xref: /openbmc/linux/kernel/kprobes.c (revision 19b438592238b3b40c3f945bb5f9c4ca971c0c45)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *		Probes initial implementation (includes suggestions from
10  *		Rusty Russell).
11  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *		hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *		interface to access function arguments.
15  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *		exceptions notifier to be first on the priority list.
17  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *		<prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38 #include <linux/perf_event.h>
39 
40 #include <asm/sections.h>
41 #include <asm/cacheflush.h>
42 #include <asm/errno.h>
43 #include <linux/uaccess.h>
44 
45 #define KPROBE_HASH_BITS 6
46 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
47 
48 
49 static int kprobes_initialized;
50 /* kprobe_table can be accessed by
51  * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
52  * Or
53  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
54  */
55 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
56 
57 /* NOTE: change this value only with kprobe_mutex held */
58 static bool kprobes_all_disarmed;
59 
60 /* This protects kprobe_table and optimizing_list */
61 static DEFINE_MUTEX(kprobe_mutex);
62 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
63 
64 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
65 					unsigned int __unused)
66 {
67 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
68 }
69 
70 /* Blacklist -- list of struct kprobe_blacklist_entry */
71 static LIST_HEAD(kprobe_blacklist);
72 
73 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
74 /*
75  * kprobe->ainsn.insn points to the copy of the instruction to be
76  * single-stepped. x86_64, POWER4 and above have no-exec support and
77  * stepping on the instruction on a vmalloced/kmalloced/data page
78  * is a recipe for disaster
79  */
80 struct kprobe_insn_page {
81 	struct list_head list;
82 	kprobe_opcode_t *insns;		/* Page of instruction slots */
83 	struct kprobe_insn_cache *cache;
84 	int nused;
85 	int ngarbage;
86 	char slot_used[];
87 };
88 
89 #define KPROBE_INSN_PAGE_SIZE(slots)			\
90 	(offsetof(struct kprobe_insn_page, slot_used) +	\
91 	 (sizeof(char) * (slots)))
92 
93 static int slots_per_page(struct kprobe_insn_cache *c)
94 {
95 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
96 }
97 
98 enum kprobe_slot_state {
99 	SLOT_CLEAN = 0,
100 	SLOT_DIRTY = 1,
101 	SLOT_USED = 2,
102 };
103 
104 void __weak *alloc_insn_page(void)
105 {
106 	return module_alloc(PAGE_SIZE);
107 }
108 
109 void __weak free_insn_page(void *page)
110 {
111 	module_memfree(page);
112 }
113 
114 struct kprobe_insn_cache kprobe_insn_slots = {
115 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
116 	.alloc = alloc_insn_page,
117 	.free = free_insn_page,
118 	.sym = KPROBE_INSN_PAGE_SYM,
119 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
120 	.insn_size = MAX_INSN_SIZE,
121 	.nr_garbage = 0,
122 };
123 static int collect_garbage_slots(struct kprobe_insn_cache *c);
124 
125 /**
126  * __get_insn_slot() - Find a slot on an executable page for an instruction.
127  * We allocate an executable page if there's no room on existing ones.
128  */
129 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
130 {
131 	struct kprobe_insn_page *kip;
132 	kprobe_opcode_t *slot = NULL;
133 
134 	/* Since the slot array is not protected by rcu, we need a mutex */
135 	mutex_lock(&c->mutex);
136  retry:
137 	rcu_read_lock();
138 	list_for_each_entry_rcu(kip, &c->pages, list) {
139 		if (kip->nused < slots_per_page(c)) {
140 			int i;
141 			for (i = 0; i < slots_per_page(c); i++) {
142 				if (kip->slot_used[i] == SLOT_CLEAN) {
143 					kip->slot_used[i] = SLOT_USED;
144 					kip->nused++;
145 					slot = kip->insns + (i * c->insn_size);
146 					rcu_read_unlock();
147 					goto out;
148 				}
149 			}
150 			/* kip->nused is broken. Fix it. */
151 			kip->nused = slots_per_page(c);
152 			WARN_ON(1);
153 		}
154 	}
155 	rcu_read_unlock();
156 
157 	/* If there are any garbage slots, collect it and try again. */
158 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
159 		goto retry;
160 
161 	/* All out of space.  Need to allocate a new page. */
162 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
163 	if (!kip)
164 		goto out;
165 
166 	/*
167 	 * Use module_alloc so this page is within +/- 2GB of where the
168 	 * kernel image and loaded module images reside. This is required
169 	 * so x86_64 can correctly handle the %rip-relative fixups.
170 	 */
171 	kip->insns = c->alloc();
172 	if (!kip->insns) {
173 		kfree(kip);
174 		goto out;
175 	}
176 	INIT_LIST_HEAD(&kip->list);
177 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
178 	kip->slot_used[0] = SLOT_USED;
179 	kip->nused = 1;
180 	kip->ngarbage = 0;
181 	kip->cache = c;
182 	list_add_rcu(&kip->list, &c->pages);
183 	slot = kip->insns;
184 
185 	/* Record the perf ksymbol register event after adding the page */
186 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
187 			   PAGE_SIZE, false, c->sym);
188 out:
189 	mutex_unlock(&c->mutex);
190 	return slot;
191 }
192 
193 /* Return 1 if all garbages are collected, otherwise 0. */
194 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
195 {
196 	kip->slot_used[idx] = SLOT_CLEAN;
197 	kip->nused--;
198 	if (kip->nused == 0) {
199 		/*
200 		 * Page is no longer in use.  Free it unless
201 		 * it's the last one.  We keep the last one
202 		 * so as not to have to set it up again the
203 		 * next time somebody inserts a probe.
204 		 */
205 		if (!list_is_singular(&kip->list)) {
206 			/*
207 			 * Record perf ksymbol unregister event before removing
208 			 * the page.
209 			 */
210 			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
211 					   (unsigned long)kip->insns, PAGE_SIZE, true,
212 					   kip->cache->sym);
213 			list_del_rcu(&kip->list);
214 			synchronize_rcu();
215 			kip->cache->free(kip->insns);
216 			kfree(kip);
217 		}
218 		return 1;
219 	}
220 	return 0;
221 }
222 
223 static int collect_garbage_slots(struct kprobe_insn_cache *c)
224 {
225 	struct kprobe_insn_page *kip, *next;
226 
227 	/* Ensure no-one is interrupted on the garbages */
228 	synchronize_rcu();
229 
230 	list_for_each_entry_safe(kip, next, &c->pages, list) {
231 		int i;
232 		if (kip->ngarbage == 0)
233 			continue;
234 		kip->ngarbage = 0;	/* we will collect all garbages */
235 		for (i = 0; i < slots_per_page(c); i++) {
236 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
237 				break;
238 		}
239 	}
240 	c->nr_garbage = 0;
241 	return 0;
242 }
243 
244 void __free_insn_slot(struct kprobe_insn_cache *c,
245 		      kprobe_opcode_t *slot, int dirty)
246 {
247 	struct kprobe_insn_page *kip;
248 	long idx;
249 
250 	mutex_lock(&c->mutex);
251 	rcu_read_lock();
252 	list_for_each_entry_rcu(kip, &c->pages, list) {
253 		idx = ((long)slot - (long)kip->insns) /
254 			(c->insn_size * sizeof(kprobe_opcode_t));
255 		if (idx >= 0 && idx < slots_per_page(c))
256 			goto out;
257 	}
258 	/* Could not find this slot. */
259 	WARN_ON(1);
260 	kip = NULL;
261 out:
262 	rcu_read_unlock();
263 	/* Mark and sweep: this may sleep */
264 	if (kip) {
265 		/* Check double free */
266 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
267 		if (dirty) {
268 			kip->slot_used[idx] = SLOT_DIRTY;
269 			kip->ngarbage++;
270 			if (++c->nr_garbage > slots_per_page(c))
271 				collect_garbage_slots(c);
272 		} else {
273 			collect_one_slot(kip, idx);
274 		}
275 	}
276 	mutex_unlock(&c->mutex);
277 }
278 
279 /*
280  * Check given address is on the page of kprobe instruction slots.
281  * This will be used for checking whether the address on a stack
282  * is on a text area or not.
283  */
284 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
285 {
286 	struct kprobe_insn_page *kip;
287 	bool ret = false;
288 
289 	rcu_read_lock();
290 	list_for_each_entry_rcu(kip, &c->pages, list) {
291 		if (addr >= (unsigned long)kip->insns &&
292 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
293 			ret = true;
294 			break;
295 		}
296 	}
297 	rcu_read_unlock();
298 
299 	return ret;
300 }
301 
302 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
303 			     unsigned long *value, char *type, char *sym)
304 {
305 	struct kprobe_insn_page *kip;
306 	int ret = -ERANGE;
307 
308 	rcu_read_lock();
309 	list_for_each_entry_rcu(kip, &c->pages, list) {
310 		if ((*symnum)--)
311 			continue;
312 		strlcpy(sym, c->sym, KSYM_NAME_LEN);
313 		*type = 't';
314 		*value = (unsigned long)kip->insns;
315 		ret = 0;
316 		break;
317 	}
318 	rcu_read_unlock();
319 
320 	return ret;
321 }
322 
323 #ifdef CONFIG_OPTPROBES
324 /* For optimized_kprobe buffer */
325 struct kprobe_insn_cache kprobe_optinsn_slots = {
326 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
327 	.alloc = alloc_insn_page,
328 	.free = free_insn_page,
329 	.sym = KPROBE_OPTINSN_PAGE_SYM,
330 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
331 	/* .insn_size is initialized later */
332 	.nr_garbage = 0,
333 };
334 #endif
335 #endif
336 
337 /* We have preemption disabled.. so it is safe to use __ versions */
338 static inline void set_kprobe_instance(struct kprobe *kp)
339 {
340 	__this_cpu_write(kprobe_instance, kp);
341 }
342 
343 static inline void reset_kprobe_instance(void)
344 {
345 	__this_cpu_write(kprobe_instance, NULL);
346 }
347 
348 /*
349  * This routine is called either:
350  * 	- under the kprobe_mutex - during kprobe_[un]register()
351  * 				OR
352  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
353  */
354 struct kprobe *get_kprobe(void *addr)
355 {
356 	struct hlist_head *head;
357 	struct kprobe *p;
358 
359 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
360 	hlist_for_each_entry_rcu(p, head, hlist,
361 				 lockdep_is_held(&kprobe_mutex)) {
362 		if (p->addr == addr)
363 			return p;
364 	}
365 
366 	return NULL;
367 }
368 NOKPROBE_SYMBOL(get_kprobe);
369 
370 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
371 
372 /* Return true if the kprobe is an aggregator */
373 static inline int kprobe_aggrprobe(struct kprobe *p)
374 {
375 	return p->pre_handler == aggr_pre_handler;
376 }
377 
378 /* Return true(!0) if the kprobe is unused */
379 static inline int kprobe_unused(struct kprobe *p)
380 {
381 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
382 	       list_empty(&p->list);
383 }
384 
385 /*
386  * Keep all fields in the kprobe consistent
387  */
388 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
389 {
390 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
391 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
392 }
393 
394 #ifdef CONFIG_OPTPROBES
395 /* NOTE: change this value only with kprobe_mutex held */
396 static bool kprobes_allow_optimization;
397 
398 /*
399  * Call all pre_handler on the list, but ignores its return value.
