xref: /openbmc/linux/kernel/kprobes.c (revision 1cc1e4c8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *		Probes initial implementation (includes suggestions from
9  *		Rusty Russell).
10  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
11  *		hlists and exceptions notifier as suggested by Andi Kleen.
12  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
13  *		interface to access function arguments.
14  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
15  *		exceptions notifier to be first on the priority list.
16  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18  *		<prasanna@in.ibm.com> added function-return probes.
19  */
20 
21 #define pr_fmt(fmt) "kprobes: " fmt
22 
23 #include <linux/kprobes.h>
24 #include <linux/hash.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/stddef.h>
28 #include <linux/export.h>
29 #include <linux/moduleloader.h>
30 #include <linux/kallsyms.h>
31 #include <linux/freezer.h>
32 #include <linux/seq_file.h>
33 #include <linux/debugfs.h>
34 #include <linux/sysctl.h>
35 #include <linux/kdebug.h>
36 #include <linux/memory.h>
37 #include <linux/ftrace.h>
38 #include <linux/cpu.h>
39 #include <linux/jump_label.h>
40 #include <linux/static_call.h>
41 #include <linux/perf_event.h>
42 
43 #include <asm/sections.h>
44 #include <asm/cacheflush.h>
45 #include <asm/errno.h>
46 #include <linux/uaccess.h>
47 
48 #define KPROBE_HASH_BITS 6
49 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
50 
51 
52 static int kprobes_initialized;
53 /* kprobe_table can be accessed by
54  * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
55  * Or
56  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
57  */
58 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
59 
60 /* NOTE: change this value only with 'kprobe_mutex' held */
61 static bool kprobes_all_disarmed;
62 
63 /* This protects 'kprobe_table' and 'optimizing_list' */
64 static DEFINE_MUTEX(kprobe_mutex);
65 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
66 
67 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
68 					unsigned int __unused)
69 {
70 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
71 }
72 
73 /*
74  * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
75  * kprobes can not probe.
76  */
77 static LIST_HEAD(kprobe_blacklist);
78 
79 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
80 /*
81  * 'kprobe::ainsn.insn' points to the copy of the instruction to be
82  * single-stepped. x86_64, POWER4 and above have no-exec support and
83  * stepping on the instruction on a vmalloced/kmalloced/data page
84  * is a recipe for disaster
85  */
86 struct kprobe_insn_page {
87 	struct list_head list;
88 	kprobe_opcode_t *insns;		/* Page of instruction slots */
89 	struct kprobe_insn_cache *cache;
90 	int nused;
91 	int ngarbage;
92 	char slot_used[];
93 };
94 
95 #define KPROBE_INSN_PAGE_SIZE(slots)			\
96 	(offsetof(struct kprobe_insn_page, slot_used) +	\
97 	 (sizeof(char) * (slots)))
98 
99 static int slots_per_page(struct kprobe_insn_cache *c)
100 {
101 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
102 }
103 
104 enum kprobe_slot_state {
105 	SLOT_CLEAN = 0,
106 	SLOT_DIRTY = 1,
107 	SLOT_USED = 2,
108 };
109 
110 void __weak *alloc_insn_page(void)
111 {
112 	/*
113 	 * Use module_alloc() so this page is within +/- 2GB of where the
114 	 * kernel image and loaded module images reside. This is required
115 	 * for most of the architectures.
116 	 * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
117 	 */
118 	return module_alloc(PAGE_SIZE);
119 }
120 
121 static void free_insn_page(void *page)
122 {
123 	module_memfree(page);
124 }
125 
126 struct kprobe_insn_cache kprobe_insn_slots = {
127 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
128 	.alloc = alloc_insn_page,
129 	.free = free_insn_page,
130 	.sym = KPROBE_INSN_PAGE_SYM,
131 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
132 	.insn_size = MAX_INSN_SIZE,
133 	.nr_garbage = 0,
134 };
135 static int collect_garbage_slots(struct kprobe_insn_cache *c);
136 
137 /**
138  * __get_insn_slot() - Find a slot on an executable page for an instruction.
139  * We allocate an executable page if there's no room on existing ones.
140  */
141 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
142 {
143 	struct kprobe_insn_page *kip;
144 	kprobe_opcode_t *slot = NULL;
145 
146 	/* Since the slot array is not protected by rcu, we need a mutex */
147 	mutex_lock(&c->mutex);
148  retry:
149 	rcu_read_lock();
150 	list_for_each_entry_rcu(kip, &c->pages, list) {
151 		if (kip->nused < slots_per_page(c)) {
152 			int i;
153 
154 			for (i = 0; i < slots_per_page(c); i++) {
155 				if (kip->slot_used[i] == SLOT_CLEAN) {
156 					kip->slot_used[i] = SLOT_USED;
157 					kip->nused++;
158 					slot = kip->insns + (i * c->insn_size);
159 					rcu_read_unlock();
160 					goto out;
161 				}
162 			}
163 			/* kip->nused is broken. Fix it. */
164 			kip->nused = slots_per_page(c);
165 			WARN_ON(1);
166 		}
167 	}
168 	rcu_read_unlock();
169 
170 	/* If there are any garbage slots, collect it and try again. */
171 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
172 		goto retry;
173 
174 	/* All out of space.  Need to allocate a new page. */
175 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
176 	if (!kip)
177 		goto out;
178 
179 	kip->insns = c->alloc();
180 	if (!kip->insns) {
181 		kfree(kip);
182 		goto out;
183 	}
184 	INIT_LIST_HEAD(&kip->list);
185 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
186 	kip->slot_used[0] = SLOT_USED;
187 	kip->nused = 1;
188 	kip->ngarbage = 0;
189 	kip->cache = c;
190 	list_add_rcu(&kip->list, &c->pages);
191 	slot = kip->insns;
192 
193 	/* Record the perf ksymbol register event after adding the page */
194 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
195 			   PAGE_SIZE, false, c->sym);
196 out:
197 	mutex_unlock(&c->mutex);
198 	return slot;
199 }
200 
201 /* Return true if all garbages are collected, otherwise false. */
202 static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
203 {
204 	kip->slot_used[idx] = SLOT_CLEAN;
205 	kip->nused--;
206 	if (kip->nused == 0) {
207 		/*
208 		 * Page is no longer in use.  Free it unless
209 		 * it's the last one.  We keep the last one
210 		 * so as not to have to set it up again the
211 		 * next time somebody inserts a probe.
212 		 */
213 		if (!list_is_singular(&kip->list)) {
214 			/*
215 			 * Record perf ksymbol unregister event before removing
216 			 * the page.
217 			 */
218 			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
219 					   (unsigned long)kip->insns, PAGE_SIZE, true,
220 					   kip->cache->sym);
221 			list_del_rcu(&kip->list);
222 			synchronize_rcu();
223 			kip->cache->free(kip->insns);
224 			kfree(kip);
225 		}
226 		return true;
227 	}
228 	return false;
229 }
230 
231 static int collect_garbage_slots(struct kprobe_insn_cache *c)
232 {
233 	struct kprobe_insn_page *kip, *next;
234 
235 	/* Ensure no-one is interrupted on the garbages */
236 	synchronize_rcu();
237 
238 	list_for_each_entry_safe(kip, next, &c->pages, list) {
239 		int i;
240 
241 		if (kip->ngarbage == 0)
242 			continue;
243 		kip->ngarbage = 0;	/* we will collect all garbages */
244 		for (i = 0; i < slots_per_page(c); i++) {
245 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
246 				break;
247 		}
248 	}
249 	c->nr_garbage = 0;
250 	return 0;
251 }
252 
253 void __free_insn_slot(struct kprobe_insn_cache *c,
254 		      kprobe_opcode_t *slot, int dirty)
255 {
256 	struct kprobe_insn_page *kip;
257 	long idx;
258 
259 	mutex_lock(&c->mutex);
260 	rcu_read_lock();
261 	list_for_each_entry_rcu(kip, &c->pages, list) {
262 		idx = ((long)slot - (long)kip->insns) /
263 			(c->insn_size * sizeof(kprobe_opcode_t));
264 		if (idx >= 0 && idx < slots_per_page(c))
265 			goto out;
266 	}
267 	/* Could not find this slot. */
268 	WARN_ON(1);
269 	kip = NULL;
270 out:
271 	rcu_read_unlock();
272 	/* Mark and sweep: this may sleep */
273 	if (kip) {
274 		/* Check double free */
275 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
276 		if (dirty) {
277 			kip->slot_used[idx] = SLOT_DIRTY;
278 			kip->ngarbage++;
279 			if (++c->nr_garbage > slots_per_page(c))
280 				collect_garbage_slots(c);
281 		} else {
282 			collect_one_slot(kip, idx);
283 		}
284 	}
285 	mutex_unlock(&c->mutex);
286 }
287 
288 /*
289  * Check given address is on the page of kprobe instruction slots.
290  * This will be used for checking whether the address on a stack
291  * is on a text area or not.
292  */
293 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
294 {
295 	struct kprobe_insn_page *kip;
296 	bool ret = false;
297 
298 	rcu_read_lock();
299 	list_for_each_entry_rcu(kip, &c->pages, list) {
300 		if (addr >= (unsigned long)kip->insns &&
301 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
302 			ret = true;
303 			break;
304 		}
305 	}
306 	rcu_read_unlock();
307 
308 	return ret;
309 }
310 
311 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
312 			     unsigned long *value, char *type, char *sym)
313 {
314 	struct kprobe_insn_page *kip;
315 	int ret = -ERANGE;
316 
317 	rcu_read_lock();
318 	list_for_each_entry_rcu(kip, &c->pages, list) {
319 		if ((*symnum)--)
320 			continue;
321 		strscpy(sym, c->sym, KSYM_NAME_LEN);
322 		*type = 't';
323 		*value = (unsigned long)kip->insns;
324 		ret = 0;
325 		break;
326 	}
327 	rcu_read_unlock();
328 
329 	return ret;
330 }
331 
332 #ifdef CONFIG_OPTPROBES
333 void __weak *alloc_optinsn_page(void)
334 {
335 	return alloc_insn_page();
336 }
337 
338 void __weak free_optinsn_page(void *page)
339 {
340 	free_insn_page(page);
341 }
342 
343 /* For optimized_kprobe buffer */
344 struct kprobe_insn_cache kprobe_optinsn_slots = {
345 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
346 	.alloc = alloc_optinsn_page,
347 	.free = free_optinsn_page,
348 	.sym = KPROBE_OPTINSN_PAGE_SYM,
349 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
350 	/* .insn_size is initialized later */
351 	.nr_garbage = 0,
352 };
353 #endif
354 #endif
355 
356 /* We have preemption disabled.. so it is safe to use __ versions */
357 static inline void set_kprobe_instance(struct kprobe *kp)
358 {
359 	__this_cpu_write(kprobe_instance, kp);
360 }
361 
362 static inline void reset_kprobe_instance(void)
363 {
364 	__this_cpu_write(kprobe_instance, NULL);
365 }
366 
367 /*
368  * This routine is called either:
369  *	- under the 'kprobe_mutex' - during kprobe_[un]register().
370  *				OR
371  *	- with preemption disabled - from architecture specific code.
