprobes_allow_optimization; 365 366 /* 367 * Call all pre_handler on the list, but ignores its return value. 368 * This must be called from arch-dep optimized caller. 369 */ 370 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 371 { 372 struct kprobe *kp; 373 374 list_for_each_entry_rcu(kp, &p->list, list) { 375 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 376 set_kprobe_instance(kp); 377 kp->pre_handler(kp, regs); 378 } 379 reset_kprobe_instance(); 380 } 381 } 382 NOKPROBE_SYMBOL(opt_pre_handler); 383 384 /* Free optimized instructions and optimized_kprobe */ 385 static void free_aggr_kprobe(struct kprobe *p) 386 { 387 struct optimized_kprobe *op; 388 389 op = container_of(p, struct optimized_kprobe, kp); 390 arch_remove_optimized_kprobe(op); 391 arch_remove_kprobe(p); 392 kfree(op); 393 } 394 395 /* Return true(!0) if the kprobe is ready for optimization. */ 396 static inline int kprobe_optready(struct kprobe *p) 397 { 398 struct optimized_kprobe *op; 399 400 if (kprobe_aggrprobe(p)) { 401 op = container_of(p, struct optimized_kprobe, kp); 402 return arch_prepared_optinsn(&op->optinsn); 403 } 404 405 return 0; 406 } 407 408 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 409 static inline int kprobe_disarmed(struct kprobe *p) 410 { 411 struct optimized_kprobe *op; 412 413 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 414 if (!kprobe_aggrprobe(p)) 415 return kprobe_disabled(p); 416 417 op = container_of(p, struct optimized_kprobe, kp); 418 419 return kprobe_disabled(p) && list_empty(&op->list); 420 } 421 422 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 423 static int kprobe_queued(struct kprobe *p) 424 { 425 struct optimized_kprobe *op; 426 427 if (kprobe_aggrprobe(p)) { 428 op = container_of(p, struct optimized_kprobe, kp); 429 if (!list_empty(&op->list)) 430 return 1; 431 } 432 return 0; 433 } 434 435 /* 436 * Return an optimized kprobe whose optimizing code replaces 437 * instructions including addr (exclude breakpoint). 438 */ 439 static struct kprobe *get_optimized_kprobe(unsigned long addr) 440 { 441 int i; 442 struct kprobe *p = NULL; 443 struct optimized_kprobe *op; 444 445 /* Don't check i == 0, since that is a breakpoint case. */ 446 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 447 p = get_kprobe((void *)(addr - i)); 448 449 if (p && kprobe_optready(p)) { 450 op = container_of(p, struct optimized_kprobe, kp); 451 if (arch_within_optimized_kprobe(op, addr)) 452 return p; 453 } 454 455 return NULL; 456 } 457 458 /* Optimization staging list, protected by kprobe_mutex */ 459 static LIST_HEAD(optimizing_list); 460 static LIST_HEAD(unoptimizing_list); 461 static LIST_HEAD(freeing_list); 462 463 static void kprobe_optimizer(struct work_struct *work); 464 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 465 #define OPTIMIZE_DELAY 5 466 467 /* 468 * Optimize (replace a breakpoint with a jump) kprobes listed on 469 * optimizing_list. 470 */ 471 static void do_optimize_kprobes(void) 472 { 473 lockdep_assert_held(&text_mutex); 474 /* 475 * The optimization/unoptimization refers online_cpus via 476 * stop_machine() and cpu-hotplug modifies online_cpus. 477 * And same time, text_mutex will be held in cpu-hotplug and here. 478 * This combination can cause a deadlock (cpu-hotplug try to lock 479 * text_mutex but stop_machine can not be done because online_cpus 480 * has been changed) 481 * To avoid this deadlock, caller must have locked cpu hotplug 482 * for preventing cpu-hotplug outside of text_mutex locking. 483 */ 484 lockdep_assert_cpus_held(); 485 486 /* Optimization never be done when disarmed */ 487 if (kprobes_all_disarmed || !kprobes_allow_optimization || 488 list_empty(&optimizing_list)) 489 return; 490 491 arch_optimize_kprobes(&optimizing_list); 492 } 493 494 /* 495 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 496 * if need) kprobes listed on unoptimizing_list. 497 */ 498 static void do_unoptimize_kprobes(void) 499 { 500 struct optimized_kprobe *op, *tmp; 501 502 lockdep_assert_held(&text_mutex); 503 /* See comment in do_optimize_kprobes() */ 504 lockdep_assert_cpus_held(); 505 506 /* Unoptimization must be done anytime */ 507 if (list_empty(&unoptimizing_list)) 508 return; 509 510 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 511 /* Loop free_list for disarming */ 512 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 513 /* Disarm probes if marked disabled */ 514 if (kprobe_disabled(&op->kp)) 515 arch_disarm_kprobe(&op->kp); 516 if (kprobe_unused(&op->kp)) { 517 /* 518 * Remove unused probes from hash list. After waiting 519 * for synchronization, these probes are reclaimed. 520 * (reclaiming is done by do_free_cleaned_kprobes.) 521 */ 522 hlist_del_rcu(&op->kp.hlist); 523 } else 524 list_del_init(&op->list); 525 } 526 } 527 528 /* Reclaim all kprobes on the free_list */ 529 static void do_free_cleaned_kprobes(void) 530 { 531 struct optimized_kprobe *op, *tmp; 532 533 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 534 list_del_init(&op->list); 535 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) { 536 /* 537 * This must not happen, but if there is a kprobe 538 * still in use, keep it on kprobes hash list. 539 */ 540 continue; 541 } 542 free_aggr_kprobe(&op->kp); 543 } 544 } 545 546 /* Start optimizer after OPTIMIZE_DELAY passed */ 547 static void kick_kprobe_optimizer(void) 548 { 549 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 550 } 551 552 /* Kprobe jump optimizer */ 553 static void kprobe_optimizer(struct work_struct *work) 554 { 555 mutex_lock(&kprobe_mutex); 556 cpus_read_lock(); 557 mutex_lock(&text_mutex); 558 /* Lock modules while optimizing kprobes */ 559 mutex_lock(&module_mutex); 560 561 /* 562 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 563 * kprobes before waiting for quiesence period. 564 */ 565 do_unoptimize_kprobes(); 566 567 /* 568 * Step 2: Wait for quiesence period to ensure all potentially 569 * preempted tasks to have normally scheduled. Because optprobe 570 * may modify multiple instructions, there is a chance that Nth 571 * instruction is preempted. In that case, such tasks can return 572 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. 573 * Note that on non-preemptive kernel, this is transparently converted 574 * to synchronoze_sched() to wait for all interrupts to have completed. 575 */ 576 synchronize_rcu_tasks(); 577 578 /* Step 3: Optimize kprobes after quiesence period */ 579 do_optimize_kprobes(); 580 581 /* Step 4: Free cleaned kprobes after quiesence period */ 582 do_free_cleaned_kprobes(); 583 584 mutex_unlock(&module_mutex); 585 mutex_unlock(&text_mutex); 586 cpus_read_unlock(); 587 mutex_unlock(&kprobe_mutex); 588 589 /* Step 5: Kick optimizer again if needed */ 590 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 591 kick_kprobe_optimizer(); 592 } 593 594 /* Wait for completing optimization and unoptimization */ 595 void wait_for_kprobe_optimizer(void) 596 { 597 mutex_lock(&kprobe_mutex); 598 599 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 600 mutex_unlock(&kprobe_mutex); 601 602 /* this will also make optimizing_work execute immmediately */ 603 flush_delayed_work(&optimizing_work); 604 /* @optimizing_work might not have been queued yet, relax */ 605 cpu_relax(); 606 607 mutex_lock(&kprobe_mutex); 608 } 609 610 mutex_unlock(&kprobe_mutex); 611 } 612 613 /* Optimize kprobe if p is ready to be optimized */ 614 static void optimize_kprobe(struct kprobe *p) 615 { 616 struct optimized_kprobe *op; 617 618 /* Check if the kprobe is disabled or not ready for optimization. */ 619 if (!kprobe_optready(p) || !kprobes_allow_optimization || 620 (kprobe_disabled(p) || kprobes_all_disarmed)) 621 return; 622 623 /* kprobes with post_handler can not be optimized */ 624 if (p->post_handler) 