400  * This must be called from arch-dep optimized caller.
401  */
402 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
403 {
404 	struct kprobe *kp;
405 
406 	list_for_each_entry_rcu(kp, &p->list, list) {
407 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
408 			set_kprobe_instance(kp);
409 			kp->pre_handler(kp, regs);
410 		}
411 		reset_kprobe_instance();
412 	}
413 }
414 NOKPROBE_SYMBOL(opt_pre_handler);
415 
416 /* Free optimized instructions and optimized_kprobe */
417 static void free_aggr_kprobe(struct kprobe *p)
418 {
419 	struct optimized_kprobe *op;
420 
421 	op = container_of(p, struct optimized_kprobe, kp);
422 	arch_remove_optimized_kprobe(op);
423 	arch_remove_kprobe(p);
424 	kfree(op);
425 }
426 
427 /* Return true(!0) if the kprobe is ready for optimization. */
428 static inline int kprobe_optready(struct kprobe *p)
429 {
430 	struct optimized_kprobe *op;
431 
432 	if (kprobe_aggrprobe(p)) {
433 		op = container_of(p, struct optimized_kprobe, kp);
434 		return arch_prepared_optinsn(&op->optinsn);
435 	}
436 
437 	return 0;
438 }
439 
440 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
441 static inline int kprobe_disarmed(struct kprobe *p)
442 {
443 	struct optimized_kprobe *op;
444 
445 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
446 	if (!kprobe_aggrprobe(p))
447 		return kprobe_disabled(p);
448 
449 	op = container_of(p, struct optimized_kprobe, kp);
450 
451 	return kprobe_disabled(p) && list_empty(&op->list);
452 }
453 
454 /* Return true(!0) if the probe is queued on (un)optimizing lists */
455 static int kprobe_queued(struct kprobe *p)
456 {
457 	struct optimized_kprobe *op;
458 
459 	if (kprobe_aggrprobe(p)) {
460 		op = container_of(p, struct optimized_kprobe, kp);
461 		if (!list_empty(&op->list))
462 			return 1;
463 	}
464 	return 0;
465 }
466 
467 /*
468  * Return an optimized kprobe whose optimizing code replaces
469  * instructions including addr (exclude breakpoint).
470  */
471 static struct kprobe *get_optimized_kprobe(unsigned long addr)
472 {
473 	int i;
474 	struct kprobe *p = NULL;
475 	struct optimized_kprobe *op;
476 
477 	/* Don't check i == 0, since that is a breakpoint case. */
478 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
479 		p = get_kprobe((void *)(addr - i));
480 
481 	if (p && kprobe_optready(p)) {
482 		op = container_of(p, struct optimized_kprobe, kp);
483 		if (arch_within_optimized_kprobe(op, addr))
484 			return p;
485 	}
486 
487 	return NULL;
488 }
489 
490 /* Optimization staging list, protected by kprobe_mutex */
491 static LIST_HEAD(optimizing_list);
492 static LIST_HEAD(unoptimizing_list);
493 static LIST_HEAD(freeing_list);
494 
495 static void kprobe_optimizer(struct work_struct *work);
496 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
497 #define OPTIMIZE_DELAY 5
498 
499 /*
500  * Optimize (replace a breakpoint with a jump) kprobes listed on
501  * optimizing_list.
502  */
503 static void do_optimize_kprobes(void)
504 {
505 	lockdep_assert_held(&text_mutex);
506 	/*
507 	 * The optimization/unoptimization refers online_cpus via
508 	 * stop_machine() and cpu-hotplug modifies online_cpus.
509 	 * And same time, text_mutex will be held in cpu-hotplug and here.
510 	 * This combination can cause a deadlock (cpu-hotplug try to lock
511 	 * text_mutex but stop_machine can not be done because online_cpus
512 	 * has been changed)
513 	 * To avoid this deadlock, caller must have locked cpu hotplug
514 	 * for preventing cpu-hotplug outside of text_mutex locking.
515 	 */
516 	lockdep_assert_cpus_held();
517 
518 	/* Optimization never be done when disarmed */
519 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
520 	    list_empty(&optimizing_list))
521 		return;
522 
523 	arch_optimize_kprobes(&optimizing_list);
524 }
525 
526 /*
527  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
528  * if need) kprobes listed on unoptimizing_list.
529  */
530 static void do_unoptimize_kprobes(void)
531 {
532 	struct optimized_kprobe *op, *tmp;
533 
534 	lockdep_assert_held(&text_mutex);
535 	/* See comment in do_optimize_kprobes() */
536 	lockdep_assert_cpus_held();
537 
538 	/* Unoptimization must be done anytime */
539 	if (list_empty(&unoptimizing_list))
540 		return;
541 
542 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
543 	/* Loop free_list for disarming */
544 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
545 		/* Switching from detour code to origin */
546 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
547 		/* Disarm probes if marked disabled */
548 		if (kprobe_disabled(&op->kp))
549 			arch_disarm_kprobe(&op->kp);
550 		if (kprobe_unused(&op->kp)) {
551 			/*
552 			 * Remove unused probes from hash list. After waiting
553 			 * for synchronization, these probes are reclaimed.
554 			 * (reclaiming is done by do_free_cleaned_kprobes.)
555 			 */
556 			hlist_del_rcu(&op->kp.hlist);
557 		} else
558 			list_del_init(&op->list);
559 	}
560 }
561 
562 /* Reclaim all kprobes on the free_list */
563 static void do_free_cleaned_kprobes(void)
564 {
565 	struct optimized_kprobe *op, *tmp;
566 
567 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
568 		list_del_init(&op->list);
569 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
570 			/*
571 			 * This must not happen, but if there is a kprobe
572 			 * still in use, keep it on kprobes hash list.
573 			 */
574 			continue;
575 		}
576 		free_aggr_kprobe(&op->kp);
577 	}
578 }
579 
580 /* Start optimizer after OPTIMIZE_DELAY passed */
581 static void kick_kprobe_optimizer(void)
582 {
583 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
584 }
585 
586 /* Kprobe jump optimizer */
587 static void kprobe_optimizer(struct work_struct *work)
588 {
589 	mutex_lock(&kprobe_mutex);
590 	cpus_read_lock();
591 	mutex_lock(&text_mutex);
592 
593 	/*
594 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
595 	 * kprobes before waiting for quiesence period.
596 	 */
597 	do_unoptimize_kprobes();
598 
599 	/*
600 	 * Step 2: Wait for quiesence period to ensure all potentially
601 	 * preempted tasks to have normally scheduled. Because optprobe
602 	 * may modify multiple instructions, there is a chance that Nth
603 	 * instruction is preempted. In that case, such tasks can return
604 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
605 	 * Note that on non-preemptive kernel, this is transparently converted
606 	 * to synchronoze_sched() to wait for all interrupts to have completed.
607 	 */
608 	synchronize_rcu_tasks();
609 
610 	/* Step 3: Optimize kprobes after quiesence period */
611 	do_optimize_kprobes();
612 
613 	/* Step 4: Free cleaned kprobes after quiesence period */
614 	do_free_cleaned_kprobes();
615 
616 	mutex_unlock(&text_mutex);
617 	cpus_read_unlock();
618 
619 	/* Step 5: Kick optimizer again if needed */
620 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
621 		kick_kprobe_optimizer();
622 
623 	mutex_unlock(&kprobe_mutex);
624 }
625 
626 /* Wait for completing optimization and unoptimization */
627 void wait_for_kprobe_optimizer(void)
628 {
629 	mutex_lock(&kprobe_mutex);
630 
631 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
632 		mutex_unlock(&kprobe_mutex);
633 
634 		/* this will also make optimizing_work execute immmediately */
635 		flush_delayed_work(&optimizing_work);
636 		/* @optimizing_work might not have been queued yet, relax */
637 		cpu_relax();
638 
639 		mutex_lock(&kprobe_mutex);
640 	}
641 
642 	mutex_unlock(&kprobe_mutex);
643 }
644 
645 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
646 {
647 	struct optimized_kprobe *_op;
648 
649 	list_for_each_entry(_op, &unoptimizing_list, list) {
650 		if (op == _op)
651 			return true;
652 	}
653 
654 	return false;
655 }
656 
657 /* Optimize kprobe if p is ready to be optimized */
658 static void optimize_kprobe(struct kprobe *p)
659 {
660 	struct optimized_kprobe *op;
661 
662 	/* Check if the kprobe is disabled or not ready for optimization. */
663 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
664 	    (kprobe_disabled(p) || kprobes_all_disarmed))
665 		return;
666 
667 	/* kprobes with post_handler can not be optimized */
668 	if (p->post_handler)
669 		return;
670 
671 	op = container_of(p, struct optimized_kprobe, kp);
672 
673 	/* Check there is no other kprobes at the optimized instructions */
674 	if (arch_check_optimized_kprobe(op) < 0)
675 		return;
676 
677 	/* Check if it is already optimized. */
678 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
679 		if (optprobe_queued_unopt(op)) {
680 			/* This is under unoptimizing. Just dequeue the probe */
681 			list_del_init(&op->list);
682 		}
683 		return;
684 	}
685 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
686 
687 	/* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
688 	if (WARN_ON_ONCE(!list_empty(&op->list)))
689 		return;
690 
691 	list_add(&op->list, &optimizing_list);
692 	kick_kprobe_optimizer();
693 }
694 
695 /* Short cut to direct unoptimizing */
696 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
697 {
698 	lockdep_assert_cpus_held();
699 	arch_unoptimize_kprobe(op);
700 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
701 }
702 
703 /* Unoptimize a kprobe if p is optimized */
704 static void unoptimize_kprobe(struct kprobe *p, bool force)
705 {
706 	struct optimized_kprobe *op;
707 
708 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
709 		return; /* This is not an optprobe nor optimized */
710 
711 	op = container_of(p, struct optimized_kprobe, kp);
712 	if (!kprobe_optimized(p))
713 		return;
714 
715 	if (!list_empty(&op->list)) {
716 		if (optprobe_queued_unopt(op)) {
717 			/* Queued in unoptimizing queue */
718 			if (force) {
719 				/*
720 				 * Forcibly unoptimize the kprobe here, and queue it
721 				 * in the freeing list for release afterwards.
