1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * kernel/kprobes.c 5 * 6 * Copyright (C) IBM Corporation, 2002, 2004 7 * 8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 9 * Probes initial implementation (includes suggestions from 10 * Rusty Russell). 11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 12 * hlists and exceptions notifier as suggested by Andi Kleen. 13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 14 * interface to access function arguments. 15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 16 * exceptions notifier to be first on the priority list. 17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 19 * <prasanna@in.ibm.com> added function-return probes. 20 */ 21 #include <linux/kprobes.h> 22 #include <linux/hash.h> 23 #include <linux/init.h> 24 #include <linux/slab.h> 25 #include <linux/stddef.h> 26 #include <linux/export.h> 27 #include <linux/moduleloader.h> 28 #include <linux/kallsyms.h> 29 #include <linux/freezer.h> 30 #include <linux/seq_file.h> 31 #include <linux/debugfs.h> 32 #include <linux/sysctl.h> 33 #include <linux/kdebug.h> 34 #include <linux/memory.h> 35 #include <linux/ftrace.h> 36 #include <linux/cpu.h> 37 #include <linux/jump_label.h> 38 #include <linux/perf_event.h> 39 #include <linux/static_call.h> 40 41 #include <asm/sections.h> 42 #include <asm/cacheflush.h> 43 #include <asm/errno.h> 44 #include <linux/uaccess.h> 45 46 #define KPROBE_HASH_BITS 6 47 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 48 49 50 static int kprobes_initialized; 51 /* kprobe_table can be accessed by 52 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held. 53 * Or 54 * - RCU hlist traversal under disabling preempt (breakpoint handlers) 55 */ 56 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 57 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 58 59 /* NOTE: change this value only with kprobe_mutex held */ 60 static bool kprobes_all_disarmed; 61 62 /* This protects kprobe_table and optimizing_list */ 63 static DEFINE_MUTEX(kprobe_mutex); 64 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 65 static struct { 66 raw_spinlock_t lock ____cacheline_aligned_in_smp; 67 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 68 69 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, 70 unsigned int __unused) 71 { 72 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); 73 } 74 75 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 76 { 77 return &(kretprobe_table_locks[hash].lock); 78 } 79 80 /* Blacklist -- list of struct kprobe_blacklist_entry */ 81 static LIST_HEAD(kprobe_blacklist); 82 83 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 84 /* 85 * kprobe->ainsn.insn points to the copy of the instruction to be 86 * single-stepped. x86_64, POWER4 and above have no-exec support and 87 * stepping on the instruction on a vmalloced/kmalloced/data page 88 * is a recipe for disaster 89 */ 90 struct kprobe_insn_page { 91 struct list_head list; 92 kprobe_opcode_t *insns; /* Page of instruction slots */ 93 struct kprobe_insn_cache *cache; 94 int nused; 95 int ngarbage; 96 char slot_used[]; 97 }; 98 99 #define KPROBE_INSN_PAGE_SIZE(slots) \ 100 (offsetof(struct kprobe_insn_page, slot_used) + \ 101 (sizeof(char) * (slots))) 102 103 static int slots_per_page(struct kprobe_insn_cache *c) 104 { 105 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 106 } 107 108 enum kprobe_slot_state { 109 SLOT_CLEAN = 0, 110 SLOT_DIRTY = 1, 111 SLOT_USED = 2, 112 }; 113 114 void __weak *alloc_insn_page(void) 115 { 116 return module_alloc(PAGE_SIZE); 117 } 118 119 void __weak free_insn_page(void *page) 120 { 121 module_memfree(page); 122 } 123 124 struct kprobe_insn_cache kprobe_insn_slots = { 125 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 126 .alloc = alloc_insn_page, 127 .free = free_insn_page, 128 .sym = KPROBE_INSN_PAGE_SYM, 129 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 130 .insn_size = MAX_INSN_SIZE, 131 .nr_garbage = 0, 132 }; 133 static int collect_garbage_slots(struct kprobe_insn_cache *c); 134 135 /** 136 * __get_insn_slot() - Find a slot on an executable page for an instruction. 137 * We allocate an executable page if there's no room on existing ones. 138 */ 139 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 140 { 141 struct kprobe_insn_page *kip; 142 kprobe_opcode_t *slot = NULL; 143 144 /* Since the slot array is not protected by rcu, we need a mutex */ 145 mutex_lock(&c->mutex); 146 retry: 147 rcu_read_lock(); 148 list_for_each_entry_rcu(kip, &c->pages, list) { 149 if (kip->nused < slots_per_page(c)) { 150 int i; 151 for (i = 0; i < slots_per_page(c); i++) { 152 if (kip->slot_used[i] == SLOT_CLEAN) { 153 kip->slot_used[i] = SLOT_USED; 154 kip->nused++; 155 slot = kip->insns + (i * c->insn_size); 156 rcu_read_unlock(); 157 goto out; 158 } 159 } 160 /* kip->nused is broken. Fix it. */ 161 kip->nused = slots_per_page(c); 162 WARN_ON(1); 163 } 164 } 165 rcu_read_unlock(); 166 167 /* If there are any garbage slots, collect it and try again. */ 168 if (c->nr_garbage && collect_garbage_slots(c) == 0) 169 goto retry; 170 171 /* All out of space. Need to allocate a new page. */ 172 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 173 if (!kip) 174 goto out; 175 176 /* 177 * Use module_alloc so this page is within +/- 2GB of where the 178 * kernel image and loaded module images reside. This is required 179 * so x86_64 can correctly handle the %rip-relative fixups. 180 */ 181 kip->insns = c->alloc(); 182 if (!kip->insns) { 183 kfree(kip); 184 goto out; 185 } 186 INIT_LIST_HEAD(&kip->list); 187 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 188 kip->slot_used[0] = SLOT_USED; 189 kip->nused = 1; 190 kip->ngarbage = 0; 191 kip->cache = c; 192 list_add_rcu(&kip->list, &c->pages); 193 slot = kip->insns; 194 195 /* Record the perf ksymbol register event after adding the page */ 196 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns, 197 PAGE_SIZE, false, c->sym); 198 out: 199 mutex_unlock(&c->mutex); 200 return slot; 201 } 202 203 /* Return 1 if all garbages are collected, otherwise 0. */ 204 static int collect_one_slot(struct kprobe_insn_page *kip, int idx) 205 { 206 kip->slot_used[idx] = SLOT_CLEAN; 207 kip->nused--; 208 if (kip->nused == 0) { 209 /* 210 * Page is no longer in use. Free it unless 211 * it's the last one. We keep the last one 212 * so as not to have to set it up again the 213 * next time somebody inserts a probe. 214 */ 215 if (!list_is_singular(&kip->list)) { 216 /* 217 * Record perf ksymbol unregister event before removing 218 * the page. 219 */ 220 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 221 (unsigned long)kip->insns, PAGE_SIZE, true, 222 kip->cache->sym); 223 list_del_rcu(&kip->list); 224 synchronize_rcu(); 225 kip->cache->free(kip->insns); 226 kfree(kip); 227 } 228 return 1; 229 } 230 return 0; 231 } 232 233 static int collect_garbage_slots(struct kprobe_insn_cache *c) 234 { 235 struct kprobe_insn_page *kip, *next; 236 237 /* Ensure no-one is interrupted on the garbages */ 238 synchronize_rcu(); 239 240 list_for_each_entry_safe(kip, next, &c->pages, list) { 241 int i; 242 if (kip->ngarbage == 0) 243 continue; 244 kip->ngarbage = 0; /* we will collect all garbages */ 245 for (i = 0; i < slots_per_page(c); i++) { 246 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 247 break; 248 } 249 } 250 c->nr_garbage = 0; 251 return 0; 252 } 253 254 void __free_insn_slot(struct kprobe_insn_cache *c, 255 kprobe_opcode_t *slot, int dirty) 256 { 257 struct kprobe_insn_page *kip; 258 long idx; 259 260 mutex_lock(&c->mutex); 261 rcu_read_lock(); 262 list_for_each_entry_rcu(kip, &c->pages, list) { 263 idx = ((long)slot - (long)kip->insns) / 264 (c->insn_size * sizeof(kprobe_opcode_t)); 265 if (idx >= 0 && idx < slots_per_page(c)) 266 goto out; 267 } 268 /* Could not find this slot. */ 269 WARN_ON(1); 270 kip = NULL; 271 out: 272 rcu_read_unlock(); 273 /* Mark and sweep: this may sleep */ 274 if (kip) { 275 /* Check double free */ 276 WARN_ON(kip->slot_used[idx] != SLOT_USED); 277 if (dirty) { 278 kip->slot_used[idx] = SLOT_DIRTY; 279 kip->ngarbage++; 280 if (++c->nr_garbage > slots_per_page(c)) 281 collect_garbage_slots(c); 282 } else { 283 collect_one_slot(kip, idx); 284 } 285 } 286 mutex_unlock(&c->mutex); 287 } 288 289 /* 290 * Check given address is on the page of kprobe instruction slots. 