1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright (C) IBM Corporation, 2002, 2004 6 * 7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 8 * Probes initial implementation (includes suggestions from 9 * Rusty Russell). 10 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 11 * hlists and exceptions notifier as suggested by Andi Kleen. 12 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 13 * interface to access function arguments. 14 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 15 * exceptions notifier to be first on the priority list. 16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 18 * <prasanna@in.ibm.com> added function-return probes. 19 */ 20 21 #define pr_fmt(fmt) "kprobes: " fmt 22 23 #include <linux/kprobes.h> 24 #include <linux/hash.h> 25 #include <linux/init.h> 26 #include <linux/slab.h> 27 #include <linux/stddef.h> 28 #include <linux/export.h> 29 #include <linux/moduleloader.h> 30 #include <linux/kallsyms.h> 31 #include <linux/freezer.h> 32 #include <linux/seq_file.h> 33 #include <linux/debugfs.h> 34 #include <linux/sysctl.h> 35 #include <linux/kdebug.h> 36 #include <linux/memory.h> 37 #include <linux/ftrace.h> 38 #include <linux/cpu.h> 39 #include <linux/jump_label.h> 40 #include <linux/static_call.h> 41 #include <linux/perf_event.h> 42 43 #include <asm/sections.h> 44 #include <asm/cacheflush.h> 45 #include <asm/errno.h> 46 #include <linux/uaccess.h> 47 48 #define KPROBE_HASH_BITS 6 49 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 50 51 52 static int kprobes_initialized; 53 /* kprobe_table can be accessed by 54 * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held. 55 * Or 56 * - RCU hlist traversal under disabling preempt (breakpoint handlers) 57 */ 58 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 59 60 /* NOTE: change this value only with 'kprobe_mutex' held */ 61 static bool kprobes_all_disarmed; 62 63 /* This protects 'kprobe_table' and 'optimizing_list' */ 64 static DEFINE_MUTEX(kprobe_mutex); 65 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance); 66 67 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, 68 unsigned int __unused) 69 { 70 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); 71 } 72 73 /* 74 * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where 75 * kprobes can not probe. 76 */ 77 static LIST_HEAD(kprobe_blacklist); 78 79 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 80 /* 81 * 'kprobe::ainsn.insn' points to the copy of the instruction to be 82 * single-stepped. x86_64, POWER4 and above have no-exec support and 83 * stepping on the instruction on a vmalloced/kmalloced/data page 84 * is a recipe for disaster 85 */ 86 struct kprobe_insn_page { 87 struct list_head list; 88 kprobe_opcode_t *insns; /* Page of instruction slots */ 89 struct kprobe_insn_cache *cache; 90 int nused; 91 int ngarbage; 92 char slot_used[]; 93 }; 94 95 #define KPROBE_INSN_PAGE_SIZE(slots) \ 96 (offsetof(struct kprobe_insn_page, slot_used) + \ 97 (sizeof(char) * (slots))) 98 99 static int slots_per_page(struct kprobe_insn_cache *c) 100 { 101 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 102 } 103 104 enum kprobe_slot_state { 105 SLOT_CLEAN = 0, 106 SLOT_DIRTY = 1, 107 SLOT_USED = 2, 108 }; 109 110 void __weak *alloc_insn_page(void) 111 { 112 /* 113 * Use module_alloc() so this page is within +/- 2GB of where the 114 * kernel image and loaded module images reside. This is required 115 * for most of the architectures. 116 * (e.g. x86-64 needs this to handle the %rip-relative fixups.) 117 */ 118 return module_alloc(PAGE_SIZE); 119 } 120 121 static void free_insn_page(void *page) 122 { 123 module_memfree(page); 124 } 125 126 struct kprobe_insn_cache kprobe_insn_slots = { 127 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 128 .alloc = alloc_insn_page, 129 .free = free_insn_page, 130 .sym = KPROBE_INSN_PAGE_SYM, 131 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 132 .insn_size = MAX_INSN_SIZE, 133 .nr_garbage = 0, 134 }; 135 static int collect_garbage_slots(struct kprobe_insn_cache *c); 136 137 /** 138 * __get_insn_slot() - Find a slot on an executable page for an instruction. 139 * We allocate an executable page if there's no room on existing ones. 140 */ 141 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 142 { 143 struct kprobe_insn_page *kip; 144 kprobe_opcode_t *slot = NULL; 145 146 /* Since the slot array is not protected by rcu, we need a mutex */ 147 mutex_lock(&c->mutex); 148 retry: 149 rcu_read_lock(); 150 list_for_each_entry_rcu(kip, &c->pages, list) { 151 if (kip->nused < slots_per_page(c)) { 152 int i; 153 154 for (i = 0; i < slots_per_page(c); i++) { 155 if (kip->slot_used[i] == SLOT_CLEAN) { 156 kip->slot_used[i] = SLOT_USED; 157 kip->nused++; 158 slot = kip->insns + (i * c->insn_size); 159 rcu_read_unlock(); 160 goto out; 161 } 162 } 163 /* kip->nused is broken. Fix it. */ 164 kip->nused = slots_per_page(c); 165 WARN_ON(1); 166 } 167 } 168 rcu_read_unlock(); 169 170 /* If there are any garbage slots, collect it and try again. */ 171 if (c->nr_garbage && collect_garbage_slots(c) == 0) 172 goto retry; 173 174 /* All out of space. Need to allocate a new page. */ 175 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 176 if (!kip) 177 goto out; 178 179 kip->insns = c->alloc(); 180 if (!kip->insns) { 181 kfree(kip); 182 goto out; 183 } 184 INIT_LIST_HEAD(&kip->list); 185 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 186 kip->slot_used[0] = SLOT_USED; 187 kip->nused = 1; 188 kip->ngarbage = 0; 189 kip->cache = c; 190 list_add_rcu(&kip->list, &c->pages); 191 slot = kip->insns; 192 193 /* Record the perf ksymbol register event after adding the page */ 194 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns, 195 PAGE_SIZE, false, c->sym); 196 out: 197 mutex_unlock(&c->mutex); 198 return slot; 199 } 200 201 /* Return true if all garbages are collected, otherwise false. */ 202 static bool collect_one_slot(struct kprobe_insn_page *kip, int idx) 203 { 204 kip->slot_used[idx] = SLOT_CLEAN; 205 kip->nused--; 206 if (kip->nused == 0) { 207 /* 208 * Page is no longer in use. Free it unless 209 * it's the last one. We keep the last one 210 * so as not to have to set it up again the 211 * next time somebody inserts a probe. 212 */ 213 if (!list_is_singular(&kip->list)) { 214 /* 215 * Record perf ksymbol unregister event before removing 216 * the page. 217 */ 218 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 219 (unsigned long)kip->insns, PAGE_SIZE, true, 220 kip->cache->sym); 221 list_del_rcu(&kip->list); 222 synchronize_rcu(); 223 kip->cache->free(kip->insns); 224 kfree(kip); 225 } 226 return true; 227 } 228 return false; 229 } 230 231 static int collect_garbage_slots(struct kprobe_insn_cache *c) 232 { 233 struct kprobe_insn_page *kip, *next; 234 235 /* Ensure no-one is interrupted on the garbages */ 236 synchronize_rcu(); 237 238 list_for_each_entry_safe(kip, next, &c->pages, list) { 239 int i; 240 241 if (kip->ngarbage == 0) 242 continue; 243 kip->ngarbage = 0; /* we will collect all garbages */ 244 for (i = 0; i < slots_per_page(c); i++) { 245 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 246 break; 247 } 248 } 249 c->nr_garbage = 0; 250 return 0; 251 } 252 253 void __free_insn_slot(struct kprobe_insn_cache *c, 254 kprobe_opcode_t *slot, int dirty) 255 { 256 struct kprobe_insn_page *kip; 257 long idx; 258 259 mutex_lock(&c->mutex); 260 rcu_read_lock(); 261 list_for_each_entry_rcu(kip, &c->pages, list) { 262 idx = ((long)slot - (long)kip->insns) / 263 (c->insn_size * sizeof(kprobe_opcode_t)); 264 if (idx >= 0 && idx < slots_per_page(c)) 265 goto out; 266 } 267 /* Could not find this slot. */ 268 WARN_ON(1); 269 kip = NULL; 270 out: 271 rcu_read_unlock(); 272 /* Mark and sweep: this may sleep */ 273 if (kip) { 274 /* Check double free */ 275 WARN_ON(kip->slot_used[idx] != SLOT_USED); 276 if (dirty) { 277 kip->slot_used[idx] = SLOT_DIRTY; 278 kip->ngarbage++; 279 if (++c->nr_garbage > slots_per_page(c)) 280 collect_garbage_slots(c); 281 } else { 282 collect_one_slot(kip, idx); 283 } 284 } 285 mutex_unlock(&c->mutex); 286 } 287 288 /* 289 * Check given address is on the page of kprobe instruction slots. 290 * This will be used for checking whether the address on a stack 291 * is on a text area or not. 292 */ 293 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 294 { 295 struct kprobe_insn_page *kip; 296 bool ret = false; 297 298 rcu_read_lock(); 299 list_for_each_entry_rcu(kip, &c->pages, list) { 300 if (addr >= (unsigned long)kip->insns && 301 addr < (unsigned long)kip->insns + PAGE_SIZE) { 302 ret = true; 303 break; 304 } 305 } 306 rcu_read_unlock(); 307 308 return ret; 309 } 310 311 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum, 312 unsigned long *value, char *type, char *sym) 313 { 314 struct kprobe_insn_page *kip; 315 int ret = -ERANGE; 316 317 rcu_read_lock(); 318 list_for_each_entry_rcu(kip, &c->pages, list) { 319 if ((*symnum)--) 320 continue; 321 strscpy(sym, c->sym, KSYM_NAME_LEN); 322 *type = 't'; 323 *value = (unsigned long)kip->insns; 324 ret = 0; 325 break; 326 } 327 rcu_read_unlock(); 328 329 return ret; 330 } 331 332 #ifdef CONFIG_OPTPROBES 333 void __weak *alloc_optinsn_page(void) 334 { 335 return alloc_insn_page(); 336 } 337 338 void __weak free_optinsn_page(void *page) 339 { 340 free_insn_page(page); 341 } 342 343 /* For optimized_kprobe buffer */ 344 struct kprobe_insn_cache kprobe_optinsn_slots = { 345 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 346 .alloc = alloc_optinsn_page, 347 .free = free_optinsn_page, 348 .sym = KPROBE_OPTINSN_PAGE_SYM, 349 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 350 /* .insn_size is initialized later */ 351 .nr_garbage = 0, 352 }; 353 #endif 354 #endif 355 356 /* We have preemption disabled.. so it is safe to use __ versions */ 357 static inline void set_kprobe_instance(struct kprobe *kp) 358 { 359 __this_cpu_write(kprobe_instance, kp); 360 } 361 362 static inline void reset_kprobe_instance(void) 363 { 364 __this_cpu_write(kprobe_instance, NULL); 365 } 366 367 /* 368 * This routine is called either: 369 * - under the 'kprobe_mutex' - during kprobe_[un]register(). 