722 				 */
723 				force_unoptimize_kprobe(op);
724 				list_move(&op->list, &freeing_list);
725 			}
726 		} else {
727 			/* Dequeue from the optimizing queue */
728 			list_del_init(&op->list);
729 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
730 		}
731 		return;
732 	}
733 
734 	/* Optimized kprobe case */
735 	if (force) {
736 		/* Forcibly update the code: this is a special case */
737 		force_unoptimize_kprobe(op);
738 	} else {
739 		list_add(&op->list, &unoptimizing_list);
740 		kick_kprobe_optimizer();
741 	}
742 }
743 
744 /* Cancel unoptimizing for reusing */
745 static int reuse_unused_kprobe(struct kprobe *ap)
746 {
747 	struct optimized_kprobe *op;
748 
749 	/*
750 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
751 	 * there is still a relative jump) and disabled.
752 	 */
753 	op = container_of(ap, struct optimized_kprobe, kp);
754 	WARN_ON_ONCE(list_empty(&op->list));
755 	/* Enable the probe again */
756 	ap->flags &= ~KPROBE_FLAG_DISABLED;
757 	/* Optimize it again (remove from op->list) */
758 	if (!kprobe_optready(ap))
759 		return -EINVAL;
760 
761 	optimize_kprobe(ap);
762 	return 0;
763 }
764 
765 /* Remove optimized instructions */
766 static void kill_optimized_kprobe(struct kprobe *p)
767 {
768 	struct optimized_kprobe *op;
769 
770 	op = container_of(p, struct optimized_kprobe, kp);
771 	if (!list_empty(&op->list))
772 		/* Dequeue from the (un)optimization queue */
773 		list_del_init(&op->list);
774 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
775 
776 	if (kprobe_unused(p)) {
777 		/* Enqueue if it is unused */
778 		list_add(&op->list, &freeing_list);
779 		/*
780 		 * Remove unused probes from the hash list. After waiting
781 		 * for synchronization, this probe is reclaimed.
782 		 * (reclaiming is done by do_free_cleaned_kprobes().)
783 		 */
784 		hlist_del_rcu(&op->kp.hlist);
785 	}
786 
787 	/* Don't touch the code, because it is already freed. */
788 	arch_remove_optimized_kprobe(op);
789 }
790 
791 static inline
792 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
793 {
794 	if (!kprobe_ftrace(p))
795 		arch_prepare_optimized_kprobe(op, p);
796 }
797 
798 /* Try to prepare optimized instructions */
799 static void prepare_optimized_kprobe(struct kprobe *p)
800 {
801 	struct optimized_kprobe *op;
802 
803 	op = container_of(p, struct optimized_kprobe, kp);
804 	__prepare_optimized_kprobe(op, p);
805 }
806 
807 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
808 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
809 {
810 	struct optimized_kprobe *op;
811 
812 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
813 	if (!op)
814 		return NULL;
815 
816 	INIT_LIST_HEAD(&op->list);
817 	op->kp.addr = p->addr;
818 	__prepare_optimized_kprobe(op, p);
819 
820 	return &op->kp;
821 }
822 
823 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
824 
825 /*
826  * Prepare an optimized_kprobe and optimize it
827  * NOTE: p must be a normal registered kprobe
828  */
829 static void try_to_optimize_kprobe(struct kprobe *p)
830 {
831 	struct kprobe *ap;
832 	struct optimized_kprobe *op;
833 
834 	/* Impossible to optimize ftrace-based kprobe */
835 	if (kprobe_ftrace(p))
836 		return;
837 
838 	/* For preparing optimization, jump_label_text_reserved() is called */
839 	cpus_read_lock();
840 	jump_label_lock();
841 	mutex_lock(&text_mutex);
842 
843 	ap = alloc_aggr_kprobe(p);
844 	if (!ap)
845 		goto out;
846 
847 	op = container_of(ap, struct optimized_kprobe, kp);
848 	if (!arch_prepared_optinsn(&op->optinsn)) {
849 		/* If failed to setup optimizing, fallback to kprobe */
850 		arch_remove_optimized_kprobe(op);
851 		kfree(op);
852 		goto out;
853 	}
854 
855 	init_aggr_kprobe(ap, p);
856 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
857 
858 out:
859 	mutex_unlock(&text_mutex);
860 	jump_label_unlock();
861 	cpus_read_unlock();
862 }
863 
864 static void optimize_all_kprobes(void)
865 {
866 	struct hlist_head *head;
867 	struct kprobe *p;
868 	unsigned int i;
869 
870 	mutex_lock(&kprobe_mutex);
871 	/* If optimization is already allowed, just return */
872 	if (kprobes_allow_optimization)
873 		goto out;
874 
875 	cpus_read_lock();
876 	kprobes_allow_optimization = true;
877 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
878 		head = &kprobe_table[i];
879 		hlist_for_each_entry(p, head, hlist)
880 			if (!kprobe_disabled(p))
881 				optimize_kprobe(p);
882 	}
883 	cpus_read_unlock();
884 	printk(KERN_INFO "Kprobes globally optimized\n");
885 out:
886 	mutex_unlock(&kprobe_mutex);
887 }
888 
889 #ifdef CONFIG_SYSCTL
890 static void unoptimize_all_kprobes(void)
891 {
892 	struct hlist_head *head;
893 	struct kprobe *p;
894 	unsigned int i;
895 
896 	mutex_lock(&kprobe_mutex);
897 	/* If optimization is already prohibited, just return */
898 	if (!kprobes_allow_optimization) {
899 		mutex_unlock(&kprobe_mutex);
900 		return;
901 	}
902 
903 	cpus_read_lock();
904 	kprobes_allow_optimization = false;
905 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
906 		head = &kprobe_table[i];
907 		hlist_for_each_entry(p, head, hlist) {
908 			if (!kprobe_disabled(p))
909 				unoptimize_kprobe(p, false);
910 		}
911 	}
912 	cpus_read_unlock();
913 	mutex_unlock(&kprobe_mutex);
914 
915 	/* Wait for unoptimizing completion */
916 	wait_for_kprobe_optimizer();
917 	printk(KERN_INFO "Kprobes globally unoptimized\n");
918 }
919 
920 static DEFINE_MUTEX(kprobe_sysctl_mutex);
921 int sysctl_kprobes_optimization;
922 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
923 				      void *buffer, size_t *length,
924 				      loff_t *ppos)
925 {
926 	int ret;
927 
928 	mutex_lock(&kprobe_sysctl_mutex);
929 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
930 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
931 
932 	if (sysctl_kprobes_optimization)
933 		optimize_all_kprobes();
934 	else
935 		unoptimize_all_kprobes();
936 	mutex_unlock(&kprobe_sysctl_mutex);
937 
938 	return ret;
939 }
940 #endif /* CONFIG_SYSCTL */
941 
942 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
943 static void __arm_kprobe(struct kprobe *p)
944 {
945 	struct kprobe *_p;
946 
947 	/* Check collision with other optimized kprobes */
948 	_p = get_optimized_kprobe((unsigned long)p->addr);
949 	if (unlikely(_p))
950 		/* Fallback to unoptimized kprobe */
951 		unoptimize_kprobe(_p, true);
952 
953 	arch_arm_kprobe(p);
954 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
955 }
956 
957 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
958 static void __disarm_kprobe(struct kprobe *p, bool reopt)
959 {
960 	struct kprobe *_p;
961 
962 	/* Try to unoptimize */
963 	unoptimize_kprobe(p, kprobes_all_disarmed);
964 
965 	if (!kprobe_queued(p)) {
966 		arch_disarm_kprobe(p);
967 		/* If another kprobe was blocked, optimize it. */
968 		_p = get_optimized_kprobe((unsigned long)p->addr);
969 		if (unlikely(_p) && reopt)
970 			optimize_kprobe(_p);
971 	}
972 	/* TODO: reoptimize others after unoptimized this probe */
973 }
974 
975 #else /* !CONFIG_OPTPROBES */
976 
977 #define optimize_kprobe(p)			do {} while (0)
978 #define unoptimize_kprobe(p, f)			do {} while (0)
979 #define kill_optimized_kprobe(p)		do {} while (0)
980 #define prepare_optimized_kprobe(p)		do {} while (0)
981 #define try_to_optimize_kprobe(p)		do {} while (0)
982 #define __arm_kprobe(p)				arch_arm_kprobe(p)
983 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
984 #define kprobe_disarmed(p)			kprobe_disabled(p)
985 #define wait_for_kprobe_optimizer()		do {} while (0)
986 
987 static int reuse_unused_kprobe(struct kprobe *ap)
988 {
989 	/*
990 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
991 	 * released at the same time that the last aggregated kprobe is
992 	 * unregistered.
993 	 * Thus there should be no chance to reuse unused kprobe.
994 	 */
995 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
996 	return -EINVAL;
997 }
998 
999 static void free_aggr_kprobe(struct kprobe *p)
1000 {
1001 	arch_remove_kprobe(p);
1002 	kfree(p);
1003 }
1004 
1005 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1006 {
1007 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1008 }
1009 #endif /* CONFIG_OPTPROBES */
1010 
1011 #ifdef CONFIG_KPROBES_ON_FTRACE
1012 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1013 	.func = kprobe_ftrace_handler,
1014 	.flags = FTRACE_OPS_FL_SAVE_REGS,
1015 };
1016 
1017 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1018 	.func = kprobe_ftrace_handler,
1019 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1020 };
1021 
1022 static int kprobe_ipmodify_enabled;
1023 static int kprobe_ftrace_enabled;
1024 
1025 /* Must ensure p->addr is really on ftrace */
1026 static int prepare_kprobe(struct kprobe *p)
1027 {
1028 	if (!kprobe_ftrace(p))
1029 		return arch_prepare_kprobe(p);
1030 
1031 	return arch_prepare_kprobe_ftrace(p);
1032 }
1033 
1034 /* Caller must lock kprobe_mutex */
1035 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1036 			       int *cnt)
1037 {
1038 	int ret = 0;
1039 
1040 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1041 	if (ret) {
1042 		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1043 			 p->addr, ret);
1044 		return ret;
1045 	}
1046 
1047 	if (*cnt == 0) {
1048 		ret = register_ftrace_function(ops);
1049 		if (ret) {
1050 			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1051 			goto err_ftrace;
1052 		}
1053 	}
1054 
1055 	(*cnt)++;
1056 	return ret;
1057 
1058 err_ftrace:
1059 	/*
1060 	 * At this point, sinec ops is not registered, we should be sefe from
1061 	 * registering empty filter.