372  */
373 struct kprobe *get_kprobe(void *addr)
374 {
375 	struct hlist_head *head;
376 	struct kprobe *p;
377 
378 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
379 	hlist_for_each_entry_rcu(p, head, hlist,
380 				 lockdep_is_held(&kprobe_mutex)) {
381 		if (p->addr == addr)
382 			return p;
383 	}
384 
385 	return NULL;
386 }
387 NOKPROBE_SYMBOL(get_kprobe);
388 
389 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
390 
391 /* Return true if 'p' is an aggregator */
392 static inline bool kprobe_aggrprobe(struct kprobe *p)
393 {
394 	return p->pre_handler == aggr_pre_handler;
395 }
396 
397 /* Return true if 'p' is unused */
398 static inline bool kprobe_unused(struct kprobe *p)
399 {
400 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
401 	       list_empty(&p->list);
402 }
403 
404 /* Keep all fields in the kprobe consistent. */
405 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
406 {
407 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
408 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
409 }
410 
411 #ifdef CONFIG_OPTPROBES
412 /* NOTE: This is protected by 'kprobe_mutex'. */
413 static bool kprobes_allow_optimization;
414 
415 /*
416  * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
417  * This must be called from arch-dep optimized caller.
418  */
419 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
420 {
421 	struct kprobe *kp;
422 
423 	list_for_each_entry_rcu(kp, &p->list, list) {
424 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
425 			set_kprobe_instance(kp);
426 			kp->pre_handler(kp, regs);
427 		}
428 		reset_kprobe_instance();
429 	}
430 }
431 NOKPROBE_SYMBOL(opt_pre_handler);
432 
433 /* Free optimized instructions and optimized_kprobe */
434 static void free_aggr_kprobe(struct kprobe *p)
435 {
436 	struct optimized_kprobe *op;
437 
438 	op = container_of(p, struct optimized_kprobe, kp);
439 	arch_remove_optimized_kprobe(op);
440 	arch_remove_kprobe(p);
441 	kfree(op);
442 }
443 
444 /* Return true if the kprobe is ready for optimization. */
445 static inline int kprobe_optready(struct kprobe *p)
446 {
447 	struct optimized_kprobe *op;
448 
449 	if (kprobe_aggrprobe(p)) {
450 		op = container_of(p, struct optimized_kprobe, kp);
451 		return arch_prepared_optinsn(&op->optinsn);
452 	}
453 
454 	return 0;
455 }
456 
457 /* Return true if the kprobe is disarmed. Note: p must be on hash list */
458 static inline bool kprobe_disarmed(struct kprobe *p)
459 {
460 	struct optimized_kprobe *op;
461 
462 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
463 	if (!kprobe_aggrprobe(p))
464 		return kprobe_disabled(p);
465 
466 	op = container_of(p, struct optimized_kprobe, kp);
467 
468 	return kprobe_disabled(p) && list_empty(&op->list);
469 }
470 
471 /* Return true if the probe is queued on (un)optimizing lists */
472 static bool kprobe_queued(struct kprobe *p)
473 {
474 	struct optimized_kprobe *op;
475 
476 	if (kprobe_aggrprobe(p)) {
477 		op = container_of(p, struct optimized_kprobe, kp);
478 		if (!list_empty(&op->list))
479 			return true;
480 	}
481 	return false;
482 }
483 
484 /*
485  * Return an optimized kprobe whose optimizing code replaces
486  * instructions including 'addr' (exclude breakpoint).
487  */
488 static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
489 {
490 	int i;
491 	struct kprobe *p = NULL;
492 	struct optimized_kprobe *op;
493 
494 	/* Don't check i == 0, since that is a breakpoint case. */
495 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
496 		p = get_kprobe(addr - i);
497 
498 	if (p && kprobe_optready(p)) {
499 		op = container_of(p, struct optimized_kprobe, kp);
500 		if (arch_within_optimized_kprobe(op, addr))
501 			return p;
502 	}
503 
504 	return NULL;
505 }
506 
507 /* Optimization staging list, protected by 'kprobe_mutex' */
508 static LIST_HEAD(optimizing_list);
509 static LIST_HEAD(unoptimizing_list);
510 static LIST_HEAD(freeing_list);
511 
512 static void kprobe_optimizer(struct work_struct *work);
513 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
514 #define OPTIMIZE_DELAY 5
515 
516 /*
517  * Optimize (replace a breakpoint with a jump) kprobes listed on
518  * 'optimizing_list'.
519  */
520 static void do_optimize_kprobes(void)
521 {
522 	lockdep_assert_held(&text_mutex);
523 	/*
524 	 * The optimization/unoptimization refers 'online_cpus' via
525 	 * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
526 	 * And same time, 'text_mutex' will be held in cpu-hotplug and here.
527 	 * This combination can cause a deadlock (cpu-hotplug tries to lock
528 	 * 'text_mutex' but stop_machine() can not be done because
529 	 * the 'online_cpus' has been changed)
530 	 * To avoid this deadlock, caller must have locked cpu-hotplug
531 	 * for preventing cpu-hotplug outside of 'text_mutex' locking.
532 	 */
533 	lockdep_assert_cpus_held();
534 
535 	/* Optimization never be done when disarmed */
536 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
537 	    list_empty(&optimizing_list))
538 		return;
539 
540 	arch_optimize_kprobes(&optimizing_list);
541 }
542 
543 /*
544  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
545  * if need) kprobes listed on 'unoptimizing_list'.
546  */
547 static void do_unoptimize_kprobes(void)
548 {
549 	struct optimized_kprobe *op, *tmp;
550 
551 	lockdep_assert_held(&text_mutex);
552 	/* See comment in do_optimize_kprobes() */
553 	lockdep_assert_cpus_held();
554 
555 	/* Unoptimization must be done anytime */
556 	if (list_empty(&unoptimizing_list))
557 		return;
558 
559 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
560 	/* Loop on 'freeing_list' for disarming */
561 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
562 		/* Switching from detour code to origin */
563 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
564 		/* Disarm probes if marked disabled */
565 		if (kprobe_disabled(&op->kp))
566 			arch_disarm_kprobe(&op->kp);
567 		if (kprobe_unused(&op->kp)) {
568 			/*
569 			 * Remove unused probes from hash list. After waiting
570 			 * for synchronization, these probes are reclaimed.
571 			 * (reclaiming is done by do_free_cleaned_kprobes().)
572 			 */
573 			hlist_del_rcu(&op->kp.hlist);
574 		} else
575 			list_del_init(&op->list);
576 	}
577 }
578 
579 /* Reclaim all kprobes on the 'freeing_list' */
580 static void do_free_cleaned_kprobes(void)
581 {
582 	struct optimized_kprobe *op, *tmp;
583 
584 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
585 		list_del_init(&op->list);
586 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
587 			/*
588 			 * This must not happen, but if there is a kprobe
589 			 * still in use, keep it on kprobes hash list.
590 			 */
591 			continue;
592 		}
593 		free_aggr_kprobe(&op->kp);
594 	}
595 }
596 
597 /* Start optimizer after OPTIMIZE_DELAY passed */
598 static void kick_kprobe_optimizer(void)
599 {
600 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
601 }
602 
603 /* Kprobe jump optimizer */
604 static void kprobe_optimizer(struct work_struct *work)
605 {
606 	mutex_lock(&kprobe_mutex);
607 	cpus_read_lock();
608 	mutex_lock(&text_mutex);
609 
610 	/*
611 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
612 	 * kprobes before waiting for quiesence period.
613 	 */
614 	do_unoptimize_kprobes();
615 
616 	/*
617 	 * Step 2: Wait for quiesence period to ensure all potentially
618 	 * preempted tasks to have normally scheduled. Because optprobe
619 	 * may modify multiple instructions, there is a chance that Nth
620 	 * instruction is preempted. In that case, such tasks can return
621 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
622 	 * Note that on non-preemptive kernel, this is transparently converted
623 	 * to synchronoze_sched() to wait for all interrupts to have completed.
624 	 */
625 	synchronize_rcu_tasks();
626 
627 	/* Step 3: Optimize kprobes after quiesence period */
628 	do_optimize_kprobes();
629 
630 	/* Step 4: Free cleaned kprobes after quiesence period */
631 	do_free_cleaned_kprobes();
632 
633 	mutex_unlock(&text_mutex);
634 	cpus_read_unlock();
635 
636 	/* Step 5: Kick optimizer again if needed */
637 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
638 		kick_kprobe_optimizer();
639 
640 	mutex_unlock(&kprobe_mutex);
641 }
642 
643 /* Wait for completing optimization and unoptimization */
644 void wait_for_kprobe_optimizer(void)
645 {
646 	mutex_lock(&kprobe_mutex);
647 
648 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
649 		mutex_unlock(&kprobe_mutex);
650 
651 		/* This will also make 'optimizing_work' execute immmediately */
652 		flush_delayed_work(&optimizing_work);
653 		/* 'optimizing_work' might not have been queued yet, relax */
654 		cpu_relax();
655 
656 		mutex_lock(&kprobe_mutex);
657 	}
658 
659 	mutex_unlock(&kprobe_mutex);
660 }
661 
662 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
663 {
664 	struct optimized_kprobe *_op;
665 
666 	list_for_each_entry(_op, &unoptimizing_list, list) {
667 		if (op == _op)
668 			return true;
669 	}
670 
671 	return false;
672 }
673 
674 /* Optimize kprobe if p is ready to be optimized */
675 static void optimize_kprobe(struct kprobe *p)
676 {
677 	struct optimized_kprobe *op;
678 
679 	/* Check if the kprobe is disabled or not ready for optimization. */
680 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
681 	    (kprobe_disabled(p) || kprobes_all_disarmed))
682 		return;
683 
684 	/* kprobes with 'post_handler' can not be optimized */
685 	if (p->post_handler)
686 		return;
687 
688 	op = container_of(p, struct optimized_kprobe, kp);
689 
690 	/* Check there is no other kprobes at the optimized instructions */
691 	if (arch_check_optimized_kprobe(op) < 0)
692 		return;
693 
694 	/* Check if it is already optimized. */
695 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
696 		if (optprobe_queued_unopt(op)) {
697 			/* This is under unoptimizing. Just dequeue the probe */
698 			list_del_init(&op->list);
699 		}
700 		return;
701 	}
702 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
703 
704 	/*
705 	 * On the 'unoptimizing_list' and 'optimizing_list',
706 	 * 'op' must have OPTIMIZED flag
707 	 */
708 	if (WARN_ON_ONCE(!list_empty(&op->list)))
709 		return;
710 
711 	list_add(&op->list, &optimizing_list);
712 	kick_kprobe_optimizer();
713 }
714 
715 /* Short cut to direct unoptimizing */
716 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
717 {
718 	lockdep_assert_cpus_held();
719 	arch_unoptimize_kprobe(op);
720 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
721 }
722 
723 /* Unoptimize a kprobe if p is optimized */
724 static void unoptimize_kprobe(struct kprobe *p, bool force)
725 {
726 	struct optimized_kprobe *op;
727 
728 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
729 		return; /* This is not an optprobe nor optimized */
730 
731 	op = container_of(p, struct optimized_kprobe, kp);
732 	if (!kprobe_optimized(p))
733 		return;
734 
735 	if (!list_empty(&op->list)) {
736 		if (optprobe_queued_unopt(op)) {
737 			/* Queued in unoptimizing queue */
738 			if (force) {
739 				/*
740 				 * Forcibly unoptimize the kprobe here, and queue it
741 				 * in the freeing list for release afterwards.