370 * OR 371 * - with preemption disabled - from architecture specific code. 372 */ 373 struct kprobe *get_kprobe(void *addr) 374 { 375 struct hlist_head *head; 376 struct kprobe *p; 377 378 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 379 hlist_for_each_entry_rcu(p, head, hlist, 380 lockdep_is_held(&kprobe_mutex)) { 381 if (p->addr == addr) 382 return p; 383 } 384 385 return NULL; 386 } 387 NOKPROBE_SYMBOL(get_kprobe); 388 389 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 390 391 /* Return true if 'p' is an aggregator */ 392 static inline bool kprobe_aggrprobe(struct kprobe *p) 393 { 394 return p->pre_handler == aggr_pre_handler; 395 } 396 397 /* Return true if 'p' is unused */ 398 static inline bool kprobe_unused(struct kprobe *p) 399 { 400 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 401 list_empty(&p->list); 402 } 403 404 /* Keep all fields in the kprobe consistent. */ 405 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 406 { 407 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 408 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 409 } 410 411 #ifdef CONFIG_OPTPROBES 412 /* NOTE: This is protected by 'kprobe_mutex'. */ 413 static bool kprobes_allow_optimization; 414 415 /* 416 * Call all 'kprobe::pre_handler' on the list, but ignores its return value. 417 * This must be called from arch-dep optimized caller. 418 */ 419 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 420 { 421 struct kprobe *kp; 422 423 list_for_each_entry_rcu(kp, &p->list, list) { 424 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 425 set_kprobe_instance(kp); 426 kp->pre_handler(kp, regs); 427 } 428 reset_kprobe_instance(); 429 } 430 } 431 NOKPROBE_SYMBOL(opt_pre_handler); 432 433 /* Free optimized instructions and optimized_kprobe */ 434 static void free_aggr_kprobe(struct kprobe *p) 435 { 436 struct optimized_kprobe *op; 437 438 op = container_of(p, struct optimized_kprobe, kp); 439 arch_remove_optimized_kprobe(op); 440 arch_remove_kprobe(p); 441 kfree(op); 442 } 443 444 /* Return true if the kprobe is ready for optimization. */ 445 static inline int kprobe_optready(struct kprobe *p) 446 { 447 struct optimized_kprobe *op; 448 449 if (kprobe_aggrprobe(p)) { 450 op = container_of(p, struct optimized_kprobe, kp); 451 return arch_prepared_optinsn(&op->optinsn); 452 } 453 454 return 0; 455 } 456 457 /* Return true if the kprobe is disarmed. Note: p must be on hash list */ 458 static inline bool kprobe_disarmed(struct kprobe *p) 459 { 460 struct optimized_kprobe *op; 461 462 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 463 if (!kprobe_aggrprobe(p)) 464 return kprobe_disabled(p); 465 466 op = container_of(p, struct optimized_kprobe, kp); 467 468 return kprobe_disabled(p) && list_empty(&op->list); 469 } 470 471 /* Return true if the probe is queued on (un)optimizing lists */ 472 static bool kprobe_queued(struct kprobe *p) 473 { 474 struct optimized_kprobe *op; 475 476 if (kprobe_aggrprobe(p)) { 477 op = container_of(p, struct optimized_kprobe, kp); 478 if (!list_empty(&op->list)) 479 return true; 480 } 481 return false; 482 } 483 484 /* 485 * Return an optimized kprobe whose optimizing code replaces 486 * instructions including 'addr' (exclude breakpoint). 487 */ 488 static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr) 489 { 490 int i; 491 struct kprobe *p = NULL; 492 struct optimized_kprobe *op; 493 494 /* Don't check i == 0, since that is a breakpoint case. */ 495 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++) 496 p = get_kprobe(addr - i); 497 498 if (p && kprobe_optready(p)) { 499 op = container_of(p, struct optimized_kprobe, kp); 500 if (arch_within_optimized_kprobe(op, addr)) 501 return p; 502 } 503 504 return NULL; 505 } 506 507 /* Optimization staging list, protected by 'kprobe_mutex' */ 508 static LIST_HEAD(optimizing_list); 509 static LIST_HEAD(unoptimizing_list); 510 static LIST_HEAD(freeing_list); 511 512 static void kprobe_optimizer(struct work_struct *work); 513 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 514 #define OPTIMIZE_DELAY 5 515 516 /* 517 * Optimize (replace a breakpoint with a jump) kprobes listed on 518 * 'optimizing_list'. 519 */ 520 static void do_optimize_kprobes(void) 521 { 522 lockdep_assert_held(&text_mutex); 523 /* 524 * The optimization/unoptimization refers 'online_cpus' via 525 * stop_machine() and cpu-hotplug modifies the 'online_cpus'. 526 * And same time, 'text_mutex' will be held in cpu-hotplug and here. 527 * This combination can cause a deadlock (cpu-hotplug tries to lock 528 * 'text_mutex' but stop_machine() can not be done because 529 * the 'online_cpus' has been changed) 530 * To avoid this deadlock, caller must have locked cpu-hotplug 531 * for preventing cpu-hotplug outside of 'text_mutex' locking. 532 */ 533 lockdep_assert_cpus_held(); 534 535 /* Optimization never be done when disarmed */ 536 if (kprobes_all_disarmed || !kprobes_allow_optimization || 537 list_empty(&optimizing_list)) 538 return; 539 540 arch_optimize_kprobes(&optimizing_list); 541 } 542 543 /* 544 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 545 * if need) kprobes listed on 'unoptimizing_list'. 546 */ 547 static void do_unoptimize_kprobes(void) 548 { 549 struct optimized_kprobe *op, *tmp; 550 551 lockdep_assert_held(&text_mutex); 552 /* See comment in do_optimize_kprobes() */ 553 lockdep_assert_cpus_held(); 554 555 /* Unoptimization must be done anytime */ 556 if (list_empty(&unoptimizing_list)) 557 return; 558 559 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 560 /* Loop on 'freeing_list' for disarming */ 561 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 562 /* Switching from detour code to origin */ 563 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 564 /* Disarm probes if marked disabled */ 565 if (kprobe_disabled(&op->kp)) 566 arch_disarm_kprobe(&op->kp); 567 if (kprobe_unused(&op->kp)) { 568 /* 569 * Remove unused probes from hash list. After waiting 570 * for synchronization, these probes are reclaimed. 571 * (reclaiming is done by do_free_cleaned_kprobes().) 572 */ 573 hlist_del_rcu(&op->kp.hlist); 574 } else 575 list_del_init(&op->list); 576 } 577 } 578 579 /* Reclaim all kprobes on the 'freeing_list' */ 580 static void do_free_cleaned_kprobes(void) 581 { 582 struct optimized_kprobe *op, *tmp; 583 584 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 585 list_del_init(&op->list); 586 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) { 587 /* 588 * This must not happen, but if there is a kprobe 589 * still in use, keep it on kprobes hash list. 590 */ 591 continue; 592 } 593 free_aggr_kprobe(&op->kp); 594 } 595 } 596 597 /* Start optimizer after OPTIMIZE_DELAY passed */ 598 static void kick_kprobe_optimizer(void) 599 { 600 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 601 } 602 603 /* Kprobe jump optimizer */ 604 static void kprobe_optimizer(struct work_struct *work) 605 { 606 mutex_lock(&kprobe_mutex); 607 cpus_read_lock(); 608 mutex_lock(&text_mutex); 609 610 /* 611 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 612 * kprobes before waiting for quiesence period. 613 */ 614 do_unoptimize_kprobes(); 615 616 /* 617 * Step 2: Wait for quiesence period to ensure all potentially 618 * preempted tasks to have normally scheduled. Because optprobe 619 * may modify multiple instructions, there is a chance that Nth 620 * instruction is preempted. In that case, such tasks can return 621 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. 622 * Note that on non-preemptive kernel, this is transparently converted 623 * to synchronoze_sched() to wait for all interrupts to have completed. 624 */ 625 synchronize_rcu_tasks(); 626 627 /* Step 3: Optimize kprobes after quiesence period */ 628 do_optimize_kprobes(); 629 630 /* Step 4: Free cleaned kprobes after quiesence period */ 631 do_free_cleaned_kprobes(); 632 633 mutex_unlock(&text_mutex); 634 cpus_read_unlock(); 635 636 /* Step 5: Kick optimizer again if needed */ 637 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 638 kick_kprobe_optimizer(); 639 640 mutex_unlock(&kprobe_mutex); 641 } 642 643 /* Wait for completing optimization and unoptimization */ 644 void wait_for_kprobe_optimizer(void) 645 { 646 mutex_lock(&kprobe_mutex); 647 648 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 649 mutex_unlock(&kprobe_mutex); 650 651 /* This will also make 'optimizing_work' execute immmediately */ 652 flush_delayed_work(&optimizing_work); 653 /* 'optimizing_work' might not have been queued yet, relax */ 654 cpu_relax(); 655 656 mutex_lock(&kprobe_mutex); 657 } 658 659 mutex_unlock(&kprobe_mutex); 660 } 661 662 static bool optprobe_queued_unopt(struct optimized_kprobe *op) 663 { 664 struct optimized_kprobe *_op; 665 666 list_for_each_entry(_op, &unoptimizing_list, list) { 667 if (op == _op) 668 return true; 669 } 670 671 return false; 672 } 673 674 /* Optimize kprobe if p is ready to be optimized */ 675 static void optimize_kprobe(struct kprobe *p) 676 { 677 struct optimized_kprobe *op; 678 679 /* Check if the kprobe is disabled or not ready for optimization. */ 680 if (!kprobe_optready(p) || !kprobes_allow_optimization || 681 (kprobe_disabled(p) || kprobes_all_disarmed)) 682 return; 683 684 /* kprobes with 'post_handler' can not be optimized */ 685 if (p->post_handler) 686 return; 687 688 op = container_of(p, struct optimized_kprobe, kp); 689 690 /* Check there is no other kprobes at the optimized instructions */ 691 if (arch_check_optimized_kprobe(op) < 0) 692 return; 693 694 /* Check if it is already optimized. */ 695 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) { 696 if (optprobe_queued_unopt(op)) { 697 /* This is under unoptimizing. Just dequeue the probe */ 698 list_del_init(&op->list); 699 } 700 return; 701 } 702 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 703 704 /* 705 * On the 'unoptimizing_list' and 'optimizing_list', 706 * 'op' must have OPTIMIZED flag 707 */ 708 if (WARN_ON_ONCE(!list_empty(&op->list))) 709 return; 710 711 list_add(&op->list, &optimizing_list); 712 kick_kprobe_optimizer(); 713 } 714 715 /* Short cut to direct unoptimizing */ 716 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 717 { 718 lockdep_assert_cpus_held(); 719 arch_unoptimize_kprobe(op); 720 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 721 } 722 723 /* Unoptimize a kprobe if p is optimized */ 724 static void unoptimize_kprobe(struct kprobe *p, bool force) 725 { 726 struct optimized_kprobe *op; 727 728 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 729 return; /* This is not an optprobe nor optimized */ 730 731 op = container_of(p, struct optimized_kprobe, kp); 732 if (!kprobe_optimized(p)) 733 return; 734 735 if (!list_empty(&op->list)) { 736 if (optprobe_queued_unopt(op)) { 737 /* Queued in unoptimizing queue */ 738 if (force) { 739 /* 740 * Forcibly unoptimize the kprobe here, and queue it 741 * in the freeing list for release afterwards. 