625 return; 626 627 op = container_of(p, struct optimized_kprobe, kp); 628 629 /* Check there is no other kprobes at the optimized instructions */ 630 if (arch_check_optimized_kprobe(op) < 0) 631 return; 632 633 /* Check if it is already optimized. */ 634 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) 635 return; 636 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 637 638 if (!list_empty(&op->list)) 639 /* This is under unoptimizing. Just dequeue the probe */ 640 list_del_init(&op->list); 641 else { 642 list_add(&op->list, &optimizing_list); 643 kick_kprobe_optimizer(); 644 } 645 } 646 647 /* Short cut to direct unoptimizing */ 648 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 649 { 650 lockdep_assert_cpus_held(); 651 arch_unoptimize_kprobe(op); 652 if (kprobe_disabled(&op->kp)) 653 arch_disarm_kprobe(&op->kp); 654 } 655 656 /* Unoptimize a kprobe if p is optimized */ 657 static void unoptimize_kprobe(struct kprobe *p, bool force) 658 { 659 struct optimized_kprobe *op; 660 661 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 662 return; /* This is not an optprobe nor optimized */ 663 664 op = container_of(p, struct optimized_kprobe, kp); 665 if (!kprobe_optimized(p)) { 666 /* Unoptimized or unoptimizing case */ 667 if (force && !list_empty(&op->list)) { 668 /* 669 * Only if this is unoptimizing kprobe and forced, 670 * forcibly unoptimize it. (No need to unoptimize 671 * unoptimized kprobe again :) 672 */ 673 list_del_init(&op->list); 674 force_unoptimize_kprobe(op); 675 } 676 return; 677 } 678 679 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 680 if (!list_empty(&op->list)) { 681 /* Dequeue from the optimization queue */ 682 list_del_init(&op->list); 683 return; 684 } 685 /* Optimized kprobe case */ 686 if (force) 687 /* Forcibly update the code: this is a special case */ 688 force_unoptimize_kprobe(op); 689 else { 690 list_add(&op->list, &unoptimizing_list); 691 kick_kprobe_optimizer(); 692 } 693 } 694 695 /* Cancel unoptimizing for reusing */ 696 static int reuse_unused_kprobe(struct kprobe *ap) 697 { 698 struct optimized_kprobe *op; 699 700 /* 701 * Unused kprobe MUST be on the way of delayed unoptimizing (means 702 * there is still a relative jump) and disabled. 703 */ 704 op = container_of(ap, struct optimized_kprobe, kp); 705 WARN_ON_ONCE(list_empty(&op->list)); 706 /* Enable the probe again */ 707 ap->flags &= ~KPROBE_FLAG_DISABLED; 708 /* Optimize it again (remove from op->list) */ 709 if (!kprobe_optready(ap)) 710 return -EINVAL; 711 712 optimize_kprobe(ap); 713 return 0; 714 } 715 716 /* Remove optimized instructions */ 717 static void kill_optimized_kprobe(struct kprobe *p) 718 { 719 struct optimized_kprobe *op; 720 721 op = container_of(p, struct optimized_kprobe, kp); 722 if (!list_empty(&op->list)) 723 /* Dequeue from the (un)optimization queue */ 724 list_del_init(&op->list); 725 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 726 727 if (kprobe_unused(p)) { 728 /* Enqueue if it is unused */ 729 list_add(&op->list, &freeing_list); 730 /* 731 * Remove unused probes from the hash list. After waiting 732 * for synchronization, this probe is reclaimed. 733 * (reclaiming is done by do_free_cleaned_kprobes().) 734 */ 735 hlist_del_rcu(&op->kp.hlist); 736 } 737 738 /* Don't touch the code, because it is already freed. */ 739 arch_remove_optimized_kprobe(op); 740 } 741 742 static inline 743 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) 744 { 745 if (!kprobe_ftrace(p)) 746 arch_prepare_optimized_kprobe(op, p); 747 } 748 749 /* Try to prepare optimized instructions */ 750 static void prepare_optimized_kprobe(struct kprobe *p) 751 { 752 struct optimized_kprobe *op; 753 754 op = container_of(p, struct optimized_kprobe, kp); 755 __prepare_optimized_kprobe(op, p); 756 } 757 758 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 759 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 760 { 761 struct optimized_kprobe *op; 762 763 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 764 if (!op) 765 return NULL; 766 767 INIT_LIST_HEAD(&op->list); 768 op->kp.addr = p->addr; 769 __prepare_optimized_kprobe(op, p); 770 771 return &op->kp; 772 } 773 774 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 775 776 /* 777 * Prepare an optimized_kprobe and optimize it 778 * NOTE: p must be a normal registered kprobe 779 */ 780 static void try_to_optimize_kprobe(struct kprobe *p) 781 { 782 struct kprobe *ap; 783 struct optimized_kprobe *op; 784 785 /* Impossible to optimize ftrace-based kprobe */ 786 if (kprobe_ftrace(p)) 787 return; 788 789 /* For preparing optimization, jump_label_text_reserved() is called */ 790 cpus_read_lock(); 791 jump_label_lock(); 792 mutex_lock(&text_mutex); 793 794 ap = alloc_aggr_kprobe(p); 795 if (!ap) 796 goto out; 797 798 op = container_of(ap, struct optimized_kprobe, kp); 799 if (!arch_prepared_optinsn(&op->optinsn)) { 800 /* If failed to setup optimizing, fallback to kprobe */ 801 arch_remove_optimized_kprobe(op); 802 kfree(op); 803 goto out; 804 } 805 806 init_aggr_kprobe(ap, p); 807 optimize_kprobe(ap); /* This just kicks optimizer thread */ 808 809 out: 810 mutex_unlock(&text_mutex); 811 jump_label_unlock(); 812 cpus_read_unlock(); 813 } 814 815 #ifdef CONFIG_SYSCTL 816 static void optimize_all_kprobes(void) 817 { 818 struct hlist_head *head; 819 struct kprobe *p; 820 unsigned int i; 821 822 mutex_lock(&kprobe_mutex); 823 /* If optimization is already allowed, just return */ 824 if (kprobes_allow_optimization) 825 goto out; 826 827 cpus_read_lock(); 828 kprobes_allow_optimization = true; 829 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 830 head = &kprobe_table[i]; 831 hlist_for_each_entry_rcu(p, head, hlist) 832 if (!kprobe_disabled(p)) 833 optimize_kprobe(p); 834 } 835 cpus_read_unlock(); 836 printk(KERN_INFO "Kprobes globally optimized\n"); 837 out: 838 mutex_unlock(&kprobe_mutex); 839 } 840 841 static void unoptimize_all_kprobes(void) 842 { 843 struct hlist_head *head; 844 struct kprobe *p; 845 unsigned int i; 846 847 mutex_lock(&kprobe_mutex); 848 /* If optimization is already prohibited, just return */ 849 if (!kprobes_allow_optimization) { 850 mutex_unlock(&kprobe_mutex); 851 return; 852 } 853 854 cpus_read_lock(); 855 kprobes_allow_optimization = false; 856 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 857 head = &kprobe_table[i]; 858 hlist_for_each_entry_rcu(p, head, hlist) { 859 if (!kprobe_disabled(p)) 860 unoptimize_kprobe(p, false); 861 } 862 } 863 cpus_read_unlock(); 864 mutex_unlock(&kprobe_mutex); 865 866 /* Wait for unoptimizing completion */ 867 wait_for_kprobe_optimizer(); 868 printk(KERN_INFO "Kprobes globally unoptimized\n"); 869 } 870 871 static DEFINE_MUTEX(kprobe_sysctl_mutex); 872 int sysctl_kprobes_optimization; 873 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 874 void __user *buffer, size_t *length, 875 loff_t *ppos) 876 { 877 int ret; 878 879 mutex_lock(&kprobe_sysctl_mutex); 880 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 881 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 882 883 if (sysctl_kprobes_optimization) 884 optimize_all_kprobes(); 885 else 886 unoptimize_all_kprobes(); 887 mutex_unlock(&kprobe_sysctl_mutex); 888 889 return ret; 890 } 891 #endif /* CONFIG_SYSCTL */ 892 893 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 894 static void __arm_kprobe(struct kprobe *p) 895 { 896 struct kprobe *_p; 897 898 /* Check collision with other optimized kprobes */ 899 _p = get_optimized_kprobe((unsigned long)p->addr); 900 if (unlikely(_p)) 901 /* Fallback to unoptimized kprobe */ 902 unoptimize_kprobe(_p, true); 903 904 arch_arm_kprobe(p); 905 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 906 } 907 908 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 909 static void __disarm_kprobe(struct kprobe *p, bool reopt) 910 { 911 struct kprobe *_p; 912 913 /* Try to unoptimize */ 914 unoptimize_kprobe(p, kprobes_all_disarmed); 915 916 if (!kprobe_queued(p)) { 917 arch_disarm_kprobe(p); 918 /* If another kprobe was blocked, optimize it. */ 919 _p = get_optimized_kprobe((unsigned long)p->addr); 920 if (unlikely(_p) && reopt) 921 optimize_kprobe(_p); 922 } 923 /* TODO: reoptimize others after unoptimized this probe */ 924 } 925 926 #else /* !CONFIG_OPTPROBES */ 927 928 #define optimize_kprobe(p) do {} while (0) 929 #define unoptimize_kprobe(p, f) do {} while (0) 930 #define kill_optimized_kprobe(p) do {} while (0) 931 #define prepare_optimized_kprobe(p) do {} while (0) 932 #define try_to_optimize_kprobe(p) do {} while (0) 933 #define __arm_kprobe(p) arch_arm_kprobe(p) 934 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 935 #define kprobe_disarmed(p) kprobe_disabled(p) 936 #define wait_for_kprobe_optimizer() do {} while (0) 937 938 static int reuse_unused_kprobe(struct kprobe *ap) 939 { 940 /* 941 * If the optimized kprobe is NOT supported, the aggr kprobe is 942 * released at the same time that the last aggregated kprobe is 943 * unregistered. 944 * Thus there should be no chance to reuse unused kprobe. 945 */ 946 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 947 return -EINVAL; 948 } 949 950 static void free_aggr_kprobe(struct kprobe *p) 951 { 952 arch_remove_kprobe(p); 953 kfree(p); 954 } 955 956 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 957 { 958 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 959 } 960 #endif /* CONFIG_OPTPROBES */ 961 962 #ifdef CONFIG_KPROBES_ON_FTRACE 963 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 964 .func = kprobe_ftrace_handler, 965 .flags = FTRACE_OPS_FL_SAVE_REGS, 966 }; 967 968 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = { 969 .func = kprobe_ftrace_handler, 970 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 971 }; 972 973 static int kprobe_ipmodify_enabled; 974 static int kprobe_ftrace_enabled; 975 976 /* Must ensure p->addr is really on ftrace */ 977 static int prepare_kprobe(struct kprobe *p) 978 { 979 if (!kprobe_ftrace(p)) 980 return arch_prepare_kprobe(p); 981 982 return arch_prepare_kprobe_ftrace(p); 983 } 984 985 /* Caller must lock kprobe_mutex */ 986 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 987 int *cnt) 988 { 989 int ret = 0; 990 991 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0); 992 if (ret) { 993 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n", 994 p->addr, ret); 995 return ret; 996 } 997 998 if (*cnt == 0) { 999 ret = register_ftrace_function(ops); 1000 if (ret) { 1001 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret); 1002 goto err_ftrace; 1003 } 1004 } 1005 1006 (*cnt)++; 1007 return ret; 1008 1009 err_ftrace: 1010 /* 1011 * At this point, sinec ops is not registered, we should be sefe from 1012 * registering empty filter. 1013 */ 1014 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1015 return ret; 1016 } 1017 1018 static int arm_kprobe_ftrace(struct kprobe *p) 1019 { 1020 bool ipmodify = (p->post_handler != NULL); 1021 1022 return __arm_kprobe_ftrace(p, 1023 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1024 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1025 } 1026 1027 /* Caller must lock kprobe_mutex */ 1028 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1029 int *cnt) 1030 { 1031 int ret = 0; 1032 1033 if (*cnt == 1) { 1034 ret = unregister_ftrace_function(ops); 1035 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret)) 1036 return ret; 1037 } 1038 1039 (*cnt)--; 1040 1041 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1042 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n", 1043 p->addr, ret); 1044 return ret; 1045 } 1046 1047 static int disarm_kprobe_ftrace(struct kprobe *p) 1048 { 1049 bool ipmodify = (p->post_handler != NULL); 1050 1051 return __disarm_kprobe_ftrace(p, 1052 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1053 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1054 } 1055 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1056 #define prepare_kprobe(p) arch_prepare_kprobe(p) 1057 #define arm_kprobe_ftrace(p) (-ENODEV) 1058 #define disarm_kprobe_ftrace(p) (-ENODEV) 1059 #endif 1060 1061 /* Arm a kprobe with text_mutex */ 1062 static int arm_kprobe(struct kprobe *kp) 1063 { 1064 if (unlikely(kprobe_ftrace(kp))) 1065 return arm_kprobe_ftrace(kp); 1066 1067 cpus_read_lock(); 1068 mutex_lock(&text_mutex); 1069 __arm_kprobe(kp); 1070 mutex_unlock(&text_mutex); 1071 cpus_read_unlock(); 1072 1073 return 0; 1074 } 1075 1076 /* Disarm a kprobe with text_mutex */ 1077 static int disarm_kprobe(struct kprobe *kp, bool reopt) 1078 { 1079 if (unlikely(kprobe_ftrace(kp))) 1080 return disarm_kprobe_ftrace(kp); 1081 1082 cpus_read_lock(); 1083 mutex_lock(&text_mutex); 1084 __disarm_kprobe(kp, reopt); 1085 mutex_unlock(&text_mutex); 1086 cpus_read_unlock(); 1087 1088 return 0; 1089 } 1090 1091 /* 1092 * Aggregate handlers for multiple kprobes support - these handlers 1093 * take care of invoking the individual kprobe handlers on p->list 1094 */ 1095 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1096 { 1097 struct kprobe *kp; 1098 1099 list_for_each_entry_rcu(kp, &p->list, list) { 1100 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1101 set_kprobe_instance(kp); 1102 if (kp->pre_handler(kp, regs)) 1103 return 1; 1104 } 1105 reset_kprobe_instance(); 1106 } 1107 return 0; 1108 } 1109 NOKPROBE_SYMBOL(aggr_pre_handler); 1110 1111 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1112 unsigned long flags) 1113 { 1114 struct kprobe *kp; 1115 1116 list_for_each_entry_rcu(kp, &p->list, list) { 1117 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1118 set_kprobe_instance(kp); 1119 kp->post_handler(kp, regs, flags); 1120 reset_kprobe_instance(); 1121 } 1122 } 1123 } 1124 NOKPROBE_SYMBOL(aggr_post_handler); 1125 1126 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 1127 int trapnr) 1128 { 1129 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1130 1131 /* 1132 * if we faulted "during" the execution of a user specified 1133 * probe handler, invoke just that probe's fault handler 1134 */ 1135 if (cur && cur->fault_handler) { 1136 if (cur->fault_handler(cur, regs, trapnr)) 1137 return 1; 1138 } 1139 return 0; 1140 } 1141 NOKPROBE_SYMBOL(aggr_fault_handler); 1142 1143 /* Walks the list and increments nmissed count for multiprobe case */ 1144 void kprobes_inc_nmissed_count(struct kprobe *p) 1145 { 1146 struct kprobe *kp; 1147 if (!kprobe_aggrprobe(p)) { 1148 p->nmissed++; 1149 } else { 1150 list_for_each_entry_rcu(kp, &p->list, list) 1151 kp->nmissed++; 1152 } 1153 return; 1154 } 1155 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1156 1157 void recycle_rp_inst(struct kretprobe_instance *ri, 1158 struct hlist_head *head) 1159 { 1160 struct kretprobe *rp = ri->rp; 1161 1162 /* remove rp inst off the rprobe_inst_table */ 1163 hlist_del(&ri->hlist); 1164 INIT_HLIST_NODE(&ri->hlist); 1165 if (likely(rp)) { 1166 raw_spin_lock(&rp->lock); 1167 hlist_add_head(&ri->hlist, &rp->free_instances); 1168 raw_spin_unlock(&rp->lock); 1169 } else 1170 /* Unregistering */ 1171 hlist_add_head(&ri->hlist, head); 1172 } 1173 NOKPROBE_SYMBOL(recycle_rp_inst); 1174 1175 void kretprobe_hash_lock(struct task_struct *tsk, 1176 struct hlist_head **head, unsigned long *flags) 1177 __acquires(hlist_lock) 1178 { 1179 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1180 raw_spinlock_t *hlist_lock; 1181 1182 *head = &kretprobe_inst_table[hash]; 1183 hlist_lock = kretprobe_table_lock_ptr(hash); 1184 raw_spin_lock_irqsave(hlist_lock, *flags); 1185 } 1186 NOKPROBE_SYMBOL(kretprobe_hash_lock); 1187 1188 static void