742 				 */
743 				force_unoptimize_kprobe(op);
744 				list_move(&op->list, &freeing_list);
745 			}
746 		} else {
747 			/* Dequeue from the optimizing queue */
748 			list_del_init(&op->list);
749 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
750 		}
751 		return;
752 	}
753 
754 	/* Optimized kprobe case */
755 	if (force) {
756 		/* Forcibly update the code: this is a special case */
757 		force_unoptimize_kprobe(op);
758 	} else {
759 		list_add(&op->list, &unoptimizing_list);
760 		kick_kprobe_optimizer();
761 	}
762 }
763 
764 /* Cancel unoptimizing for reusing */
765 static int reuse_unused_kprobe(struct kprobe *ap)
766 {
767 	struct optimized_kprobe *op;
768 
769 	/*
770 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
771 	 * there is still a relative jump) and disabled.
772 	 */
773 	op = container_of(ap, struct optimized_kprobe, kp);
774 	WARN_ON_ONCE(list_empty(&op->list));
775 	/* Enable the probe again */
776 	ap->flags &= ~KPROBE_FLAG_DISABLED;
777 	/* Optimize it again. (remove from 'op->list') */
778 	if (!kprobe_optready(ap))
779 		return -EINVAL;
780 
781 	optimize_kprobe(ap);
782 	return 0;
783 }
784 
785 /* Remove optimized instructions */
786 static void kill_optimized_kprobe(struct kprobe *p)
787 {
788 	struct optimized_kprobe *op;
789 
790 	op = container_of(p, struct optimized_kprobe, kp);
791 	if (!list_empty(&op->list))
792 		/* Dequeue from the (un)optimization queue */
793 		list_del_init(&op->list);
794 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
795 
796 	if (kprobe_unused(p)) {
797 		/* Enqueue if it is unused */
798 		list_add(&op->list, &freeing_list);
799 		/*
800 		 * Remove unused probes from the hash list. After waiting
801 		 * for synchronization, this probe is reclaimed.
802 		 * (reclaiming is done by do_free_cleaned_kprobes().)
803 		 */
804 		hlist_del_rcu(&op->kp.hlist);
805 	}
806 
807 	/* Don't touch the code, because it is already freed. */
808 	arch_remove_optimized_kprobe(op);
809 }
810 
811 static inline
812 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
813 {
814 	if (!kprobe_ftrace(p))
815 		arch_prepare_optimized_kprobe(op, p);
816 }
817 
818 /* Try to prepare optimized instructions */
819 static void prepare_optimized_kprobe(struct kprobe *p)
820 {
821 	struct optimized_kprobe *op;
822 
823 	op = container_of(p, struct optimized_kprobe, kp);
824 	__prepare_optimized_kprobe(op, p);
825 }
826 
827 /* Allocate new optimized_kprobe and try to prepare optimized instructions. */
828 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
829 {
830 	struct optimized_kprobe *op;
831 
832 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
833 	if (!op)
834 		return NULL;
835 
836 	INIT_LIST_HEAD(&op->list);
837 	op->kp.addr = p->addr;
838 	__prepare_optimized_kprobe(op, p);
839 
840 	return &op->kp;
841 }
842 
843 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
844 
845 /*
846  * Prepare an optimized_kprobe and optimize it.
847  * NOTE: 'p' must be a normal registered kprobe.
848  */
849 static void try_to_optimize_kprobe(struct kprobe *p)
850 {
851 	struct kprobe *ap;
852 	struct optimized_kprobe *op;
853 
854 	/* Impossible to optimize ftrace-based kprobe. */
855 	if (kprobe_ftrace(p))
856 		return;
857 
858 	/* For preparing optimization, jump_label_text_reserved() is called. */
859 	cpus_read_lock();
860 	jump_label_lock();
861 	mutex_lock(&text_mutex);
862 
863 	ap = alloc_aggr_kprobe(p);
864 	if (!ap)
865 		goto out;
866 
867 	op = container_of(ap, struct optimized_kprobe, kp);
868 	if (!arch_prepared_optinsn(&op->optinsn)) {
869 		/* If failed to setup optimizing, fallback to kprobe. */
870 		arch_remove_optimized_kprobe(op);
871 		kfree(op);
872 		goto out;
873 	}
874 
875 	init_aggr_kprobe(ap, p);
876 	optimize_kprobe(ap);	/* This just kicks optimizer thread. */
877 
878 out:
879 	mutex_unlock(&text_mutex);
880 	jump_label_unlock();
881 	cpus_read_unlock();
882 }
883 
884 static void optimize_all_kprobes(void)
885 {
886 	struct hlist_head *head;
887 	struct kprobe *p;
888 	unsigned int i;
889 
890 	mutex_lock(&kprobe_mutex);
891 	/* If optimization is already allowed, just return. */
892 	if (kprobes_allow_optimization)
893 		goto out;
894 
895 	cpus_read_lock();
896 	kprobes_allow_optimization = true;
897 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
898 		head = &kprobe_table[i];
899 		hlist_for_each_entry(p, head, hlist)
900 			if (!kprobe_disabled(p))
901 				optimize_kprobe(p);
902 	}
903 	cpus_read_unlock();
904 	pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
905 out:
906 	mutex_unlock(&kprobe_mutex);
907 }
908 
909 #ifdef CONFIG_SYSCTL
910 static void unoptimize_all_kprobes(void)
911 {
912 	struct hlist_head *head;
913 	struct kprobe *p;
914 	unsigned int i;
915 
916 	mutex_lock(&kprobe_mutex);
917 	/* If optimization is already prohibited, just return. */
918 	if (!kprobes_allow_optimization) {
919 		mutex_unlock(&kprobe_mutex);
920 		return;
921 	}
922 
923 	cpus_read_lock();
924 	kprobes_allow_optimization = false;
925 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
926 		head = &kprobe_table[i];
927 		hlist_for_each_entry(p, head, hlist) {
928 			if (!kprobe_disabled(p))
929 				unoptimize_kprobe(p, false);
930 		}
931 	}
932 	cpus_read_unlock();
933 	mutex_unlock(&kprobe_mutex);
934 
935 	/* Wait for unoptimizing completion. */
936 	wait_for_kprobe_optimizer();
937 	pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
938 }
939 
940 static DEFINE_MUTEX(kprobe_sysctl_mutex);
941 int sysctl_kprobes_optimization;
942 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
943 				      void *buffer, size_t *length,
944 				      loff_t *ppos)
945 {
946 	int ret;
947 
948 	mutex_lock(&kprobe_sysctl_mutex);
949 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
950 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
951 
952 	if (sysctl_kprobes_optimization)
953 		optimize_all_kprobes();
954 	else
955 		unoptimize_all_kprobes();
956 	mutex_unlock(&kprobe_sysctl_mutex);
957 
958 	return ret;
959 }
960 #endif /* CONFIG_SYSCTL */
961 
962 /* Put a breakpoint for a probe. */
963 static void __arm_kprobe(struct kprobe *p)
964 {
965 	struct kprobe *_p;
966 
967 	lockdep_assert_held(&text_mutex);
968 
969 	/* Find the overlapping optimized kprobes. */
970 	_p = get_optimized_kprobe(p->addr);
971 	if (unlikely(_p))
972 		/* Fallback to unoptimized kprobe */
973 		unoptimize_kprobe(_p, true);
974 
975 	arch_arm_kprobe(p);
976 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
977 }
978 
979 /* Remove the breakpoint of a probe. */
980 static void __disarm_kprobe(struct kprobe *p, bool reopt)
981 {
982 	struct kprobe *_p;
983 
984 	lockdep_assert_held(&text_mutex);
985 
986 	/* Try to unoptimize */
987 	unoptimize_kprobe(p, kprobes_all_disarmed);
988 
989 	if (!kprobe_queued(p)) {
990 		arch_disarm_kprobe(p);
991 		/* If another kprobe was blocked, re-optimize it. */
992 		_p = get_optimized_kprobe(p->addr);
993 		if (unlikely(_p) && reopt)
994 			optimize_kprobe(_p);
995 	}
996 	/*
997 	 * TODO: Since unoptimization and real disarming will be done by
998 	 * the worker thread, we can not check whether another probe are
999 	 * unoptimized because of this probe here. It should be re-optimized
1000 	 * by the worker thread.
1001 	 */
1002 }
1003 
1004 #else /* !CONFIG_OPTPROBES */
1005 
1006 #define optimize_kprobe(p)			do {} while (0)
1007 #define unoptimize_kprobe(p, f)			do {} while (0)
1008 #define kill_optimized_kprobe(p)		do {} while (0)
1009 #define prepare_optimized_kprobe(p)		do {} while (0)
1010 #define try_to_optimize_kprobe(p)		do {} while (0)
1011 #define __arm_kprobe(p)				arch_arm_kprobe(p)
1012 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
1013 #define kprobe_disarmed(p)			kprobe_disabled(p)
1014 #define wait_for_kprobe_optimizer()		do {} while (0)
1015 
1016 static int reuse_unused_kprobe(struct kprobe *ap)
1017 {
1018 	/*
1019 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
1020 	 * released at the same time that the last aggregated kprobe is
1021 	 * unregistered.
1022 	 * Thus there should be no chance to reuse unused kprobe.
1023 	 */
1024 	WARN_ON_ONCE(1);
1025 	return -EINVAL;
1026 }
1027 
1028 static void free_aggr_kprobe(struct kprobe *p)
1029 {
1030 	arch_remove_kprobe(p);
1031 	kfree(p);
1032 }
1033 
1034 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1035 {
1036 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1037 }
1038 #endif /* CONFIG_OPTPROBES */
1039 
1040 #ifdef CONFIG_KPROBES_ON_FTRACE
1041 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1042 	.func = kprobe_ftrace_handler,
1043 	.flags = FTRACE_OPS_FL_SAVE_REGS,
1044 };
1045 
1046 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1047 	.func = kprobe_ftrace_handler,
1048 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1049 };
1050 
1051 static int kprobe_ipmodify_enabled;
1052 static int kprobe_ftrace_enabled;
1053 
1054 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1055 			       int *cnt)
1056 {
1057 	int ret = 0;
1058 
1059 	lockdep_assert_held(&kprobe_mutex);
1060 
1061 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1062 	if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1063 		return ret;
1064 
1065 	if (*cnt == 0) {
1066 		ret = register_ftrace_function(ops);
1067 		if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
1068 			goto err_ftrace;
1069 	}
1070 
1071 	(*cnt)++;
1072 	return ret;
1073 
1074 err_ftrace:
1075 	/*
1076 	 * At this point, sinec ops is not registered, we should be sefe from
1077 	 * registering empty filter.