1062 	 */
1063 	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1064 	return ret;
1065 }
1066 
1067 static int arm_kprobe_ftrace(struct kprobe *p)
1068 {
1069 	bool ipmodify = (p->post_handler != NULL);
1070 
1071 	return __arm_kprobe_ftrace(p,
1072 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1073 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1074 }
1075 
1076 /* Caller must lock kprobe_mutex */
1077 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1078 				  int *cnt)
1079 {
1080 	int ret = 0;
1081 
1082 	if (*cnt == 1) {
1083 		ret = unregister_ftrace_function(ops);
1084 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1085 			return ret;
1086 	}
1087 
1088 	(*cnt)--;
1089 
1090 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1091 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1092 		  p->addr, ret);
1093 	return ret;
1094 }
1095 
1096 static int disarm_kprobe_ftrace(struct kprobe *p)
1097 {
1098 	bool ipmodify = (p->post_handler != NULL);
1099 
1100 	return __disarm_kprobe_ftrace(p,
1101 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1102 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1103 }
1104 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1105 static inline int prepare_kprobe(struct kprobe *p)
1106 {
1107 	return arch_prepare_kprobe(p);
1108 }
1109 
1110 static inline int arm_kprobe_ftrace(struct kprobe *p)
1111 {
1112 	return -ENODEV;
1113 }
1114 
1115 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1116 {
1117 	return -ENODEV;
1118 }
1119 #endif
1120 
1121 /* Arm a kprobe with text_mutex */
1122 static int arm_kprobe(struct kprobe *kp)
1123 {
1124 	if (unlikely(kprobe_ftrace(kp)))
1125 		return arm_kprobe_ftrace(kp);
1126 
1127 	cpus_read_lock();
1128 	mutex_lock(&text_mutex);
1129 	__arm_kprobe(kp);
1130 	mutex_unlock(&text_mutex);
1131 	cpus_read_unlock();
1132 
1133 	return 0;
1134 }
1135 
1136 /* Disarm a kprobe with text_mutex */
1137 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1138 {
1139 	if (unlikely(kprobe_ftrace(kp)))
1140 		return disarm_kprobe_ftrace(kp);
1141 
1142 	cpus_read_lock();
1143 	mutex_lock(&text_mutex);
1144 	__disarm_kprobe(kp, reopt);
1145 	mutex_unlock(&text_mutex);
1146 	cpus_read_unlock();
1147 
1148 	return 0;
1149 }
1150 
1151 /*
1152  * Aggregate handlers for multiple kprobes support - these handlers
1153  * take care of invoking the individual kprobe handlers on p->list
1154  */
1155 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1156 {
1157 	struct kprobe *kp;
1158 
1159 	list_for_each_entry_rcu(kp, &p->list, list) {
1160 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1161 			set_kprobe_instance(kp);
1162 			if (kp->pre_handler(kp, regs))
1163 				return 1;
1164 		}
1165 		reset_kprobe_instance();
1166 	}
1167 	return 0;
1168 }
1169 NOKPROBE_SYMBOL(aggr_pre_handler);
1170 
1171 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1172 			      unsigned long flags)
1173 {
1174 	struct kprobe *kp;
1175 
1176 	list_for_each_entry_rcu(kp, &p->list, list) {
1177 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1178 			set_kprobe_instance(kp);
1179 			kp->post_handler(kp, regs, flags);
1180 			reset_kprobe_instance();
1181 		}
1182 	}
1183 }
1184 NOKPROBE_SYMBOL(aggr_post_handler);
1185 
1186 /* Walks the list and increments nmissed count for multiprobe case */
1187 void kprobes_inc_nmissed_count(struct kprobe *p)
1188 {
1189 	struct kprobe *kp;
1190 	if (!kprobe_aggrprobe(p)) {
1191 		p->nmissed++;
1192 	} else {
1193 		list_for_each_entry_rcu(kp, &p->list, list)
1194 			kp->nmissed++;
1195 	}
1196 	return;
1197 }
1198 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1199 
1200 static void free_rp_inst_rcu(struct rcu_head *head)
1201 {
1202 	struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1203 
1204 	if (refcount_dec_and_test(&ri->rph->ref))
1205 		kfree(ri->rph);
1206 	kfree(ri);
1207 }
1208 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1209 
1210 static void recycle_rp_inst(struct kretprobe_instance *ri)
1211 {
1212 	struct kretprobe *rp = get_kretprobe(ri);
1213 
1214 	if (likely(rp)) {
1215 		freelist_add(&ri->freelist, &rp->freelist);
1216 	} else
1217 		call_rcu(&ri->rcu, free_rp_inst_rcu);
1218 }
1219 NOKPROBE_SYMBOL(recycle_rp_inst);
1220 
1221 static struct kprobe kprobe_busy = {
1222 	.addr = (void *) get_kprobe,
1223 };
1224 
1225 void kprobe_busy_begin(void)
1226 {
1227 	struct kprobe_ctlblk *kcb;
1228 
1229 	preempt_disable();
1230 	__this_cpu_write(current_kprobe, &kprobe_busy);
1231 	kcb = get_kprobe_ctlblk();
1232 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1233 }
1234 
1235 void kprobe_busy_end(void)
1236 {
1237 	__this_cpu_write(current_kprobe, NULL);
1238 	preempt_enable();
1239 }
1240 
1241 /*
1242  * This function is called from finish_task_switch when task tk becomes dead,
1243  * so that we can recycle any function-return probe instances associated
1244  * with this task. These left over instances represent probed functions
1245  * that have been called but will never return.
1246  */
1247 void kprobe_flush_task(struct task_struct *tk)
1248 {
1249 	struct kretprobe_instance *ri;
1250 	struct llist_node *node;
1251 
1252 	/* Early boot, not yet initialized. */
1253 	if (unlikely(!kprobes_initialized))
1254 		return;
1255 
1256 	kprobe_busy_begin();
1257 
1258 	node = __llist_del_all(&tk->kretprobe_instances);
1259 	while (node) {
1260 		ri = container_of(node, struct kretprobe_instance, llist);
1261 		node = node->next;
1262 
1263 		recycle_rp_inst(ri);
1264 	}
1265 
1266 	kprobe_busy_end();
1267 }
1268 NOKPROBE_SYMBOL(kprobe_flush_task);
1269 
1270 static inline void free_rp_inst(struct kretprobe *rp)
1271 {
1272 	struct kretprobe_instance *ri;
1273 	struct freelist_node *node;
1274 	int count = 0;
1275 
1276 	node = rp->freelist.head;
1277 	while (node) {
1278 		ri = container_of(node, struct kretprobe_instance, freelist);
1279 		node = node->next;
1280 
1281 		kfree(ri);
1282 		count++;
1283 	}
1284 
1285 	if (refcount_sub_and_test(count, &rp->rph->ref)) {
1286 		kfree(rp->rph);
1287 		rp->rph = NULL;
1288 	}
1289 }
1290 
1291 /* Add the new probe to ap->list */
1292 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1293 {
1294 	if (p->post_handler)
1295 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1296 
1297 	list_add_rcu(&p->list, &ap->list);
1298 	if (p->post_handler && !ap->post_handler)
1299 		ap->post_handler = aggr_post_handler;
1300 
1301 	return 0;
1302 }
1303 
1304 /*
1305  * Fill in the required fields of the "manager kprobe". Replace the
1306  * earlier kprobe in the hlist with the manager kprobe
1307  */
1308 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1309 {
1310 	/* Copy p's insn slot to ap */
1311 	copy_kprobe(p, ap);
1312 	flush_insn_slot(ap);
1313 	ap->addr = p->addr;
1314 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1315 	ap->pre_handler = aggr_pre_handler;
1316 	/* We don't care the kprobe which has gone. */
1317 	if (p->post_handler && !kprobe_gone(p))
1318 		ap->post_handler = aggr_post_handler;
1319 
1320 	INIT_LIST_HEAD(&ap->list);
1321 	INIT_HLIST_NODE(&ap->hlist);
1322 
1323 	list_add_rcu(&p->list, &ap->list);
1324 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1325 }
1326 
1327 /*
1328  * This is the second or subsequent kprobe at the address - handle
1329  * the intricacies
1330  */
1331 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1332 {
1333 	int ret = 0;
1334 	struct kprobe *ap = orig_p;
1335 
1336 	cpus_read_lock();
1337 
1338 	/* For preparing optimization, jump_label_text_reserved() is called */
1339 	jump_label_lock();
1340 	mutex_lock(&text_mutex);
1341 
1342 	if (!kprobe_aggrprobe(orig_p)) {
1343 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1344 		ap = alloc_aggr_kprobe(orig_p);
1345 		if (!ap) {
1346 			ret = -ENOMEM;
1347 			goto out;
1348 		}
1349 		init_aggr_kprobe(ap, orig_p);
1350 	} else if (kprobe_unused(ap)) {
1351 		/* This probe is going to die. Rescue it */
1352 		ret = reuse_unused_kprobe(ap);
1353 		if (ret)
1354 			goto out;
1355 	}
1356 
1357 	if (kprobe_gone(ap)) {
1358 		/*
1359 		 * Attempting to insert new probe at the same location that
1360 		 * had a probe in the module vaddr area which already
1361 		 * freed. So, the instruction slot has already been
1362 		 * released. We need a new slot for the new probe.
1363 		 */
1364 		ret = arch_prepare_kprobe(ap);
1365 		if (ret)
1366 			/*
1367 			 * Even if fail to allocate new slot, don't need to
1368 			 * free aggr_probe. It will be used next time, or
1369 			 * freed by unregister_kprobe.
1370 			 */
1371 			goto out;
1372 
1373 		/* Prepare optimized instructions if possible. */
1374 		prepare_optimized_kprobe(ap);
1375 
1376 		/*
1377 		 * Clear gone flag to prevent allocating new slot again, and
1378 		 * set disabled flag because it is not armed yet.
1379 		 */
1380 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1381 			    | KPROBE_FLAG_DISABLED;
1382 	}
1383 
1384 	/* Copy ap's insn slot to p */
1385 	copy_kprobe(ap, p);
1386 	ret = add_new_kprobe(ap, p);
1387 
1388 out:
1389 	mutex_unlock(&text_mutex);
1390 	jump_label_unlock();
1391 	cpus_read_unlock();
1392 
1393 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1394 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1395 		if (!kprobes_all_disarmed) {
1396 			/* Arm the breakpoint again. */
1397 			ret = arm_kprobe(ap);
1398 			if (ret) {
1399 				ap->flags |= KPROBE_FLAG_DISABLED;
1400 				list_del_rcu(&p->list);
1401 				synchronize_rcu();
1402 			}
1403 		}
1404 	}
1405 	return ret;
1406 }
1407 
1408 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1409 {
1410 	/* The __kprobes marked functions and entry code must not be probed */
1411 	return addr >= (unsigned long)__kprobes_text_start &&
1412 	       addr < (unsigned long)__kprobes_text_end;
1413 }
1414 
1415 static bool __within_kprobe_blacklist(unsigned long addr)
1416 {
1417 	struct kprobe_blacklist_entry *ent;
1418 
1419 	if (arch_within_kprobe_blacklist(addr))
1420 		return true;
1421 	/*
1422 	 * If there exists a kprobe_blacklist, verify and
1423 	 * fail any probe registration in the prohibited area
1424 	 */
1425 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1426 		if (addr >= ent->start_addr && addr < ent->end_addr)
1427 			return true;
1428 	}
1429 	return false;
1430 }
1431 
1432 bool within_kprobe_blacklist(unsigned long addr)
1433 {
1434 	char symname[KSYM_NAME_LEN], *p;
1435 
1436 	if (__within_kprobe_blacklist(addr))
1437 		return true;
1438 
1439 	/* Check if the address is on a suffixed-symbol */
1440 	if (!lookup_symbol_name(addr, symname)) {
1441 		p = strchr(symname, '.');
1442 		if (!p)
1443 			return false;
1444 		*p = '\0';
1445 		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1446 		if (addr)
1447 			return __within_kprobe_blacklist(addr);
1448 	}
1449 	return false;
1450 }
1451 
1452 /*
1453  * If we have a symbol_name argument, look it up and add the offset field
1454  * to it. This way, we can specify a relative address to a symbol.