291 * This will be used for checking whether the address on a stack 292 * is on a text area or not. 293 */ 294 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 295 { 296 struct kprobe_insn_page *kip; 297 bool ret = false; 298 299 rcu_read_lock(); 300 list_for_each_entry_rcu(kip, &c->pages, list) { 301 if (addr >= (unsigned long)kip->insns && 302 addr < (unsigned long)kip->insns + PAGE_SIZE) { 303 ret = true; 304 break; 305 } 306 } 307 rcu_read_unlock(); 308 309 return ret; 310 } 311 312 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum, 313 unsigned long *value, char *type, char *sym) 314 { 315 struct kprobe_insn_page *kip; 316 int ret = -ERANGE; 317 318 rcu_read_lock(); 319 list_for_each_entry_rcu(kip, &c->pages, list) { 320 if ((*symnum)--) 321 continue; 322 strlcpy(sym, c->sym, KSYM_NAME_LEN); 323 *type = 't'; 324 *value = (unsigned long)kip->insns; 325 ret = 0; 326 break; 327 } 328 rcu_read_unlock(); 329 330 return ret; 331 } 332 333 #ifdef CONFIG_OPTPROBES 334 /* For optimized_kprobe buffer */ 335 struct kprobe_insn_cache kprobe_optinsn_slots = { 336 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 337 .alloc = alloc_insn_page, 338 .free = free_insn_page, 339 .sym = KPROBE_OPTINSN_PAGE_SYM, 340 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 341 /* .insn_size is initialized later */ 342 .nr_garbage = 0, 343 }; 344 #endif 345 #endif 346 347 /* We have preemption disabled.. so it is safe to use __ versions */ 348 static inline void set_kprobe_instance(struct kprobe *kp) 349 { 350 __this_cpu_write(kprobe_instance, kp); 351 } 352 353 static inline void reset_kprobe_instance(void) 354 { 355 __this_cpu_write(kprobe_instance, NULL); 356 } 357 358 /* 359 * This routine is called either: 360 * - under the kprobe_mutex - during kprobe_[un]register() 361 * OR 362 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 363 */ 364 struct kprobe *get_kprobe(void *addr) 365 { 366 struct hlist_head *head; 367 struct kprobe *p; 368 369 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 370 hlist_for_each_entry_rcu(p, head, hlist, 371 lockdep_is_held(&kprobe_mutex)) { 372 if (p->addr == addr) 373 return p; 374 } 375 376 return NULL; 377 } 378 NOKPROBE_SYMBOL(get_kprobe); 379 380 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 381 382 /* Return true if the kprobe is an aggregator */ 383 static inline int kprobe_aggrprobe(struct kprobe *p) 384 { 385 return p->pre_handler == aggr_pre_handler; 386 } 387 388 /* Return true(!0) if the kprobe is unused */ 389 static inline int kprobe_unused(struct kprobe *p) 390 { 391 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 392 list_empty(&p->list); 393 } 394 395 /* 396 * Keep all fields in the kprobe consistent 397 */ 398 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 399 { 400 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 401 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 402 } 403 404 #ifdef CONFIG_OPTPROBES 405 /* NOTE: change this value only with kprobe_mutex held */ 406 static bool kprobes_allow_optimization; 407 408 /* 409 * Call all pre_handler on the list, but ignores its return value. 410 * This must be called from arch-dep optimized caller. 411 */ 412 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 413 { 414 struct kprobe *kp; 415 416 list_for_each_entry_rcu(kp, &p->list, list) { 417 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 418 set_kprobe_instance(kp); 419 kp->pre_handler(kp, regs); 420 } 421 reset_kprobe_instance(); 422 } 423 } 424 NOKPROBE_SYMBOL(opt_pre_handler); 425 426 /* Free optimized instructions and optimized_kprobe */ 427 static void free_aggr_kprobe(struct kprobe *p) 428 { 429 struct optimized_kprobe *op; 430 431 op = container_of(p, struct optimized_kprobe, kp); 432 arch_remove_optimized_kprobe(op); 433 arch_remove_kprobe(p); 434 kfree(op); 435 } 436 437 /* Return true(!0) if the kprobe is ready for optimization. */ 438 static inline int kprobe_optready(struct kprobe *p) 439 { 440 struct optimized_kprobe *op; 441 442 if (kprobe_aggrprobe(p)) { 443 op = container_of(p, struct optimized_kprobe, kp); 444 return arch_prepared_optinsn(&op->optinsn); 445 } 446 447 return 0; 448 } 449 450 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 451 static inline int kprobe_disarmed(struct kprobe *p) 452 { 453 struct optimized_kprobe *op; 454 455 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 456 if (!kprobe_aggrprobe(p)) 457 return kprobe_disabled(p); 458 459 op = container_of(p, struct optimized_kprobe, kp); 460 461 return kprobe_disabled(p) && list_empty(&op->list); 462 } 463 464 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 465 static int kprobe_queued(struct kprobe *p) 466 { 467 struct optimized_kprobe *op; 468 469 if (kprobe_aggrprobe(p)) { 470 op = container_of(p, struct optimized_kprobe, kp); 471 if (!list_empty(&op->list)) 472 return 1; 473 } 474 return 0; 475 } 476 477 /* 478 * Return an optimized kprobe whose optimizing code replaces 479 * instructions including addr (exclude breakpoint). 480 */ 481 static struct kprobe *get_optimized_kprobe(unsigned long addr) 482 { 483 int i; 484 struct kprobe *p = NULL; 485 struct optimized_kprobe *op; 486 487 /* Don't check i == 0, since that is a breakpoint case. */ 488 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 489 p = get_kprobe((void *)(addr - i)); 490 491 if (p && kprobe_optready(p)) { 492 op = container_of(p, struct optimized_kprobe, kp); 493 if (arch_within_optimized_kprobe(op, addr)) 494 return p; 495 } 496 497 return NULL; 498 } 499 500 /* Optimization staging list, protected by kprobe_mutex */ 501 static LIST_HEAD(optimizing_list); 502 static LIST_HEAD(unoptimizing_list); 503 static LIST_HEAD(freeing_list); 504 505 static void kprobe_optimizer(struct work_struct *work); 506 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 507 #define OPTIMIZE_DELAY 5 508 509 /* 510 * Optimize (replace a breakpoint with a jump) kprobes listed on 511 * optimizing_list. 512 */ 513 static void do_optimize_kprobes(void) 514 { 515 lockdep_assert_held(&text_mutex); 516 /* 517 * The optimization/unoptimization refers online_cpus via 518 * stop_machine() and cpu-hotplug modifies online_cpus. 519 * And same time, text_mutex will be held in cpu-hotplug and here. 520 * This combination can cause a deadlock (cpu-hotplug try to lock 521 * text_mutex but stop_machine can not be done because online_cpus 522 * has been changed) 523 * To avoid this deadlock, caller must have locked cpu hotplug 524 * for preventing cpu-hotplug outside of text_mutex locking. 