kretprobe_table_lock(unsigned long hash, 1189 unsigned long *flags) 1190 __acquires(hlist_lock) 1191 { 1192 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1193 raw_spin_lock_irqsave(hlist_lock, *flags); 1194 } 1195 NOKPROBE_SYMBOL(kretprobe_table_lock); 1196 1197 void kretprobe_hash_unlock(struct task_struct *tsk, 1198 unsigned long *flags) 1199 __releases(hlist_lock) 1200 { 1201 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1202 raw_spinlock_t *hlist_lock; 1203 1204 hlist_lock = kretprobe_table_lock_ptr(hash); 1205 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1206 } 1207 NOKPROBE_SYMBOL(kretprobe_hash_unlock); 1208 1209 static void kretprobe_table_unlock(unsigned long hash, 1210 unsigned long *flags) 1211 __releases(hlist_lock) 1212 { 1213 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1214 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1215 } 1216 NOKPROBE_SYMBOL(kretprobe_table_unlock); 1217 1218 /* 1219 * This function is called from finish_task_switch when task tk becomes dead, 1220 * so that we can recycle any function-return probe instances associated 1221 * with this task. These left over instances represent probed functions 1222 * that have been called but will never return. 1223 */ 1224 void kprobe_flush_task(struct task_struct *tk) 1225 { 1226 struct kretprobe_instance *ri; 1227 struct hlist_head *head, empty_rp; 1228 struct hlist_node *tmp; 1229 unsigned long hash, flags = 0; 1230 1231 if (unlikely(!kprobes_initialized)) 1232 /* Early boot. kretprobe_table_locks not yet initialized. */ 1233 return; 1234 1235 INIT_HLIST_HEAD(&empty_rp); 1236 hash = hash_ptr(tk, KPROBE_HASH_BITS); 1237 head = &kretprobe_inst_table[hash]; 1238 kretprobe_table_lock(hash, &flags); 1239 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 1240 if (ri->task == tk) 1241 recycle_rp_inst(ri, &empty_rp); 1242 } 1243 kretprobe_table_unlock(hash, &flags); 1244 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 1245 hlist_del(&ri->hlist); 1246 kfree(ri); 1247 } 1248 } 1249 NOKPROBE_SYMBOL(kprobe_flush_task); 1250 1251 static inline void free_rp_inst(struct kretprobe *rp) 1252 { 1253 struct kretprobe_instance *ri; 1254 struct hlist_node *next; 1255 1256 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) { 1257 hlist_del(&ri->hlist); 1258 kfree(ri); 1259 } 1260 } 1261 1262 static void cleanup_rp_inst(struct kretprobe *rp) 1263 { 1264 unsigned long flags, hash; 1265 struct kretprobe_instance *ri; 1266 struct hlist_node *next; 1267 struct hlist_head *head; 1268 1269 /* No race here */ 1270 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 1271 kretprobe_table_lock(hash, &flags); 1272 head = &kretprobe_inst_table[hash]; 1273 hlist_for_each_entry_safe(ri, next, head, hlist) { 1274 if (ri->rp == rp) 1275 ri->rp = NULL; 1276 } 1277 kretprobe_table_unlock(hash, &flags); 1278 } 1279 free_rp_inst(rp); 1280 } 1281 NOKPROBE_SYMBOL(cleanup_rp_inst); 1282 1283 /* Add the new probe to ap->list */ 1284 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1285 { 1286 if (p->post_handler) 1287 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1288 1289 list_add_rcu(&p->list, &ap->list); 1290 if (p->post_handler && !ap->post_handler) 1291 ap->post_handler = aggr_post_handler; 1292 1293 return 0; 1294 } 1295 1296 /* 1297 * Fill in the required fields of the "manager kprobe". Replace the 1298 * earlier kprobe in the hlist with the manager kprobe 1299 */ 1300 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1301 { 1302 /* Copy p's insn slot to ap */ 1303 copy_kprobe(p, ap); 1304 flush_insn_slot(ap); 1305 ap->addr = p->addr; 1306 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1307 ap->pre_handler = aggr_pre_handler; 1308 ap->fault_handler = aggr_fault_handler; 1309 /* We don't care the kprobe which has gone. */ 1310 if (p->post_handler && !kprobe_gone(p)) 1311 ap->post_handler = aggr_post_handler; 1312 1313 INIT_LIST_HEAD(&ap->list); 1314 INIT_HLIST_NODE(&ap->hlist); 1315 1316 list_add_rcu(&p->list, &ap->list); 1317 hlist_replace_rcu(&p->hlist, &ap->hlist); 1318 } 1319 1320 /* 1321 * This is the second or subsequent kprobe at the address - handle 1322 * the intricacies 1323 */ 1324 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1325 { 1326 int ret = 0; 1327 struct kprobe *ap = orig_p; 1328 1329 cpus_read_lock(); 1330 1331 /* For preparing optimization, jump_label_text_reserved() is called */ 1332 jump_label_lock(); 1333 mutex_lock(&text_mutex); 1334 1335 if (!kprobe_aggrprobe(orig_p)) { 1336 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1337 ap = alloc_aggr_kprobe(orig_p); 1338 if (!ap) { 1339 ret = -ENOMEM; 1340 goto out; 1341 } 1342 init_aggr_kprobe(ap, orig_p); 1343 } else if (kprobe_unused(ap)) { 1344 /* This probe is going to die. Rescue it */ 1345 ret = reuse_unused_kprobe(ap); 1346 if (ret) 1347 goto out; 1348 } 1349 1350 if (kprobe_gone(ap)) { 1351 /* 1352 * Attempting to insert new probe at the same location that 1353 * had a probe in the module vaddr area which already 1354 * freed. So, the instruction slot has already been 1355 * released. We need a new slot for the new probe. 1356 */ 1357 ret = arch_prepare_kprobe(ap); 1358 if (ret) 1359 /* 1360 * Even if fail to allocate new slot, don't need to 1361 * free aggr_probe. It will be used next time, or 1362 * freed by unregister_kprobe. 1363 */ 1364 goto out; 1365 1366 /* Prepare optimized instructions if possible. */ 1367 prepare_optimized_kprobe(ap); 1368 1369 /* 1370 * Clear gone flag to prevent allocating new slot again, and 1371 * set disabled flag because it is not armed yet. 1372 */ 1373 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1374 | KPROBE_FLAG_DISABLED; 1375 } 1376 1377 /* Copy ap's insn slot to p */ 1378 copy_kprobe(ap, p); 1379 ret = add_new_kprobe(ap, p); 1380 1381 out: 1382 mutex_unlock(&text_mutex); 1383 jump_label_unlock(); 1384 cpus_read_unlock(); 1385 1386 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1387 ap->flags &= ~KPROBE_FLAG_DISABLED; 1388 if (!kprobes_all_disarmed) { 1389 /* Arm the breakpoint again. */ 1390 ret = arm_kprobe(ap); 1391 if (ret) { 1392 ap->flags |= KPROBE_FLAG_DISABLED; 1393 list_del_rcu(&p->list); 1394 synchronize_rcu(); 1395 } 1396 } 1397 } 1398 return ret; 1399 } 1400 1401 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1402 { 1403 /* The __kprobes marked functions and entry code must not be probed */ 1404 return addr >= (unsigned long)__kprobes_text_start && 1405 addr < (unsigned long)__kprobes_text_end; 1406 } 1407 1408 static bool __within_kprobe_blacklist(unsigned long addr) 1409 { 1410 struct kprobe_blacklist_entry *ent; 1411 1412 if (arch_within_kprobe_blacklist(addr)) 1413 return true; 1414 /* 1415 * If there exists a kprobe_blacklist, verify and 1416 * fail any probe registration in the prohibited area 1417 */ 1418 list_for_each_entry(ent, &kprobe_blacklist, list) { 1419 if (addr >= ent->start_addr && addr < ent->end_addr) 1420 return true; 1421 } 1422 return false; 1423 } 1424 1425 bool within_kprobe_blacklist(unsigned long addr) 1426 { 1427 char symname[KSYM_NAME_LEN], *p; 1428 1429 if (__within_kprobe_blacklist(addr)) 1430 return true; 1431 1432 /* Check if the address is on a suffixed-symbol */ 1433 if (!lookup_symbol_name(addr, symname)) { 1434 p = strchr(symname, '.'); 1435 if (!p) 1436 return false; 1437 *p = '\0'; 1438 addr = (unsigned long)kprobe_lookup_name(symname, 0); 1439 if (addr) 1440 return __within_kprobe_blacklist(addr); 1441 } 1442 return false; 1443 } 1444 1445 /* 1446 * If we have a symbol_name argument, look it up and add the offset field 1447 * to it. This way, we can specify a relative address to a symbol. 1448 * This returns encoded errors if it fails to look up symbol or invalid 1449 * combination of parameters. 