1078 	 */
1079 	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1080 	return ret;
1081 }
1082 
1083 static int arm_kprobe_ftrace(struct kprobe *p)
1084 {
1085 	bool ipmodify = (p->post_handler != NULL);
1086 
1087 	return __arm_kprobe_ftrace(p,
1088 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1089 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1090 }
1091 
1092 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1093 				  int *cnt)
1094 {
1095 	int ret = 0;
1096 
1097 	lockdep_assert_held(&kprobe_mutex);
1098 
1099 	if (*cnt == 1) {
1100 		ret = unregister_ftrace_function(ops);
1101 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1102 			return ret;
1103 	}
1104 
1105 	(*cnt)--;
1106 
1107 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1108 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1109 		  p->addr, ret);
1110 	return ret;
1111 }
1112 
1113 static int disarm_kprobe_ftrace(struct kprobe *p)
1114 {
1115 	bool ipmodify = (p->post_handler != NULL);
1116 
1117 	return __disarm_kprobe_ftrace(p,
1118 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1119 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1120 }
1121 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1122 static inline int arm_kprobe_ftrace(struct kprobe *p)
1123 {
1124 	return -ENODEV;
1125 }
1126 
1127 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1128 {
1129 	return -ENODEV;
1130 }
1131 #endif
1132 
1133 static int prepare_kprobe(struct kprobe *p)
1134 {
1135 	/* Must ensure p->addr is really on ftrace */
1136 	if (kprobe_ftrace(p))
1137 		return arch_prepare_kprobe_ftrace(p);
1138 
1139 	return arch_prepare_kprobe(p);
1140 }
1141 
1142 static int arm_kprobe(struct kprobe *kp)
1143 {
1144 	if (unlikely(kprobe_ftrace(kp)))
1145 		return arm_kprobe_ftrace(kp);
1146 
1147 	cpus_read_lock();
1148 	mutex_lock(&text_mutex);
1149 	__arm_kprobe(kp);
1150 	mutex_unlock(&text_mutex);
1151 	cpus_read_unlock();
1152 
1153 	return 0;
1154 }
1155 
1156 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1157 {
1158 	if (unlikely(kprobe_ftrace(kp)))
1159 		return disarm_kprobe_ftrace(kp);
1160 
1161 	cpus_read_lock();
1162 	mutex_lock(&text_mutex);
1163 	__disarm_kprobe(kp, reopt);
1164 	mutex_unlock(&text_mutex);
1165 	cpus_read_unlock();
1166 
1167 	return 0;
1168 }
1169 
1170 /*
1171  * Aggregate handlers for multiple kprobes support - these handlers
1172  * take care of invoking the individual kprobe handlers on p->list
1173  */
1174 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1175 {
1176 	struct kprobe *kp;
1177 
1178 	list_for_each_entry_rcu(kp, &p->list, list) {
1179 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1180 			set_kprobe_instance(kp);
1181 			if (kp->pre_handler(kp, regs))
1182 				return 1;
1183 		}
1184 		reset_kprobe_instance();
1185 	}
1186 	return 0;
1187 }
1188 NOKPROBE_SYMBOL(aggr_pre_handler);
1189 
1190 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1191 			      unsigned long flags)
1192 {
1193 	struct kprobe *kp;
1194 
1195 	list_for_each_entry_rcu(kp, &p->list, list) {
1196 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1197 			set_kprobe_instance(kp);
1198 			kp->post_handler(kp, regs, flags);
1199 			reset_kprobe_instance();
1200 		}
1201 	}
1202 }
1203 NOKPROBE_SYMBOL(aggr_post_handler);
1204 
1205 /* Walks the list and increments 'nmissed' if 'p' has child probes. */
1206 void kprobes_inc_nmissed_count(struct kprobe *p)
1207 {
1208 	struct kprobe *kp;
1209 
1210 	if (!kprobe_aggrprobe(p)) {
1211 		p->nmissed++;
1212 	} else {
1213 		list_for_each_entry_rcu(kp, &p->list, list)
1214 			kp->nmissed++;
1215 	}
1216 }
1217 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1218 
1219 static void free_rp_inst_rcu(struct rcu_head *head)
1220 {
1221 	struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1222 
1223 	if (refcount_dec_and_test(&ri->rph->ref))
1224 		kfree(ri->rph);
1225 	kfree(ri);
1226 }
1227 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1228 
1229 static void recycle_rp_inst(struct kretprobe_instance *ri)
1230 {
1231 	struct kretprobe *rp = get_kretprobe(ri);
1232 
1233 	if (likely(rp))
1234 		freelist_add(&ri->freelist, &rp->freelist);
1235 	else
1236 		call_rcu(&ri->rcu, free_rp_inst_rcu);
1237 }
1238 NOKPROBE_SYMBOL(recycle_rp_inst);
1239 
1240 static struct kprobe kprobe_busy = {
1241 	.addr = (void *) get_kprobe,
1242 };
1243 
1244 void kprobe_busy_begin(void)
1245 {
1246 	struct kprobe_ctlblk *kcb;
1247 
1248 	preempt_disable();
1249 	__this_cpu_write(current_kprobe, &kprobe_busy);
1250 	kcb = get_kprobe_ctlblk();
1251 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1252 }
1253 
1254 void kprobe_busy_end(void)
1255 {
1256 	__this_cpu_write(current_kprobe, NULL);
1257 	preempt_enable();
1258 }
1259 
1260 /*
1261  * This function is called from delayed_put_task_struct() when a task is
1262  * dead and cleaned up to recycle any kretprobe instances associated with
1263  * this task. These left over instances represent probed functions that
1264  * have been called but will never return.
1265  */
1266 void kprobe_flush_task(struct task_struct *tk)
1267 {
1268 	struct kretprobe_instance *ri;
1269 	struct llist_node *node;
1270 
1271 	/* Early boot, not yet initialized. */
1272 	if (unlikely(!kprobes_initialized))
1273 		return;
1274 
1275 	kprobe_busy_begin();
1276 
1277 	node = __llist_del_all(&tk->kretprobe_instances);
1278 	while (node) {
1279 		ri = container_of(node, struct kretprobe_instance, llist);
1280 		node = node->next;
1281 
1282 		recycle_rp_inst(ri);
1283 	}
1284 
1285 	kprobe_busy_end();
1286 }
1287 NOKPROBE_SYMBOL(kprobe_flush_task);
1288 
1289 static inline void free_rp_inst(struct kretprobe *rp)
1290 {
1291 	struct kretprobe_instance *ri;
1292 	struct freelist_node *node;
1293 	int count = 0;
1294 
1295 	node = rp->freelist.head;
1296 	while (node) {
1297 		ri = container_of(node, struct kretprobe_instance, freelist);
1298 		node = node->next;
1299 
1300 		kfree(ri);
1301 		count++;
1302 	}
1303 
1304 	if (refcount_sub_and_test(count, &rp->rph->ref)) {
1305 		kfree(rp->rph);
1306 		rp->rph = NULL;
1307 	}
1308 }
1309 
1310 /* Add the new probe to 'ap->list'. */
1311 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1312 {
1313 	if (p->post_handler)
1314 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1315 
1316 	list_add_rcu(&p->list, &ap->list);
1317 	if (p->post_handler && !ap->post_handler)
1318 		ap->post_handler = aggr_post_handler;
1319 
1320 	return 0;
1321 }
1322 
1323 /*
1324  * Fill in the required fields of the aggregator kprobe. Replace the
1325  * earlier kprobe in the hlist with the aggregator kprobe.
1326  */
1327 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1328 {
1329 	/* Copy the insn slot of 'p' to 'ap'. */
1330 	copy_kprobe(p, ap);
1331 	flush_insn_slot(ap);
1332 	ap->addr = p->addr;
1333 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1334 	ap->pre_handler = aggr_pre_handler;
1335 	/* We don't care the kprobe which has gone. */
1336 	if (p->post_handler && !kprobe_gone(p))
1337 		ap->post_handler = aggr_post_handler;
1338 
1339 	INIT_LIST_HEAD(&ap->list);
1340 	INIT_HLIST_NODE(&ap->hlist);
1341 
1342 	list_add_rcu(&p->list, &ap->list);
1343 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1344 }
1345 
1346 /*
1347  * This registers the second or subsequent kprobe at the same address.
1348  */
1349 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1350 {
1351 	int ret = 0;
1352 	struct kprobe *ap = orig_p;
1353 
1354 	cpus_read_lock();
1355 
1356 	/* For preparing optimization, jump_label_text_reserved() is called */
1357 	jump_label_lock();
1358 	mutex_lock(&text_mutex);
1359 
1360 	if (!kprobe_aggrprobe(orig_p)) {
1361 		/* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1362 		ap = alloc_aggr_kprobe(orig_p);
1363 		if (!ap) {
1364 			ret = -ENOMEM;
1365 			goto out;
1366 		}
1367 		init_aggr_kprobe(ap, orig_p);
1368 	} else if (kprobe_unused(ap)) {
1369 		/* This probe is going to die. Rescue it */
1370 		ret = reuse_unused_kprobe(ap);
1371 		if (ret)
1372 			goto out;
1373 	}
1374 
1375 	if (kprobe_gone(ap)) {
1376 		/*
1377 		 * Attempting to insert new probe at the same location that
1378 		 * had a probe in the module vaddr area which already
1379 		 * freed. So, the instruction slot has already been
1380 		 * released. We need a new slot for the new probe.
1381 		 */
1382 		ret = arch_prepare_kprobe(ap);
1383 		if (ret)
1384 			/*
1385 			 * Even if fail to allocate new slot, don't need to
1386 			 * free the 'ap'. It will be used next time, or
1387 			 * freed by unregister_kprobe().
1388 			 */
1389 			goto out;
1390 
1391 		/* Prepare optimized instructions if possible. */
1392 		prepare_optimized_kprobe(ap);
1393 
1394 		/*
1395 		 * Clear gone flag to prevent allocating new slot again, and
1396 		 * set disabled flag because it is not armed yet.
1397 		 */
1398 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1399 			    | KPROBE_FLAG_DISABLED;
1400 	}
1401 
1402 	/* Copy the insn slot of 'p' to 'ap'. */
1403 	copy_kprobe(ap, p);
1404 	ret = add_new_kprobe(ap, p);
1405 
1406 out:
1407 	mutex_unlock(&text_mutex);
1408 	jump_label_unlock();
1409 	cpus_read_unlock();
1410 
1411 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1412 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1413 		if (!kprobes_all_disarmed) {
1414 			/* Arm the breakpoint again. */
1415 			ret = arm_kprobe(ap);
1416 			if (ret) {
1417 				ap->flags |= KPROBE_FLAG_DISABLED;
1418 				list_del_rcu(&p->list);
1419 				synchronize_rcu();
1420 			}
1421 		}
1422 	}
1423 	return ret;
1424 }
1425 
1426 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1427 {
1428 	/* The '__kprobes' functions and entry code must not be probed. */
1429 	return addr >= (unsigned long)__kprobes_text_start &&
1430 	       addr < (unsigned long)__kprobes_text_end;
1431 }
1432 
1433 static bool __within_kprobe_blacklist(unsigned long addr)
1434 {
1435 	struct kprobe_blacklist_entry *ent;
1436 
1437 	if (arch_within_kprobe_blacklist(addr))
1438 		return true;
1439 	/*
1440 	 * If 'kprobe_blacklist' is defined, check the address and
1441 	 * reject any probe registration in the prohibited area.