525 */ 526 lockdep_assert_cpus_held(); 527 528 /* Optimization never be done when disarmed */ 529 if (kprobes_all_disarmed || !kprobes_allow_optimization || 530 list_empty(&optimizing_list)) 531 return; 532 533 arch_optimize_kprobes(&optimizing_list); 534 } 535 536 /* 537 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 538 * if need) kprobes listed on unoptimizing_list. 539 */ 540 static void do_unoptimize_kprobes(void) 541 { 542 struct optimized_kprobe *op, *tmp; 543 544 lockdep_assert_held(&text_mutex); 545 /* See comment in do_optimize_kprobes() */ 546 lockdep_assert_cpus_held(); 547 548 /* Unoptimization must be done anytime */ 549 if (list_empty(&unoptimizing_list)) 550 return; 551 552 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 553 /* Loop free_list for disarming */ 554 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 555 /* Switching from detour code to origin */ 556 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 557 /* Disarm probes if marked disabled */ 558 if (kprobe_disabled(&op->kp)) 559 arch_disarm_kprobe(&op->kp); 560 if (kprobe_unused(&op->kp)) { 561 /* 562 * Remove unused probes from hash list. After waiting 563 * for synchronization, these probes are reclaimed. 564 * (reclaiming is done by do_free_cleaned_kprobes.) 565 */ 566 hlist_del_rcu(&op->kp.hlist); 567 } else 568 list_del_init(&op->list); 569 } 570 } 571 572 /* Reclaim all kprobes on the free_list */ 573 static void do_free_cleaned_kprobes(void) 574 { 575 struct optimized_kprobe *op, *tmp; 576 577 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 578 list_del_init(&op->list); 579 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) { 580 /* 581 * This must not happen, but if there is a kprobe 582 * still in use, keep it on kprobes hash list. 583 */ 584 continue; 585 } 586 free_aggr_kprobe(&op->kp); 587 } 588 } 589 590 /* Start optimizer after OPTIMIZE_DELAY passed */ 591 static void kick_kprobe_optimizer(void) 592 { 593 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 594 } 595 596 /* Kprobe jump optimizer */ 597 static void kprobe_optimizer(struct work_struct *work) 598 { 599 mutex_lock(&kprobe_mutex); 600 cpus_read_lock(); 601 mutex_lock(&text_mutex); 602 603 /* 604 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 605 * kprobes before waiting for quiesence period. 606 */ 607 do_unoptimize_kprobes(); 608 609 /* 610 * Step 2: Wait for quiesence period to ensure all potentially 611 * preempted tasks to have normally scheduled. Because optprobe 612 * may modify multiple instructions, there is a chance that Nth 613 * instruction is preempted. In that case, such tasks can return 614 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. 615 * Note that on non-preemptive kernel, this is transparently converted 616 * to synchronoze_sched() to wait for all interrupts to have completed. 617 */ 618 synchronize_rcu_tasks(); 619 620 /* Step 3: Optimize kprobes after quiesence period */ 621 do_optimize_kprobes(); 622 623 /* Step 4: Free cleaned kprobes after quiesence period */ 624 do_free_cleaned_kprobes(); 625 626 mutex_unlock(&text_mutex); 627 cpus_read_unlock(); 628 629 /* Step 5: Kick optimizer again if needed */ 630 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 631 kick_kprobe_optimizer(); 632 633 mutex_unlock(&kprobe_mutex); 634 } 635 636 /* Wait for completing optimization and unoptimization */ 637 void wait_for_kprobe_optimizer(void) 638 { 639 mutex_lock(&kprobe_mutex); 640 641 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 642 mutex_unlock(&kprobe_mutex); 643 644 /* this will also make optimizing_work execute immmediately */ 645 flush_delayed_work(&optimizing_work); 646 /* @optimizing_work might not have been queued yet, relax */ 647 cpu_relax(); 648 649 mutex_lock(&kprobe_mutex); 650 } 651 652 mutex_unlock(&kprobe_mutex); 653 } 654 655 static bool optprobe_queued_unopt(struct optimized_kprobe *op) 656 { 657 struct optimized_kprobe *_op; 658 659 list_for_each_entry(_op, &unoptimizing_list, list) { 660 if (op == _op) 661 return true; 662 } 663 664 return false; 665 } 666 667 /* Optimize kprobe if p is ready to be optimized */ 668 static void optimize_kprobe(struct kprobe *p) 669 { 670 struct optimized_kprobe *op; 671 672 /* Check if the kprobe is disabled or not ready for optimization. */ 673 if (!kprobe_optready(p) || !kprobes_allow_optimization || 674 (kprobe_disabled(p) || kprobes_all_disarmed)) 675 return; 676 677 /* kprobes with post_handler can not be optimized */ 678 if (p->post_handler) 679 return; 680 681 op = container_of(p, struct optimized_kprobe, kp); 682 683 /* Check there is no other kprobes at the optimized instructions */ 684 if (arch_check_optimized_kprobe(op) < 0) 685 return; 686 687 /* Check if it is already optimized. */ 688 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) { 689 if (optprobe_queued_unopt(op)) { 690 /* This is under unoptimizing. Just dequeue the probe */ 691 list_del_init(&op->list); 692 } 693 return; 694 } 695 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 696 697 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */ 698 if (WARN_ON_ONCE(!list_empty(&op->list))) 699 return; 700 701 list_add(&op->list, &optimizing_list); 702 kick_kprobe_optimizer(); 703 } 704 705 /* Short cut to direct unoptimizing */ 706 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 707 { 708 lockdep_assert_cpus_held(); 709 arch_unoptimize_kprobe(op); 710 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 711 } 712 713 /* Unoptimize a kprobe if p is optimized */ 714 static void unoptimize_kprobe(struct kprobe *p, bool force) 715 { 716 struct optimized_kprobe *op; 717 718 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 719 return; /* This is not an optprobe nor optimized */ 720 721 op = container_of(p, struct optimized_kprobe, kp); 722 if (!kprobe_optimized(p)) 723 return; 724 725 if (!list_empty(&op->list)) { 726 if (optprobe_queued_unopt(op)) { 727 /* Queued in unoptimizing queue */ 728 if (force) { 729 /* 730 * Forcibly unoptimize the kprobe here, and queue it 731 * in the freeing list for release afterwards. 732 */ 733 force_unoptimize_kprobe(op); 734 list_move(&op->list, &freeing_list); 735 } 736 } else { 737 /* Dequeue from the optimizing queue */ 738 list_del_init(&op->list); 739 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 740 } 741 return; 742 } 743 744 /* Optimized kprobe case */ 745 if (force) { 746 /* Forcibly update the code: this is a special case */ 747 force_unoptimize_kprobe(op); 748 } else { 749 list_add(&op->list, &unoptimizing_list); 750 kick_kprobe_optimizer(); 751 } 752 } 753 754 /* Cancel unoptimizing for reusing */ 755 static int reuse_unused_kprobe(struct kprobe *ap) 756 { 757 struct optimized_kprobe *op; 758 759 /* 760 * Unused kprobe MUST be on the way of delayed unoptimizing (means 761 * there is still a relative jump) and disabled. 762 */ 763 op = container_of(ap, struct optimized_kprobe, kp); 764 WARN_ON_ONCE(list_empty(&op->list)); 765 /* Enable the probe again */ 766 ap->flags &= ~KPROBE_FLAG_DISABLED; 767 /* Optimize it again (remove from op->list) */ 768 if (!kprobe_optready(ap)) 769 return -EINVAL; 770 771 optimize_kprobe(ap); 772 return 0; 773 } 774 775 /* Remove optimized instructions */ 776 static void kill_optimized_kprobe(struct kprobe *p) 777 { 778 struct optimized_kprobe *op; 779 780 op = container_of(p, struct optimized_kprobe, kp); 781 if (!list_empty(&op->list)) 782 /* Dequeue from the (un)optimization queue */ 783 list_del_init(&op->list); 784 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 785 786 if (kprobe_unused(p)) { 787 /* Enqueue if it is unused */ 788 list_add(&op->list, &freeing_list); 789 /* 790 * Remove unused probes from the hash list. After waiting 791 * for synchronization, this probe is reclaimed. 792 * (reclaiming is done by do_free_cleaned_kprobes().) 