1450 */ 1451 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr, 1452 const char *symbol_name, unsigned int offset) 1453 { 1454 if ((symbol_name && addr) || (!symbol_name && !addr)) 1455 goto invalid; 1456 1457 if (symbol_name) { 1458 addr = kprobe_lookup_name(symbol_name, offset); 1459 if (!addr) 1460 return ERR_PTR(-ENOENT); 1461 } 1462 1463 addr = (kprobe_opcode_t *)(((char *)addr) + offset); 1464 if (addr) 1465 return addr; 1466 1467 invalid: 1468 return ERR_PTR(-EINVAL); 1469 } 1470 1471 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1472 { 1473 return _kprobe_addr(p->addr, p->symbol_name, p->offset); 1474 } 1475 1476 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1477 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1478 { 1479 struct kprobe *ap, *list_p; 1480 1481 ap = get_kprobe(p->addr); 1482 if (unlikely(!ap)) 1483 return NULL; 1484 1485 if (p != ap) { 1486 list_for_each_entry_rcu(list_p, &ap->list, list) 1487 if (list_p == p) 1488 /* kprobe p is a valid probe */ 1489 goto valid; 1490 return NULL; 1491 } 1492 valid: 1493 return ap; 1494 } 1495 1496 /* Return error if the kprobe is being re-registered */ 1497 static inline int check_kprobe_rereg(struct kprobe *p) 1498 { 1499 int ret = 0; 1500 1501 mutex_lock(&kprobe_mutex); 1502 if (__get_valid_kprobe(p)) 1503 ret = -EINVAL; 1504 mutex_unlock(&kprobe_mutex); 1505 1506 return ret; 1507 } 1508 1509 int __weak arch_check_ftrace_location(struct kprobe *p) 1510 { 1511 unsigned long ftrace_addr; 1512 1513 ftrace_addr = ftrace_location((unsigned long)p->addr); 1514 if (ftrace_addr) { 1515 #ifdef CONFIG_KPROBES_ON_FTRACE 1516 /* Given address is not on the instruction boundary */ 1517 if ((unsigned long)p->addr != ftrace_addr) 1518 return -EILSEQ; 1519 p->flags |= KPROBE_FLAG_FTRACE; 1520 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1521 return -EINVAL; 1522 #endif 1523 } 1524 return 0; 1525 } 1526 1527 static int check_kprobe_address_safe(struct kprobe *p, 1528 struct module **probed_mod) 1529 { 1530 int ret; 1531 1532 ret = arch_check_ftrace_location(p); 1533 if (ret) 1534 return ret; 1535 jump_label_lock(); 1536 preempt_disable(); 1537 1538 /* Ensure it is not in reserved area nor out of text */ 1539 if (!kernel_text_address((unsigned long) p->addr) || 1540 within_kprobe_blacklist((unsigned long) p->addr) || 1541 jump_label_text_reserved(p->addr, p->addr) || 1542 find_bug((unsigned long)p->addr)) { 1543 ret = -EINVAL; 1544 goto out; 1545 } 1546 1547 /* Check if are we probing a module */ 1548 *probed_mod = __module_text_address((unsigned long) p->addr); 1549 if (*probed_mod) { 1550 /* 1551 * We must hold a refcount of the probed module while updating 1552 * its code to prohibit unexpected unloading. 1553 */ 1554 if (unlikely(!try_module_get(*probed_mod))) { 1555 ret = -ENOENT; 1556 goto out; 1557 } 1558 1559 /* 1560 * If the module freed .init.text, we couldn't insert 1561 * kprobes in there. 1562 */ 1563 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1564 (*probed_mod)->state != MODULE_STATE_COMING) { 1565 module_put(*probed_mod); 1566 *probed_mod = NULL; 1567 ret = -ENOENT; 1568 } 1569 } 1570 out: 1571 preempt_enable(); 1572 jump_label_unlock(); 1573 1574 return ret; 1575 } 1576 1577 int register_kprobe(struct kprobe *p) 1578 { 1579 int ret; 1580 struct kprobe *old_p; 1581 struct module *probed_mod; 1582 kprobe_opcode_t *addr; 1583 1584 /* Adjust probe address from symbol */ 1585 addr = kprobe_addr(p); 1586 if (IS_ERR(addr)) 1587 return PTR_ERR(addr); 1588 p->addr = addr; 1589 1590 ret = check_kprobe_rereg(p); 1591 if (ret) 1592 return ret; 1593 1594 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1595 p->flags &= KPROBE_FLAG_DISABLED; 1596 p->nmissed = 0; 1597 INIT_LIST_HEAD(&p->list); 1598 1599 ret = check_kprobe_address_safe(p, &probed_mod); 1600 if (ret) 1601 return ret; 1602 1603 mutex_lock(&kprobe_mutex); 1604 1605 old_p = get_kprobe(p->addr); 1606 if (old_p) { 1607 /* Since this may unoptimize old_p, locking text_mutex. */ 1608 ret = register_aggr_kprobe(old_p, p); 1609 goto out; 1610 } 1611 1612 cpus_read_lock(); 1613 /* Prevent text modification */ 1614 mutex_lock(&text_mutex); 1615 ret = prepare_kprobe(p); 1616 mutex_unlock(&text_mutex); 1617 cpus_read_unlock(); 1618 if (ret) 1619 goto out; 1620 1621 INIT_HLIST_NODE(&p->hlist); 1622 hlist_add_head_rcu(&p->hlist, 1623 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1624 1625 if (!kprobes_all_disarmed && !kprobe_disabled(p)) { 1626 ret = arm_kprobe(p); 1627 if (ret) { 1628 hlist_del_rcu(&p->hlist); 1629 synchronize_rcu(); 1630 goto out; 1631 } 1632 } 1633 1634 /* Try to optimize kprobe */ 1635 try_to_optimize_kprobe(p); 1636 out: 1637 mutex_unlock(&kprobe_mutex); 1638 1639 if (probed_mod) 1640 module_put(probed_mod); 1641 1642 return ret; 1643 } 1644 EXPORT_SYMBOL_GPL(register_kprobe); 1645 1646 /* Check if all probes on the aggrprobe are disabled */ 1647 static int aggr_kprobe_disabled(struct kprobe *ap) 1648 { 1649 struct kprobe *kp; 1650 1651 list_for_each_entry_rcu(kp, &ap->list, list) 1652 if (!kprobe_disabled(kp)) 1653 /* 1654 * There is an active probe on the list. 1655 * We can't disable this ap. 1656 */ 1657 return 0; 1658 1659 return 1; 1660 } 1661 1662 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1663 static struct kprobe *__disable_kprobe(struct kprobe *p) 1664 { 1665 struct kprobe *orig_p; 1666 int ret; 1667 1668 /* Get an original kprobe for return */ 1669 orig_p = __get_valid_kprobe(p); 1670 if (unlikely(orig_p == NULL)) 1671 return ERR_PTR(-EINVAL); 1672 1673 if (!kprobe_disabled(p)) { 1674 /* Disable probe if it is a child probe */ 1675 if (p != orig_p) 1676 p->flags |= KPROBE_FLAG_DISABLED; 1677 1678 /* Try to disarm and disable this/parent probe */ 1679 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1680 /* 1681 * If kprobes_all_disarmed is set, orig_p 1682 * should have already been disarmed, so 1683 * skip unneed disarming process. 1684 */ 1685 if (!kprobes_all_disarmed) { 1686 ret = disarm_kprobe(orig_p, true); 1687 if (ret) { 1688 p->flags &= ~KPROBE_FLAG_DISABLED; 1689 return ERR_PTR(ret); 1690 } 1691 } 1692 orig_p->flags |= KPROBE_FLAG_DISABLED; 1693 } 1694 } 1695 1696 return orig_p; 1697 } 1698 1699 /* 1700 * Unregister a kprobe without a scheduler synchronization. 1701 */ 1702 static int __unregister_kprobe_top(struct kprobe *p) 1703 { 1704 struct kprobe *ap, *list_p; 1705 1706 /* Disable kprobe. This will disarm it if needed. */ 1707 ap = __disable_kprobe(p); 1708 if (IS_ERR(ap)) 1709 return PTR_ERR(ap); 1710 1711 if (ap == p) 1712 /* 1713 * This probe is an independent(and non-optimized) kprobe 1714 * (not an aggrprobe). Remove from the hash list. 1715 */ 1716 goto disarmed; 1717 1718 /* Following process expects this probe is an aggrprobe */ 1719 WARN_ON(!kprobe_aggrprobe(ap)); 1720 1721 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1722 /* 1723 * !disarmed could be happen if the probe is under delayed 1724 * unoptimizing. 1725 */ 1726 goto disarmed; 1727 else { 1728 /* If disabling probe has special handlers, update aggrprobe */ 1729 if (p->post_handler && !kprobe_gone(p)) { 1730 list_for_each_entry_rcu(list_p, &ap->list, list) { 1731 if ((list_p != p) && (list_p->post_handler)) 1732 goto noclean; 1733 } 1734 ap->post_handler = NULL; 1735 } 1736 noclean: 1737 /* 1738 * Remove from the aggrprobe: this path will do nothing in 1739 * __unregister_kprobe_bottom(). 1740 */ 1741 list_del_rcu(&p->list); 1742 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1743 /* 1744 * Try to optimize this probe again, because post 1745 * handler may have been changed. 