742 */ 743 force_unoptimize_kprobe(op); 744 list_move(&op->list, &freeing_list); 745 } 746 } else { 747 /* Dequeue from the optimizing queue */ 748 list_del_init(&op->list); 749 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 750 } 751 return; 752 } 753 754 /* Optimized kprobe case */ 755 if (force) { 756 /* Forcibly update the code: this is a special case */ 757 force_unoptimize_kprobe(op); 758 } else { 759 list_add(&op->list, &unoptimizing_list); 760 kick_kprobe_optimizer(); 761 } 762 } 763 764 /* Cancel unoptimizing for reusing */ 765 static int reuse_unused_kprobe(struct kprobe *ap) 766 { 767 struct optimized_kprobe *op; 768 769 /* 770 * Unused kprobe MUST be on the way of delayed unoptimizing (means 771 * there is still a relative jump) and disabled. 772 */ 773 op = container_of(ap, struct optimized_kprobe, kp); 774 WARN_ON_ONCE(list_empty(&op->list)); 775 /* Enable the probe again */ 776 ap->flags &= ~KPROBE_FLAG_DISABLED; 777 /* Optimize it again. (remove from 'op->list') */ 778 if (!kprobe_optready(ap)) 779 return -EINVAL; 780 781 optimize_kprobe(ap); 782 return 0; 783 } 784 785 /* Remove optimized instructions */ 786 static void kill_optimized_kprobe(struct kprobe *p) 787 { 788 struct optimized_kprobe *op; 789 790 op = container_of(p, struct optimized_kprobe, kp); 791 if (!list_empty(&op->list)) 792 /* Dequeue from the (un)optimization queue */ 793 list_del_init(&op->list); 794 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 795 796 if (kprobe_unused(p)) { 797 /* Enqueue if it is unused */ 798 list_add(&op->list, &freeing_list); 799 /* 800 * Remove unused probes from the hash list. After waiting 801 * for synchronization, this probe is reclaimed. 802 * (reclaiming is done by do_free_cleaned_kprobes().) 803 */ 804 hlist_del_rcu(&op->kp.hlist); 805 } 806 807 /* Don't touch the code, because it is already freed. */ 808 arch_remove_optimized_kprobe(op); 809 } 810 811 static inline 812 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) 813 { 814 if (!kprobe_ftrace(p)) 815 arch_prepare_optimized_kprobe(op, p); 816 } 817 818 /* Try to prepare optimized instructions */ 819 static void prepare_optimized_kprobe(struct kprobe *p) 820 { 821 struct optimized_kprobe *op; 822 823 op = container_of(p, struct optimized_kprobe, kp); 824 __prepare_optimized_kprobe(op, p); 825 } 826 827 /* Allocate new optimized_kprobe and try to prepare optimized instructions. */ 828 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 829 { 830 struct optimized_kprobe *op; 831 832 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 833 if (!op) 834 return NULL; 835 836 INIT_LIST_HEAD(&op->list); 837 op->kp.addr = p->addr; 838 __prepare_optimized_kprobe(op, p); 839 840 return &op->kp; 841 } 842 843 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 844 845 /* 846 * Prepare an optimized_kprobe and optimize it. 847 * NOTE: 'p' must be a normal registered kprobe. 848 */ 849 static void try_to_optimize_kprobe(struct kprobe *p) 850 { 851 struct kprobe *ap; 852 struct optimized_kprobe *op; 853 854 /* Impossible to optimize ftrace-based kprobe. */ 855 if (kprobe_ftrace(p)) 856 return; 857 858 /* For preparing optimization, jump_label_text_reserved() is called. */ 859 cpus_read_lock(); 860 jump_label_lock(); 861 mutex_lock(&text_mutex); 862 863 ap = alloc_aggr_kprobe(p); 864 if (!ap) 865 goto out; 866 867 op = container_of(ap, struct optimized_kprobe, kp); 868 if (!arch_prepared_optinsn(&op->optinsn)) { 869 /* If failed to setup optimizing, fallback to kprobe. */ 870 arch_remove_optimized_kprobe(op); 871 kfree(op); 872 goto out; 873 } 874 875 init_aggr_kprobe(ap, p); 876 optimize_kprobe(ap); /* This just kicks optimizer thread. */ 877 878 out: 879 mutex_unlock(&text_mutex); 880 jump_label_unlock(); 881 cpus_read_unlock(); 882 } 883 884 static void optimize_all_kprobes(void) 885 { 886 struct hlist_head *head; 887 struct kprobe *p; 888 unsigned int i; 889 890 mutex_lock(&kprobe_mutex); 891 /* If optimization is already allowed, just return. */ 892 if (kprobes_allow_optimization) 893 goto out; 894 895 cpus_read_lock(); 896 kprobes_allow_optimization = true; 897 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 898 head = &kprobe_table[i]; 899 hlist_for_each_entry(p, head, hlist) 900 if (!kprobe_disabled(p)) 901 optimize_kprobe(p); 902 } 903 cpus_read_unlock(); 904 pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n"); 905 out: 906 mutex_unlock(&kprobe_mutex); 907 } 908 909 #ifdef CONFIG_SYSCTL 910 static void unoptimize_all_kprobes(void) 911 { 912 struct hlist_head *head; 913 struct kprobe *p; 914 unsigned int i; 915 916 mutex_lock(&kprobe_mutex); 917 /* If optimization is already prohibited, just return. */ 918 if (!kprobes_allow_optimization) { 919 mutex_unlock(&kprobe_mutex); 920 return; 921 } 922 923 cpus_read_lock(); 924 kprobes_allow_optimization = false; 925 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 926 head = &kprobe_table[i]; 927 hlist_for_each_entry(p, head, hlist) { 928 if (!kprobe_disabled(p)) 929 unoptimize_kprobe(p, false); 930 } 931 } 932 cpus_read_unlock(); 933 mutex_unlock(&kprobe_mutex); 934 935 /* Wait for unoptimizing completion. */ 936 wait_for_kprobe_optimizer(); 937 pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n"); 938 } 939 940 static DEFINE_MUTEX(kprobe_sysctl_mutex); 941 int sysctl_kprobes_optimization; 942 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 943 void *buffer, size_t *length, 944 loff_t *ppos) 945 { 946 int ret; 947 948 mutex_lock(&kprobe_sysctl_mutex); 949 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 950 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 951 952 if (sysctl_kprobes_optimization) 953 optimize_all_kprobes(); 954 else 955 unoptimize_all_kprobes(); 956 mutex_unlock(&kprobe_sysctl_mutex); 957 958 return ret; 959 } 960 #endif /* CONFIG_SYSCTL */ 961 962 /* Put a breakpoint for a probe. */ 963 static void __arm_kprobe(struct kprobe *p) 964 { 965 struct kprobe *_p; 966 967 lockdep_assert_held(&text_mutex); 968 969 /* Find the overlapping optimized kprobes. */ 970 _p = get_optimized_kprobe(p->addr); 971 if (unlikely(_p)) 972 /* Fallback to unoptimized kprobe */ 973 unoptimize_kprobe(_p, true); 974 975 arch_arm_kprobe(p); 976 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 977 } 978 979 /* Remove the breakpoint of a probe. */ 980 static void __disarm_kprobe(struct kprobe *p, bool reopt) 981 { 982 struct kprobe *_p; 983 984 lockdep_assert_held(&text_mutex); 985 986 /* Try to unoptimize */ 987 unoptimize_kprobe(p, kprobes_all_disarmed); 988 989 if (!kprobe_queued(p)) { 990 arch_disarm_kprobe(p); 991 /* If another kprobe was blocked, re-optimize it. */ 992 _p = get_optimized_kprobe(p->addr); 993 if (unlikely(_p) && reopt) 994 optimize_kprobe(_p); 995 } 996 /* 997 * TODO: Since unoptimization and real disarming will be done by 998 * the worker thread, we can not check whether another probe are 999 * unoptimized because of this probe here. It should be re-optimized 1000 * by the worker thread. 1001 */ 1002 } 1003 1004 #else /* !CONFIG_OPTPROBES */ 1005 1006 #define optimize_kprobe(p) do {} while (0) 1007 #define unoptimize_kprobe(p, f) do {} while (0) 1008 #define kill_optimized_kprobe(p) do {} while (0) 1009 #define prepare_optimized_kprobe(p) do {} while (0) 1010 #define try_to_optimize_kprobe(p) do {} while (0) 1011 #define __arm_kprobe(p) arch_arm_kprobe(p) 1012 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 1013 #define kprobe_disarmed(p) kprobe_disabled(p) 1014 #define wait_for_kprobe_optimizer() do {} while (0) 1015 1016 static int reuse_unused_kprobe(struct kprobe *ap) 1017 { 1018 /* 1019 * If the optimized kprobe is NOT supported, the aggr kprobe is 1020 * released at the same time that the last aggregated kprobe is 1021 * unregistered. 1022 * Thus there should be no chance to reuse unused kprobe. 1023 */ 1024 WARN_ON_ONCE(1); 1025 return -EINVAL; 1026 } 1027 1028 static void free_aggr_kprobe(struct kprobe *p) 1029 { 1030 arch_remove_kprobe(p); 1031 kfree(p); 1032 } 1033 1034 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 1035 { 1036 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 1037 } 1038 #endif /* CONFIG_OPTPROBES */ 1039 1040 #ifdef CONFIG_KPROBES_ON_FTRACE 1041 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 1042 .func = kprobe_ftrace_handler, 1043 .flags = FTRACE_OPS_FL_SAVE_REGS, 1044 }; 1045 1046 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = { 1047 .func = kprobe_ftrace_handler, 1048 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 1049 }; 1050 1051 static int kprobe_ipmodify_enabled; 1052 static int kprobe_ftrace_enabled; 1053 1054 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1055 int *cnt) 1056 { 1057 int ret = 0; 1058 1059 lockdep_assert_held(&kprobe_mutex); 1060 1061 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0); 1062 if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret)) 1063 return ret; 1064 1065 if (*cnt == 0) { 1066 ret = register_ftrace_function(ops); 1067 if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret)) 1068 goto err_ftrace; 1069 } 1070 1071 (*cnt)++; 1072 return ret; 1073 1074 err_ftrace: 1075 /* 1076 * At this point, sinec ops is not registered, we should be sefe from 1077 * registering empty filter. 