1442 	 */
1443 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1444 		if (addr >= ent->start_addr && addr < ent->end_addr)
1445 			return true;
1446 	}
1447 	return false;
1448 }
1449 
1450 bool within_kprobe_blacklist(unsigned long addr)
1451 {
1452 	char symname[KSYM_NAME_LEN], *p;
1453 
1454 	if (__within_kprobe_blacklist(addr))
1455 		return true;
1456 
1457 	/* Check if the address is on a suffixed-symbol */
1458 	if (!lookup_symbol_name(addr, symname)) {
1459 		p = strchr(symname, '.');
1460 		if (!p)
1461 			return false;
1462 		*p = '\0';
1463 		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1464 		if (addr)
1465 			return __within_kprobe_blacklist(addr);
1466 	}
1467 	return false;
1468 }
1469 
1470 /*
1471  * If 'symbol_name' is specified, look it up and add the 'offset'
1472  * to it. This way, we can specify a relative address to a symbol.
1473  * This returns encoded errors if it fails to look up symbol or invalid
1474  * combination of parameters.
1475  */
1476 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1477 			const char *symbol_name, unsigned int offset)
1478 {
1479 	if ((symbol_name && addr) || (!symbol_name && !addr))
1480 		goto invalid;
1481 
1482 	if (symbol_name) {
1483 		addr = kprobe_lookup_name(symbol_name, offset);
1484 		if (!addr)
1485 			return ERR_PTR(-ENOENT);
1486 	}
1487 
1488 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1489 	if (addr)
1490 		return addr;
1491 
1492 invalid:
1493 	return ERR_PTR(-EINVAL);
1494 }
1495 
1496 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1497 {
1498 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1499 }
1500 
1501 /*
1502  * Check the 'p' is valid and return the aggregator kprobe
1503  * at the same address.
1504  */
1505 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1506 {
1507 	struct kprobe *ap, *list_p;
1508 
1509 	lockdep_assert_held(&kprobe_mutex);
1510 
1511 	ap = get_kprobe(p->addr);
1512 	if (unlikely(!ap))
1513 		return NULL;
1514 
1515 	if (p != ap) {
1516 		list_for_each_entry(list_p, &ap->list, list)
1517 			if (list_p == p)
1518 			/* kprobe p is a valid probe */
1519 				goto valid;
1520 		return NULL;
1521 	}
1522 valid:
1523 	return ap;
1524 }
1525 
1526 /*
1527  * Warn and return error if the kprobe is being re-registered since
1528  * there must be a software bug.
1529  */
1530 static inline int warn_kprobe_rereg(struct kprobe *p)
1531 {
1532 	int ret = 0;
1533 
1534 	mutex_lock(&kprobe_mutex);
1535 	if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1536 		ret = -EINVAL;
1537 	mutex_unlock(&kprobe_mutex);
1538 
1539 	return ret;
1540 }
1541 
1542 static int check_ftrace_location(struct kprobe *p)
1543 {
1544 	unsigned long ftrace_addr;
1545 
1546 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1547 	if (ftrace_addr) {
1548 #ifdef CONFIG_KPROBES_ON_FTRACE
1549 		/* Given address is not on the instruction boundary */
1550 		if ((unsigned long)p->addr != ftrace_addr)
1551 			return -EILSEQ;
1552 		p->flags |= KPROBE_FLAG_FTRACE;
1553 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1554 		return -EINVAL;
1555 #endif
1556 	}
1557 	return 0;
1558 }
1559 
1560 static int check_kprobe_address_safe(struct kprobe *p,
1561 				     struct module **probed_mod)
1562 {
1563 	int ret;
1564 
1565 	ret = check_ftrace_location(p);
1566 	if (ret)
1567 		return ret;
1568 	jump_label_lock();
1569 	preempt_disable();
1570 
1571 	/* Ensure it is not in reserved area nor out of text */
1572 	if (!kernel_text_address((unsigned long) p->addr) ||
1573 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1574 	    jump_label_text_reserved(p->addr, p->addr) ||
1575 	    static_call_text_reserved(p->addr, p->addr) ||
1576 	    find_bug((unsigned long)p->addr)) {
1577 		ret = -EINVAL;
1578 		goto out;
1579 	}
1580 
1581 	/* Check if 'p' is probing a module. */
1582 	*probed_mod = __module_text_address((unsigned long) p->addr);
1583 	if (*probed_mod) {
1584 		/*
1585 		 * We must hold a refcount of the probed module while updating
1586 		 * its code to prohibit unexpected unloading.
1587 		 */
1588 		if (unlikely(!try_module_get(*probed_mod))) {
1589 			ret = -ENOENT;
1590 			goto out;
1591 		}
1592 
1593 		/*
1594 		 * If the module freed '.init.text', we couldn't insert
1595 		 * kprobes in there.
1596 		 */
1597 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1598 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1599 			module_put(*probed_mod);
1600 			*probed_mod = NULL;
1601 			ret = -ENOENT;
1602 		}
1603 	}
1604 out:
1605 	preempt_enable();
1606 	jump_label_unlock();
1607 
1608 	return ret;
1609 }
1610 
1611 int register_kprobe(struct kprobe *p)
1612 {
1613 	int ret;
1614 	struct kprobe *old_p;
1615 	struct module *probed_mod;
1616 	kprobe_opcode_t *addr;
1617 
1618 	/* Adjust probe address from symbol */
1619 	addr = kprobe_addr(p);
1620 	if (IS_ERR(addr))
1621 		return PTR_ERR(addr);
1622 	p->addr = addr;
1623 
1624 	ret = warn_kprobe_rereg(p);
1625 	if (ret)
1626 		return ret;
1627 
1628 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1629 	p->flags &= KPROBE_FLAG_DISABLED;
1630 	p->nmissed = 0;
1631 	INIT_LIST_HEAD(&p->list);
1632 
1633 	ret = check_kprobe_address_safe(p, &probed_mod);
1634 	if (ret)
1635 		return ret;
1636 
1637 	mutex_lock(&kprobe_mutex);
1638 
1639 	old_p = get_kprobe(p->addr);
1640 	if (old_p) {
1641 		/* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1642 		ret = register_aggr_kprobe(old_p, p);
1643 		goto out;
1644 	}
1645 
1646 	cpus_read_lock();
1647 	/* Prevent text modification */
1648 	mutex_lock(&text_mutex);
1649 	ret = prepare_kprobe(p);
1650 	mutex_unlock(&text_mutex);
1651 	cpus_read_unlock();
1652 	if (ret)
1653 		goto out;
1654 
1655 	INIT_HLIST_NODE(&p->hlist);
1656 	hlist_add_head_rcu(&p->hlist,
1657 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1658 
1659 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1660 		ret = arm_kprobe(p);
1661 		if (ret) {
1662 			hlist_del_rcu(&p->hlist);
1663 			synchronize_rcu();
1664 			goto out;
1665 		}
1666 	}
1667 
1668 	/* Try to optimize kprobe */
1669 	try_to_optimize_kprobe(p);
1670 out:
1671 	mutex_unlock(&kprobe_mutex);
1672 
1673 	if (probed_mod)
1674 		module_put(probed_mod);
1675 
1676 	return ret;
1677 }
1678 EXPORT_SYMBOL_GPL(register_kprobe);
1679 
1680 /* Check if all probes on the 'ap' are disabled. */
1681 static bool aggr_kprobe_disabled(struct kprobe *ap)
1682 {
1683 	struct kprobe *kp;
1684 
1685 	lockdep_assert_held(&kprobe_mutex);
1686 
1687 	list_for_each_entry(kp, &ap->list, list)
1688 		if (!kprobe_disabled(kp))
1689 			/*
1690 			 * Since there is an active probe on the list,
1691 			 * we can't disable this 'ap'.
1692 			 */
1693 			return false;
1694 
1695 	return true;
1696 }
1697 
1698 static struct kprobe *__disable_kprobe(struct kprobe *p)
1699 {
1700 	struct kprobe *orig_p;
1701 	int ret;
1702 
1703 	lockdep_assert_held(&kprobe_mutex);
1704 
1705 	/* Get an original kprobe for return */
1706 	orig_p = __get_valid_kprobe(p);
1707 	if (unlikely(orig_p == NULL))
1708 		return ERR_PTR(-EINVAL);
1709 
1710 	if (!kprobe_disabled(p)) {
1711 		/* Disable probe if it is a child probe */
1712 		if (p != orig_p)
1713 			p->flags |= KPROBE_FLAG_DISABLED;
1714 
1715 		/* Try to disarm and disable this/parent probe */
1716 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1717 			/*
1718 			 * If 'kprobes_all_disarmed' is set, 'orig_p'
1719 			 * should have already been disarmed, so
1720 			 * skip unneed disarming process.
1721 			 */
1722 			if (!kprobes_all_disarmed) {
1723 				ret = disarm_kprobe(orig_p, true);
1724 				if (ret) {
1725 					p->flags &= ~KPROBE_FLAG_DISABLED;
1726 					return ERR_PTR(ret);
1727 				}
1728 			}
1729 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1730 		}
1731 	}
1732 
1733 	return orig_p;
1734 }
1735 
1736 /*
1737  * Unregister a kprobe without a scheduler synchronization.
1738  */
1739 static int __unregister_kprobe_top(struct kprobe *p)
1740 {
1741 	struct kprobe *ap, *list_p;
1742 
1743 	/* Disable kprobe. This will disarm it if needed. */
1744 	ap = __disable_kprobe(p);
1745 	if (IS_ERR(ap))
1746 		return PTR_ERR(ap);
1747 
1748 	if (ap == p)
1749 		/*
1750 		 * This probe is an independent(and non-optimized) kprobe
1751 		 * (not an aggrprobe). Remove from the hash list.
1752 		 */
1753 		goto disarmed;
1754 
1755 	/* Following process expects this probe is an aggrprobe */
1756 	WARN_ON(!kprobe_aggrprobe(ap));
1757 
1758 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1759 		/*
1760 		 * !disarmed could be happen if the probe is under delayed
1761 		 * unoptimizing.
1762 		 */
1763 		goto disarmed;
1764 	else {
1765 		/* If disabling probe has special handlers, update aggrprobe */
1766 		if (p->post_handler && !kprobe_gone(p)) {
1767 			list_for_each_entry(list_p, &ap->list, list) {
1768 				if ((list_p != p) && (list_p->post_handler))
1769 					goto noclean;
1770 			}
1771 			ap->post_handler = NULL;
1772 		}
1773 noclean:
1774 		/*
1775 		 * Remove from the aggrprobe: this path will do nothing in
1776 		 * __unregister_kprobe_bottom().
1777 		 */
1778 		list_del_rcu(&p->list);
1779 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1780 			/*
1781 			 * Try to optimize this probe again, because post
1782 			 * handler may have been changed.