1746 */ 1747 optimize_kprobe(ap); 1748 } 1749 return 0; 1750 1751 disarmed: 1752 hlist_del_rcu(&ap->hlist); 1753 return 0; 1754 } 1755 1756 static void __unregister_kprobe_bottom(struct kprobe *p) 1757 { 1758 struct kprobe *ap; 1759 1760 if (list_empty(&p->list)) 1761 /* This is an independent kprobe */ 1762 arch_remove_kprobe(p); 1763 else if (list_is_singular(&p->list)) { 1764 /* This is the last child of an aggrprobe */ 1765 ap = list_entry(p->list.next, struct kprobe, list); 1766 list_del(&p->list); 1767 free_aggr_kprobe(ap); 1768 } 1769 /* Otherwise, do nothing. */ 1770 } 1771 1772 int register_kprobes(struct kprobe **kps, int num) 1773 { 1774 int i, ret = 0; 1775 1776 if (num <= 0) 1777 return -EINVAL; 1778 for (i = 0; i < num; i++) { 1779 ret = register_kprobe(kps[i]); 1780 if (ret < 0) { 1781 if (i > 0) 1782 unregister_kprobes(kps, i); 1783 break; 1784 } 1785 } 1786 return ret; 1787 } 1788 EXPORT_SYMBOL_GPL(register_kprobes); 1789 1790 void unregister_kprobe(struct kprobe *p) 1791 { 1792 unregister_kprobes(&p, 1); 1793 } 1794 EXPORT_SYMBOL_GPL(unregister_kprobe); 1795 1796 void unregister_kprobes(struct kprobe **kps, int num) 1797 { 1798 int i; 1799 1800 if (num <= 0) 1801 return; 1802 mutex_lock(&kprobe_mutex); 1803 for (i = 0; i < num; i++) 1804 if (__unregister_kprobe_top(kps[i]) < 0) 1805 kps[i]->addr = NULL; 1806 mutex_unlock(&kprobe_mutex); 1807 1808 synchronize_rcu(); 1809 for (i = 0; i < num; i++) 1810 if (kps[i]->addr) 1811 __unregister_kprobe_bottom(kps[i]); 1812 } 1813 EXPORT_SYMBOL_GPL(unregister_kprobes); 1814 1815 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1816 unsigned long val, void *data) 1817 { 1818 return NOTIFY_DONE; 1819 } 1820 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1821 1822 static struct notifier_block kprobe_exceptions_nb = { 1823 .notifier_call = kprobe_exceptions_notify, 1824 .priority = 0x7fffffff /* we need to be notified first */ 1825 }; 1826 1827 unsigned long __weak arch_deref_entry_point(void *entry) 1828 { 1829 return (unsigned long)entry; 1830 } 1831 1832 #ifdef CONFIG_KRETPROBES 1833 /* 1834 * This kprobe pre_handler is registered with every kretprobe. When probe 1835 * hits it will set up the return probe. 1836 */ 1837 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 1838 { 1839 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1840 unsigned long hash, flags = 0; 1841 struct kretprobe_instance *ri; 1842 1843 /* 1844 * To avoid deadlocks, prohibit return probing in NMI contexts, 1845 * just skip the probe and increase the (inexact) 'nmissed' 1846 * statistical counter, so that the user is informed that 1847 * something happened: 1848 */ 1849 if (unlikely(in_nmi())) { 1850 rp->nmissed++; 1851 return 0; 1852 } 1853 1854 /* TODO: consider to only swap the RA after the last pre_handler fired */ 1855 hash = hash_ptr(current, KPROBE_HASH_BITS); 1856 raw_spin_lock_irqsave(&rp->lock, flags); 1857 if (!hlist_empty(&rp->free_instances)) { 1858 ri = hlist_entry(rp->free_instances.first, 1859 struct kretprobe_instance, hlist); 1860 hlist_del(&ri->hlist); 1861 raw_spin_unlock_irqrestore(&rp->lock, flags); 1862 1863 ri->rp = rp; 1864 ri->task = current; 1865 1866 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 1867 raw_spin_lock_irqsave(&rp->lock, flags); 1868 hlist_add_head(&ri->hlist, &rp->free_instances); 1869 raw_spin_unlock_irqrestore(&rp->lock, flags); 1870 return 0; 1871 } 1872 1873 arch_prepare_kretprobe(ri, regs); 1874 1875 /* XXX(hch): why is there no hlist_move_head? */ 1876 INIT_HLIST_NODE(&ri->hlist); 1877 kretprobe_table_lock(hash, &flags); 1878 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 1879 kretprobe_table_unlock(hash, &flags); 1880 } else { 1881 rp->nmissed++; 1882 raw_spin_unlock_irqrestore(&rp->lock, flags); 1883 } 1884 return 0; 1885 } 1886 NOKPROBE_SYMBOL(pre_handler_kretprobe); 1887 1888 bool __weak arch_kprobe_on_func_entry(unsigned long offset) 1889 { 1890 return !offset; 1891 } 1892 1893 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 1894 { 1895 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset); 1896 1897 if (IS_ERR(kp_addr)) 1898 return false; 1899 1900 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) || 1901 !arch_kprobe_on_func_entry(offset)) 1902 return false; 1903 1904 return true; 1905 } 1906 1907 int register_kretprobe(struct kretprobe *rp) 1908 { 1909 int ret = 0; 1910 struct kretprobe_instance *inst; 1911 int i; 1912 void *addr; 1913 1914 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset)) 1915 return -EINVAL; 1916 1917 if (kretprobe_blacklist_size) { 1918 addr = kprobe_addr(&rp->kp); 1919 if (IS_ERR(addr)) 1920 return PTR_ERR(addr); 1921 1922 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1923 if (kretprobe_blacklist[i].addr == addr) 1924 return -EINVAL; 1925 } 1926 } 1927 1928 rp->kp.pre_handler = pre_handler_kretprobe; 1929 rp->kp.post_handler = NULL; 1930 rp->kp.fault_handler = NULL; 1931 1932 /* Pre-allocate memory for max kretprobe instances */ 1933 if (rp->maxactive <= 0) { 1934 #ifdef CONFIG_PREEMPTION 1935 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 1936 #else 1937 rp->maxactive = num_possible_cpus(); 1938 #endif 1939 } 1940 raw_spin_lock_init(&rp->lock); 1941 INIT_HLIST_HEAD(&rp->free_instances); 1942 for (i = 0; i < rp->maxactive; i++) { 1943 inst = kmalloc(sizeof(struct kretprobe_instance) + 1944 rp->data_size, GFP_KERNEL); 1945 if (inst == NULL) { 1946 free_rp_inst(rp); 1947 return -ENOMEM; 1948 } 1949 INIT_HLIST_NODE(&inst->hlist); 1950 hlist_add_head(&inst->hlist, &rp->free_instances); 1951 } 1952 1953 rp->nmissed = 0; 1954 /* Establish function entry probe point */ 1955 ret = register_kprobe(&rp->kp); 1956 if (ret != 0) 1957 free_rp_inst(rp); 1958 return ret; 1959 } 1960 EXPORT_SYMBOL_GPL(register_kretprobe); 1961 1962 int register_kretprobes(struct kretprobe **rps, int num) 1963 { 1964 int ret = 0, i; 1965 1966 if (num <= 0) 1967 return -EINVAL; 1968 for (i = 0; i < num; i++) { 1969 ret = register_kretprobe(rps[i]); 1970 if (ret < 0) { 1971 if (i > 0) 1972 unregister_kretprobes(rps, i); 1973 break; 1974 } 1975 } 1976 return ret; 1977 } 1978 EXPORT_SYMBOL_GPL(register_kretprobes); 1979 1980 void unregister_kretprobe(struct kretprobe *rp) 1981 { 1982 unregister_kretprobes(&rp, 1); 1983 } 1984 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1985 1986 void unregister_kretprobes(struct kretprobe **rps, int num) 1987 { 1988 int i; 1989 1990 if (num <= 0) 1991 return; 1992 mutex_lock(&kprobe_mutex); 1993 for (i = 0; i < num; i++) 1994 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 1995 rps[i]->kp.addr = NULL; 1996 mutex_unlock(&kprobe_mutex); 1997 1998 synchronize_rcu(); 1999 for (i = 0; i < num; i++) { 2000 if (rps[i]->kp.addr) { 2001 __unregister_kprobe_bottom(&rps[i]->kp); 2002 cleanup_rp_inst(rps[i]); 2003 } 2004 } 2005 } 2006 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2007 2008 #else /* CONFIG_KRETPROBES */ 2009 int register_kretprobe(struct kretprobe *rp) 2010 { 2011 return -ENOSYS; 2012 } 2013 EXPORT_SYMBOL_GPL(register_kretprobe); 2014 2015 int register_kretprobes(struct kretprobe **rps, int num) 2016 { 2017 return -ENOSYS; 2018 } 2019 EXPORT_SYMBOL_GPL(register_kretprobes); 2020 2021 void unregister_kretprobe(struct kretprobe *rp) 2022 { 2023 } 2024 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2025 2026 void unregister_kretprobes(struct kretprobe **rps, int num) 2027 { 2028 } 2029 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2030 2031 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2032 { 2033 return 0; 2034 } 2035 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2036 2037 #endif /* CONFIG_KRETPROBES */ 2038 2039 /* Set the kprobe gone and remove its instruction buffer. */ 2040 static void kill_kprobe(struct kprobe *p) 2041 { 2042 struct kprobe *kp; 2043 2044 p->flags |= KPROBE_FLAG_GONE; 2045 if (kprobe_aggrprobe(p)) { 2046 /* 2047 * If this is an aggr_kprobe, we have to list all the 2048 * chained probes and mark them GONE. 2049 */ 2050 