1078 */ 1079 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1080 return ret; 1081 } 1082 1083 static int arm_kprobe_ftrace(struct kprobe *p) 1084 { 1085 bool ipmodify = (p->post_handler != NULL); 1086 1087 return __arm_kprobe_ftrace(p, 1088 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1089 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1090 } 1091 1092 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1093 int *cnt) 1094 { 1095 int ret = 0; 1096 1097 lockdep_assert_held(&kprobe_mutex); 1098 1099 if (*cnt == 1) { 1100 ret = unregister_ftrace_function(ops); 1101 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret)) 1102 return ret; 1103 } 1104 1105 (*cnt)--; 1106 1107 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1108 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n", 1109 p->addr, ret); 1110 return ret; 1111 } 1112 1113 static int disarm_kprobe_ftrace(struct kprobe *p) 1114 { 1115 bool ipmodify = (p->post_handler != NULL); 1116 1117 return __disarm_kprobe_ftrace(p, 1118 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1119 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1120 } 1121 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1122 static inline int arm_kprobe_ftrace(struct kprobe *p) 1123 { 1124 return -ENODEV; 1125 } 1126 1127 static inline int disarm_kprobe_ftrace(struct kprobe *p) 1128 { 1129 return -ENODEV; 1130 } 1131 #endif 1132 1133 static int prepare_kprobe(struct kprobe *p) 1134 { 1135 /* Must ensure p->addr is really on ftrace */ 1136 if (kprobe_ftrace(p)) 1137 return arch_prepare_kprobe_ftrace(p); 1138 1139 return arch_prepare_kprobe(p); 1140 } 1141 1142 static int arm_kprobe(struct kprobe *kp) 1143 { 1144 if (unlikely(kprobe_ftrace(kp))) 1145 return arm_kprobe_ftrace(kp); 1146 1147 cpus_read_lock(); 1148 mutex_lock(&text_mutex); 1149 __arm_kprobe(kp); 1150 mutex_unlock(&text_mutex); 1151 cpus_read_unlock(); 1152 1153 return 0; 1154 } 1155 1156 static int disarm_kprobe(struct kprobe *kp, bool reopt) 1157 { 1158 if (unlikely(kprobe_ftrace(kp))) 1159 return disarm_kprobe_ftrace(kp); 1160 1161 cpus_read_lock(); 1162 mutex_lock(&text_mutex); 1163 __disarm_kprobe(kp, reopt); 1164 mutex_unlock(&text_mutex); 1165 cpus_read_unlock(); 1166 1167 return 0; 1168 } 1169 1170 /* 1171 * Aggregate handlers for multiple kprobes support - these handlers 1172 * take care of invoking the individual kprobe handlers on p->list 1173 */ 1174 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1175 { 1176 struct kprobe *kp; 1177 1178 list_for_each_entry_rcu(kp, &p->list, list) { 1179 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1180 set_kprobe_instance(kp); 1181 if (kp->pre_handler(kp, regs)) 1182 return 1; 1183 } 1184 reset_kprobe_instance(); 1185 } 1186 return 0; 1187 } 1188 NOKPROBE_SYMBOL(aggr_pre_handler); 1189 1190 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1191 unsigned long flags) 1192 { 1193 struct kprobe *kp; 1194 1195 list_for_each_entry_rcu(kp, &p->list, list) { 1196 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1197 set_kprobe_instance(kp); 1198 kp->post_handler(kp, regs, flags); 1199 reset_kprobe_instance(); 1200 } 1201 } 1202 } 1203 NOKPROBE_SYMBOL(aggr_post_handler); 1204 1205 /* Walks the list and increments 'nmissed' if 'p' has child probes. */ 1206 void kprobes_inc_nmissed_count(struct kprobe *p) 1207 { 1208 struct kprobe *kp; 1209 1210 if (!kprobe_aggrprobe(p)) { 1211 p->nmissed++; 1212 } else { 1213 list_for_each_entry_rcu(kp, &p->list, list) 1214 kp->nmissed++; 1215 } 1216 } 1217 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1218 1219 static void free_rp_inst_rcu(struct rcu_head *head) 1220 { 1221 struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu); 1222 1223 if (refcount_dec_and_test(&ri->rph->ref)) 1224 kfree(ri->rph); 1225 kfree(ri); 1226 } 1227 NOKPROBE_SYMBOL(free_rp_inst_rcu); 1228 1229 static void recycle_rp_inst(struct kretprobe_instance *ri) 1230 { 1231 struct kretprobe *rp = get_kretprobe(ri); 1232 1233 if (likely(rp)) 1234 freelist_add(&ri->freelist, &rp->freelist); 1235 else 1236 call_rcu(&ri->rcu, free_rp_inst_rcu); 1237 } 1238 NOKPROBE_SYMBOL(recycle_rp_inst); 1239 1240 static struct kprobe kprobe_busy = { 1241 .addr = (void *) get_kprobe, 1242 }; 1243 1244 void kprobe_busy_begin(void) 1245 { 1246 struct kprobe_ctlblk *kcb; 1247 1248 preempt_disable(); 1249 __this_cpu_write(current_kprobe, &kprobe_busy); 1250 kcb = get_kprobe_ctlblk(); 1251 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 1252 } 1253 1254 void kprobe_busy_end(void) 1255 { 1256 __this_cpu_write(current_kprobe, NULL); 1257 preempt_enable(); 1258 } 1259 1260 /* 1261 * This function is called from delayed_put_task_struct() when a task is 1262 * dead and cleaned up to recycle any kretprobe instances associated with 1263 * this task. These left over instances represent probed functions that 1264 * have been called but will never return. 1265 */ 1266 void kprobe_flush_task(struct task_struct *tk) 1267 { 1268 struct kretprobe_instance *ri; 1269 struct llist_node *node; 1270 1271 /* Early boot, not yet initialized. */ 1272 if (unlikely(!kprobes_initialized)) 1273 return; 1274 1275 kprobe_busy_begin(); 1276 1277 node = __llist_del_all(&tk->kretprobe_instances); 1278 while (node) { 1279 ri = container_of(node, struct kretprobe_instance, llist); 1280 node = node->next; 1281 1282 recycle_rp_inst(ri); 1283 } 1284 1285 kprobe_busy_end(); 1286 } 1287 NOKPROBE_SYMBOL(kprobe_flush_task); 1288 1289 static inline void free_rp_inst(struct kretprobe *rp) 1290 { 1291 struct kretprobe_instance *ri; 1292 struct freelist_node *node; 1293 int count = 0; 1294 1295 node = rp->freelist.head; 1296 while (node) { 1297 ri = container_of(node, struct kretprobe_instance, freelist); 1298 node = node->next; 1299 1300 kfree(ri); 1301 count++; 1302 } 1303 1304 if (refcount_sub_and_test(count, &rp->rph->ref)) { 1305 kfree(rp->rph); 1306 rp->rph = NULL; 1307 } 1308 } 1309 1310 /* Add the new probe to 'ap->list'. */ 1311 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1312 { 1313 if (p->post_handler) 1314 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1315 1316 list_add_rcu(&p->list, &ap->list); 1317 if (p->post_handler && !ap->post_handler) 1318 ap->post_handler = aggr_post_handler; 1319 1320 return 0; 1321 } 1322 1323 /* 1324 * Fill in the required fields of the aggregator kprobe. Replace the 1325 * earlier kprobe in the hlist with the aggregator kprobe. 1326 */ 1327 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1328 { 1329 /* Copy the insn slot of 'p' to 'ap'. */ 1330 copy_kprobe(p, ap); 1331 flush_insn_slot(ap); 1332 ap->addr = p->addr; 1333 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1334 ap->pre_handler = aggr_pre_handler; 1335 /* We don't care the kprobe which has gone. */ 1336 if (p->post_handler && !kprobe_gone(p)) 1337 ap->post_handler = aggr_post_handler; 1338 1339 INIT_LIST_HEAD(&ap->list); 1340 INIT_HLIST_NODE(&ap->hlist); 1341 1342 list_add_rcu(&p->list, &ap->list); 1343 hlist_replace_rcu(&p->hlist, &ap->hlist); 1344 } 1345 1346 /* 1347 * This registers the second or subsequent kprobe at the same address. 1348 */ 1349 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1350 { 1351 int ret = 0; 1352 struct kprobe *ap = orig_p; 1353 1354 cpus_read_lock(); 1355 1356 /* For preparing optimization, jump_label_text_reserved() is called */ 1357 jump_label_lock(); 1358 mutex_lock(&text_mutex); 1359 1360 if (!kprobe_aggrprobe(orig_p)) { 1361 /* If 'orig_p' is not an 'aggr_kprobe', create new one. */ 1362 ap = alloc_aggr_kprobe(orig_p); 1363 if (!ap) { 1364 ret = -ENOMEM; 1365 goto out; 1366 } 1367 init_aggr_kprobe(ap, orig_p); 1368 } else if (kprobe_unused(ap)) { 1369 /* This probe is going to die. Rescue it */ 1370 ret = reuse_unused_kprobe(ap); 1371 if (ret) 1372 goto out; 1373 } 1374 1375 if (kprobe_gone(ap)) { 1376 /* 1377 * Attempting to insert new probe at the same location that 1378 * had a probe in the module vaddr area which already 1379 * freed. So, the instruction slot has already been 1380 * released. We need a new slot for the new probe. 1381 */ 1382 ret = arch_prepare_kprobe(ap); 1383 if (ret) 1384 /* 1385 * Even if fail to allocate new slot, don't need to 1386 * free the 'ap'. It will be used next time, or 1387 * freed by unregister_kprobe(). 