793 */ 794 hlist_del_rcu(&op->kp.hlist); 795 } 796 797 /* Don't touch the code, because it is already freed. */ 798 arch_remove_optimized_kprobe(op); 799 } 800 801 static inline 802 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) 803 { 804 if (!kprobe_ftrace(p)) 805 arch_prepare_optimized_kprobe(op, p); 806 } 807 808 /* Try to prepare optimized instructions */ 809 static void prepare_optimized_kprobe(struct kprobe *p) 810 { 811 struct optimized_kprobe *op; 812 813 op = container_of(p, struct optimized_kprobe, kp); 814 __prepare_optimized_kprobe(op, p); 815 } 816 817 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 818 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 819 { 820 struct optimized_kprobe *op; 821 822 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 823 if (!op) 824 return NULL; 825 826 INIT_LIST_HEAD(&op->list); 827 op->kp.addr = p->addr; 828 __prepare_optimized_kprobe(op, p); 829 830 return &op->kp; 831 } 832 833 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 834 835 /* 836 * Prepare an optimized_kprobe and optimize it 837 * NOTE: p must be a normal registered kprobe 838 */ 839 static void try_to_optimize_kprobe(struct kprobe *p) 840 { 841 struct kprobe *ap; 842 struct optimized_kprobe *op; 843 844 /* Impossible to optimize ftrace-based kprobe */ 845 if (kprobe_ftrace(p)) 846 return; 847 848 /* For preparing optimization, jump_label_text_reserved() is called */ 849 cpus_read_lock(); 850 jump_label_lock(); 851 mutex_lock(&text_mutex); 852 853 ap = alloc_aggr_kprobe(p); 854 if (!ap) 855 goto out; 856 857 op = container_of(ap, struct optimized_kprobe, kp); 858 if (!arch_prepared_optinsn(&op->optinsn)) { 859 /* If failed to setup optimizing, fallback to kprobe */ 860 arch_remove_optimized_kprobe(op); 861 kfree(op); 862 goto out; 863 } 864 865 init_aggr_kprobe(ap, p); 866 optimize_kprobe(ap); /* This just kicks optimizer thread */ 867 868 out: 869 mutex_unlock(&text_mutex); 870 jump_label_unlock(); 871 cpus_read_unlock(); 872 } 873 874 #ifdef CONFIG_SYSCTL 875 static void optimize_all_kprobes(void) 876 { 877 struct hlist_head *head; 878 struct kprobe *p; 879 unsigned int i; 880 881 mutex_lock(&kprobe_mutex); 882 /* If optimization is already allowed, just return */ 883 if (kprobes_allow_optimization) 884 goto out; 885 886 cpus_read_lock(); 887 kprobes_allow_optimization = true; 888 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 889 head = &kprobe_table[i]; 890 hlist_for_each_entry(p, head, hlist) 891 if (!kprobe_disabled(p)) 892 optimize_kprobe(p); 893 } 894 cpus_read_unlock(); 895 printk(KERN_INFO "Kprobes globally optimized\n"); 896 out: 897 mutex_unlock(&kprobe_mutex); 898 } 899 900 static void unoptimize_all_kprobes(void) 901 { 902 struct hlist_head *head; 903 struct kprobe *p; 904 unsigned int i; 905 906 mutex_lock(&kprobe_mutex); 907 /* If optimization is already prohibited, just return */ 908 if (!kprobes_allow_optimization) { 909 mutex_unlock(&kprobe_mutex); 910 return; 911 } 912 913 cpus_read_lock(); 914 kprobes_allow_optimization = false; 915 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 916 head = &kprobe_table[i]; 917 hlist_for_each_entry(p, head, hlist) { 918 if (!kprobe_disabled(p)) 919 unoptimize_kprobe(p, false); 920 } 921 } 922 cpus_read_unlock(); 923 mutex_unlock(&kprobe_mutex); 924 925 /* Wait for unoptimizing completion */ 926 wait_for_kprobe_optimizer(); 927 printk(KERN_INFO "Kprobes globally unoptimized\n"); 928 } 929 930 static DEFINE_MUTEX(kprobe_sysctl_mutex); 931 int sysctl_kprobes_optimization; 932 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 933 void *buffer, size_t *length, 934 loff_t *ppos) 935 { 936 int ret; 937 938 mutex_lock(&kprobe_sysctl_mutex); 939 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 940 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 941 942 if (sysctl_kprobes_optimization) 943 optimize_all_kprobes(); 944 else 945 unoptimize_all_kprobes(); 946 mutex_unlock(&kprobe_sysctl_mutex); 947 948 return ret; 949 } 950 #endif /* CONFIG_SYSCTL */ 951 952 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 953 static void __arm_kprobe(struct kprobe *p) 954 { 955 struct kprobe *_p; 956 957 /* Check collision with other optimized kprobes */ 958 _p = get_optimized_kprobe((unsigned long)p->addr); 959 if (unlikely(_p)) 960 /* Fallback to unoptimized kprobe */ 961 unoptimize_kprobe(_p, true); 962 963 arch_arm_kprobe(p); 964 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 965 } 966 967 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 968 static void __disarm_kprobe(struct kprobe *p, bool reopt) 969 { 970 struct kprobe *_p; 971 972 /* Try to unoptimize */ 973 unoptimize_kprobe(p, kprobes_all_disarmed); 974 975 if (!kprobe_queued(p)) { 976 arch_disarm_kprobe(p); 977 /* If another kprobe was blocked, optimize it. */ 978 _p = get_optimized_kprobe((unsigned long)p->addr); 979 if (unlikely(_p) && reopt) 980 optimize_kprobe(_p); 981 } 982 /* TODO: reoptimize others after unoptimized this probe */ 983 } 984 985 #else /* !CONFIG_OPTPROBES */ 986 987 #define optimize_kprobe(p) do {} while (0) 988 #define unoptimize_kprobe(p, f) do {} while (0) 989 #define kill_optimized_kprobe(p) do {} while (0) 990 #define prepare_optimized_kprobe(p) do {} while (0) 991 #define try_to_optimize_kprobe(p) do {} while (0) 992 #define __arm_kprobe(p) arch_arm_kprobe(p) 993 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 994 #define kprobe_disarmed(p) kprobe_disabled(p) 995 #define wait_for_kprobe_optimizer() do {} while (0) 996 997 static int reuse_unused_kprobe(struct kprobe *ap) 998 { 999 /* 1000 * If the optimized kprobe is NOT supported, the aggr kprobe is 1001 * released at the same time that the last aggregated kprobe is 1002 * unregistered. 1003 * Thus there should be no chance to reuse unused kprobe. 1004 */ 1005 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 1006 return -EINVAL; 1007 } 1008 1009 static void free_aggr_kprobe(struct kprobe *p) 1010 { 1011 arch_remove_kprobe(p); 1012 kfree(p); 1013 } 1014 1015 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 1016 { 1017 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 1018 } 1019 #endif /* CONFIG_OPTPROBES */ 1020 1021 #ifdef CONFIG_KPROBES_ON_FTRACE 1022 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 1023 .func = kprobe_ftrace_handler, 1024 .flags = FTRACE_OPS_FL_SAVE_REGS, 1025 }; 1026 1027 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = { 1028 .func = kprobe_ftrace_handler, 1029 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 1030 }; 1031 1032 static int kprobe_ipmodify_enabled; 1033 static int kprobe_ftrace_enabled; 1034 1035 /* Must ensure p->addr is really on ftrace */ 1036 static int prepare_kprobe(struct kprobe *p) 1037 { 1038 if (!kprobe_ftrace(p)) 1039 return arch_prepare_kprobe(p); 1040 1041 return arch_prepare_kprobe_ftrace(p); 1042 } 1043 1044 /* Caller must lock kprobe_mutex */ 1045 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1046 int *cnt) 1047 { 1048 int ret = 0; 1049 1050 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0); 1051 if (ret) { 1052 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n", 1053 p->addr, ret); 1054 return ret; 1055 } 1056 1057 if (*cnt == 0) { 1058 ret = register_ftrace_function(ops); 1059 if (ret) { 1060 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret); 1061 goto err_ftrace; 1062 } 1063 } 1064 1065 (*cnt)++; 1066 return ret; 1067 1068 err_ftrace: 1069 /* 1070 * At this point, sinec ops is not registered, we should be sefe from 1071 * registering empty filter. 