list_for_each_entry_rcu(kp, &p->list, list) 2051 kp->flags |= KPROBE_FLAG_GONE; 2052 p->post_handler = NULL; 2053 kill_optimized_kprobe(p); 2054 } 2055 /* 2056 * Here, we can remove insn_slot safely, because no thread calls 2057 * the original probed function (which will be freed soon) any more. 2058 */ 2059 arch_remove_kprobe(p); 2060 } 2061 2062 /* Disable one kprobe */ 2063 int disable_kprobe(struct kprobe *kp) 2064 { 2065 int ret = 0; 2066 struct kprobe *p; 2067 2068 mutex_lock(&kprobe_mutex); 2069 2070 /* Disable this kprobe */ 2071 p = __disable_kprobe(kp); 2072 if (IS_ERR(p)) 2073 ret = PTR_ERR(p); 2074 2075 mutex_unlock(&kprobe_mutex); 2076 return ret; 2077 } 2078 EXPORT_SYMBOL_GPL(disable_kprobe); 2079 2080 /* Enable one kprobe */ 2081 int enable_kprobe(struct kprobe *kp) 2082 { 2083 int ret = 0; 2084 struct kprobe *p; 2085 2086 mutex_lock(&kprobe_mutex); 2087 2088 /* Check whether specified probe is valid. */ 2089 p = __get_valid_kprobe(kp); 2090 if (unlikely(p == NULL)) { 2091 ret = -EINVAL; 2092 goto out; 2093 } 2094 2095 if (kprobe_gone(kp)) { 2096 /* This kprobe has gone, we couldn't enable it. */ 2097 ret = -EINVAL; 2098 goto out; 2099 } 2100 2101 if (p != kp) 2102 kp->flags &= ~KPROBE_FLAG_DISABLED; 2103 2104 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2105 p->flags &= ~KPROBE_FLAG_DISABLED; 2106 ret = arm_kprobe(p); 2107 if (ret) 2108 p->flags |= KPROBE_FLAG_DISABLED; 2109 } 2110 out: 2111 mutex_unlock(&kprobe_mutex); 2112 return ret; 2113 } 2114 EXPORT_SYMBOL_GPL(enable_kprobe); 2115 2116 /* Caller must NOT call this in usual path. This is only for critical case */ 2117 void dump_kprobe(struct kprobe *kp) 2118 { 2119 pr_err("Dumping kprobe:\n"); 2120 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n", 2121 kp->symbol_name, kp->offset, kp->addr); 2122 } 2123 NOKPROBE_SYMBOL(dump_kprobe); 2124 2125 int kprobe_add_ksym_blacklist(unsigned long entry) 2126 { 2127 struct kprobe_blacklist_entry *ent; 2128 unsigned long offset = 0, size = 0; 2129 2130 if (!kernel_text_address(entry) || 2131 !kallsyms_lookup_size_offset(entry, &size, &offset)) 2132 return -EINVAL; 2133 2134 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2135 if (!ent) 2136 return -ENOMEM; 2137 ent->start_addr = entry; 2138 ent->end_addr = entry + size; 2139 INIT_LIST_HEAD(&ent->list); 2140 list_add_tail(&ent->list, &kprobe_blacklist); 2141 2142 return (int)size; 2143 } 2144 2145 /* Add all symbols in given area into kprobe blacklist */ 2146 int kprobe_add_area_blacklist(unsigned long start, unsigned long end) 2147 { 2148 unsigned long entry; 2149 int ret = 0; 2150 2151 for (entry = start; entry < end; entry += ret) { 2152 ret = kprobe_add_ksym_blacklist(entry); 2153 if (ret < 0) 2154 return ret; 2155 if (ret == 0) /* In case of alias symbol */ 2156 ret = 1; 2157 } 2158 return 0; 2159 } 2160 2161 int __init __weak arch_populate_kprobe_blacklist(void) 2162 { 2163 return 0; 2164 } 2165 2166 /* 2167 * Lookup and populate the kprobe_blacklist. 2168 * 2169 * Unlike the kretprobe blacklist, we'll need to determine 2170 * the range of addresses that belong to the said functions, 2171 * since a kprobe need not necessarily be at the beginning 2172 * of a function. 2173 */ 2174 static int __init populate_kprobe_blacklist(unsigned long *start, 2175 unsigned long *end) 2176 { 2177 unsigned long entry; 2178 unsigned long *iter; 2179 int ret; 2180 2181 for (iter = start; iter < end; iter++) { 2182 entry = arch_deref_entry_point((void *)*iter); 2183 ret = kprobe_add_ksym_blacklist(entry); 2184 if (ret == -EINVAL) 2185 continue; 2186 if (ret < 0) 2187 return ret; 2188 } 2189 2190 /* Symbols in __kprobes_text are blacklisted */ 2191 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start, 2192 (unsigned long)__kprobes_text_end); 2193 2194 return ret ? : arch_populate_kprobe_blacklist(); 2195 } 2196 2197 /* Module notifier call back, checking kprobes on the module */ 2198 static int kprobes_module_callback(struct notifier_block *nb, 2199 unsigned long val, void *data) 2200 { 2201 struct module *mod = data; 2202 struct hlist_head *head; 2203 struct kprobe *p; 2204 unsigned int i; 2205 int checkcore = (val == MODULE_STATE_GOING); 2206 2207 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2208 return NOTIFY_DONE; 2209 2210 /* 2211 * When MODULE_STATE_GOING was notified, both of module .text and 2212 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2213 * notified, only .init.text section would be freed. We need to 2214 * disable kprobes which have been inserted in the sections. 2215 */ 2216 mutex_lock(&kprobe_mutex); 2217 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2218 head = &kprobe_table[i]; 2219 hlist_for_each_entry_rcu(p, head, hlist) 2220 if (within_module_init((unsigned long)p->addr, mod) || 2221 (checkcore && 2222 within_module_core((unsigned long)p->addr, mod))) { 2223 /* 2224 * The vaddr this probe is installed will soon 2225 * be vfreed buy not synced to disk. Hence, 2226 * disarming the breakpoint isn't needed. 2227 * 2228 * Note, this will also move any optimized probes 2229 * that are pending to be removed from their 2230 * corresponding lists to the freeing_list and 2231 * will not be touched by the delayed 2232 * kprobe_optimizer work handler. 2233 */ 2234 kill_kprobe(p); 2235 } 2236 } 2237 mutex_unlock(&kprobe_mutex); 2238 return NOTIFY_DONE; 2239 } 2240 2241 static struct notifier_block kprobe_module_nb = { 2242 .notifier_call = kprobes_module_callback, 2243 .priority = 0 2244 }; 2245 2246 /* Markers of _kprobe_blacklist section */ 2247 extern unsigned long __start_kprobe_blacklist[]; 2248 extern unsigned long __stop_kprobe_blacklist[]; 2249 2250 static int __init init_kprobes(void) 2251 { 2252 int i, err = 0; 2253 2254 /* FIXME allocate the probe table, currently defined statically */ 2255 /* initialize all list heads */ 2256 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2257 INIT_HLIST_HEAD(&kprobe_table[i]); 2258 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 2259 raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); 2260 } 2261 2262 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2263 __stop_kprobe_blacklist); 2264 if (err) { 2265 pr_err("kprobes: failed to populate blacklist: %d\n", err); 2266 pr_err("Please take care of using kprobes.\n"); 2267 } 2268 2269 if (kretprobe_blacklist_size) { 2270 /* lookup the function address from its name */ 2271 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2272 kretprobe_blacklist[i].addr = 2273 kprobe_lookup_name(kretprobe_blacklist[i].name, 0); 2274 if (!kretprobe_blacklist[i].addr) 2275 printk("kretprobe: lookup failed: %s\n", 2276 kretprobe_blacklist[i].name); 2277 } 2278 } 2279 2280 #if defined(CONFIG_OPTPROBES) 2281 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2282 /* Init kprobe_optinsn_slots */ 2283 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2284 #endif 2285 /* By default, kprobes can be optimized */ 2286 kprobes_allow_optimization = true; 2287 #endif 2288 2289 /* By default, kprobes are armed */ 2290 kprobes_all_disarmed = false; 2291 2292 err = arch_init_kprobes(); 2293 if (!err) 2294 err = register_die_notifier(&kprobe_exceptions_nb); 2295 if (!err) 2296 err = register_module_notifier(&kprobe_module_nb); 2297 2298 kprobes_initialized = (err == 0); 2299 2300 if (!err) 2301 init_test_probes(); 2302 return err; 2303 } 2304 subsys_initcall(init_kprobes); 2305 2306 #ifdef CONFIG_DEBUG_FS 2307 static void report_probe(struct seq_file *pi, struct kprobe *p, 2308 const char *sym, int offset, char *modname, struct kprobe *pp) 2309 { 2310 char *kprobe_type; 2311 void *addr = p->addr; 2312 2313 if (p->pre_handler == pre_handler_kretprobe) 2314 kprobe_type = "r"; 2315 else 2316 kprobe_type = "k"; 2317 2318 if (!kallsyms_show_value()) 2319 addr = NULL; 