1388 */ 1389 goto out; 1390 1391 /* Prepare optimized instructions if possible. */ 1392 prepare_optimized_kprobe(ap); 1393 1394 /* 1395 * Clear gone flag to prevent allocating new slot again, and 1396 * set disabled flag because it is not armed yet. 1397 */ 1398 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1399 | KPROBE_FLAG_DISABLED; 1400 } 1401 1402 /* Copy the insn slot of 'p' to 'ap'. */ 1403 copy_kprobe(ap, p); 1404 ret = add_new_kprobe(ap, p); 1405 1406 out: 1407 mutex_unlock(&text_mutex); 1408 jump_label_unlock(); 1409 cpus_read_unlock(); 1410 1411 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1412 ap->flags &= ~KPROBE_FLAG_DISABLED; 1413 if (!kprobes_all_disarmed) { 1414 /* Arm the breakpoint again. */ 1415 ret = arm_kprobe(ap); 1416 if (ret) { 1417 ap->flags |= KPROBE_FLAG_DISABLED; 1418 list_del_rcu(&p->list); 1419 synchronize_rcu(); 1420 } 1421 } 1422 } 1423 return ret; 1424 } 1425 1426 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1427 { 1428 /* The '__kprobes' functions and entry code must not be probed. */ 1429 return addr >= (unsigned long)__kprobes_text_start && 1430 addr < (unsigned long)__kprobes_text_end; 1431 } 1432 1433 static bool __within_kprobe_blacklist(unsigned long addr) 1434 { 1435 struct kprobe_blacklist_entry *ent; 1436 1437 if (arch_within_kprobe_blacklist(addr)) 1438 return true; 1439 /* 1440 * If 'kprobe_blacklist' is defined, check the address and 1441 * reject any probe registration in the prohibited area. 1442 */ 1443 list_for_each_entry(ent, &kprobe_blacklist, list) { 1444 if (addr >= ent->start_addr && addr < ent->end_addr) 1445 return true; 1446 } 1447 return false; 1448 } 1449 1450 bool within_kprobe_blacklist(unsigned long addr) 1451 { 1452 char symname[KSYM_NAME_LEN], *p; 1453 1454 if (__within_kprobe_blacklist(addr)) 1455 return true; 1456 1457 /* Check if the address is on a suffixed-symbol */ 1458 if (!lookup_symbol_name(addr, symname)) { 1459 p = strchr(symname, '.'); 1460 if (!p) 1461 return false; 1462 *p = '\0'; 1463 addr = (unsigned long)kprobe_lookup_name(symname, 0); 1464 if (addr) 1465 return __within_kprobe_blacklist(addr); 1466 } 1467 return false; 1468 } 1469 1470 /* 1471 * If 'symbol_name' is specified, look it up and add the 'offset' 1472 * to it. This way, we can specify a relative address to a symbol. 1473 * This returns encoded errors if it fails to look up symbol or invalid 1474 * combination of parameters. 1475 */ 1476 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr, 1477 const char *symbol_name, unsigned int offset) 1478 { 1479 if ((symbol_name && addr) || (!symbol_name && !addr)) 1480 goto invalid; 1481 1482 if (symbol_name) { 1483 addr = kprobe_lookup_name(symbol_name, offset); 1484 if (!addr) 1485 return ERR_PTR(-ENOENT); 1486 } 1487 1488 addr = (kprobe_opcode_t *)(((char *)addr) + offset); 1489 if (addr) 1490 return addr; 1491 1492 invalid: 1493 return ERR_PTR(-EINVAL); 1494 } 1495 1496 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1497 { 1498 return _kprobe_addr(p->addr, p->symbol_name, p->offset); 1499 } 1500 1501 /* 1502 * Check the 'p' is valid and return the aggregator kprobe 1503 * at the same address. 1504 */ 1505 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1506 { 1507 struct kprobe *ap, *list_p; 1508 1509 lockdep_assert_held(&kprobe_mutex); 1510 1511 ap = get_kprobe(p->addr); 1512 if (unlikely(!ap)) 1513 return NULL; 1514 1515 if (p != ap) { 1516 list_for_each_entry(list_p, &ap->list, list) 1517 if (list_p == p) 1518 /* kprobe p is a valid probe */ 1519 goto valid; 1520 return NULL; 1521 } 1522 valid: 1523 return ap; 1524 } 1525 1526 /* 1527 * Warn and return error if the kprobe is being re-registered since 1528 * there must be a software bug. 1529 */ 1530 static inline int warn_kprobe_rereg(struct kprobe *p) 1531 { 1532 int ret = 0; 1533 1534 mutex_lock(&kprobe_mutex); 1535 if (WARN_ON_ONCE(__get_valid_kprobe(p))) 1536 ret = -EINVAL; 1537 mutex_unlock(&kprobe_mutex); 1538 1539 return ret; 1540 } 1541 1542 static int check_ftrace_location(struct kprobe *p) 1543 { 1544 unsigned long ftrace_addr; 1545 1546 ftrace_addr = ftrace_location((unsigned long)p->addr); 1547 if (ftrace_addr) { 1548 #ifdef CONFIG_KPROBES_ON_FTRACE 1549 /* Given address is not on the instruction boundary */ 1550 if ((unsigned long)p->addr != ftrace_addr) 1551 return -EILSEQ; 1552 p->flags |= KPROBE_FLAG_FTRACE; 1553 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1554 return -EINVAL; 1555 #endif 1556 } 1557 return 0; 1558 } 1559 1560 static int check_kprobe_address_safe(struct kprobe *p, 1561 struct module **probed_mod) 1562 { 1563 int ret; 1564 1565 ret = check_ftrace_location(p); 1566 if (ret) 1567 return ret; 1568 jump_label_lock(); 1569 preempt_disable(); 1570 1571 /* Ensure it is not in reserved area nor out of text */ 1572 if (!kernel_text_address((unsigned long) p->addr) || 1573 within_kprobe_blacklist((unsigned long) p->addr) || 1574 jump_label_text_reserved(p->addr, p->addr) || 1575 static_call_text_reserved(p->addr, p->addr) || 1576 find_bug((unsigned long)p->addr)) { 1577 ret = -EINVAL; 1578 goto out; 1579 } 1580 1581 /* Check if 'p' is probing a module. */ 1582 *probed_mod = __module_text_address((unsigned long) p->addr); 1583 if (*probed_mod) { 1584 /* 1585 * We must hold a refcount of the probed module while updating 1586 * its code to prohibit unexpected unloading. 1587 */ 1588 if (unlikely(!try_module_get(*probed_mod))) { 1589 ret = -ENOENT; 1590 goto out; 1591 } 1592 1593 /* 1594 * If the module freed '.init.text', we couldn't insert 1595 * kprobes in there. 1596 */ 1597 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1598 (*probed_mod)->state != MODULE_STATE_COMING) { 1599 module_put(*probed_mod); 1600 *probed_mod = NULL; 1601 ret = -ENOENT; 1602 } 1603 } 1604 out: 1605 preempt_enable(); 1606 jump_label_unlock(); 1607 1608 return ret; 1609 } 1610 1611 int register_kprobe(struct kprobe *p) 1612 { 1613 int ret; 1614 struct kprobe *old_p; 1615 struct module *probed_mod; 1616 kprobe_opcode_t *addr; 1617 1618 /* Adjust probe address from symbol */ 1619 addr = kprobe_addr(p); 1620 if (IS_ERR(addr)) 1621 return PTR_ERR(addr); 1622 p->addr = addr; 1623 1624 ret = warn_kprobe_rereg(p); 1625 if (ret) 1626 return ret; 1627 1628 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1629 p->flags &= KPROBE_FLAG_DISABLED; 1630 p->nmissed = 0; 1631 INIT_LIST_HEAD(&p->list); 1632 1633 ret = check_kprobe_address_safe(p, &probed_mod); 1634 if (ret) 1635 return ret; 1636 1637 mutex_lock(&kprobe_mutex); 1638 1639 old_p = get_kprobe(p->addr); 1640 if (old_p) { 1641 /* Since this may unoptimize 'old_p', locking 'text_mutex'. */ 1642 ret = register_aggr_kprobe(old_p, p); 1643 goto out; 1644 } 1645 1646 cpus_read_lock(); 1647 /* Prevent text modification */ 1648 mutex_lock(&text_mutex); 1649 ret = prepare_kprobe(p); 1650 mutex_unlock(&text_mutex); 1651 cpus_read_unlock(); 1652 if (ret) 1653 goto out; 1654 1655 INIT_HLIST_NODE(&p->hlist); 1656 hlist_add_head_rcu(&p->hlist, 1657 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1658 1659 if (!kprobes_all_disarmed && !kprobe_disabled(p)) { 1660 ret = arm_kprobe(p); 1661 if (ret) { 1662 hlist_del_rcu(&p->hlist); 1663 synchronize_rcu(); 1664 goto out; 1665 } 1666 } 1667 1668 /* Try to optimize kprobe */ 1669 try_to_optimize_kprobe(p); 1670 out: 1671 mutex_unlock(&kprobe_mutex); 1672 1673 if (probed_mod) 1674 module_put(probed_mod); 1675 1676 return ret; 1677 } 1678 EXPORT_SYMBOL_GPL(register_kprobe); 1679 1680 /* Check if all probes on the 'ap' are disabled. */ 1681 static bool aggr_kprobe_disabled(struct kprobe *ap) 1682 { 1683 struct kprobe *kp; 1684 1685 lockdep_assert_held(&kprobe_mutex); 1686 1687 list_for_each_entry(kp, &ap->list, list) 1688 if (!kprobe_disabled(kp)) 1689 /* 1690 * Since there is an active probe on the list, 1691 * we can't disable this 'ap'. 1692 */ 1693 return false; 1694 1695 return true; 1696 } 1697 1698 static struct kprobe *__disable_kprobe(struct kprobe *p) 1699 { 1700 struct kprobe *orig_p; 1701 int ret; 1702 1703 lockdep_assert_held(&kprobe_mutex); 1704 1705 /* Get an original kprobe for return */ 1706 orig_p = __get_valid_kprobe(p); 1707 if (unlikely(orig_p == NULL)) 1708 return ERR_PTR(-EINVAL); 1709 1710 if (!kprobe_disabled(p)) { 1711 /* Disable probe if it is a child probe */ 1712 if (p != orig_p) 1713 p->flags |= KPROBE_FLAG_DISABLED; 1714 1715 /* Try to disarm and disable this/parent probe */ 1716 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1717 /* 1718 * If 'kprobes_all_disarmed' is set, 'orig_p' 1719 * should have already been disarmed, so 1720 * skip unneed disarming process. 1721 */ 1722 if (!kprobes_all_disarmed) { 1723 ret = disarm_kprobe(orig_p, true); 1724 if (ret) { 1725 p->flags &= ~KPROBE_FLAG_DISABLED; 1726 return ERR_PTR(ret); 1727 } 1728 } 1729 orig_p->flags |= KPROBE_FLAG_DISABLED; 1730 } 1731 } 1732 1733 return orig_p; 1734 } 1735 1736 /* 1737 * Unregister a kprobe without a scheduler synchronization. 1738 */ 1739 static int __unregister_kprobe_top(struct kprobe *p) 1740 { 1741 struct kprobe *ap, *list_p; 1742 1743 /* Disable kprobe. This will disarm it if needed. */ 1744 ap = __disable_kprobe(p); 1745 if (IS_ERR(ap)) 1746 return PTR_ERR(ap); 1747 1748 if (ap == p) 1749 /* 1750 * This probe is an independent(and non-optimized) kprobe 1751 * (not an aggrprobe). Remove from the hash list. 1752 */ 1753 goto disarmed; 1754 1755 /* Following process expects this probe is an aggrprobe */ 1756 WARN_ON(!kprobe_aggrprobe(ap)); 1757 1758 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1759 /* 1760 * !disarmed could be happen if the probe is under delayed 1761 * unoptimizing. 1762 */ 1763 goto disarmed; 1764 else { 1765 /* If disabling probe has special handlers, update aggrprobe */ 1766 if (p->post_handler && !kprobe_gone(p)) { 1767 list_for_each_entry(list_p, &ap->list, list) { 1768 if ((list_p != p) && (list_p->post_handler)) 1769 goto noclean; 1770 } 1771 ap->post_handler = NULL; 1772 } 1773 noclean: 1774 /* 1775 * Remove from the aggrprobe: this path will do nothing in 1776 * __unregister_kprobe_bottom(). 1777 */ 1778 list_del_rcu(&p->list); 1779 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1780 /* 1781 * Try to optimize this probe again, because post 1782 * handler may have been changed. 