1072 */ 1073 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1074 return ret; 1075 } 1076 1077 static int arm_kprobe_ftrace(struct kprobe *p) 1078 { 1079 bool ipmodify = (p->post_handler != NULL); 1080 1081 return __arm_kprobe_ftrace(p, 1082 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1083 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1084 } 1085 1086 /* Caller must lock kprobe_mutex */ 1087 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1088 int *cnt) 1089 { 1090 int ret = 0; 1091 1092 if (*cnt == 1) { 1093 ret = unregister_ftrace_function(ops); 1094 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret)) 1095 return ret; 1096 } 1097 1098 (*cnt)--; 1099 1100 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1101 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n", 1102 p->addr, ret); 1103 return ret; 1104 } 1105 1106 static int disarm_kprobe_ftrace(struct kprobe *p) 1107 { 1108 bool ipmodify = (p->post_handler != NULL); 1109 1110 return __disarm_kprobe_ftrace(p, 1111 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1112 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1113 } 1114 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1115 static inline int prepare_kprobe(struct kprobe *p) 1116 { 1117 return arch_prepare_kprobe(p); 1118 } 1119 1120 static inline int arm_kprobe_ftrace(struct kprobe *p) 1121 { 1122 return -ENODEV; 1123 } 1124 1125 static inline int disarm_kprobe_ftrace(struct kprobe *p) 1126 { 1127 return -ENODEV; 1128 } 1129 #endif 1130 1131 /* Arm a kprobe with text_mutex */ 1132 static int arm_kprobe(struct kprobe *kp) 1133 { 1134 if (unlikely(kprobe_ftrace(kp))) 1135 return arm_kprobe_ftrace(kp); 1136 1137 cpus_read_lock(); 1138 mutex_lock(&text_mutex); 1139 __arm_kprobe(kp); 1140 mutex_unlock(&text_mutex); 1141 cpus_read_unlock(); 1142 1143 return 0; 1144 } 1145 1146 /* Disarm a kprobe with text_mutex */ 1147 static int disarm_kprobe(struct kprobe *kp, bool reopt) 1148 { 1149 if (unlikely(kprobe_ftrace(kp))) 1150 return disarm_kprobe_ftrace(kp); 1151 1152 cpus_read_lock(); 1153 mutex_lock(&text_mutex); 1154 __disarm_kprobe(kp, reopt); 1155 mutex_unlock(&text_mutex); 1156 cpus_read_unlock(); 1157 1158 return 0; 1159 } 1160 1161 /* 1162 * Aggregate handlers for multiple kprobes support - these handlers 1163 * take care of invoking the individual kprobe handlers on p->list 1164 */ 1165 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1166 { 1167 struct kprobe *kp; 1168 1169 list_for_each_entry_rcu(kp, &p->list, list) { 1170 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1171 set_kprobe_instance(kp); 1172 if (kp->pre_handler(kp, regs)) 1173 return 1; 1174 } 1175 reset_kprobe_instance(); 1176 } 1177 return 0; 1178 } 1179 NOKPROBE_SYMBOL(aggr_pre_handler); 1180 1181 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1182 unsigned long flags) 1183 { 1184 struct kprobe *kp; 1185 1186 list_for_each_entry_rcu(kp, &p->list, list) { 1187 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1188 set_kprobe_instance(kp); 1189 kp->post_handler(kp, regs, flags); 1190 reset_kprobe_instance(); 1191 } 1192 } 1193 } 1194 NOKPROBE_SYMBOL(aggr_post_handler); 1195 1196 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 1197 int trapnr) 1198 { 1199 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1200 1201 /* 1202 * if we faulted "during" the execution of a user specified 1203 * probe handler, invoke just that probe's fault handler 1204 */ 1205 if (cur && cur->fault_handler) { 1206 if (cur->fault_handler(cur, regs, trapnr)) 1207 return 1; 1208 } 1209 return 0; 1210 } 1211 NOKPROBE_SYMBOL(aggr_fault_handler); 1212 1213 /* Walks the list and increments nmissed count for multiprobe case */ 1214 void kprobes_inc_nmissed_count(struct kprobe *p) 1215 { 1216 struct kprobe *kp; 1217 if (!kprobe_aggrprobe(p)) { 1218 p->nmissed++; 1219 } else { 1220 list_for_each_entry_rcu(kp, &p->list, list) 1221 kp->nmissed++; 1222 } 1223 return; 1224 } 1225 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1226 1227 static void recycle_rp_inst(struct kretprobe_instance *ri) 1228 { 1229 struct kretprobe *rp = ri->rp; 1230 1231 /* remove rp inst off the rprobe_inst_table */ 1232 hlist_del(&ri->hlist); 1233 INIT_HLIST_NODE(&ri->hlist); 1234 if (likely(rp)) { 1235 raw_spin_lock(&rp->lock); 1236 hlist_add_head(&ri->hlist, &rp->free_instances); 1237 raw_spin_unlock(&rp->lock); 1238 } else 1239 kfree_rcu(ri, rcu); 1240 } 1241 NOKPROBE_SYMBOL(recycle_rp_inst); 1242 1243 static void kretprobe_hash_lock(struct task_struct *tsk, 1244 struct hlist_head **head, unsigned long *flags) 1245 __acquires(hlist_lock) 1246 { 1247 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1248 raw_spinlock_t *hlist_lock; 1249 1250 *head = &kretprobe_inst_table[hash]; 1251 hlist_lock = kretprobe_table_lock_ptr(hash); 1252 raw_spin_lock_irqsave(hlist_lock, *flags); 1253 } 1254 NOKPROBE_SYMBOL(kretprobe_hash_lock); 1255 1256 static void kretprobe_table_lock(unsigned long hash, 1257 unsigned long *flags) 1258 __acquires(hlist_lock) 1259 { 1260 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1261 raw_spin_lock_irqsave(hlist_lock, *flags); 1262 } 1263 NOKPROBE_SYMBOL(kretprobe_table_lock); 1264 1265 static void kretprobe_hash_unlock(struct task_struct *tsk, 1266 unsigned long *flags) 1267 __releases(hlist_lock) 1268 { 1269 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1270 raw_spinlock_t *hlist_lock; 1271 1272 hlist_lock = kretprobe_table_lock_ptr(hash); 1273 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1274 } 1275 NOKPROBE_SYMBOL(kretprobe_hash_unlock); 1276 1277 static void kretprobe_table_unlock(unsigned long hash, 1278 unsigned long *flags) 1279 __releases(hlist_lock) 1280 { 1281 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1282 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1283 } 1284 NOKPROBE_SYMBOL(kretprobe_table_unlock); 1285 1286 static struct kprobe kprobe_busy = { 1287 .addr = (void *) get_kprobe, 1288 }; 1289 1290 void kprobe_busy_begin(void) 1291 { 1292 struct kprobe_ctlblk *kcb; 1293 1294 preempt_disable(); 1295 __this_cpu_write(current_kprobe, &kprobe_busy); 1296 kcb = get_kprobe_ctlblk(); 1297 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 1298 } 1299 1300 void kprobe_busy_end(void) 1301 { 1302 __this_cpu_write(current_kprobe, NULL); 1303 preempt_enable(); 1304 } 1305 1306 /* 1307 * This function is called from finish_task_switch when task tk becomes dead, 1308 * so that we can recycle any function-return probe instances associated 1309 * with this task. These left over instances represent probed functions 1310 * that have been called but will never return. 1311 */ 1312 void kprobe_flush_task(struct task_struct *tk) 1313 { 1314 struct kretprobe_instance *ri; 1315 struct hlist_head *head; 1316 struct hlist_node *tmp; 1317 unsigned long hash, flags = 0; 1318 1319 if (unlikely(!kprobes_initialized)) 1320 /* Early boot. kretprobe_table_locks not yet initialized. */ 1321 return; 1322 1323 kprobe_busy_begin(); 1324 1325 hash = hash_ptr(tk, KPROBE_HASH_BITS); 1326 head = &kretprobe_inst_table[hash]; 1327 kretprobe_table_lock(hash, &flags); 1328 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 1329 if (ri->task == tk) 1330 recycle_rp_inst(ri); 1331 } 1332 kretprobe_table_unlock(hash, &flags); 1333 1334 kprobe_busy_end(); 1335 } 1336 NOKPROBE_SYMBOL(kprobe_flush_task); 1337 1338 static inline void free_rp_inst(struct kretprobe *rp) 1339 { 1340 struct kretprobe_instance *ri; 1341 struct hlist_node *next; 1342 1343 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) { 1344 hlist_del(&ri->hlist); 1345 kfree(ri); 1346 } 1347 } 1348 1349 static void cleanup_rp_inst(struct kretprobe *rp) 1350 { 1351 unsigned long flags, hash; 1352 struct kretprobe_instance *ri; 1353 struct hlist_node *next; 1354 struct hlist_head *head; 1355 1356 /* To avoid recursive kretprobe by NMI, set kprobe busy here */ 1357 kprobe_busy_begin(); 1358 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 1359 kretprobe_table_lock(hash, &flags); 1360 head = &kretprobe_inst_table[hash]; 1361 hlist_for_each_entry_safe(ri, next, head, hlist) { 1362 if (ri->rp == rp) 1363 ri->rp = NULL; 1364 } 1365 