1455  * This returns encoded errors if it fails to look up symbol or invalid
1456  * combination of parameters.
1457  */
1458 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1459 			const char *symbol_name, unsigned int offset)
1460 {
1461 	if ((symbol_name && addr) || (!symbol_name && !addr))
1462 		goto invalid;
1463 
1464 	if (symbol_name) {
1465 		addr = kprobe_lookup_name(symbol_name, offset);
1466 		if (!addr)
1467 			return ERR_PTR(-ENOENT);
1468 	}
1469 
1470 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1471 	if (addr)
1472 		return addr;
1473 
1474 invalid:
1475 	return ERR_PTR(-EINVAL);
1476 }
1477 
1478 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1479 {
1480 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1481 }
1482 
1483 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1484 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1485 {
1486 	struct kprobe *ap, *list_p;
1487 
1488 	lockdep_assert_held(&kprobe_mutex);
1489 
1490 	ap = get_kprobe(p->addr);
1491 	if (unlikely(!ap))
1492 		return NULL;
1493 
1494 	if (p != ap) {
1495 		list_for_each_entry(list_p, &ap->list, list)
1496 			if (list_p == p)
1497 			/* kprobe p is a valid probe */
1498 				goto valid;
1499 		return NULL;
1500 	}
1501 valid:
1502 	return ap;
1503 }
1504 
1505 /*
1506  * Warn and return error if the kprobe is being re-registered since
1507  * there must be a software bug.
1508  */
1509 static inline int warn_kprobe_rereg(struct kprobe *p)
1510 {
1511 	int ret = 0;
1512 
1513 	mutex_lock(&kprobe_mutex);
1514 	if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1515 		ret = -EINVAL;
1516 	mutex_unlock(&kprobe_mutex);
1517 
1518 	return ret;
1519 }
1520 
1521 int __weak arch_check_ftrace_location(struct kprobe *p)
1522 {
1523 	unsigned long ftrace_addr;
1524 
1525 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1526 	if (ftrace_addr) {
1527 #ifdef CONFIG_KPROBES_ON_FTRACE
1528 		/* Given address is not on the instruction boundary */
1529 		if ((unsigned long)p->addr != ftrace_addr)
1530 			return -EILSEQ;
1531 		p->flags |= KPROBE_FLAG_FTRACE;
1532 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1533 		return -EINVAL;
1534 #endif
1535 	}
1536 	return 0;
1537 }
1538 
1539 static int check_kprobe_address_safe(struct kprobe *p,
1540 				     struct module **probed_mod)
1541 {
1542 	int ret;
1543 
1544 	ret = arch_check_ftrace_location(p);
1545 	if (ret)
1546 		return ret;
1547 	jump_label_lock();
1548 	preempt_disable();
1549 
1550 	/* Ensure it is not in reserved area nor out of text */
1551 	if (!kernel_text_address((unsigned long) p->addr) ||
1552 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1553 	    jump_label_text_reserved(p->addr, p->addr) ||
1554 	    find_bug((unsigned long)p->addr)) {
1555 		ret = -EINVAL;
1556 		goto out;
1557 	}
1558 
1559 	/* Check if are we probing a module */
1560 	*probed_mod = __module_text_address((unsigned long) p->addr);
1561 	if (*probed_mod) {
1562 		/*
1563 		 * We must hold a refcount of the probed module while updating
1564 		 * its code to prohibit unexpected unloading.
1565 		 */
1566 		if (unlikely(!try_module_get(*probed_mod))) {
1567 			ret = -ENOENT;
1568 			goto out;
1569 		}
1570 
1571 		/*
1572 		 * If the module freed .init.text, we couldn't insert
1573 		 * kprobes in there.
1574 		 */
1575 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1576 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1577 			module_put(*probed_mod);
1578 			*probed_mod = NULL;
1579 			ret = -ENOENT;
1580 		}
1581 	}
1582 out:
1583 	preempt_enable();
1584 	jump_label_unlock();
1585 
1586 	return ret;
1587 }
1588 
1589 int register_kprobe(struct kprobe *p)
1590 {
1591 	int ret;
1592 	struct kprobe *old_p;
1593 	struct module *probed_mod;
1594 	kprobe_opcode_t *addr;
1595 
1596 	/* Adjust probe address from symbol */
1597 	addr = kprobe_addr(p);
1598 	if (IS_ERR(addr))
1599 		return PTR_ERR(addr);
1600 	p->addr = addr;
1601 
1602 	ret = warn_kprobe_rereg(p);
1603 	if (ret)
1604 		return ret;
1605 
1606 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1607 	p->flags &= KPROBE_FLAG_DISABLED;
1608 	p->nmissed = 0;
1609 	INIT_LIST_HEAD(&p->list);
1610 
1611 	ret = check_kprobe_address_safe(p, &probed_mod);
1612 	if (ret)
1613 		return ret;
1614 
1615 	mutex_lock(&kprobe_mutex);
1616 
1617 	old_p = get_kprobe(p->addr);
1618 	if (old_p) {
1619 		/* Since this may unoptimize old_p, locking text_mutex. */
1620 		ret = register_aggr_kprobe(old_p, p);
1621 		goto out;
1622 	}
1623 
1624 	cpus_read_lock();
1625 	/* Prevent text modification */
1626 	mutex_lock(&text_mutex);
1627 	ret = prepare_kprobe(p);
1628 	mutex_unlock(&text_mutex);
1629 	cpus_read_unlock();
1630 	if (ret)
1631 		goto out;
1632 
1633 	INIT_HLIST_NODE(&p->hlist);
1634 	hlist_add_head_rcu(&p->hlist,
1635 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1636 
1637 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1638 		ret = arm_kprobe(p);
1639 		if (ret) {
1640 			hlist_del_rcu(&p->hlist);
1641 			synchronize_rcu();
1642 			goto out;
1643 		}
1644 	}
1645 
1646 	/* Try to optimize kprobe */
1647 	try_to_optimize_kprobe(p);
1648 out:
1649 	mutex_unlock(&kprobe_mutex);
1650 
1651 	if (probed_mod)
1652 		module_put(probed_mod);
1653 
1654 	return ret;
1655 }
1656 EXPORT_SYMBOL_GPL(register_kprobe);
1657 
1658 /* Check if all probes on the aggrprobe are disabled */
1659 static int aggr_kprobe_disabled(struct kprobe *ap)
1660 {
1661 	struct kprobe *kp;
1662 
1663 	lockdep_assert_held(&kprobe_mutex);
1664 
1665 	list_for_each_entry(kp, &ap->list, list)
1666 		if (!kprobe_disabled(kp))
1667 			/*
1668 			 * There is an active probe on the list.
1669 			 * We can't disable this ap.
1670 			 */
1671 			return 0;
1672 
1673 	return 1;
1674 }
1675 
1676 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1677 static struct kprobe *__disable_kprobe(struct kprobe *p)
1678 {
1679 	struct kprobe *orig_p;
1680 	int ret;
1681 
1682 	/* Get an original kprobe for return */
1683 	orig_p = __get_valid_kprobe(p);
1684 	if (unlikely(orig_p == NULL))
1685 		return ERR_PTR(-EINVAL);
1686 
1687 	if (!kprobe_disabled(p)) {
1688 		/* Disable probe if it is a child probe */
1689 		if (p != orig_p)
1690 			p->flags |= KPROBE_FLAG_DISABLED;
1691 
1692 		/* Try to disarm and disable this/parent probe */
1693 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1694 			/*
1695 			 * If kprobes_all_disarmed is set, orig_p
1696 			 * should have already been disarmed, so
1697 			 * skip unneed disarming process.
1698 			 */
1699 			if (!kprobes_all_disarmed) {
1700 				ret = disarm_kprobe(orig_p, true);
1701 				if (ret) {
1702 					p->flags &= ~KPROBE_FLAG_DISABLED;
1703 					return ERR_PTR(ret);
1704 				}
1705 			}
1706 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1707 		}
1708 	}
1709 
1710 	return orig_p;
1711 }
1712 
1713 /*
1714  * Unregister a kprobe without a scheduler synchronization.
1715  */
1716 static int __unregister_kprobe_top(struct kprobe *p)
1717 {
1718 	struct kprobe *ap, *list_p;
1719 
1720 	/* Disable kprobe. This will disarm it if needed. */
1721 	ap = __disable_kprobe(p);
1722 	if (IS_ERR(ap))
1723 		return PTR_ERR(ap);
1724 
1725 	if (ap == p)
1726 		/*
1727 		 * This probe is an independent(and non-optimized) kprobe
1728 		 * (not an aggrprobe). Remove from the hash list.
1729 		 */
1730 		goto disarmed;
1731 
1732 	/* Following process expects this probe is an aggrprobe */
1733 	WARN_ON(!kprobe_aggrprobe(ap));
1734 
1735 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1736 		/*
1737 		 * !disarmed could be happen if the probe is under delayed
1738 		 * unoptimizing.
1739 		 */
1740 		goto disarmed;
1741 	else {
1742 		/* If disabling probe has special handlers, update aggrprobe */
1743 		if (p->post_handler && !kprobe_gone(p)) {
1744 			list_for_each_entry(list_p, &ap->list, list) {
1745 				if ((list_p != p) && (list_p->post_handler))
1746 					goto noclean;
1747 			}
1748 			ap->post_handler = NULL;
1749 		}
1750 noclean:
1751 		/*
1752 		 * Remove from the aggrprobe: this path will do nothing in
1753 		 * __unregister_kprobe_bottom().
1754 		 */
1755 		list_del_rcu(&p->list);
1756 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1757 			/*
1758 			 * Try to optimize this probe again, because post
1759 			 * handler may have been changed.