1783 */ 1784 optimize_kprobe(ap); 1785 } 1786 return 0; 1787 1788 disarmed: 1789 hlist_del_rcu(&ap->hlist); 1790 return 0; 1791 } 1792 1793 static void __unregister_kprobe_bottom(struct kprobe *p) 1794 { 1795 struct kprobe *ap; 1796 1797 if (list_empty(&p->list)) 1798 /* This is an independent kprobe */ 1799 arch_remove_kprobe(p); 1800 else if (list_is_singular(&p->list)) { 1801 /* This is the last child of an aggrprobe */ 1802 ap = list_entry(p->list.next, struct kprobe, list); 1803 list_del(&p->list); 1804 free_aggr_kprobe(ap); 1805 } 1806 /* Otherwise, do nothing. */ 1807 } 1808 1809 int register_kprobes(struct kprobe **kps, int num) 1810 { 1811 int i, ret = 0; 1812 1813 if (num <= 0) 1814 return -EINVAL; 1815 for (i = 0; i < num; i++) { 1816 ret = register_kprobe(kps[i]); 1817 if (ret < 0) { 1818 if (i > 0) 1819 unregister_kprobes(kps, i); 1820 break; 1821 } 1822 } 1823 return ret; 1824 } 1825 EXPORT_SYMBOL_GPL(register_kprobes); 1826 1827 void unregister_kprobe(struct kprobe *p) 1828 { 1829 unregister_kprobes(&p, 1); 1830 } 1831 EXPORT_SYMBOL_GPL(unregister_kprobe); 1832 1833 void unregister_kprobes(struct kprobe **kps, int num) 1834 { 1835 int i; 1836 1837 if (num <= 0) 1838 return; 1839 mutex_lock(&kprobe_mutex); 1840 for (i = 0; i < num; i++) 1841 if (__unregister_kprobe_top(kps[i]) < 0) 1842 kps[i]->addr = NULL; 1843 mutex_unlock(&kprobe_mutex); 1844 1845 synchronize_rcu(); 1846 for (i = 0; i < num; i++) 1847 if (kps[i]->addr) 1848 __unregister_kprobe_bottom(kps[i]); 1849 } 1850 EXPORT_SYMBOL_GPL(unregister_kprobes); 1851 1852 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1853 unsigned long val, void *data) 1854 { 1855 return NOTIFY_DONE; 1856 } 1857 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1858 1859 static struct notifier_block kprobe_exceptions_nb = { 1860 .notifier_call = kprobe_exceptions_notify, 1861 .priority = 0x7fffffff /* we need to be notified first */ 1862 }; 1863 1864 #ifdef CONFIG_KRETPROBES 1865 1866 /* This assumes the 'tsk' is the current task or the is not running. */ 1867 static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk, 1868 struct llist_node **cur) 1869 { 1870 struct kretprobe_instance *ri = NULL; 1871 struct llist_node *node = *cur; 1872 1873 if (!node) 1874 node = tsk->kretprobe_instances.first; 1875 else 1876 node = node->next; 1877 1878 while (node) { 1879 ri = container_of(node, struct kretprobe_instance, llist); 1880 if (ri->ret_addr != kretprobe_trampoline_addr()) { 1881 *cur = node; 1882 return ri->ret_addr; 1883 } 1884 node = node->next; 1885 } 1886 return NULL; 1887 } 1888 NOKPROBE_SYMBOL(__kretprobe_find_ret_addr); 1889 1890 /** 1891 * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe 1892 * @tsk: Target task 1893 * @fp: A frame pointer 1894 * @cur: a storage of the loop cursor llist_node pointer for next call 1895 * 1896 * Find the correct return address modified by a kretprobe on @tsk in unsigned 1897 * long type. If it finds the return address, this returns that address value, 1898 * or this returns 0. 1899 * The @tsk must be 'current' or a task which is not running. @fp is a hint 1900 * to get the currect return address - which is compared with the 1901 * kretprobe_instance::fp field. The @cur is a loop cursor for searching the 1902 * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the 1903 * first call, but '@cur' itself must NOT NULL. 1904 */ 1905 unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp, 1906 struct llist_node **cur) 1907 { 1908 struct kretprobe_instance *ri = NULL; 1909 kprobe_opcode_t *ret; 1910 1911 if (WARN_ON_ONCE(!cur)) 1912 return 0; 1913 1914 do { 1915 ret = __kretprobe_find_ret_addr(tsk, cur); 1916 if (!ret) 1917 break; 1918 ri = container_of(*cur, struct kretprobe_instance, llist); 1919 } while (ri->fp != fp); 1920 1921 return (unsigned long)ret; 1922 } 1923 NOKPROBE_SYMBOL(kretprobe_find_ret_addr); 1924 1925 void __weak arch_kretprobe_fixup_return(struct pt_regs *regs, 1926 kprobe_opcode_t *correct_ret_addr) 1927 { 1928 /* 1929 * Do nothing by default. Please fill this to update the fake return 1930 * address on the stack with the correct one on each arch if possible. 1931 */ 1932 } 1933 1934 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs, 1935 void *frame_pointer) 1936 { 1937 kprobe_opcode_t *correct_ret_addr = NULL; 1938 struct kretprobe_instance *ri = NULL; 1939 struct llist_node *first, *node = NULL; 1940 struct kretprobe *rp; 1941 1942 /* Find correct address and all nodes for this frame. */ 1943 correct_ret_addr = __kretprobe_find_ret_addr(current, &node); 1944 if (!correct_ret_addr) { 1945 pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n"); 1946 BUG_ON(1); 1947 } 1948 1949 /* 1950 * Set the return address as the instruction pointer, because if the 1951 * user handler calls stack_trace_save_regs() with this 'regs', 1952 * the stack trace will start from the instruction pointer. 1953 */ 1954 instruction_pointer_set(regs, (unsigned long)correct_ret_addr); 1955 1956 /* Run the user handler of the nodes. */ 1957 first = current->kretprobe_instances.first; 1958 while (first) { 1959 ri = container_of(first, struct kretprobe_instance, llist); 1960 1961 if (WARN_ON_ONCE(ri->fp != frame_pointer)) 1962 break; 1963 1964 rp = get_kretprobe(ri); 1965 if (rp && rp->handler) { 1966 struct kprobe *prev = kprobe_running(); 1967 1968 __this_cpu_write(current_kprobe, &rp->kp); 1969 ri->ret_addr = correct_ret_addr; 1970 rp->handler(ri, regs); 1971 __this_cpu_write(current_kprobe, prev); 1972 } 1973 if (first == node) 1974 break; 1975 1976 first = first->next; 1977 } 1978 1979 arch_kretprobe_fixup_return(regs, correct_ret_addr); 1980 1981 /* Unlink all nodes for this frame. */ 1982 first = current->kretprobe_instances.first; 1983 current->kretprobe_instances.first = node->next; 1984 node->next = NULL; 1985 1986 /* Recycle free instances. */ 1987 while (first) { 1988 ri = container_of(first, struct kretprobe_instance, llist); 1989 first = first->next; 1990 1991 recycle_rp_inst(ri); 1992 } 1993 1994 return (unsigned long)correct_ret_addr; 1995 } 1996 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler) 1997 1998 /* 1999 * This kprobe pre_handler is registered with every kretprobe. When probe 2000 * hits it will set up the return probe. 2001 */ 2002 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2003 { 2004 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 2005 struct kretprobe_instance *ri; 2006 struct freelist_node *fn; 2007 2008 fn = freelist_try_get(&rp->freelist); 2009 if (!fn) { 2010 rp->nmissed++; 2011 return 0; 2012 } 2013 2014 ri = container_of(fn, struct kretprobe_instance, freelist); 2015 2016 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 2017 freelist_add(&ri->freelist, &rp->freelist); 2018 return 0; 2019 } 2020 2021 arch_prepare_kretprobe(ri, regs); 2022 2023 __llist_add(&ri->llist, ¤t->kretprobe_instances); 2024 2025 return 0; 2026 } 2027 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2028 2029 bool __weak arch_kprobe_on_func_entry(unsigned long offset) 2030 { 2031 return !offset; 2032 } 2033 2034 /** 2035 * kprobe_on_func_entry() -- check whether given address is function entry 2036 * @addr: Target address 2037 * @sym: Target symbol name 2038 * @offset: The offset from the symbol or the address 2039 * 2040 * This checks whether the given @addr+@offset or @sym+@offset is on the 2041 * function entry address or not. 2042 * This returns 0 if it is the function entry, or -EINVAL if it is not. 2043 * And also it returns -ENOENT if it fails the symbol or address lookup. 2044 * Caller must pass @addr or @sym (either one must be NULL), or this 2045 * returns -EINVAL. 2046 */ 2047 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 2048 { 2049 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset); 2050 2051 if (IS_ERR(kp_addr)) 2052 return PTR_ERR(kp_addr); 2053 2054 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset)) 2055 return -ENOENT; 2056 2057 if (!arch_kprobe_on_func_entry(offset)) 2058 return -EINVAL; 2059 2060 return 0; 2061 } 2062 2063 int register_kretprobe(struct kretprobe *rp) 2064 { 2065 int ret; 2066 struct kretprobe_instance *inst; 2067 int i; 2068 void *addr; 2069 2070 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset); 2071 if (ret) 2072 return ret; 2073 2074 /* If only 'rp->kp.addr' is specified, check reregistering kprobes */ 2075 if (rp->kp.addr && warn_kprobe_rereg(&rp->kp)) 2076 return -EINVAL; 2077 2078 if (kretprobe_blacklist_size) { 2079 addr = kprobe_addr(&rp->kp); 2080 if (IS_ERR(addr)) 2081 return PTR_ERR(addr); 2082 2083 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2084 if (kretprobe_blacklist[i].addr == addr) 2085 return -EINVAL; 2086 } 2087 } 2088 2089 if (rp->data_size > KRETPROBE_MAX_DATA_SIZE) 2090 return -E2BIG; 2091 2092 rp->kp.pre_handler = pre_handler_kretprobe; 2093 rp->kp.post_handler = NULL; 2094 2095 /* Pre-allocate memory for max kretprobe instances */ 2096 if (rp->maxactive <= 0) { 2097 #ifdef CONFIG_PREEMPTION 2098 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 2099 #else 2100 rp->maxactive = num_possible_cpus(); 2101 #endif 2102 } 2103 rp->freelist.head = NULL; 2104 rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL); 2105 if (!rp->rph) 2106 return -ENOMEM; 2107 2108 rp->rph->rp = rp; 2109 for (i = 0; i < rp->maxactive; i++) { 2110 inst = kzalloc(sizeof(struct kretprobe_instance) + 2111 rp->data_size, GFP_KERNEL); 2112 if (inst == NULL) { 2113 refcount_set(&rp->rph->ref, i); 2114 free_rp_inst(rp); 2115 return -ENOMEM; 2116 } 2117 inst->rph = rp->rph; 2118 freelist_add(&inst->freelist, &rp->freelist); 2119 } 2120 refcount_set(&rp->rph->ref, i); 2121 2122 rp->nmissed = 0; 2123 /* Establish function entry probe point */ 2124 ret = register_kprobe(&rp->kp); 2125 if (ret != 0) 2126 free_rp_inst(rp); 2127 return ret; 2128 } 2129 EXPORT_SYMBOL_GPL(register_kretprobe); 2130 2131 int register_kretprobes(struct kretprobe **rps, int num) 2132 { 2133 int ret = 0, i; 2134 2135 if (num <= 0) 2136 return -EINVAL; 2137 for (i = 0; i < num; i++) { 2138 ret = register_kretprobe(rps[i]); 2139 if (ret < 0) { 2140 if (i > 0) 2141 unregister_kretprobes(rps, i); 2142 break; 2143 } 2144 } 2145 return ret; 2146 } 2147 EXPORT_SYMBOL_GPL(register_kretprobes); 2148 2149 void unregister_kretprobe(struct kretprobe *rp) 2150 { 2151 unregister_kretprobes(&rp, 1); 2152 } 2153 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2154 2155 void unregister_kretprobes(struct kretprobe **rps, int num) 2156 { 2157 int i; 2158 2159 if (num <= 0) 2160 return; 2161 mutex_lock(&kprobe_mutex); 2162 for (i = 0; i < num; i++) { 2163 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 2164 rps[i]->kp.addr = NULL; 2165 rps[i]->rph->rp = NULL; 2166 } 2167 mutex_unlock(&kprobe_mutex); 2168 2169 synchronize_rcu(); 2170 for (i = 0; i < num; i++) { 2171 if (rps[i]->kp.addr) { 2172 __unregister_kprobe_bottom(&rps[i]->kp); 2173 free_rp_inst(rps[i]); 2174 } 2175 } 2176 } 2177 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2178 2179 #else /* CONFIG_KRETPROBES */ 2180 int register_kretprobe(struct kretprobe *rp) 2181 { 2182 return -EOPNOTSUPP; 2183 } 2184 EXPORT_SYMBOL_GPL(register_kretprobe); 2185 2186 int register_kretprobes(struct kretprobe **rps, int num) 2187 { 2188 return -EOPNOTSUPP; 2189 } 2190 EXPORT_SYMBOL_GPL(register_kretprobes); 2191 2192 void unregister_kretprobe(struct kretprobe *rp) 2193 { 2194 } 2195 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2196 2197 void unregister_kretprobes(struct kretprobe **rps, int num) 2198 { 2199 } 2200 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2201 2202 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2203 { 2204 return 0; 2205 } 2206 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2207 2208 #endif /* CONFIG_KRETPROBES */ 2209 2210 /* Set the kprobe gone and remove its instruction buffer. */ 2211 static void kill_kprobe(struct kprobe *p) 2212 { 2213 struct kprobe *kp; 2214 2215 lockdep_assert_held(&kprobe_mutex); 2216 2217 p->flags |= KPROBE_FLAG_GONE; 2218 if (kprobe_aggrprobe(p)) { 2219 /* 2220 * If this is an aggr_kprobe, we have to list all the 2221 * chained probes and mark them GONE. 2222 */ 2223 list_for_each_entry(kp, &p->list, list) 2224 kp->flags |= KPROBE_FLAG_GONE; 2225 p->post_handler = NULL; 2226 kill_optimized_kprobe(p); 2227 } 2228 /* 2229 * Here, we can remove insn_slot safely, because no thread calls 2230 * the original probed function (which will be freed soon) any more. 2231 */ 2232 arch_remove_kprobe(p); 2233 2234 /* 2235 * The module is going away. We should disarm the kprobe which 2236 * is using ftrace, because ftrace framework is still available at 2237 * 'MODULE_STATE_GOING' notification. 2238 */ 2239 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed) 2240 disarm_kprobe_ftrace(p); 2241 } 2242 2243 /* Disable one kprobe */ 2244 int disable_kprobe(struct kprobe *kp) 2245 { 2246 int ret = 0; 2247 struct kprobe *p; 2248 2249 mutex_lock(&kprobe_mutex); 2250 2251 /* Disable this kprobe */ 2252 p = __disable_kprobe(kp); 2253 if (IS_ERR(p)) 2254 ret = PTR_ERR(p); 2255 2256 mutex_unlock(&kprobe_mutex); 2257 return ret; 2258 } 2259 EXPORT_SYMBOL_GPL(disable_kprobe); 2260 2261 /* Enable one kprobe */ 2262 int enable_kprobe(struct kprobe *kp) 2263 { 2264 int ret = 0; 2265 struct kprobe *p; 2266 2267 mutex_lock(&kprobe_mutex); 2268 2269 /* Check whether specified probe is valid. */ 2270 p = __get_valid_kprobe(kp); 2271 if (unlikely(p == NULL)) { 2272 ret = -EINVAL; 2273 goto out; 2274 } 2275 2276 if (kprobe_gone(kp)) { 2277 /* This kprobe has gone, we couldn't enable it. */ 2278 ret = -EINVAL; 2279 goto out; 2280 } 2281 2282 if (p != kp) 2283 kp->flags &= ~KPROBE_FLAG_DISABLED; 2284 2285 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2286 p->flags &= ~KPROBE_FLAG_DISABLED; 2287 ret = arm_kprobe(p); 2288 if (ret) 2289 p->flags |= KPROBE_FLAG_DISABLED; 2290 } 2291 out: 2292 mutex_unlock(&kprobe_mutex); 2293 return ret; 2294 } 2295 EXPORT_SYMBOL_GPL(enable_kprobe); 2296 2297 /* Caller must NOT call this in usual path. This is only for critical case */ 2298 void dump_kprobe(struct kprobe *kp) 2299 { 2300 pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n", 2301 kp->symbol_name, kp->offset, kp->addr); 2302 } 2303 NOKPROBE_SYMBOL(dump_kprobe); 2304 2305 int kprobe_add_ksym_blacklist(unsigned long entry) 2306 { 2307 struct kprobe_blacklist_entry *ent; 2308 unsigned long offset = 0, size = 0; 2309 2310 if (!kernel_text_address(entry) || 2311 !kallsyms_lookup_size_offset(entry, &size, &offset)) 2312 return -EINVAL; 2313 2314 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2315 if (!ent) 2316 return -ENOMEM; 2317 ent->start_addr = entry; 2318 ent->end_addr = entry + size; 2319 INIT_LIST_HEAD(&ent->list); 2320 list_add_tail(&ent->list, &kprobe_blacklist); 2321 2322 return (int)size; 2323 } 2324 2325 /* Add all symbols in given area into kprobe blacklist */ 2326 int kprobe_add_area_blacklist(unsigned long start, unsigned long end) 2327 { 2328 unsigned long entry; 2329 int ret = 0; 2330 2331 for (entry = start; entry < end; entry += ret) { 2332 ret = kprobe_add_ksym_blacklist(entry); 2333 if (ret < 0) 2334 return ret; 2335 if (ret == 0) /* In case of alias symbol */ 2336 ret = 1; 2337 } 2338 return 0; 2339 } 2340 2341 /* Remove all symbols in given area from kprobe blacklist */ 2342 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end) 2343 { 2344 struct kprobe_blacklist_entry *ent, *n; 2345 2346 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) { 2347 if (ent->start_addr < start || ent->start_addr >= end) 2348 continue; 2349 list_del(&ent->list); 2350 kfree(ent); 2351 } 2352 } 2353 2354 static void kprobe_remove_ksym_blacklist(unsigned long entry) 2355 { 2356 kprobe_remove_area_blacklist(entry, entry + 1); 2357 } 2358 2359 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value, 2360 char *type, char *sym) 2361 { 2362 return -ERANGE; 2363 } 2364 2365 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 2366 char *sym) 2367 { 2368 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 2369 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym)) 2370 return 0; 2371 #ifdef CONFIG_OPTPROBES 2372 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym)) 2373 return 0; 2374 #endif 2375 #endif 2376 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym)) 2377 return 0; 2378 return -ERANGE; 2379 } 2380 2381 int __init __weak arch_populate_kprobe_blacklist(void) 2382 { 2383 return 0; 2384 } 2385 2386 /* 2387 * Lookup and populate the kprobe_blacklist. 2388 * 2389 * Unlike the kretprobe blacklist, we'll need to determine 2390 * the range of addresses that belong to the said functions, 2391 * since a kprobe need not necessarily be at the beginning 2392 * of a function. 2393 */ 2394 static int __init populate_kprobe_blacklist(unsigned long *start, 2395 unsigned long *end) 2396 { 2397 unsigned long entry; 2398 unsigned long *iter; 2399 int ret; 2400 2401 for (iter = start; iter < end; iter++) { 2402 entry = (unsigned long)dereference_symbol_descriptor((void *)*iter); 2403 ret = kprobe_add_ksym_blacklist(entry); 2404 if (ret == -EINVAL) 2405 continue; 2406 if (ret < 0) 2407 return ret; 2408 } 2409 2410 /* Symbols in '__kprobes_text' are blacklisted */ 2411 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start, 2412 (unsigned long)__kprobes_text_end); 2413 if (ret) 2414 return ret; 2415 2416 /* Symbols in 'noinstr' section are blacklisted */ 2417 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start, 2418 (unsigned long)__noinstr_text_end); 2419 2420 return ret ? : arch_populate_kprobe_blacklist(); 2421 } 2422 2423 static void add_module_kprobe_blacklist(struct module *mod) 2424 { 2425 unsigned long start, end; 2426 int i; 2427 2428 if (mod->kprobe_blacklist) { 2429 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2430 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]); 2431 } 2432 2433 start = (unsigned long)mod->kprobes_text_start; 2434 if (start) { 2435 end = start + mod->kprobes_text_size; 2436 kprobe_add_area_blacklist(start, end); 2437 } 2438 2439 start = (unsigned long)mod->noinstr_text_start; 2440 if (start) { 2441 end = start + mod->noinstr_text_size; 2442 kprobe_add_area_blacklist(start, end); 2443 } 2444 } 2445 2446 static void remove_module_kprobe_blacklist(struct module *mod) 2447 { 2448 unsigned long start, end; 2449 int i; 2450 2451 if (mod->kprobe_blacklist) { 2452 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2453 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]); 2454 } 2455 2456 start = (unsigned long)mod->kprobes_text_start; 2457 if (start) { 2458 end = start + mod->kprobes_text_size; 2459 kprobe_remove_area_blacklist(start, end); 2460 } 2461 2462 start = (unsigned long)mod->noinstr_text_start; 2463 if (start) { 2464 end = start + mod->noinstr_text_size; 2465 kprobe_remove_area_blacklist(start, end); 2466 } 2467 } 2468 2469 /* Module notifier call back, checking kprobes on the module */ 2470 static int kprobes_module_callback(struct notifier_block *nb, 2471 unsigned long val, void *data) 2472 { 2473 struct module *mod = data; 2474 struct hlist_head *head; 2475 struct kprobe *p; 2476 unsigned int i; 2477 int checkcore = (val == MODULE_STATE_GOING); 2478 2479 if (val == MODULE_STATE_COMING) { 2480 mutex_lock(&kprobe_mutex); 2481 add_module_kprobe_blacklist(mod); 2482 mutex_unlock(&kprobe_mutex); 2483 } 2484 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2485 return NOTIFY_DONE; 2486 2487 /* 2488 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and 2489 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was 2490 * notified, only '.init.text' section would be freed. We need to 2491 * disable kprobes which have been inserted in the sections. 2492 */ 2493 mutex_lock(&kprobe_mutex); 2494 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2495 head = &kprobe_table[i]; 2496 hlist_for_each_entry(p, head, hlist) 2497 if (within_module_init((unsigned long)p->addr, mod) || 2498 (checkcore && 2499 within_module_core((unsigned long)p->addr, mod))) { 2500 /* 2501 * The vaddr this probe is installed will soon 2502 * be vfreed buy not synced to disk. Hence, 2503 * disarming the breakpoint isn't needed. 2504 * 2505 * Note, this will also move any optimized probes 2506 * that are pending to be removed from their 2507 * corresponding lists to the 'freeing_list' and 2508 * will not be touched by the delayed 2509 * kprobe_optimizer() work handler. 