kretprobe_table_unlock(hash, &flags); 1366 } 1367 kprobe_busy_end(); 1368 1369 free_rp_inst(rp); 1370 } 1371 NOKPROBE_SYMBOL(cleanup_rp_inst); 1372 1373 /* Add the new probe to ap->list */ 1374 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1375 { 1376 if (p->post_handler) 1377 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1378 1379 list_add_rcu(&p->list, &ap->list); 1380 if (p->post_handler && !ap->post_handler) 1381 ap->post_handler = aggr_post_handler; 1382 1383 return 0; 1384 } 1385 1386 /* 1387 * Fill in the required fields of the "manager kprobe". Replace the 1388 * earlier kprobe in the hlist with the manager kprobe 1389 */ 1390 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1391 { 1392 /* Copy p's insn slot to ap */ 1393 copy_kprobe(p, ap); 1394 flush_insn_slot(ap); 1395 ap->addr = p->addr; 1396 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1397 ap->pre_handler = aggr_pre_handler; 1398 ap->fault_handler = aggr_fault_handler; 1399 /* We don't care the kprobe which has gone. */ 1400 if (p->post_handler && !kprobe_gone(p)) 1401 ap->post_handler = aggr_post_handler; 1402 1403 INIT_LIST_HEAD(&ap->list); 1404 INIT_HLIST_NODE(&ap->hlist); 1405 1406 list_add_rcu(&p->list, &ap->list); 1407 hlist_replace_rcu(&p->hlist, &ap->hlist); 1408 } 1409 1410 /* 1411 * This is the second or subsequent kprobe at the address - handle 1412 * the intricacies 1413 */ 1414 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1415 { 1416 int ret = 0; 1417 struct kprobe *ap = orig_p; 1418 1419 cpus_read_lock(); 1420 1421 /* For preparing optimization, jump_label_text_reserved() is called */ 1422 jump_label_lock(); 1423 mutex_lock(&text_mutex); 1424 1425 if (!kprobe_aggrprobe(orig_p)) { 1426 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1427 ap = alloc_aggr_kprobe(orig_p); 1428 if (!ap) { 1429 ret = -ENOMEM; 1430 goto out; 1431 } 1432 init_aggr_kprobe(ap, orig_p); 1433 } else if (kprobe_unused(ap)) { 1434 /* This probe is going to die. Rescue it */ 1435 ret = reuse_unused_kprobe(ap); 1436 if (ret) 1437 goto out; 1438 } 1439 1440 if (kprobe_gone(ap)) { 1441 /* 1442 * Attempting to insert new probe at the same location that 1443 * had a probe in the module vaddr area which already 1444 * freed. So, the instruction slot has already been 1445 * released. We need a new slot for the new probe. 1446 */ 1447 ret = arch_prepare_kprobe(ap); 1448 if (ret) 1449 /* 1450 * Even if fail to allocate new slot, don't need to 1451 * free aggr_probe. It will be used next time, or 1452 * freed by unregister_kprobe. 1453 */ 1454 goto out; 1455 1456 /* Prepare optimized instructions if possible. */ 1457 prepare_optimized_kprobe(ap); 1458 1459 /* 1460 * Clear gone flag to prevent allocating new slot again, and 1461 * set disabled flag because it is not armed yet. 1462 */ 1463 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1464 | KPROBE_FLAG_DISABLED; 1465 } 1466 1467 /* Copy ap's insn slot to p */ 1468 copy_kprobe(ap, p); 1469 ret = add_new_kprobe(ap, p); 1470 1471 out: 1472 mutex_unlock(&text_mutex); 1473 jump_label_unlock(); 1474 cpus_read_unlock(); 1475 1476 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1477 ap->flags &= ~KPROBE_FLAG_DISABLED; 1478 if (!kprobes_all_disarmed) { 1479 /* Arm the breakpoint again. */ 1480 ret = arm_kprobe(ap); 1481 if (ret) { 1482 ap->flags |= KPROBE_FLAG_DISABLED; 1483 list_del_rcu(&p->list); 1484 synchronize_rcu(); 1485 } 1486 } 1487 } 1488 return ret; 1489 } 1490 1491 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1492 { 1493 /* The __kprobes marked functions and entry code must not be probed */ 1494 return addr >= (unsigned long)__kprobes_text_start && 1495 addr < (unsigned long)__kprobes_text_end; 1496 } 1497 1498 static bool __within_kprobe_blacklist(unsigned long addr) 1499 { 1500 struct kprobe_blacklist_entry *ent; 1501 1502 if (arch_within_kprobe_blacklist(addr)) 1503 return true; 1504 /* 1505 * If there exists a kprobe_blacklist, verify and 1506 * fail any probe registration in the prohibited area 1507 */ 1508 list_for_each_entry(ent, &kprobe_blacklist, list) { 1509 if (addr >= ent->start_addr && addr < ent->end_addr) 1510 return true; 1511 } 1512 return false; 1513 } 1514 1515 bool within_kprobe_blacklist(unsigned long addr) 1516 { 1517 char symname[KSYM_NAME_LEN], *p; 1518 1519 if (__within_kprobe_blacklist(addr)) 1520 return true; 1521 1522 /* Check if the address is on a suffixed-symbol */ 1523 if (!lookup_symbol_name(addr, symname)) { 1524 p = strchr(symname, '.'); 1525 if (!p) 1526 return false; 1527 *p = '\0'; 1528 addr = (unsigned long)kprobe_lookup_name(symname, 0); 1529 if (addr) 1530 return __within_kprobe_blacklist(addr); 1531 } 1532 return false; 1533 } 1534 1535 /* 1536 * If we have a symbol_name argument, look it up and add the offset field 1537 * to it. This way, we can specify a relative address to a symbol. 1538 * This returns encoded errors if it fails to look up symbol or invalid 1539 * combination of parameters. 1540 */ 1541 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr, 1542 const char *symbol_name, unsigned int offset) 1543 { 1544 if ((symbol_name && addr) || (!symbol_name && !addr)) 1545 goto invalid; 1546 1547 if (symbol_name) { 1548 addr = kprobe_lookup_name(symbol_name, offset); 1549 if (!addr) 1550 return ERR_PTR(-ENOENT); 1551 } 1552 1553 addr = (kprobe_opcode_t *)(((char *)addr) + offset); 1554 if (addr) 1555 return addr; 1556 1557 invalid: 1558 return ERR_PTR(-EINVAL); 1559 } 1560 1561 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1562 { 1563 return _kprobe_addr(p->addr, p->symbol_name, p->offset); 1564 } 1565 1566 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1567 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1568 { 1569 struct kprobe *ap, *list_p; 1570 1571 lockdep_assert_held(&kprobe_mutex); 1572 1573 ap = get_kprobe(p->addr); 1574 if (unlikely(!ap)) 1575 return NULL; 1576 1577 if (p != ap) { 1578 list_for_each_entry(list_p, &ap->list, list) 1579 if (list_p == p) 1580 /* kprobe p is a valid probe */ 1581 goto valid; 1582 return NULL; 1583 } 1584 valid: 1585 return ap; 1586 } 1587 1588 /* Return error if the kprobe is being re-registered */ 1589 static inline int check_kprobe_rereg(struct kprobe *p) 1590 { 1591 int ret = 0; 1592 1593 mutex_lock(&kprobe_mutex); 1594 if (__get_valid_kprobe(p)) 1595 ret = -EINVAL; 1596 mutex_unlock(&kprobe_mutex); 1597 1598 return ret; 1599 } 1600 1601 int __weak arch_check_ftrace_location(struct kprobe *p) 1602 { 1603 unsigned long ftrace_addr; 1604 1605 ftrace_addr = ftrace_location((unsigned long)p->addr); 1606 if (ftrace_addr) { 1607 #ifdef CONFIG_KPROBES_ON_FTRACE 1608 /* Given address is not on the instruction boundary */ 1609 if ((unsigned long)p->addr != ftrace_addr) 1610 return -EILSEQ; 1611 p->flags |= KPROBE_FLAG_FTRACE; 1612 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1613 return -EINVAL; 1614 #endif 1615 } 1616 return 0; 1617 } 1618 1619 static int check_kprobe_address_safe(struct kprobe *p, 1620 struct module **probed_mod) 1621 { 1622 int ret; 1623 1624 ret = arch_check_ftrace_location(p); 1625 if (ret) 1626 return ret; 1627 jump_label_lock(); 1628 preempt_disable(); 1629 1630 /* Ensure it is not in reserved area nor out of text */ 1631 if (!kernel_text_address((unsigned long) p->addr) || 1632 within_kprobe_blacklist((unsigned long) p->addr) || 1633 jump_label_text_reserved(p->addr, p->addr) || 1634 static_call_text_reserved(p->addr, p->addr) || 1635 find_bug((unsigned long)p->addr)) { 1636 ret = -EINVAL; 1637 goto out; 1638 } 1639 1640 /* Check if are we probing a module */ 1641 *probed_mod = __module_text_address((unsigned long) p->addr); 1642 if (*probed_mod) { 1643 /* 1644 * We must hold a refcount of the probed module while updating 1645 * its code to prohibit unexpected unloading. 