1783 			 */
1784 			optimize_kprobe(ap);
1785 	}
1786 	return 0;
1787 
1788 disarmed:
1789 	hlist_del_rcu(&ap->hlist);
1790 	return 0;
1791 }
1792 
1793 static void __unregister_kprobe_bottom(struct kprobe *p)
1794 {
1795 	struct kprobe *ap;
1796 
1797 	if (list_empty(&p->list))
1798 		/* This is an independent kprobe */
1799 		arch_remove_kprobe(p);
1800 	else if (list_is_singular(&p->list)) {
1801 		/* This is the last child of an aggrprobe */
1802 		ap = list_entry(p->list.next, struct kprobe, list);
1803 		list_del(&p->list);
1804 		free_aggr_kprobe(ap);
1805 	}
1806 	/* Otherwise, do nothing. */
1807 }
1808 
1809 int register_kprobes(struct kprobe **kps, int num)
1810 {
1811 	int i, ret = 0;
1812 
1813 	if (num <= 0)
1814 		return -EINVAL;
1815 	for (i = 0; i < num; i++) {
1816 		ret = register_kprobe(kps[i]);
1817 		if (ret < 0) {
1818 			if (i > 0)
1819 				unregister_kprobes(kps, i);
1820 			break;
1821 		}
1822 	}
1823 	return ret;
1824 }
1825 EXPORT_SYMBOL_GPL(register_kprobes);
1826 
1827 void unregister_kprobe(struct kprobe *p)
1828 {
1829 	unregister_kprobes(&p, 1);
1830 }
1831 EXPORT_SYMBOL_GPL(unregister_kprobe);
1832 
1833 void unregister_kprobes(struct kprobe **kps, int num)
1834 {
1835 	int i;
1836 
1837 	if (num <= 0)
1838 		return;
1839 	mutex_lock(&kprobe_mutex);
1840 	for (i = 0; i < num; i++)
1841 		if (__unregister_kprobe_top(kps[i]) < 0)
1842 			kps[i]->addr = NULL;
1843 	mutex_unlock(&kprobe_mutex);
1844 
1845 	synchronize_rcu();
1846 	for (i = 0; i < num; i++)
1847 		if (kps[i]->addr)
1848 			__unregister_kprobe_bottom(kps[i]);
1849 }
1850 EXPORT_SYMBOL_GPL(unregister_kprobes);
1851 
1852 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1853 					unsigned long val, void *data)
1854 {
1855 	return NOTIFY_DONE;
1856 }
1857 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1858 
1859 static struct notifier_block kprobe_exceptions_nb = {
1860 	.notifier_call = kprobe_exceptions_notify,
1861 	.priority = 0x7fffffff /* we need to be notified first */
1862 };
1863 
1864 #ifdef CONFIG_KRETPROBES
1865 
1866 /* This assumes the 'tsk' is the current task or the is not running. */
1867 static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1868 						  struct llist_node **cur)
1869 {
1870 	struct kretprobe_instance *ri = NULL;
1871 	struct llist_node *node = *cur;
1872 
1873 	if (!node)
1874 		node = tsk->kretprobe_instances.first;
1875 	else
1876 		node = node->next;
1877 
1878 	while (node) {
1879 		ri = container_of(node, struct kretprobe_instance, llist);
1880 		if (ri->ret_addr != kretprobe_trampoline_addr()) {
1881 			*cur = node;
1882 			return ri->ret_addr;
1883 		}
1884 		node = node->next;
1885 	}
1886 	return NULL;
1887 }
1888 NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1889 
1890 /**
1891  * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1892  * @tsk: Target task
1893  * @fp: A frame pointer
1894  * @cur: a storage of the loop cursor llist_node pointer for next call
1895  *
1896  * Find the correct return address modified by a kretprobe on @tsk in unsigned
1897  * long type. If it finds the return address, this returns that address value,
1898  * or this returns 0.
1899  * The @tsk must be 'current' or a task which is not running. @fp is a hint
1900  * to get the currect return address - which is compared with the
1901  * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1902  * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
1903  * first call, but '@cur' itself must NOT NULL.
1904  */
1905 unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
1906 				      struct llist_node **cur)
1907 {
1908 	struct kretprobe_instance *ri = NULL;
1909 	kprobe_opcode_t *ret;
1910 
1911 	if (WARN_ON_ONCE(!cur))
1912 		return 0;
1913 
1914 	do {
1915 		ret = __kretprobe_find_ret_addr(tsk, cur);
1916 		if (!ret)
1917 			break;
1918 		ri = container_of(*cur, struct kretprobe_instance, llist);
1919 	} while (ri->fp != fp);
1920 
1921 	return (unsigned long)ret;
1922 }
1923 NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
1924 
1925 void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
1926 					kprobe_opcode_t *correct_ret_addr)
1927 {
1928 	/*
1929 	 * Do nothing by default. Please fill this to update the fake return
1930 	 * address on the stack with the correct one on each arch if possible.
1931 	 */
1932 }
1933 
1934 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1935 					     void *frame_pointer)
1936 {
1937 	kprobe_opcode_t *correct_ret_addr = NULL;
1938 	struct kretprobe_instance *ri = NULL;
1939 	struct llist_node *first, *node = NULL;
1940 	struct kretprobe *rp;
1941 
1942 	/* Find correct address and all nodes for this frame. */
1943 	correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
1944 	if (!correct_ret_addr) {
1945 		pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
1946 		BUG_ON(1);
1947 	}
1948 
1949 	/*
1950 	 * Set the return address as the instruction pointer, because if the
1951 	 * user handler calls stack_trace_save_regs() with this 'regs',
1952 	 * the stack trace will start from the instruction pointer.
1953 	 */
1954 	instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
1955 
1956 	/* Run the user handler of the nodes. */
1957 	first = current->kretprobe_instances.first;
1958 	while (first) {
1959 		ri = container_of(first, struct kretprobe_instance, llist);
1960 
1961 		if (WARN_ON_ONCE(ri->fp != frame_pointer))
1962 			break;
1963 
1964 		rp = get_kretprobe(ri);
1965 		if (rp && rp->handler) {
1966 			struct kprobe *prev = kprobe_running();
1967 
1968 			__this_cpu_write(current_kprobe, &rp->kp);
1969 			ri->ret_addr = correct_ret_addr;
1970 			rp->handler(ri, regs);
1971 			__this_cpu_write(current_kprobe, prev);
1972 		}
1973 		if (first == node)
1974 			break;
1975 
1976 		first = first->next;
1977 	}
1978 
1979 	arch_kretprobe_fixup_return(regs, correct_ret_addr);
1980 
1981 	/* Unlink all nodes for this frame. */
1982 	first = current->kretprobe_instances.first;
1983 	current->kretprobe_instances.first = node->next;
1984 	node->next = NULL;
1985 
1986 	/* Recycle free instances. */
1987 	while (first) {
1988 		ri = container_of(first, struct kretprobe_instance, llist);
1989 		first = first->next;
1990 
1991 		recycle_rp_inst(ri);
1992 	}
1993 
1994 	return (unsigned long)correct_ret_addr;
1995 }
1996 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
1997 
1998 /*
1999  * This kprobe pre_handler is registered with every kretprobe. When probe
2000  * hits it will set up the return probe.
2001  */
2002 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2003 {
2004 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2005 	struct kretprobe_instance *ri;
2006 	struct freelist_node *fn;
2007 
2008 	fn = freelist_try_get(&rp->freelist);
2009 	if (!fn) {
2010 		rp->nmissed++;
2011 		return 0;
2012 	}
2013 
2014 	ri = container_of(fn, struct kretprobe_instance, freelist);
2015 
2016 	if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2017 		freelist_add(&ri->freelist, &rp->freelist);
2018 		return 0;
2019 	}
2020 
2021 	arch_prepare_kretprobe(ri, regs);
2022 
2023 	__llist_add(&ri->llist, &current->kretprobe_instances);
2024 
2025 	return 0;
2026 }
2027 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2028 
2029 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
2030 {
2031 	return !offset;
2032 }
2033 
2034 /**
2035  * kprobe_on_func_entry() -- check whether given address is function entry
2036  * @addr: Target address
2037  * @sym:  Target symbol name
2038  * @offset: The offset from the symbol or the address
2039  *
2040  * This checks whether the given @addr+@offset or @sym+@offset is on the
2041  * function entry address or not.
2042  * This returns 0 if it is the function entry, or -EINVAL if it is not.
2043  * And also it returns -ENOENT if it fails the symbol or address lookup.
2044  * Caller must pass @addr or @sym (either one must be NULL), or this
2045  * returns -EINVAL.
2046  */
2047 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2048 {
2049 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
2050 
2051 	if (IS_ERR(kp_addr))
2052 		return PTR_ERR(kp_addr);
2053 
2054 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
2055 		return -ENOENT;
2056 
2057 	if (!arch_kprobe_on_func_entry(offset))
2058 		return -EINVAL;
2059 
2060 	return 0;
2061 }
2062 
2063 int register_kretprobe(struct kretprobe *rp)
2064 {
2065 	int ret;
2066 	struct kretprobe_instance *inst;
2067 	int i;
2068 	void *addr;
2069 
2070 	ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2071 	if (ret)
2072 		return ret;
2073 
2074 	/* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2075 	if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2076 		return -EINVAL;
2077 
2078 	if (kretprobe_blacklist_size) {
2079 		addr = kprobe_addr(&rp->kp);
2080 		if (IS_ERR(addr))
2081 			return PTR_ERR(addr);
2082 
2083 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2084 			if (kretprobe_blacklist[i].addr == addr)
2085 				return -EINVAL;
2086 		}
2087 	}
2088 
2089 	if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2090 		return -E2BIG;
2091 
2092 	rp->kp.pre_handler = pre_handler_kretprobe;
2093 	rp->kp.post_handler = NULL;
2094 
2095 	/* Pre-allocate memory for max kretprobe instances */
2096 	if (rp->maxactive <= 0) {
2097 #ifdef CONFIG_PREEMPTION
2098 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2099 #else
2100 		rp->maxactive = num_possible_cpus();
2101 #endif
2102 	}
2103 	rp->freelist.head = NULL;
2104 	rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2105 	if (!rp->rph)
2106 		return -ENOMEM;
2107 
2108 	rp->rph->rp = rp;
2109 	for (i = 0; i < rp->maxactive; i++) {
2110 		inst = kzalloc(sizeof(struct kretprobe_instance) +
2111 			       rp->data_size, GFP_KERNEL);
2112 		if (inst == NULL) {
2113 			refcount_set(&rp->rph->ref, i);
2114 			free_rp_inst(rp);
2115 			return -ENOMEM;
2116 		}
2117 		inst->rph = rp->rph;
2118 		freelist_add(&inst->freelist, &rp->freelist);
2119 	}
2120 	refcount_set(&rp->rph->ref, i);
2121 
2122 	rp->nmissed = 0;
2123 	/* Establish function entry probe point */
2124 	ret = register_kprobe(&rp->kp);
2125 	if (ret != 0)
2126 		free_rp_inst(rp);
2127 	return ret;
2128 }
2129 EXPORT_SYMBOL_GPL(register_kretprobe);
2130 
2131 int register_kretprobes(struct kretprobe **rps, int num)
2132 {
2133 	int ret = 0, i;
2134 
2135 	if (num <= 0)
2136 		return -EINVAL;
2137 	for (i = 0; i < num; i++) {
2138 		ret = register_kretprobe(rps[i]);
2139 		if (ret < 0) {
2140 			if (i > 0)
2141 				unregister_kretprobes(rps, i);
2142 			break;
2143 		}
2144 	}
2145 	return ret;
2146 }
2147 EXPORT_SYMBOL_GPL(register_kretprobes);
2148 
2149 void unregister_kretprobe(struct kretprobe *rp)
2150 {
2151 	unregister_kretprobes(&rp, 1);
2152 }
2153 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2154 
2155 void unregister_kretprobes(struct kretprobe **rps, int num)
2156 {
2157 	int i;
2158 
2159 	if (num <= 0)
2160 		return;
2161 	mutex_lock(&kprobe_mutex);
2162 	for (i = 0; i < num; i++) {
2163 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2164 			rps[i]->kp.addr = NULL;
2165 		rps[i]->rph->rp = NULL;
2166 	}
2167 	mutex_unlock(&kprobe_mutex);
2168 
2169 	synchronize_rcu();
2170 	for (i = 0; i < num; i++) {
2171 		if (rps[i]->kp.addr) {
2172 			__unregister_kprobe_bottom(&rps[i]->kp);
2173 			free_rp_inst(rps[i]);
2174 		}
2175 	}
2176 }
2177 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2178 
2179 #else /* CONFIG_KRETPROBES */
2180 int register_kretprobe(struct kretprobe *rp)
2181 {
2182 	return -EOPNOTSUPP;
2183 }
2184 EXPORT_SYMBOL_GPL(register_kretprobe);
2185 
2186 int register_kretprobes(struct kretprobe **rps, int num)
2187 {
2188 	return -EOPNOTSUPP;
2189 }
2190 EXPORT_SYMBOL_GPL(register_kretprobes);
2191 
2192 void unregister_kretprobe(struct kretprobe *rp)
2193 {
2194 }
2195 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2196 
2197 void unregister_kretprobes(struct kretprobe **rps, int num)
2198 {
2199 }
2200 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2201 
2202 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2203 {
2204 	return 0;
2205 }
2206 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2207 
2208 #endif /* CONFIG_KRETPROBES */
2209 
2210 /* Set the kprobe gone and remove its instruction buffer. */
2211 static void kill_kprobe(struct kprobe *p)
2212 {
2213 	struct kprobe *kp;
2214 
2215 	lockdep_assert_held(&kprobe_mutex);
2216 
2217 	p->flags |= KPROBE_FLAG_GONE;
2218 	if (kprobe_aggrprobe(p)) {
2219 		/*
2220 		 * If this is an aggr_kprobe, we have to list all the
2221 		 * chained probes and mark them GONE.