1760 			 */
1761 			optimize_kprobe(ap);
1762 	}
1763 	return 0;
1764 
1765 disarmed:
1766 	hlist_del_rcu(&ap->hlist);
1767 	return 0;
1768 }
1769 
1770 static void __unregister_kprobe_bottom(struct kprobe *p)
1771 {
1772 	struct kprobe *ap;
1773 
1774 	if (list_empty(&p->list))
1775 		/* This is an independent kprobe */
1776 		arch_remove_kprobe(p);
1777 	else if (list_is_singular(&p->list)) {
1778 		/* This is the last child of an aggrprobe */
1779 		ap = list_entry(p->list.next, struct kprobe, list);
1780 		list_del(&p->list);
1781 		free_aggr_kprobe(ap);
1782 	}
1783 	/* Otherwise, do nothing. */
1784 }
1785 
1786 int register_kprobes(struct kprobe **kps, int num)
1787 {
1788 	int i, ret = 0;
1789 
1790 	if (num <= 0)
1791 		return -EINVAL;
1792 	for (i = 0; i < num; i++) {
1793 		ret = register_kprobe(kps[i]);
1794 		if (ret < 0) {
1795 			if (i > 0)
1796 				unregister_kprobes(kps, i);
1797 			break;
1798 		}
1799 	}
1800 	return ret;
1801 }
1802 EXPORT_SYMBOL_GPL(register_kprobes);
1803 
1804 void unregister_kprobe(struct kprobe *p)
1805 {
1806 	unregister_kprobes(&p, 1);
1807 }
1808 EXPORT_SYMBOL_GPL(unregister_kprobe);
1809 
1810 void unregister_kprobes(struct kprobe **kps, int num)
1811 {
1812 	int i;
1813 
1814 	if (num <= 0)
1815 		return;
1816 	mutex_lock(&kprobe_mutex);
1817 	for (i = 0; i < num; i++)
1818 		if (__unregister_kprobe_top(kps[i]) < 0)
1819 			kps[i]->addr = NULL;
1820 	mutex_unlock(&kprobe_mutex);
1821 
1822 	synchronize_rcu();
1823 	for (i = 0; i < num; i++)
1824 		if (kps[i]->addr)
1825 			__unregister_kprobe_bottom(kps[i]);
1826 }
1827 EXPORT_SYMBOL_GPL(unregister_kprobes);
1828 
1829 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1830 					unsigned long val, void *data)
1831 {
1832 	return NOTIFY_DONE;
1833 }
1834 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1835 
1836 static struct notifier_block kprobe_exceptions_nb = {
1837 	.notifier_call = kprobe_exceptions_notify,
1838 	.priority = 0x7fffffff /* we need to be notified first */
1839 };
1840 
1841 unsigned long __weak arch_deref_entry_point(void *entry)
1842 {
1843 	return (unsigned long)entry;
1844 }
1845 
1846 #ifdef CONFIG_KRETPROBES
1847 
1848 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1849 					     void *trampoline_address,
1850 					     void *frame_pointer)
1851 {
1852 	kprobe_opcode_t *correct_ret_addr = NULL;
1853 	struct kretprobe_instance *ri = NULL;
1854 	struct llist_node *first, *node;
1855 	struct kretprobe *rp;
1856 
1857 	/* Find all nodes for this frame. */
1858 	first = node = current->kretprobe_instances.first;
1859 	while (node) {
1860 		ri = container_of(node, struct kretprobe_instance, llist);
1861 
1862 		BUG_ON(ri->fp != frame_pointer);
1863 
1864 		if (ri->ret_addr != trampoline_address) {
1865 			correct_ret_addr = ri->ret_addr;
1866 			/*
1867 			 * This is the real return address. Any other
1868 			 * instances associated with this task are for
1869 			 * other calls deeper on the call stack
1870 			 */
1871 			goto found;
1872 		}
1873 
1874 		node = node->next;
1875 	}
1876 	pr_err("Oops! Kretprobe fails to find correct return address.\n");
1877 	BUG_ON(1);
1878 
1879 found:
1880 	/* Unlink all nodes for this frame. */
1881 	current->kretprobe_instances.first = node->next;
1882 	node->next = NULL;
1883 
1884 	/* Run them..  */
1885 	while (first) {
1886 		ri = container_of(first, struct kretprobe_instance, llist);
1887 		first = first->next;
1888 
1889 		rp = get_kretprobe(ri);
1890 		if (rp && rp->handler) {
1891 			struct kprobe *prev = kprobe_running();
1892 
1893 			__this_cpu_write(current_kprobe, &rp->kp);
1894 			ri->ret_addr = correct_ret_addr;
1895 			rp->handler(ri, regs);
1896 			__this_cpu_write(current_kprobe, prev);
1897 		}
1898 
1899 		recycle_rp_inst(ri);
1900 	}
1901 
1902 	return (unsigned long)correct_ret_addr;
1903 }
1904 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
1905 
1906 /*
1907  * This kprobe pre_handler is registered with every kretprobe. When probe
1908  * hits it will set up the return probe.
1909  */
1910 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1911 {
1912 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1913 	struct kretprobe_instance *ri;
1914 	struct freelist_node *fn;
1915 
1916 	fn = freelist_try_get(&rp->freelist);
1917 	if (!fn) {
1918 		rp->nmissed++;
1919 		return 0;
1920 	}
1921 
1922 	ri = container_of(fn, struct kretprobe_instance, freelist);
1923 
1924 	if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1925 		freelist_add(&ri->freelist, &rp->freelist);
1926 		return 0;
1927 	}
1928 
1929 	arch_prepare_kretprobe(ri, regs);
1930 
1931 	__llist_add(&ri->llist, &current->kretprobe_instances);
1932 
1933 	return 0;
1934 }
1935 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1936 
1937 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1938 {
1939 	return !offset;
1940 }
1941 
1942 /**
1943  * kprobe_on_func_entry() -- check whether given address is function entry
1944  * @addr: Target address
1945  * @sym:  Target symbol name
1946  * @offset: The offset from the symbol or the address
1947  *
1948  * This checks whether the given @addr+@offset or @sym+@offset is on the
1949  * function entry address or not.
1950  * This returns 0 if it is the function entry, or -EINVAL if it is not.
1951  * And also it returns -ENOENT if it fails the symbol or address lookup.
1952  * Caller must pass @addr or @sym (either one must be NULL), or this
1953  * returns -EINVAL.
1954  */
1955 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1956 {
1957 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1958 
1959 	if (IS_ERR(kp_addr))
1960 		return PTR_ERR(kp_addr);
1961 
1962 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1963 		return -ENOENT;
1964 
1965 	if (!arch_kprobe_on_func_entry(offset))
1966 		return -EINVAL;
1967 
1968 	return 0;
1969 }
1970 
1971 int register_kretprobe(struct kretprobe *rp)
1972 {
1973 	int ret;
1974 	struct kretprobe_instance *inst;
1975 	int i;
1976 	void *addr;
1977 
1978 	ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
1979 	if (ret)
1980 		return ret;
1981 
1982 	/* If only rp->kp.addr is specified, check reregistering kprobes */
1983 	if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
1984 		return -EINVAL;
1985 
1986 	if (kretprobe_blacklist_size) {
1987 		addr = kprobe_addr(&rp->kp);
1988 		if (IS_ERR(addr))
1989 			return PTR_ERR(addr);
1990 
1991 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1992 			if (kretprobe_blacklist[i].addr == addr)
1993 				return -EINVAL;
1994 		}
1995 	}
1996 
1997 	rp->kp.pre_handler = pre_handler_kretprobe;
1998 	rp->kp.post_handler = NULL;
1999 
2000 	/* Pre-allocate memory for max kretprobe instances */
2001 	if (rp->maxactive <= 0) {
2002 #ifdef CONFIG_PREEMPTION
2003 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2004 #else
2005 		rp->maxactive = num_possible_cpus();
2006 #endif
2007 	}
2008 	rp->freelist.head = NULL;
2009 	rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2010 	if (!rp->rph)
2011 		return -ENOMEM;
2012 
2013 	rp->rph->rp = rp;
2014 	for (i = 0; i < rp->maxactive; i++) {
2015 		inst = kzalloc(sizeof(struct kretprobe_instance) +
2016 			       rp->data_size, GFP_KERNEL);
2017 		if (inst == NULL) {
2018 			refcount_set(&rp->rph->ref, i);
2019 			free_rp_inst(rp);
2020 			return -ENOMEM;
2021 		}
2022 		inst->rph = rp->rph;
2023 		freelist_add(&inst->freelist, &rp->freelist);
2024 	}
2025 	refcount_set(&rp->rph->ref, i);
2026 
2027 	rp->nmissed = 0;
2028 	/* Establish function entry probe point */
2029 	ret = register_kprobe(&rp->kp);
2030 	if (ret != 0)
2031 		free_rp_inst(rp);
2032 	return ret;
2033 }
2034 EXPORT_SYMBOL_GPL(register_kretprobe);
2035 
2036 int register_kretprobes(struct kretprobe **rps, int num)
2037 {
2038 	int ret = 0, i;
2039 
2040 	if (num <= 0)
2041 		return -EINVAL;
2042 	for (i = 0; i < num; i++) {
2043 		ret = register_kretprobe(rps[i]);
2044 		if (ret < 0) {
2045 			if (i > 0)
2046 				unregister_kretprobes(rps, i);
2047 			break;
2048 		}
2049 	}
2050 	return ret;
2051 }
2052 EXPORT_SYMBOL_GPL(register_kretprobes);
2053 
2054 void unregister_kretprobe(struct kretprobe *rp)
2055 {
2056 	unregister_kretprobes(&rp, 1);
2057 }
2058 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2059 
2060 void unregister_kretprobes(struct kretprobe **rps, int num)
2061 {
2062 	int i;
2063 
2064 	if (num <= 0)
2065 		return;
2066 	mutex_lock(&kprobe_mutex);
2067 	for (i = 0; i < num; i++) {
2068 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2069 			rps[i]->kp.addr = NULL;
2070 		rps[i]->rph->rp = NULL;
2071 	}
2072 	mutex_unlock(&kprobe_mutex);
2073 
2074 	synchronize_rcu();
2075 	for (i = 0; i < num; i++) {
2076 		if (rps[i]->kp.addr) {
2077 			__unregister_kprobe_bottom(&rps[i]->kp);
2078 			free_rp_inst(rps[i]);
2079 		}
2080 	}
2081 }
2082 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2083 
2084 #else /* CONFIG_KRETPROBES */
2085 int register_kretprobe(struct kretprobe *rp)
2086 {
2087 	return -ENOSYS;
2088 }
2089 EXPORT_SYMBOL_GPL(register_kretprobe);
2090 
2091 int register_kretprobes(struct kretprobe **rps, int num)
2092 {
2093 	return -ENOSYS;
2094 }
2095 EXPORT_SYMBOL_GPL(register_kretprobes);
2096 
2097 void unregister_kretprobe(struct kretprobe *rp)
2098 {
2099 }
2100 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2101 
2102 void unregister_kretprobes(struct kretprobe **rps, int num)
2103 {
2104 }
2105 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2106 
2107 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2108 {
2109 	return 0;
2110 }
2111 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2112 
2113 #endif /* CONFIG_KRETPROBES */
2114 
2115 /* Set the kprobe gone and remove its instruction buffer. */
2116 static void kill_kprobe(struct kprobe *p)
2117 {
2118 	struct kprobe *kp;
2119 
2120 	lockdep_assert_held(&kprobe_mutex);
2121 
2122 	p->flags |= KPROBE_FLAG_GONE;
2123 	if (kprobe_aggrprobe(p)) {
2124 		/*
2125 		 * If this is an aggr_kprobe, we have to list all the
2126 		 * chained probes and mark them GONE.