1646 */ 1647 if (unlikely(!try_module_get(*probed_mod))) { 1648 ret = -ENOENT; 1649 goto out; 1650 } 1651 1652 /* 1653 * If the module freed .init.text, we couldn't insert 1654 * kprobes in there. 1655 */ 1656 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1657 (*probed_mod)->state != MODULE_STATE_COMING) { 1658 module_put(*probed_mod); 1659 *probed_mod = NULL; 1660 ret = -ENOENT; 1661 } 1662 } 1663 out: 1664 preempt_enable(); 1665 jump_label_unlock(); 1666 1667 return ret; 1668 } 1669 1670 int register_kprobe(struct kprobe *p) 1671 { 1672 int ret; 1673 struct kprobe *old_p; 1674 struct module *probed_mod; 1675 kprobe_opcode_t *addr; 1676 1677 /* Adjust probe address from symbol */ 1678 addr = kprobe_addr(p); 1679 if (IS_ERR(addr)) 1680 return PTR_ERR(addr); 1681 p->addr = addr; 1682 1683 ret = check_kprobe_rereg(p); 1684 if (ret) 1685 return ret; 1686 1687 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1688 p->flags &= KPROBE_FLAG_DISABLED; 1689 p->nmissed = 0; 1690 INIT_LIST_HEAD(&p->list); 1691 1692 ret = check_kprobe_address_safe(p, &probed_mod); 1693 if (ret) 1694 return ret; 1695 1696 mutex_lock(&kprobe_mutex); 1697 1698 old_p = get_kprobe(p->addr); 1699 if (old_p) { 1700 /* Since this may unoptimize old_p, locking text_mutex. */ 1701 ret = register_aggr_kprobe(old_p, p); 1702 goto out; 1703 } 1704 1705 cpus_read_lock(); 1706 /* Prevent text modification */ 1707 mutex_lock(&text_mutex); 1708 ret = prepare_kprobe(p); 1709 mutex_unlock(&text_mutex); 1710 cpus_read_unlock(); 1711 if (ret) 1712 goto out; 1713 1714 INIT_HLIST_NODE(&p->hlist); 1715 hlist_add_head_rcu(&p->hlist, 1716 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1717 1718 if (!kprobes_all_disarmed && !kprobe_disabled(p)) { 1719 ret = arm_kprobe(p); 1720 if (ret) { 1721 hlist_del_rcu(&p->hlist); 1722 synchronize_rcu(); 1723 goto out; 1724 } 1725 } 1726 1727 /* Try to optimize kprobe */ 1728 try_to_optimize_kprobe(p); 1729 out: 1730 mutex_unlock(&kprobe_mutex); 1731 1732 if (probed_mod) 1733 module_put(probed_mod); 1734 1735 return ret; 1736 } 1737 EXPORT_SYMBOL_GPL(register_kprobe); 1738 1739 /* Check if all probes on the aggrprobe are disabled */ 1740 static int aggr_kprobe_disabled(struct kprobe *ap) 1741 { 1742 struct kprobe *kp; 1743 1744 lockdep_assert_held(&kprobe_mutex); 1745 1746 list_for_each_entry(kp, &ap->list, list) 1747 if (!kprobe_disabled(kp)) 1748 /* 1749 * There is an active probe on the list. 1750 * We can't disable this ap. 1751 */ 1752 return 0; 1753 1754 return 1; 1755 } 1756 1757 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1758 static struct kprobe *__disable_kprobe(struct kprobe *p) 1759 { 1760 struct kprobe *orig_p; 1761 int ret; 1762 1763 /* Get an original kprobe for return */ 1764 orig_p = __get_valid_kprobe(p); 1765 if (unlikely(orig_p == NULL)) 1766 return ERR_PTR(-EINVAL); 1767 1768 if (!kprobe_disabled(p)) { 1769 /* Disable probe if it is a child probe */ 1770 if (p != orig_p) 1771 p->flags |= KPROBE_FLAG_DISABLED; 1772 1773 /* Try to disarm and disable this/parent probe */ 1774 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1775 /* 1776 * If kprobes_all_disarmed is set, orig_p 1777 * should have already been disarmed, so 1778 * skip unneed disarming process. 1779 */ 1780 if (!kprobes_all_disarmed) { 1781 ret = disarm_kprobe(orig_p, true); 1782 if (ret) { 1783 p->flags &= ~KPROBE_FLAG_DISABLED; 1784 return ERR_PTR(ret); 1785 } 1786 } 1787 orig_p->flags |= KPROBE_FLAG_DISABLED; 1788 } 1789 } 1790 1791 return orig_p; 1792 } 1793 1794 /* 1795 * Unregister a kprobe without a scheduler synchronization. 1796 */ 1797 static int __unregister_kprobe_top(struct kprobe *p) 1798 { 1799 struct kprobe *ap, *list_p; 1800 1801 /* Disable kprobe. This will disarm it if needed. */ 1802 ap = __disable_kprobe(p); 1803 if (IS_ERR(ap)) 1804 return PTR_ERR(ap); 1805 1806 if (ap == p) 1807 /* 1808 * This probe is an independent(and non-optimized) kprobe 1809 * (not an aggrprobe). Remove from the hash list. 1810 */ 1811 goto disarmed; 1812 1813 /* Following process expects this probe is an aggrprobe */ 1814 WARN_ON(!kprobe_aggrprobe(ap)); 1815 1816 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1817 /* 1818 * !disarmed could be happen if the probe is under delayed 1819 * unoptimizing. 1820 */ 1821 goto disarmed; 1822 else { 1823 /* If disabling probe has special handlers, update aggrprobe */ 1824 if (p->post_handler && !kprobe_gone(p)) { 1825 list_for_each_entry(list_p, &ap->list, list) { 1826 if ((list_p != p) && (list_p->post_handler)) 1827 goto noclean; 1828 } 1829 ap->post_handler = NULL; 1830 } 1831 noclean: 1832 /* 1833 * Remove from the aggrprobe: this path will do nothing in 1834 * __unregister_kprobe_bottom(). 1835 */ 1836 list_del_rcu(&p->list); 1837 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1838 /* 1839 * Try to optimize this probe again, because post 1840 * handler may have been changed. 1841 */ 1842 optimize_kprobe(ap); 1843 } 1844 return 0; 1845 1846 disarmed: 1847 hlist_del_rcu(&ap->hlist); 1848 return 0; 1849 } 1850 1851 static void __unregister_kprobe_bottom(struct kprobe *p) 1852 { 1853 struct kprobe *ap; 1854 1855 if (list_empty(&p->list)) 1856 /* This is an independent kprobe */ 1857 arch_remove_kprobe(p); 1858 else if (list_is_singular(&p->list)) { 1859 /* This is the last child of an aggrprobe */ 1860 ap = list_entry(p->list.next, struct kprobe, list); 1861 list_del(&p->list); 1862 free_aggr_kprobe(ap); 1863 } 1864 /* Otherwise, do nothing. */ 1865 } 1866 1867 int register_kprobes(struct kprobe **kps, int num) 1868 { 1869 int i, ret = 0; 1870 1871 if (num <= 0) 1872 return -EINVAL; 1873 for (i = 0; i < num; i++) { 1874 ret = register_kprobe(kps[i]); 1875 if (ret < 0) { 1876 if (i > 0) 1877 unregister_kprobes(kps, i); 1878 break; 1879 } 1880 } 1881 return ret; 1882 } 1883 EXPORT_SYMBOL_GPL(register_kprobes); 1884 1885 void unregister_kprobe(struct kprobe *p) 1886 { 1887 unregister_kprobes(&p, 1); 1888 } 1889 EXPORT_SYMBOL_GPL(unregister_kprobe); 1890 1891 void unregister_kprobes(struct kprobe **kps, int num) 1892 { 1893 int i; 1894 1895 if (num <= 0) 1896 return; 1897 mutex_lock(&kprobe_mutex); 1898 for (i = 0; i < num; i++) 1899 if (__unregister_kprobe_top(kps[i]) < 0) 1900 kps[i]->addr = NULL; 1901 mutex_unlock(&kprobe_mutex); 1902 1903 synchronize_rcu(); 1904 for (i = 0; i < num; i++) 1905 if (kps[i]->addr) 1906 __unregister_kprobe_bottom(kps[i]); 1907 } 1908 EXPORT_SYMBOL_GPL(unregister_kprobes); 1909 1910 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1911 unsigned long val, void *data) 1912 { 1913 return NOTIFY_DONE; 1914 } 1915 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1916 1917 static struct notifier_block kprobe_exceptions_nb = { 1918 .notifier_call = kprobe_exceptions_notify, 1919 .priority = 0x7fffffff /* we need to be notified first */ 1920 }; 1921 1922 unsigned long __weak arch_deref_entry_point(void *entry) 1923 { 1924 return (unsigned long)entry; 1925 } 1926 1927 #ifdef CONFIG_KRETPROBES 1928 1929 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs, 1930 void *trampoline_address, 1931 void *frame_pointer) 1932 { 1933 struct kretprobe_instance *ri = NULL, *last = NULL; 1934 struct hlist_head *head; 1935 struct hlist_node *tmp; 1936 unsigned long flags; 1937 kprobe_opcode_t *correct_ret_addr = NULL; 1938 bool skipped = false; 1939 1940 kretprobe_hash_lock(current, &head, &flags); 1941 1942 /* 1943 * It is possible to have multiple instances associated with a given 1944 * task either because multiple functions in the call path have 1945 * return probes installed on them, and/or more than one 1946 * return probe was registered for a target function. 