2320 2321 if (sym) 2322 seq_printf(pi, "%px %s %s+0x%x %s ", 2323 addr, kprobe_type, sym, offset, 2324 (modname ? modname : " ")); 2325 else /* try to use %pS */ 2326 seq_printf(pi, "%px %s %pS ", 2327 addr, kprobe_type, p->addr); 2328 2329 if (!pp) 2330 pp = p; 2331 seq_printf(pi, "%s%s%s%s\n", 2332 (kprobe_gone(p) ? "[GONE]" : ""), 2333 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2334 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2335 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2336 } 2337 2338 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2339 { 2340 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2341 } 2342 2343 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2344 { 2345 (*pos)++; 2346 if (*pos >= KPROBE_TABLE_SIZE) 2347 return NULL; 2348 return pos; 2349 } 2350 2351 static void kprobe_seq_stop(struct seq_file *f, void *v) 2352 { 2353 /* Nothing to do */ 2354 } 2355 2356 static int show_kprobe_addr(struct seq_file *pi, void *v) 2357 { 2358 struct hlist_head *head; 2359 struct kprobe *p, *kp; 2360 const char *sym = NULL; 2361 unsigned int i = *(loff_t *) v; 2362 unsigned long offset = 0; 2363 char *modname, namebuf[KSYM_NAME_LEN]; 2364 2365 head = &kprobe_table[i]; 2366 preempt_disable(); 2367 hlist_for_each_entry_rcu(p, head, hlist) { 2368 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2369 &offset, &modname, namebuf); 2370 if (kprobe_aggrprobe(p)) { 2371 list_for_each_entry_rcu(kp, &p->list, list) 2372 report_probe(pi, kp, sym, offset, modname, p); 2373 } else 2374 report_probe(pi, p, sym, offset, modname, NULL); 2375 } 2376 preempt_enable(); 2377 return 0; 2378 } 2379 2380 static const struct seq_operations kprobes_seq_ops = { 2381 .start = kprobe_seq_start, 2382 .next = kprobe_seq_next, 2383 .stop = kprobe_seq_stop, 2384 .show = show_kprobe_addr 2385 }; 2386 2387 static int kprobes_open(struct inode *inode, struct file *filp) 2388 { 2389 return seq_open(filp, &kprobes_seq_ops); 2390 } 2391 2392 static const struct file_operations debugfs_kprobes_operations = { 2393 .open = kprobes_open, 2394 .read = seq_read, 2395 .llseek = seq_lseek, 2396 .release = seq_release, 2397 }; 2398 2399 /* kprobes/blacklist -- shows which functions can not be probed */ 2400 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2401 { 2402 return seq_list_start(&kprobe_blacklist, *pos); 2403 } 2404 2405 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2406 { 2407 return seq_list_next(v, &kprobe_blacklist, pos); 2408 } 2409 2410 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2411 { 2412 struct kprobe_blacklist_entry *ent = 2413 list_entry(v, struct kprobe_blacklist_entry, list); 2414 2415 /* 2416 * If /proc/kallsyms is not showing kernel address, we won't 2417 * show them here either. 2418 */ 2419 if (!kallsyms_show_value()) 2420 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL, 2421 (void *)ent->start_addr); 2422 else 2423 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr, 2424 (void *)ent->end_addr, (void *)ent->start_addr); 2425 return 0; 2426 } 2427 2428 static const struct seq_operations kprobe_blacklist_seq_ops = { 2429 .start = kprobe_blacklist_seq_start, 2430 .next = kprobe_blacklist_seq_next, 2431 .stop = kprobe_seq_stop, /* Reuse void function */ 2432 .show = kprobe_blacklist_seq_show, 2433 }; 2434 2435 static int kprobe_blacklist_open(struct inode *inode, struct file *filp) 2436 { 2437 return seq_open(filp, &kprobe_blacklist_seq_ops); 2438 } 2439 2440 static const struct file_operations debugfs_kprobe_blacklist_ops = { 2441 .open = kprobe_blacklist_open, 2442 .read = seq_read, 2443 .llseek = seq_lseek, 2444 .release = seq_release, 2445 }; 2446 2447 static int arm_all_kprobes(void) 2448 { 2449 struct hlist_head *head; 2450 struct kprobe *p; 2451 unsigned int i, total = 0, errors = 0; 2452 int err, ret = 0; 2453 2454 mutex_lock(&kprobe_mutex); 2455 2456 /* If kprobes are armed, just return */ 2457 if (!kprobes_all_disarmed) 2458 goto already_enabled; 2459 2460 /* 2461 * optimize_kprobe() called by arm_kprobe() checks 2462 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2463 * arm_kprobe. 2464 */ 2465 kprobes_all_disarmed = false; 2466 /* Arming kprobes doesn't optimize kprobe itself */ 2467 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2468 head = &kprobe_table[i]; 2469 /* Arm all kprobes on a best-effort basis */ 2470 hlist_for_each_entry_rcu(p, head, hlist) { 2471 if (!kprobe_disabled(p)) { 2472 err = arm_kprobe(p); 2473 if (err) { 2474 errors++; 2475 ret = err; 2476 } 2477 total++; 2478 } 2479 } 2480 } 2481 2482 if (errors) 2483 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n", 2484 errors, total); 2485 else 2486 pr_info("Kprobes globally enabled\n"); 2487 2488 already_enabled: 2489 mutex_unlock(&kprobe_mutex); 2490 return ret; 2491 } 2492 2493 static int disarm_all_kprobes(void) 2494 { 2495 struct hlist_head *head; 2496 struct kprobe *p; 2497 unsigned int i, total = 0, errors = 0; 2498 int err, ret = 0; 2499 2500 mutex_lock(&kprobe_mutex); 2501 2502 /* If kprobes are already disarmed, just return */ 2503 if (kprobes_all_disarmed) { 2504 mutex_unlock(&kprobe_mutex); 2505 return 0; 2506 } 2507 2508 kprobes_all_disarmed = true; 2509 2510 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2511 head = &kprobe_table[i]; 2512 /* Disarm all kprobes on a best-effort basis */ 2513 hlist_for_each_entry_rcu(p, head, hlist) { 2514 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { 2515 err = disarm_kprobe(p, false); 2516 if (err) { 2517 errors++; 2518 ret = err; 2519 } 2520 total++; 2521 } 2522 } 2523 } 2524 2525 if (errors) 2526 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n", 2527 errors, total); 2528 else 2529 pr_info("Kprobes globally disabled\n"); 2530 2531 mutex_unlock(&kprobe_mutex); 2532 2533 /* Wait for disarming all kprobes by optimizer */ 2534 wait_for_kprobe_optimizer(); 2535 2536 return ret; 2537 } 2538 2539 /* 2540 * XXX: The debugfs bool file interface doesn't allow for callbacks 2541 * when the bool state is switched. We can reuse that facility when 2542 * available 2543 */ 2544 static ssize_t read_enabled_file_bool(struct file *file, 2545 char __user *user_buf, size_t count, loff_t *ppos) 2546 { 2547 char buf[3]; 2548 2549 if (!kprobes_all_disarmed) 2550 buf[0] = '1'; 2551 else 2552 buf[0] = '0'; 2553 buf[1] = '\n'; 2554 buf[2] = 0x00; 2555 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2556 } 2557 2558 static ssize_t write_enabled_file_bool(struct file *file, 2559 const char __user *user_buf, size_t count, loff_t *ppos) 2560 { 2561 char buf[32]; 2562 size_t buf_size; 2563 int ret = 0; 2564 2565 buf_size = min(count, (sizeof(buf)-1)); 2566 if (copy_from_user(buf, user_buf, buf_size)) 2567 return -EFAULT; 2568 2569 buf[buf_size] = '\0'; 2570 switch (buf[0]) { 2571 case 'y': 2572 case 'Y': 2573 case '1': 2574 ret = arm_all_kprobes(); 2575 break; 2576 case 'n': 2577 case 'N': 2578 case '0': 2579 ret = disarm_all_kprobes(); 2580 break; 2581 default: 2582 return -EINVAL; 2583 } 2584 2585 if (ret) 2586 return ret; 2587 2588 return count; 2589 } 2590 2591 static const struct file_operations fops_kp = { 2592 .read = read_enabled_file_bool, 2593 .write = write_enabled_file_bool, 2594 .llseek = default_llseek, 2595 }; 2596 2597 static int __init debugfs_kprobe_init(void) 2598 { 2599 struct dentry *dir; 2600 unsigned int value = 1; 2601 2602 dir = debugfs_create_dir("kprobes", NULL); 2603 2604 debugfs_create_file("list", 0400, dir, NULL, 2605 &debugfs_kprobes_operations); 2606 2607 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp); 2608 2609 debugfs_create_file("blacklist", 0400, dir, NULL, 2610 &debugfs_kprobe_blacklist_ops); 2611 2612 return 0; 2613 } 2614 2615 late_initcall(debugfs_kprobe_init); 2616 #endif /* CONFIG_DEBUG_FS */ 2617