2127 		 */
2128 		list_for_each_entry(kp, &p->list, list)
2129 			kp->flags |= KPROBE_FLAG_GONE;
2130 		p->post_handler = NULL;
2131 		kill_optimized_kprobe(p);
2132 	}
2133 	/*
2134 	 * Here, we can remove insn_slot safely, because no thread calls
2135 	 * the original probed function (which will be freed soon) any more.
2136 	 */
2137 	arch_remove_kprobe(p);
2138 
2139 	/*
2140 	 * The module is going away. We should disarm the kprobe which
2141 	 * is using ftrace, because ftrace framework is still available at
2142 	 * MODULE_STATE_GOING notification.
2143 	 */
2144 	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2145 		disarm_kprobe_ftrace(p);
2146 }
2147 
2148 /* Disable one kprobe */
2149 int disable_kprobe(struct kprobe *kp)
2150 {
2151 	int ret = 0;
2152 	struct kprobe *p;
2153 
2154 	mutex_lock(&kprobe_mutex);
2155 
2156 	/* Disable this kprobe */
2157 	p = __disable_kprobe(kp);
2158 	if (IS_ERR(p))
2159 		ret = PTR_ERR(p);
2160 
2161 	mutex_unlock(&kprobe_mutex);
2162 	return ret;
2163 }
2164 EXPORT_SYMBOL_GPL(disable_kprobe);
2165 
2166 /* Enable one kprobe */
2167 int enable_kprobe(struct kprobe *kp)
2168 {
2169 	int ret = 0;
2170 	struct kprobe *p;
2171 
2172 	mutex_lock(&kprobe_mutex);
2173 
2174 	/* Check whether specified probe is valid. */
2175 	p = __get_valid_kprobe(kp);
2176 	if (unlikely(p == NULL)) {
2177 		ret = -EINVAL;
2178 		goto out;
2179 	}
2180 
2181 	if (kprobe_gone(kp)) {
2182 		/* This kprobe has gone, we couldn't enable it. */
2183 		ret = -EINVAL;
2184 		goto out;
2185 	}
2186 
2187 	if (p != kp)
2188 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2189 
2190 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2191 		p->flags &= ~KPROBE_FLAG_DISABLED;
2192 		ret = arm_kprobe(p);
2193 		if (ret)
2194 			p->flags |= KPROBE_FLAG_DISABLED;
2195 	}
2196 out:
2197 	mutex_unlock(&kprobe_mutex);
2198 	return ret;
2199 }
2200 EXPORT_SYMBOL_GPL(enable_kprobe);
2201 
2202 /* Caller must NOT call this in usual path. This is only for critical case */
2203 void dump_kprobe(struct kprobe *kp)
2204 {
2205 	pr_err("Dumping kprobe:\n");
2206 	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2207 	       kp->symbol_name, kp->offset, kp->addr);
2208 }
2209 NOKPROBE_SYMBOL(dump_kprobe);
2210 
2211 int kprobe_add_ksym_blacklist(unsigned long entry)
2212 {
2213 	struct kprobe_blacklist_entry *ent;
2214 	unsigned long offset = 0, size = 0;
2215 
2216 	if (!kernel_text_address(entry) ||
2217 	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2218 		return -EINVAL;
2219 
2220 	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2221 	if (!ent)
2222 		return -ENOMEM;
2223 	ent->start_addr = entry;
2224 	ent->end_addr = entry + size;
2225 	INIT_LIST_HEAD(&ent->list);
2226 	list_add_tail(&ent->list, &kprobe_blacklist);
2227 
2228 	return (int)size;
2229 }
2230 
2231 /* Add all symbols in given area into kprobe blacklist */
2232 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2233 {
2234 	unsigned long entry;
2235 	int ret = 0;
2236 
2237 	for (entry = start; entry < end; entry += ret) {
2238 		ret = kprobe_add_ksym_blacklist(entry);
2239 		if (ret < 0)
2240 			return ret;
2241 		if (ret == 0)	/* In case of alias symbol */
2242 			ret = 1;
2243 	}
2244 	return 0;
2245 }
2246 
2247 /* Remove all symbols in given area from kprobe blacklist */
2248 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2249 {
2250 	struct kprobe_blacklist_entry *ent, *n;
2251 
2252 	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2253 		if (ent->start_addr < start || ent->start_addr >= end)
2254 			continue;
2255 		list_del(&ent->list);
2256 		kfree(ent);
2257 	}
2258 }
2259 
2260 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2261 {
2262 	kprobe_remove_area_blacklist(entry, entry + 1);
2263 }
2264 
2265 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2266 				   char *type, char *sym)
2267 {
2268 	return -ERANGE;
2269 }
2270 
2271 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2272 		       char *sym)
2273 {
2274 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2275 	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2276 		return 0;
2277 #ifdef CONFIG_OPTPROBES
2278 	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2279 		return 0;
2280 #endif
2281 #endif
2282 	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2283 		return 0;
2284 	return -ERANGE;
2285 }
2286 
2287 int __init __weak arch_populate_kprobe_blacklist(void)
2288 {
2289 	return 0;
2290 }
2291 
2292 /*
2293  * Lookup and populate the kprobe_blacklist.
2294  *
2295  * Unlike the kretprobe blacklist, we'll need to determine
2296  * the range of addresses that belong to the said functions,
2297  * since a kprobe need not necessarily be at the beginning
2298  * of a function.
2299  */
2300 static int __init populate_kprobe_blacklist(unsigned long *start,
2301 					     unsigned long *end)
2302 {
2303 	unsigned long entry;
2304 	unsigned long *iter;
2305 	int ret;
2306 
2307 	for (iter = start; iter < end; iter++) {
2308 		entry = arch_deref_entry_point((void *)*iter);
2309 		ret = kprobe_add_ksym_blacklist(entry);
2310 		if (ret == -EINVAL)
2311 			continue;
2312 		if (ret < 0)
2313 			return ret;
2314 	}
2315 
2316 	/* Symbols in __kprobes_text are blacklisted */
2317 	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2318 					(unsigned long)__kprobes_text_end);
2319 	if (ret)
2320 		return ret;
2321 
2322 	/* Symbols in noinstr section are blacklisted */
2323 	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2324 					(unsigned long)__noinstr_text_end);
2325 
2326 	return ret ? : arch_populate_kprobe_blacklist();
2327 }
2328 
2329 static void add_module_kprobe_blacklist(struct module *mod)
2330 {
2331 	unsigned long start, end;
2332 	int i;
2333 
2334 	if (mod->kprobe_blacklist) {
2335 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2336 			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2337 	}
2338 
2339 	start = (unsigned long)mod->kprobes_text_start;
2340 	if (start) {
2341 		end = start + mod->kprobes_text_size;
2342 		kprobe_add_area_blacklist(start, end);
2343 	}
2344 
2345 	start = (unsigned long)mod->noinstr_text_start;
2346 	if (start) {
2347 		end = start + mod->noinstr_text_size;
2348 		kprobe_add_area_blacklist(start, end);
2349 	}
2350 }
2351 
2352 static void remove_module_kprobe_blacklist(struct module *mod)
2353 {
2354 	unsigned long start, end;
2355 	int i;
2356 
2357 	if (mod->kprobe_blacklist) {
2358 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2359 			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2360 	}
2361 
2362 	start = (unsigned long)mod->kprobes_text_start;
2363 	if (start) {
2364 		end = start + mod->kprobes_text_size;
2365 		kprobe_remove_area_blacklist(start, end);
2366 	}
2367 
2368 	start = (unsigned long)mod->noinstr_text_start;
2369 	if (start) {
2370 		end = start + mod->noinstr_text_size;
2371 		kprobe_remove_area_blacklist(start, end);
2372 	}
2373 }
2374 
2375 /* Module notifier call back, checking kprobes on the module */
2376 static int kprobes_module_callback(struct notifier_block *nb,
2377 				   unsigned long val, void *data)
2378 {
2379 	struct module *mod = data;
2380 	struct hlist_head *head;
2381 	struct kprobe *p;
2382 	unsigned int i;
2383 	int checkcore = (val == MODULE_STATE_GOING);
2384 
2385 	if (val == MODULE_STATE_COMING) {
2386 		mutex_lock(&kprobe_mutex);
2387 		add_module_kprobe_blacklist(mod);
2388 		mutex_unlock(&kprobe_mutex);
2389 	}
2390 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2391 		return NOTIFY_DONE;
2392 
2393 	/*
2394 	 * When MODULE_STATE_GOING was notified, both of module .text and
2395 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2396 	 * notified, only .init.text section would be freed. We need to
2397 	 * disable kprobes which have been inserted in the sections.
2398 	 */
2399 	mutex_lock(&kprobe_mutex);
2400 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2401 		head = &kprobe_table[i];
2402 		hlist_for_each_entry(p, head, hlist)
2403 			if (within_module_init((unsigned long)p->addr, mod) ||
2404 			    (checkcore &&
2405 			     within_module_core((unsigned long)p->addr, mod))) {
2406 				/*
2407 				 * The vaddr this probe is installed will soon
2408 				 * be vfreed buy not synced to disk. Hence,
2409 				 * disarming the breakpoint isn't needed.
2410 				 *
2411 				 * Note, this will also move any optimized probes
2412 				 * that are pending to be removed from their
2413 				 * corresponding lists to the freeing_list and
2414 				 * will not be touched by the delayed
2415 				 * kprobe_optimizer work handler.