2510 */ 2511 kill_kprobe(p); 2512 } 2513 } 2514 if (val == MODULE_STATE_GOING) 2515 remove_module_kprobe_blacklist(mod); 2516 mutex_unlock(&kprobe_mutex); 2517 return NOTIFY_DONE; 2518 } 2519 2520 static struct notifier_block kprobe_module_nb = { 2521 .notifier_call = kprobes_module_callback, 2522 .priority = 0 2523 }; 2524 2525 void kprobe_free_init_mem(void) 2526 { 2527 void *start = (void *)(&__init_begin); 2528 void *end = (void *)(&__init_end); 2529 struct hlist_head *head; 2530 struct kprobe *p; 2531 int i; 2532 2533 mutex_lock(&kprobe_mutex); 2534 2535 /* Kill all kprobes on initmem because the target code has been freed. */ 2536 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2537 head = &kprobe_table[i]; 2538 hlist_for_each_entry(p, head, hlist) { 2539 if (start <= (void *)p->addr && (void *)p->addr < end) 2540 kill_kprobe(p); 2541 } 2542 } 2543 2544 mutex_unlock(&kprobe_mutex); 2545 } 2546 2547 static int __init init_kprobes(void) 2548 { 2549 int i, err = 0; 2550 2551 /* FIXME allocate the probe table, currently defined statically */ 2552 /* initialize all list heads */ 2553 for (i = 0; i < KPROBE_TABLE_SIZE; i++) 2554 INIT_HLIST_HEAD(&kprobe_table[i]); 2555 2556 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2557 __stop_kprobe_blacklist); 2558 if (err) 2559 pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err); 2560 2561 if (kretprobe_blacklist_size) { 2562 /* lookup the function address from its name */ 2563 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2564 kretprobe_blacklist[i].addr = 2565 kprobe_lookup_name(kretprobe_blacklist[i].name, 0); 2566 if (!kretprobe_blacklist[i].addr) 2567 pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n", 2568 kretprobe_blacklist[i].name); 2569 } 2570 } 2571 2572 /* By default, kprobes are armed */ 2573 kprobes_all_disarmed = false; 2574 2575 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2576 /* Init 'kprobe_optinsn_slots' for allocation */ 2577 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2578 #endif 2579 2580 err = arch_init_kprobes(); 2581 if (!err) 2582 err = register_die_notifier(&kprobe_exceptions_nb); 2583 if (!err) 2584 err = register_module_notifier(&kprobe_module_nb); 2585 2586 kprobes_initialized = (err == 0); 2587 return err; 2588 } 2589 early_initcall(init_kprobes); 2590 2591 #if defined(CONFIG_OPTPROBES) 2592 static int __init init_optprobes(void) 2593 { 2594 /* 2595 * Enable kprobe optimization - this kicks the optimizer which 2596 * depends on synchronize_rcu_tasks() and ksoftirqd, that is 2597 * not spawned in early initcall. So delay the optimization. 2598 */ 2599 optimize_all_kprobes(); 2600 2601 return 0; 2602 } 2603 subsys_initcall(init_optprobes); 2604 #endif 2605 2606 #ifdef CONFIG_DEBUG_FS 2607 static void report_probe(struct seq_file *pi, struct kprobe *p, 2608 const char *sym, int offset, char *modname, struct kprobe *pp) 2609 { 2610 char *kprobe_type; 2611 void *addr = p->addr; 2612 2613 if (p->pre_handler == pre_handler_kretprobe) 2614 kprobe_type = "r"; 2615 else 2616 kprobe_type = "k"; 2617 2618 if (!kallsyms_show_value(pi->file->f_cred)) 2619 addr = NULL; 2620 2621 if (sym) 2622 seq_printf(pi, "%px %s %s+0x%x %s ", 2623 addr, kprobe_type, sym, offset, 2624 (modname ? modname : " ")); 2625 else /* try to use %pS */ 2626 seq_printf(pi, "%px %s %pS ", 2627 addr, kprobe_type, p->addr); 2628 2629 if (!pp) 2630 pp = p; 2631 seq_printf(pi, "%s%s%s%s\n", 2632 (kprobe_gone(p) ? "[GONE]" : ""), 2633 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2634 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2635 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2636 } 2637 2638 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2639 { 2640 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2641 } 2642 2643 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2644 { 2645 (*pos)++; 2646 if (*pos >= KPROBE_TABLE_SIZE) 2647 return NULL; 2648 return pos; 2649 } 2650 2651 static void kprobe_seq_stop(struct seq_file *f, void *v) 2652 { 2653 /* Nothing to do */ 2654 } 2655 2656 static int show_kprobe_addr(struct seq_file *pi, void *v) 2657 { 2658 struct hlist_head *head; 2659 struct kprobe *p, *kp; 2660 const char *sym = NULL; 2661 unsigned int i = *(loff_t *) v; 2662 unsigned long offset = 0; 2663 char *modname, namebuf[KSYM_NAME_LEN]; 2664 2665 head = &kprobe_table[i]; 2666 preempt_disable(); 2667 hlist_for_each_entry_rcu(p, head, hlist) { 2668 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2669 &offset, &modname, namebuf); 2670 if (kprobe_aggrprobe(p)) { 2671 list_for_each_entry_rcu(kp, &p->list, list) 2672 report_probe(pi, kp, sym, offset, modname, p); 2673 } else 2674 report_probe(pi, p, sym, offset, modname, NULL); 2675 } 2676 preempt_enable(); 2677 return 0; 2678 } 2679 2680 static const struct seq_operations kprobes_sops = { 2681 .start = kprobe_seq_start, 2682 .next = kprobe_seq_next, 2683 .stop = kprobe_seq_stop, 2684 .show = show_kprobe_addr 2685 }; 2686 2687 DEFINE_SEQ_ATTRIBUTE(kprobes); 2688 2689 /* kprobes/blacklist -- shows which functions can not be probed */ 2690 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2691 { 2692 mutex_lock(&kprobe_mutex); 2693 return seq_list_start(&kprobe_blacklist, *pos); 2694 } 2695 2696 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2697 { 2698 return seq_list_next(v, &kprobe_blacklist, pos); 2699 } 2700 2701 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2702 { 2703 struct kprobe_blacklist_entry *ent = 2704 list_entry(v, struct kprobe_blacklist_entry, list); 2705 2706 /* 2707 * If '/proc/kallsyms' is not showing kernel address, we won't 2708 * show them here either. 2709 */ 2710 if (!kallsyms_show_value(m->file->f_cred)) 2711 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL, 2712 (void *)ent->start_addr); 2713 else 2714 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr, 2715 (void *)ent->end_addr, (void *)ent->start_addr); 2716 return 0; 2717 } 2718 2719 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v) 2720 { 2721 mutex_unlock(&kprobe_mutex); 2722 } 2723 2724 static const struct seq_operations kprobe_blacklist_sops = { 2725 .start = kprobe_blacklist_seq_start, 2726 .next = kprobe_blacklist_seq_next, 2727 .stop = kprobe_blacklist_seq_stop, 2728 .show = kprobe_blacklist_seq_show, 2729 }; 2730 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist); 2731 2732 static int arm_all_kprobes(void) 2733 { 2734 struct hlist_head *head; 2735 struct kprobe *p; 2736 unsigned int i, total = 0, errors = 0; 2737 int err, ret = 0; 2738 2739 mutex_lock(&kprobe_mutex); 2740 2741 /* If kprobes are armed, just return */ 2742 if (!kprobes_all_disarmed) 2743 goto already_enabled; 2744 2745 /* 2746 * optimize_kprobe() called by arm_kprobe() checks 2747 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2748 * arm_kprobe. 2749 */ 2750 kprobes_all_disarmed = false; 2751 /* Arming kprobes doesn't optimize kprobe itself */ 2752 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2753 head = &kprobe_table[i]; 2754 /* Arm all kprobes on a best-effort basis */ 2755 hlist_for_each_entry(p, head, hlist) { 2756 if (!kprobe_disabled(p)) { 2757 err = arm_kprobe(p); 2758 if (err) { 2759 errors++; 2760 ret = err; 2761 } 2762 total++; 2763 } 2764 } 2765 } 2766 2767 if (errors) 2768 pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n", 2769 errors, total); 2770 else 2771 pr_info("Kprobes globally enabled\n"); 2772 2773 already_enabled: 2774 mutex_unlock(&kprobe_mutex); 2775 return ret; 2776 } 2777 2778 static int disarm_all_kprobes(void) 2779 { 2780 struct hlist_head *head; 2781 struct kprobe *p; 2782 unsigned int i, total = 0, errors = 0; 2783 int err, ret = 0; 2784 2785 mutex_lock(&kprobe_mutex); 2786 2787 /* If kprobes are already disarmed, just return */ 2788 if (kprobes_all_disarmed) { 2789 mutex_unlock(&kprobe_mutex); 2790 return 0; 2791 } 2792 2793 kprobes_all_disarmed = true; 2794 2795 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2796 head = &kprobe_table[i]; 2797 /* Disarm all kprobes on a best-effort basis */ 2798 hlist_for_each_entry(p, head, hlist) { 2799 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { 2800 err = disarm_kprobe(p, false); 2801 if (err) { 2802 errors++; 2803 ret = err; 2804 } 2805 total++; 2806 } 2807 } 2808 } 2809 2810 if (errors) 2811 pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n", 2812 errors, total); 2813 else 2814 pr_info("Kprobes globally disabled\n"); 2815 2816 mutex_unlock(&kprobe_mutex); 2817 2818 /* Wait for disarming all kprobes by optimizer */ 2819 wait_for_kprobe_optimizer(); 2820 2821 return ret; 2822 } 2823 2824 /* 2825 * XXX: The debugfs bool file interface doesn't allow for callbacks 2826 * when the bool state is switched. We can reuse that facility when 2827 * available 2828 */ 2829 static ssize_t read_enabled_file_bool(struct file *file, 2830 char __user *user_buf, size_t count, loff_t *ppos) 2831 { 2832 char buf[3]; 2833 2834 if (!kprobes_all_disarmed) 2835 buf[0] = '1'; 2836 else 2837 buf[0] = '0'; 2838 buf[1] = '\n'; 2839 buf[2] = 0x00; 2840 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2841 } 2842 2843 static ssize_t write_enabled_file_bool(struct file *file, 2844 const char __user *user_buf, size_t count, loff_t *ppos) 2845 { 2846 bool enable; 2847 int ret; 2848 2849 ret = kstrtobool_from_user(user_buf, count, &enable); 2850 if (ret) 2851 return ret; 2852 2853 ret = enable ? arm_all_kprobes() : disarm_all_kprobes(); 2854 if (ret) 2855 return ret; 2856 2857 return count; 2858 } 2859 2860 static const struct file_operations fops_kp = { 2861 .read = read_enabled_file_bool, 2862 .write = write_enabled_file_bool, 2863 .llseek = default_llseek, 2864 }; 2865 2866 static int __init debugfs_kprobe_init(void) 2867 { 2868 struct dentry *dir; 2869 2870 dir = debugfs_create_dir("kprobes", NULL); 2871 2872 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops); 2873 2874 debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp); 2875 2876 debugfs_create_file("blacklist", 0400, dir, NULL, 2877 &kprobe_blacklist_fops); 2878 2879 return 0; 2880 } 2881 2882 late_initcall(debugfs_kprobe_init); 2883 #endif /* CONFIG_DEBUG_FS */ 2884