2222 		 */
2223 		list_for_each_entry(kp, &p->list, list)
2224 			kp->flags |= KPROBE_FLAG_GONE;
2225 		p->post_handler = NULL;
2226 		kill_optimized_kprobe(p);
2227 	}
2228 	/*
2229 	 * Here, we can remove insn_slot safely, because no thread calls
2230 	 * the original probed function (which will be freed soon) any more.
2231 	 */
2232 	arch_remove_kprobe(p);
2233 
2234 	/*
2235 	 * The module is going away. We should disarm the kprobe which
2236 	 * is using ftrace, because ftrace framework is still available at
2237 	 * 'MODULE_STATE_GOING' notification.
2238 	 */
2239 	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2240 		disarm_kprobe_ftrace(p);
2241 }
2242 
2243 /* Disable one kprobe */
2244 int disable_kprobe(struct kprobe *kp)
2245 {
2246 	int ret = 0;
2247 	struct kprobe *p;
2248 
2249 	mutex_lock(&kprobe_mutex);
2250 
2251 	/* Disable this kprobe */
2252 	p = __disable_kprobe(kp);
2253 	if (IS_ERR(p))
2254 		ret = PTR_ERR(p);
2255 
2256 	mutex_unlock(&kprobe_mutex);
2257 	return ret;
2258 }
2259 EXPORT_SYMBOL_GPL(disable_kprobe);
2260 
2261 /* Enable one kprobe */
2262 int enable_kprobe(struct kprobe *kp)
2263 {
2264 	int ret = 0;
2265 	struct kprobe *p;
2266 
2267 	mutex_lock(&kprobe_mutex);
2268 
2269 	/* Check whether specified probe is valid. */
2270 	p = __get_valid_kprobe(kp);
2271 	if (unlikely(p == NULL)) {
2272 		ret = -EINVAL;
2273 		goto out;
2274 	}
2275 
2276 	if (kprobe_gone(kp)) {
2277 		/* This kprobe has gone, we couldn't enable it. */
2278 		ret = -EINVAL;
2279 		goto out;
2280 	}
2281 
2282 	if (p != kp)
2283 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2284 
2285 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2286 		p->flags &= ~KPROBE_FLAG_DISABLED;
2287 		ret = arm_kprobe(p);
2288 		if (ret)
2289 			p->flags |= KPROBE_FLAG_DISABLED;
2290 	}
2291 out:
2292 	mutex_unlock(&kprobe_mutex);
2293 	return ret;
2294 }
2295 EXPORT_SYMBOL_GPL(enable_kprobe);
2296 
2297 /* Caller must NOT call this in usual path. This is only for critical case */
2298 void dump_kprobe(struct kprobe *kp)
2299 {
2300 	pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2301 	       kp->symbol_name, kp->offset, kp->addr);
2302 }
2303 NOKPROBE_SYMBOL(dump_kprobe);
2304 
2305 int kprobe_add_ksym_blacklist(unsigned long entry)
2306 {
2307 	struct kprobe_blacklist_entry *ent;
2308 	unsigned long offset = 0, size = 0;
2309 
2310 	if (!kernel_text_address(entry) ||
2311 	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2312 		return -EINVAL;
2313 
2314 	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2315 	if (!ent)
2316 		return -ENOMEM;
2317 	ent->start_addr = entry;
2318 	ent->end_addr = entry + size;
2319 	INIT_LIST_HEAD(&ent->list);
2320 	list_add_tail(&ent->list, &kprobe_blacklist);
2321 
2322 	return (int)size;
2323 }
2324 
2325 /* Add all symbols in given area into kprobe blacklist */
2326 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2327 {
2328 	unsigned long entry;
2329 	int ret = 0;
2330 
2331 	for (entry = start; entry < end; entry += ret) {
2332 		ret = kprobe_add_ksym_blacklist(entry);
2333 		if (ret < 0)
2334 			return ret;
2335 		if (ret == 0)	/* In case of alias symbol */
2336 			ret = 1;
2337 	}
2338 	return 0;
2339 }
2340 
2341 /* Remove all symbols in given area from kprobe blacklist */
2342 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2343 {
2344 	struct kprobe_blacklist_entry *ent, *n;
2345 
2346 	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2347 		if (ent->start_addr < start || ent->start_addr >= end)
2348 			continue;
2349 		list_del(&ent->list);
2350 		kfree(ent);
2351 	}
2352 }
2353 
2354 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2355 {
2356 	kprobe_remove_area_blacklist(entry, entry + 1);
2357 }
2358 
2359 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2360 				   char *type, char *sym)
2361 {
2362 	return -ERANGE;
2363 }
2364 
2365 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2366 		       char *sym)
2367 {
2368 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2369 	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2370 		return 0;
2371 #ifdef CONFIG_OPTPROBES
2372 	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2373 		return 0;
2374 #endif
2375 #endif
2376 	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2377 		return 0;
2378 	return -ERANGE;
2379 }
2380 
2381 int __init __weak arch_populate_kprobe_blacklist(void)
2382 {
2383 	return 0;
2384 }
2385 
2386 /*
2387  * Lookup and populate the kprobe_blacklist.
2388  *
2389  * Unlike the kretprobe blacklist, we'll need to determine
2390  * the range of addresses that belong to the said functions,
2391  * since a kprobe need not necessarily be at the beginning
2392  * of a function.
2393  */
2394 static int __init populate_kprobe_blacklist(unsigned long *start,
2395 					     unsigned long *end)
2396 {
2397 	unsigned long entry;
2398 	unsigned long *iter;
2399 	int ret;
2400 
2401 	for (iter = start; iter < end; iter++) {
2402 		entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2403 		ret = kprobe_add_ksym_blacklist(entry);
2404 		if (ret == -EINVAL)
2405 			continue;
2406 		if (ret < 0)
2407 			return ret;
2408 	}
2409 
2410 	/* Symbols in '__kprobes_text' are blacklisted */
2411 	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2412 					(unsigned long)__kprobes_text_end);
2413 	if (ret)
2414 		return ret;
2415 
2416 	/* Symbols in 'noinstr' section are blacklisted */
2417 	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2418 					(unsigned long)__noinstr_text_end);
2419 
2420 	return ret ? : arch_populate_kprobe_blacklist();
2421 }
2422 
2423 static void add_module_kprobe_blacklist(struct module *mod)
2424 {
2425 	unsigned long start, end;
2426 	int i;
2427 
2428 	if (mod->kprobe_blacklist) {
2429 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2430 			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2431 	}
2432 
2433 	start = (unsigned long)mod->kprobes_text_start;
2434 	if (start) {
2435 		end = start + mod->kprobes_text_size;
2436 		kprobe_add_area_blacklist(start, end);
2437 	}
2438 
2439 	start = (unsigned long)mod->noinstr_text_start;
2440 	if (start) {
2441 		end = start + mod->noinstr_text_size;
2442 		kprobe_add_area_blacklist(start, end);
2443 	}
2444 }
2445 
2446 static void remove_module_kprobe_blacklist(struct module *mod)
2447 {
2448 	unsigned long start, end;
2449 	int i;
2450 
2451 	if (mod->kprobe_blacklist) {
2452 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2453 			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2454 	}
2455 
2456 	start = (unsigned long)mod->kprobes_text_start;
2457 	if (start) {
2458 		end = start + mod->kprobes_text_size;
2459 		kprobe_remove_area_blacklist(start, end);
2460 	}
2461 
2462 	start = (unsigned long)mod->noinstr_text_start;
2463 	if (start) {
2464 		end = start + mod->noinstr_text_size;
2465 		kprobe_remove_area_blacklist(start, end);
2466 	}
2467 }
2468 
2469 /* Module notifier call back, checking kprobes on the module */
2470 static int kprobes_module_callback(struct notifier_block *nb,
2471 				   unsigned long val, void *data)
2472 {
2473 	struct module *mod = data;
2474 	struct hlist_head *head;
2475 	struct kprobe *p;
2476 	unsigned int i;
2477 	int checkcore = (val == MODULE_STATE_GOING);
2478 
2479 	if (val == MODULE_STATE_COMING) {
2480 		mutex_lock(&kprobe_mutex);
2481 		add_module_kprobe_blacklist(mod);
2482 		mutex_unlock(&kprobe_mutex);
2483 	}
2484 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2485 		return NOTIFY_DONE;
2486 
2487 	/*
2488 	 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2489 	 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2490 	 * notified, only '.init.text' section would be freed. We need to
2491 	 * disable kprobes which have been inserted in the sections.
2492 	 */
2493 	mutex_lock(&kprobe_mutex);
2494 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2495 		head = &kprobe_table[i];
2496 		hlist_for_each_entry(p, head, hlist)
2497 			if (within_module_init((unsigned long)p->addr, mod) ||
2498 			    (checkcore &&
2499 			     within_module_core((unsigned long)p->addr, mod))) {
2500 				/*
2501 				 * The vaddr this probe is installed will soon
2502 				 * be vfreed buy not synced to disk. Hence,
2503 				 * disarming the breakpoint isn't needed.
2504 				 *
2505 				 * Note, this will also move any optimized probes
2506 				 * that are pending to be removed from their
2507 				 * corresponding lists to the 'freeing_list' and
2508 				 * will not be touched by the delayed
2509 				 * kprobe_optimizer() work handler.