2416 				 */
2417 				kill_kprobe(p);
2418 			}
2419 	}
2420 	if (val == MODULE_STATE_GOING)
2421 		remove_module_kprobe_blacklist(mod);
2422 	mutex_unlock(&kprobe_mutex);
2423 	return NOTIFY_DONE;
2424 }
2425 
2426 static struct notifier_block kprobe_module_nb = {
2427 	.notifier_call = kprobes_module_callback,
2428 	.priority = 0
2429 };
2430 
2431 /* Markers of _kprobe_blacklist section */
2432 extern unsigned long __start_kprobe_blacklist[];
2433 extern unsigned long __stop_kprobe_blacklist[];
2434 
2435 void kprobe_free_init_mem(void)
2436 {
2437 	void *start = (void *)(&__init_begin);
2438 	void *end = (void *)(&__init_end);
2439 	struct hlist_head *head;
2440 	struct kprobe *p;
2441 	int i;
2442 
2443 	mutex_lock(&kprobe_mutex);
2444 
2445 	/* Kill all kprobes on initmem */
2446 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2447 		head = &kprobe_table[i];
2448 		hlist_for_each_entry(p, head, hlist) {
2449 			if (start <= (void *)p->addr && (void *)p->addr < end)
2450 				kill_kprobe(p);
2451 		}
2452 	}
2453 
2454 	mutex_unlock(&kprobe_mutex);
2455 }
2456 
2457 static int __init init_kprobes(void)
2458 {
2459 	int i, err = 0;
2460 
2461 	/* FIXME allocate the probe table, currently defined statically */
2462 	/* initialize all list heads */
2463 	for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2464 		INIT_HLIST_HEAD(&kprobe_table[i]);
2465 
2466 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2467 					__stop_kprobe_blacklist);
2468 	if (err) {
2469 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2470 		pr_err("Please take care of using kprobes.\n");
2471 	}
2472 
2473 	if (kretprobe_blacklist_size) {
2474 		/* lookup the function address from its name */
2475 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2476 			kretprobe_blacklist[i].addr =
2477 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2478 			if (!kretprobe_blacklist[i].addr)
2479 				printk("kretprobe: lookup failed: %s\n",
2480 				       kretprobe_blacklist[i].name);
2481 		}
2482 	}
2483 
2484 	/* By default, kprobes are armed */
2485 	kprobes_all_disarmed = false;
2486 
2487 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2488 	/* Init kprobe_optinsn_slots for allocation */
2489 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2490 #endif
2491 
2492 	err = arch_init_kprobes();
2493 	if (!err)
2494 		err = register_die_notifier(&kprobe_exceptions_nb);
2495 	if (!err)
2496 		err = register_module_notifier(&kprobe_module_nb);
2497 
2498 	kprobes_initialized = (err == 0);
2499 
2500 	if (!err)
2501 		init_test_probes();
2502 	return err;
2503 }
2504 early_initcall(init_kprobes);
2505 
2506 #if defined(CONFIG_OPTPROBES)
2507 static int __init init_optprobes(void)
2508 {
2509 	/*
2510 	 * Enable kprobe optimization - this kicks the optimizer which
2511 	 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2512 	 * not spawned in early initcall. So delay the optimization.
2513 	 */
2514 	optimize_all_kprobes();
2515 
2516 	return 0;
2517 }
2518 subsys_initcall(init_optprobes);
2519 #endif
2520 
2521 #ifdef CONFIG_DEBUG_FS
2522 static void report_probe(struct seq_file *pi, struct kprobe *p,
2523 		const char *sym, int offset, char *modname, struct kprobe *pp)
2524 {
2525 	char *kprobe_type;
2526 	void *addr = p->addr;
2527 
2528 	if (p->pre_handler == pre_handler_kretprobe)
2529 		kprobe_type = "r";
2530 	else
2531 		kprobe_type = "k";
2532 
2533 	if (!kallsyms_show_value(pi->file->f_cred))
2534 		addr = NULL;
2535 
2536 	if (sym)
2537 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2538 			addr, kprobe_type, sym, offset,
2539 			(modname ? modname : " "));
2540 	else	/* try to use %pS */
2541 		seq_printf(pi, "%px  %s  %pS ",
2542 			addr, kprobe_type, p->addr);
2543 
2544 	if (!pp)
2545 		pp = p;
2546 	seq_printf(pi, "%s%s%s%s\n",
2547 		(kprobe_gone(p) ? "[GONE]" : ""),
2548 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2549 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2550 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2551 }
2552 
2553 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2554 {
2555 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2556 }
2557 
2558 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2559 {
2560 	(*pos)++;
2561 	if (*pos >= KPROBE_TABLE_SIZE)
2562 		return NULL;
2563 	return pos;
2564 }
2565 
2566 static void kprobe_seq_stop(struct seq_file *f, void *v)
2567 {
2568 	/* Nothing to do */
2569 }
2570 
2571 static int show_kprobe_addr(struct seq_file *pi, void *v)
2572 {
2573 	struct hlist_head *head;
2574 	struct kprobe *p, *kp;
2575 	const char *sym = NULL;
2576 	unsigned int i = *(loff_t *) v;
2577 	unsigned long offset = 0;
2578 	char *modname, namebuf[KSYM_NAME_LEN];
2579 
2580 	head = &kprobe_table[i];
2581 	preempt_disable();
2582 	hlist_for_each_entry_rcu(p, head, hlist) {
2583 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2584 					&offset, &modname, namebuf);
2585 		if (kprobe_aggrprobe(p)) {
2586 			list_for_each_entry_rcu(kp, &p->list, list)
2587 				report_probe(pi, kp, sym, offset, modname, p);
2588 		} else
2589 			report_probe(pi, p, sym, offset, modname, NULL);
2590 	}
2591 	preempt_enable();
2592 	return 0;
2593 }
2594 
2595 static const struct seq_operations kprobes_sops = {
2596 	.start = kprobe_seq_start,
2597 	.next  = kprobe_seq_next,
2598 	.stop  = kprobe_seq_stop,
2599 	.show  = show_kprobe_addr
2600 };
2601 
2602 DEFINE_SEQ_ATTRIBUTE(kprobes);
2603 
2604 /* kprobes/blacklist -- shows which functions can not be probed */
2605 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2606 {
2607 	mutex_lock(&kprobe_mutex);
2608 	return seq_list_start(&kprobe_blacklist, *pos);
2609 }
2610 
2611 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2612 {
2613 	return seq_list_next(v, &kprobe_blacklist, pos);
2614 }
2615 
2616 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2617 {
2618 	struct kprobe_blacklist_entry *ent =
2619 		list_entry(v, struct kprobe_blacklist_entry, list);
2620 
2621 	/*
2622 	 * If /proc/kallsyms is not showing kernel address, we won't
2623 	 * show them here either.
2624 	 */
2625 	if (!kallsyms_show_value(m->file->f_cred))
2626 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2627 			   (void *)ent->start_addr);
2628 	else
2629 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2630 			   (void *)ent->end_addr, (void *)ent->start_addr);
2631 	return 0;
2632 }
2633 
2634 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2635 {
2636 	mutex_unlock(&kprobe_mutex);
2637 }
2638 
2639 static const struct seq_operations kprobe_blacklist_sops = {
2640 	.start = kprobe_blacklist_seq_start,
2641 	.next  = kprobe_blacklist_seq_next,
2642 	.stop  = kprobe_blacklist_seq_stop,
2643 	.show  = kprobe_blacklist_seq_show,
2644 };
2645 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2646 
2647 static int arm_all_kprobes(void)
2648 {
2649 	struct hlist_head *head;
2650 	struct kprobe *p;
2651 	unsigned int i, total = 0, errors = 0;
2652 	int err, ret = 0;
2653 
2654 	mutex_lock(&kprobe_mutex);
2655 
2656 	/* If kprobes are armed, just return */
2657 	if (!kprobes_all_disarmed)
2658 		goto already_enabled;
2659 
2660 	/*
2661 	 * optimize_kprobe() called by arm_kprobe() checks
2662 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2663 	 * arm_kprobe.
2664 	 */
2665 	kprobes_all_disarmed = false;
2666 	/* Arming kprobes doesn't optimize kprobe itself */
2667 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2668 		head = &kprobe_table[i];
2669 		/* Arm all kprobes on a best-effort basis */
2670 		hlist_for_each_entry(p, head, hlist) {
2671 			if (!kprobe_disabled(p)) {
2672 				err = arm_kprobe(p);
2673 				if (err)  {
2674 					errors++;
2675 					ret = err;
2676 				}
2677 				total++;
2678 			}
2679 		}
2680 	}
2681 
2682 	if (errors)
2683 		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2684 			errors, total);
2685 	else
2686 		pr_info("Kprobes globally enabled\n");
2687 
2688 already_enabled:
2689 	mutex_unlock(&kprobe_mutex);
2690 	return ret;
2691 }
2692 
2693 static int disarm_all_kprobes(void)
2694 {
2695 	struct hlist_head *head;
2696 	struct kprobe *p;
2697 	unsigned int i, total = 0, errors = 0;
2698 	int err, ret = 0;
2699 
2700 	mutex_lock(&kprobe_mutex);
2701 
2702 	/* If kprobes are already disarmed, just return */
2703 	if (kprobes_all_disarmed) {
2704 		mutex_unlock(&kprobe_mutex);
2705 		return 0;
2706 	}
2707 
2708 	kprobes_all_disarmed = true;
2709 
2710 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2711 		head = &kprobe_table[i];
2712 		/* Disarm all kprobes on a best-effort basis */
2713 		hlist_for_each_entry(p, head, hlist) {
2714 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2715 				err = disarm_kprobe(p, false);
2716 				if (err) {
2717 					errors++;
2718 					ret = err;
2719 				}
2720 				total++;
2721 			}
2722 		}
2723 	}
2724 
2725 	if (errors)
2726 		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2727 			errors, total);
2728 	else
2729 		pr_info("Kprobes globally disabled\n");
2730 
2731 	mutex_unlock(&kprobe_mutex);
2732 
2733 	/* Wait for disarming all kprobes by optimizer */
2734 	wait_for_kprobe_optimizer();
2735 
2736 	return ret;
2737 }
2738 
2739 /*
2740  * XXX: The debugfs bool file interface doesn't allow for callbacks
2741  * when the bool state is switched. We can reuse that facility when
2742  * available
2743  */
2744 static ssize_t read_enabled_file_bool(struct file *file,
2745 	       char __user *user_buf, size_t count, loff_t *ppos)
2746 {
2747 	char buf[3];
2748 
2749 	if (!kprobes_all_disarmed)
2750 		buf[0] = '1';
2751 	else
2752 		buf[0] = '0';
2753 	buf[1] = '\n';
2754 	buf[2] = 0x00;
2755 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2756 }
2757 
2758 static ssize_t write_enabled_file_bool(struct file *file,
2759 	       const char __user *user_buf, size_t count, loff_t *ppos)
2760 {
2761 	char buf[32];
2762 	size_t buf_size;
2763 	int ret = 0;
2764 
2765 	buf_size = min(count, (sizeof(buf)-1));
2766 	if (copy_from_user(buf, user_buf, buf_size))
2767 		return -EFAULT;
2768 
2769 	buf[buf_size] = '\0';
2770 	switch (buf[0]) {
2771 	case 'y':
2772 	case 'Y':
2773 	case '1':
2774 		ret = arm_all_kprobes();
2775 		break;
2776 	case 'n':
2777 	case 'N':
2778 	case '0':
2779 		ret = disarm_all_kprobes();
2780 		break;
2781 	default:
2782 		return -EINVAL;
2783 	}
2784 
2785 	if (ret)
2786 		return ret;
2787 
2788 	return count;
2789 }
2790 
2791 static const struct file_operations fops_kp = {
2792 	.read =         read_enabled_file_bool,
2793 	.write =        write_enabled_file_bool,
2794 	.llseek =	default_llseek,
2795 };
2796 
2797 static int __init debugfs_kprobe_init(void)
2798 {
2799 	struct dentry *dir;
2800 	unsigned int value = 1;
2801 
2802 	dir = debugfs_create_dir("kprobes", NULL);
2803 
2804 	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2805 
2806 	debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2807 
2808 	debugfs_create_file("blacklist", 0400, dir, NULL,
2809 			    &kprobe_blacklist_fops);
2810 
2811 	return 0;
2812 }
2813 
2814 late_initcall(debugfs_kprobe_init);
2815 #endif /* CONFIG_DEBUG_FS */
2816