2510 				 */
2511 				kill_kprobe(p);
2512 			}
2513 	}
2514 	if (val == MODULE_STATE_GOING)
2515 		remove_module_kprobe_blacklist(mod);
2516 	mutex_unlock(&kprobe_mutex);
2517 	return NOTIFY_DONE;
2518 }
2519 
2520 static struct notifier_block kprobe_module_nb = {
2521 	.notifier_call = kprobes_module_callback,
2522 	.priority = 0
2523 };
2524 
2525 void kprobe_free_init_mem(void)
2526 {
2527 	void *start = (void *)(&__init_begin);
2528 	void *end = (void *)(&__init_end);
2529 	struct hlist_head *head;
2530 	struct kprobe *p;
2531 	int i;
2532 
2533 	mutex_lock(&kprobe_mutex);
2534 
2535 	/* Kill all kprobes on initmem because the target code has been freed. */
2536 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2537 		head = &kprobe_table[i];
2538 		hlist_for_each_entry(p, head, hlist) {
2539 			if (start <= (void *)p->addr && (void *)p->addr < end)
2540 				kill_kprobe(p);
2541 		}
2542 	}
2543 
2544 	mutex_unlock(&kprobe_mutex);
2545 }
2546 
2547 static int __init init_kprobes(void)
2548 {
2549 	int i, err = 0;
2550 
2551 	/* FIXME allocate the probe table, currently defined statically */
2552 	/* initialize all list heads */
2553 	for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2554 		INIT_HLIST_HEAD(&kprobe_table[i]);
2555 
2556 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2557 					__stop_kprobe_blacklist);
2558 	if (err)
2559 		pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2560 
2561 	if (kretprobe_blacklist_size) {
2562 		/* lookup the function address from its name */
2563 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2564 			kretprobe_blacklist[i].addr =
2565 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2566 			if (!kretprobe_blacklist[i].addr)
2567 				pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2568 				       kretprobe_blacklist[i].name);
2569 		}
2570 	}
2571 
2572 	/* By default, kprobes are armed */
2573 	kprobes_all_disarmed = false;
2574 
2575 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2576 	/* Init 'kprobe_optinsn_slots' for allocation */
2577 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2578 #endif
2579 
2580 	err = arch_init_kprobes();
2581 	if (!err)
2582 		err = register_die_notifier(&kprobe_exceptions_nb);
2583 	if (!err)
2584 		err = register_module_notifier(&kprobe_module_nb);
2585 
2586 	kprobes_initialized = (err == 0);
2587 	return err;
2588 }
2589 early_initcall(init_kprobes);
2590 
2591 #if defined(CONFIG_OPTPROBES)
2592 static int __init init_optprobes(void)
2593 {
2594 	/*
2595 	 * Enable kprobe optimization - this kicks the optimizer which
2596 	 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2597 	 * not spawned in early initcall. So delay the optimization.
2598 	 */
2599 	optimize_all_kprobes();
2600 
2601 	return 0;
2602 }
2603 subsys_initcall(init_optprobes);
2604 #endif
2605 
2606 #ifdef CONFIG_DEBUG_FS
2607 static void report_probe(struct seq_file *pi, struct kprobe *p,
2608 		const char *sym, int offset, char *modname, struct kprobe *pp)
2609 {
2610 	char *kprobe_type;
2611 	void *addr = p->addr;
2612 
2613 	if (p->pre_handler == pre_handler_kretprobe)
2614 		kprobe_type = "r";
2615 	else
2616 		kprobe_type = "k";
2617 
2618 	if (!kallsyms_show_value(pi->file->f_cred))
2619 		addr = NULL;
2620 
2621 	if (sym)
2622 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2623 			addr, kprobe_type, sym, offset,
2624 			(modname ? modname : " "));
2625 	else	/* try to use %pS */
2626 		seq_printf(pi, "%px  %s  %pS ",
2627 			addr, kprobe_type, p->addr);
2628 
2629 	if (!pp)
2630 		pp = p;
2631 	seq_printf(pi, "%s%s%s%s\n",
2632 		(kprobe_gone(p) ? "[GONE]" : ""),
2633 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2634 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2635 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2636 }
2637 
2638 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2639 {
2640 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2641 }
2642 
2643 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2644 {
2645 	(*pos)++;
2646 	if (*pos >= KPROBE_TABLE_SIZE)
2647 		return NULL;
2648 	return pos;
2649 }
2650 
2651 static void kprobe_seq_stop(struct seq_file *f, void *v)
2652 {
2653 	/* Nothing to do */
2654 }
2655 
2656 static int show_kprobe_addr(struct seq_file *pi, void *v)
2657 {
2658 	struct hlist_head *head;
2659 	struct kprobe *p, *kp;
2660 	const char *sym = NULL;
2661 	unsigned int i = *(loff_t *) v;
2662 	unsigned long offset = 0;
2663 	char *modname, namebuf[KSYM_NAME_LEN];
2664 
2665 	head = &kprobe_table[i];
2666 	preempt_disable();
2667 	hlist_for_each_entry_rcu(p, head, hlist) {
2668 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2669 					&offset, &modname, namebuf);
2670 		if (kprobe_aggrprobe(p)) {
2671 			list_for_each_entry_rcu(kp, &p->list, list)
2672 				report_probe(pi, kp, sym, offset, modname, p);
2673 		} else
2674 			report_probe(pi, p, sym, offset, modname, NULL);
2675 	}
2676 	preempt_enable();
2677 	return 0;
2678 }
2679 
2680 static const struct seq_operations kprobes_sops = {
2681 	.start = kprobe_seq_start,
2682 	.next  = kprobe_seq_next,
2683 	.stop  = kprobe_seq_stop,
2684 	.show  = show_kprobe_addr
2685 };
2686 
2687 DEFINE_SEQ_ATTRIBUTE(kprobes);
2688 
2689 /* kprobes/blacklist -- shows which functions can not be probed */
2690 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2691 {
2692 	mutex_lock(&kprobe_mutex);
2693 	return seq_list_start(&kprobe_blacklist, *pos);
2694 }
2695 
2696 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2697 {
2698 	return seq_list_next(v, &kprobe_blacklist, pos);
2699 }
2700 
2701 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2702 {
2703 	struct kprobe_blacklist_entry *ent =
2704 		list_entry(v, struct kprobe_blacklist_entry, list);
2705 
2706 	/*
2707 	 * If '/proc/kallsyms' is not showing kernel address, we won't
2708 	 * show them here either.
2709 	 */
2710 	if (!kallsyms_show_value(m->file->f_cred))
2711 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2712 			   (void *)ent->start_addr);
2713 	else
2714 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2715 			   (void *)ent->end_addr, (void *)ent->start_addr);
2716 	return 0;
2717 }
2718 
2719 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2720 {
2721 	mutex_unlock(&kprobe_mutex);
2722 }
2723 
2724 static const struct seq_operations kprobe_blacklist_sops = {
2725 	.start = kprobe_blacklist_seq_start,
2726 	.next  = kprobe_blacklist_seq_next,
2727 	.stop  = kprobe_blacklist_seq_stop,
2728 	.show  = kprobe_blacklist_seq_show,
2729 };
2730 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2731 
2732 static int arm_all_kprobes(void)
2733 {
2734 	struct hlist_head *head;
2735 	struct kprobe *p;
2736 	unsigned int i, total = 0, errors = 0;
2737 	int err, ret = 0;
2738 
2739 	mutex_lock(&kprobe_mutex);
2740 
2741 	/* If kprobes are armed, just return */
2742 	if (!kprobes_all_disarmed)
2743 		goto already_enabled;
2744 
2745 	/*
2746 	 * optimize_kprobe() called by arm_kprobe() checks
2747 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2748 	 * arm_kprobe.
2749 	 */
2750 	kprobes_all_disarmed = false;
2751 	/* Arming kprobes doesn't optimize kprobe itself */
2752 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2753 		head = &kprobe_table[i];
2754 		/* Arm all kprobes on a best-effort basis */
2755 		hlist_for_each_entry(p, head, hlist) {
2756 			if (!kprobe_disabled(p)) {
2757 				err = arm_kprobe(p);
2758 				if (err)  {
2759 					errors++;
2760 					ret = err;
2761 				}
2762 				total++;
2763 			}
2764 		}
2765 	}
2766 
2767 	if (errors)
2768 		pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2769 			errors, total);
2770 	else
2771 		pr_info("Kprobes globally enabled\n");
2772 
2773 already_enabled:
2774 	mutex_unlock(&kprobe_mutex);
2775 	return ret;
2776 }
2777 
2778 static int disarm_all_kprobes(void)
2779 {
2780 	struct hlist_head *head;
2781 	struct kprobe *p;
2782 	unsigned int i, total = 0, errors = 0;
2783 	int err, ret = 0;
2784 
2785 	mutex_lock(&kprobe_mutex);
2786 
2787 	/* If kprobes are already disarmed, just return */
2788 	if (kprobes_all_disarmed) {
2789 		mutex_unlock(&kprobe_mutex);
2790 		return 0;
2791 	}
2792 
2793 	kprobes_all_disarmed = true;
2794 
2795 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2796 		head = &kprobe_table[i];
2797 		/* Disarm all kprobes on a best-effort basis */
2798 		hlist_for_each_entry(p, head, hlist) {
2799 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2800 				err = disarm_kprobe(p, false);
2801 				if (err) {
2802 					errors++;
2803 					ret = err;
2804 				}
2805 				total++;
2806 			}
2807 		}
2808 	}
2809 
2810 	if (errors)
2811 		pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2812 			errors, total);
2813 	else
2814 		pr_info("Kprobes globally disabled\n");
2815 
2816 	mutex_unlock(&kprobe_mutex);
2817 
2818 	/* Wait for disarming all kprobes by optimizer */
2819 	wait_for_kprobe_optimizer();
2820 
2821 	return ret;
2822 }
2823 
2824 /*
2825  * XXX: The debugfs bool file interface doesn't allow for callbacks
2826  * when the bool state is switched. We can reuse that facility when
2827  * available
2828  */
2829 static ssize_t read_enabled_file_bool(struct file *file,
2830 	       char __user *user_buf, size_t count, loff_t *ppos)
2831 {
2832 	char buf[3];
2833 
2834 	if (!kprobes_all_disarmed)
2835 		buf[0] = '1';
2836 	else
2837 		buf[0] = '0';
2838 	buf[1] = '\n';
2839 	buf[2] = 0x00;
2840 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2841 }
2842 
2843 static ssize_t write_enabled_file_bool(struct file *file,
2844 	       const char __user *user_buf, size_t count, loff_t *ppos)
2845 {
2846 	bool enable;
2847 	int ret;
2848 
2849 	ret = kstrtobool_from_user(user_buf, count, &enable);
2850 	if (ret)
2851 		return ret;
2852 
2853 	ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
2854 	if (ret)
2855 		return ret;
2856 
2857 	return count;
2858 }
2859 
2860 static const struct file_operations fops_kp = {
2861 	.read =         read_enabled_file_bool,
2862 	.write =        write_enabled_file_bool,
2863 	.llseek =	default_llseek,
2864 };
2865 
2866 static int __init debugfs_kprobe_init(void)
2867 {
2868 	struct dentry *dir;
2869 
2870 	dir = debugfs_create_dir("kprobes", NULL);
2871 
2872 	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2873 
2874 	debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
2875 
2876 	debugfs_create_file("blacklist", 0400, dir, NULL,
2877 			    &kprobe_blacklist_fops);
2878 
2879 	return 0;
2880 }
2881 
2882 late_initcall(debugfs_kprobe_init);
2883 #endif /* CONFIG_DEBUG_FS */
2884