1947 * 1948 * We can handle this because: 1949 * - instances are always pushed into the head of the list 1950 * - when multiple return probes are registered for the same 1951 * function, the (chronologically) first instance's ret_addr 1952 * will be the real return address, and all the rest will 1953 * point to kretprobe_trampoline. 1954 */ 1955 hlist_for_each_entry(ri, head, hlist) { 1956 if (ri->task != current) 1957 /* another task is sharing our hash bucket */ 1958 continue; 1959 /* 1960 * Return probes must be pushed on this hash list correct 1961 * order (same as return order) so that it can be popped 1962 * correctly. However, if we find it is pushed it incorrect 1963 * order, this means we find a function which should not be 1964 * probed, because the wrong order entry is pushed on the 1965 * path of processing other kretprobe itself. 1966 */ 1967 if (ri->fp != frame_pointer) { 1968 if (!skipped) 1969 pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n"); 1970 skipped = true; 1971 continue; 1972 } 1973 1974 correct_ret_addr = ri->ret_addr; 1975 if (skipped) 1976 pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n", 1977 ri->rp->kp.addr); 1978 1979 if (correct_ret_addr != trampoline_address) 1980 /* 1981 * This is the real return address. Any other 1982 * instances associated with this task are for 1983 * other calls deeper on the call stack 1984 */ 1985 break; 1986 } 1987 1988 BUG_ON(!correct_ret_addr || (correct_ret_addr == trampoline_address)); 1989 last = ri; 1990 1991 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 1992 if (ri->task != current) 1993 /* another task is sharing our hash bucket */ 1994 continue; 1995 if (ri->fp != frame_pointer) 1996 continue; 1997 1998 if (ri->rp && ri->rp->handler) { 1999 struct kprobe *prev = kprobe_running(); 2000 2001 __this_cpu_write(current_kprobe, &ri->rp->kp); 2002 ri->ret_addr = correct_ret_addr; 2003 ri->rp->handler(ri, regs); 2004 __this_cpu_write(current_kprobe, prev); 2005 } 2006 2007 recycle_rp_inst(ri); 2008 2009 if (ri == last) 2010 break; 2011 } 2012 2013 kretprobe_hash_unlock(current, &flags); 2014 2015 return (unsigned long)correct_ret_addr; 2016 } 2017 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler) 2018 2019 /* 2020 * This kprobe pre_handler is registered with every kretprobe. When probe 2021 * hits it will set up the return probe. 2022 */ 2023 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2024 { 2025 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 2026 unsigned long hash, flags = 0; 2027 struct kretprobe_instance *ri; 2028 2029 /* TODO: consider to only swap the RA after the last pre_handler fired */ 2030 hash = hash_ptr(current, KPROBE_HASH_BITS); 2031 raw_spin_lock_irqsave(&rp->lock, flags); 2032 if (!hlist_empty(&rp->free_instances)) { 2033 ri = hlist_entry(rp->free_instances.first, 2034 struct kretprobe_instance, hlist); 2035 hlist_del(&ri->hlist); 2036 raw_spin_unlock_irqrestore(&rp->lock, flags); 2037 2038 ri->rp = rp; 2039 ri->task = current; 2040 2041 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 2042 raw_spin_lock_irqsave(&rp->lock, flags); 2043 hlist_add_head(&ri->hlist, &rp->free_instances); 2044 raw_spin_unlock_irqrestore(&rp->lock, flags); 2045 return 0; 2046 } 2047 2048 arch_prepare_kretprobe(ri, regs); 2049 2050 /* XXX(hch): why is there no hlist_move_head? */ 2051 INIT_HLIST_NODE(&ri->hlist); 2052 kretprobe_table_lock(hash, &flags); 2053 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 2054 kretprobe_table_unlock(hash, &flags); 2055 } else { 2056 rp->nmissed++; 2057 raw_spin_unlock_irqrestore(&rp->lock, flags); 2058 } 2059 return 0; 2060 } 2061 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2062 2063 bool __weak arch_kprobe_on_func_entry(unsigned long offset) 2064 { 2065 return !offset; 2066 } 2067 2068 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 2069 { 2070 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset); 2071 2072 if (IS_ERR(kp_addr)) 2073 return false; 2074 2075 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) || 2076 !arch_kprobe_on_func_entry(offset)) 2077 return false; 2078 2079 return true; 2080 } 2081 2082 int register_kretprobe(struct kretprobe *rp) 2083 { 2084 int ret = 0; 2085 struct kretprobe_instance *inst; 2086 int i; 2087 void *addr; 2088 2089 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset)) 2090 return -EINVAL; 2091 2092 if (kretprobe_blacklist_size) { 2093 addr = kprobe_addr(&rp->kp); 2094 if (IS_ERR(addr)) 2095 return PTR_ERR(addr); 2096 2097 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2098 if (kretprobe_blacklist[i].addr == addr) 2099 return -EINVAL; 2100 } 2101 } 2102 2103 rp->kp.pre_handler = pre_handler_kretprobe; 2104 rp->kp.post_handler = NULL; 2105 rp->kp.fault_handler = NULL; 2106 2107 /* Pre-allocate memory for max kretprobe instances */ 2108 if (rp->maxactive <= 0) { 2109 #ifdef CONFIG_PREEMPTION 2110 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 2111 #else 2112 rp->maxactive = num_possible_cpus(); 2113 #endif 2114 } 2115 raw_spin_lock_init(&rp->lock); 2116 INIT_HLIST_HEAD(&rp->free_instances); 2117 for (i = 0; i < rp->maxactive; i++) { 2118 inst = kmalloc(sizeof(struct kretprobe_instance) + 2119 rp->data_size, GFP_KERNEL); 2120 if (inst == NULL) { 2121 free_rp_inst(rp); 2122 return -ENOMEM; 2123 } 2124 INIT_HLIST_NODE(&inst->hlist); 2125 hlist_add_head(&inst->hlist, &rp->free_instances); 2126 } 2127 2128 rp->nmissed = 0; 2129 /* Establish function entry probe point */ 2130 ret = register_kprobe(&rp->kp); 2131 if (ret != 0) 2132 free_rp_inst(rp); 2133 return ret; 2134 } 2135 EXPORT_SYMBOL_GPL(register_kretprobe); 2136 2137 int register_kretprobes(struct kretprobe **rps, int num) 2138 { 2139 int ret = 0, i; 2140 2141 if (num <= 0) 2142 return -EINVAL; 2143 for (i = 0; i < num; i++) { 2144 ret = register_kretprobe(rps[i]); 2145 if (ret < 0) { 2146 if (i > 0) 2147 unregister_kretprobes(rps, i); 2148 break; 2149 } 2150 } 2151 return ret; 2152 } 2153 EXPORT_SYMBOL_GPL(register_kretprobes); 2154 2155 void unregister_kretprobe(struct kretprobe *rp) 2156 { 2157 unregister_kretprobes(&rp, 1); 2158 } 2159 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2160 2161 void unregister_kretprobes(struct kretprobe **rps, int num) 2162 { 2163 int i; 2164 2165 if (num <= 0) 2166 return; 2167 mutex_lock(&kprobe_mutex); 2168 for (i = 0; i < num; i++) 2169 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 2170 rps[i]->kp.addr = NULL; 2171 mutex_unlock(&kprobe_mutex); 2172 2173 synchronize_rcu(); 2174 for (i = 0; i < num; i++) { 2175 if (rps[i]->kp.addr) { 2176 __unregister_kprobe_bottom(&rps[i]->kp); 2177 cleanup_rp_inst(rps[i]); 2178 } 2179 } 2180 } 2181 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2182 2183 #else /* CONFIG_KRETPROBES */ 2184 int register_kretprobe(struct kretprobe *rp) 2185 { 2186 return -ENOSYS; 2187 } 2188 EXPORT_SYMBOL_GPL(register_kretprobe); 2189 2190 int register_kretprobes(struct kretprobe **rps, int num) 2191 { 2192 return -ENOSYS; 2193 } 2194 EXPORT_SYMBOL_GPL(register_kretprobes); 2195 2196 void unregister_kretprobe(struct kretprobe *rp) 2197 { 2198 } 2199 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2200 2201 void unregister_kretprobes(struct kretprobe **rps, int num) 2202 { 2203 } 2204 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2205 2206 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2207 { 2208 return 0; 2209 } 2210 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2211 2212 #endif /* CONFIG_KRETPROBES */ 2213 2214 /* Set the kprobe gone and remove its instruction buffer. */ 2215 static void kill_kprobe(struct kprobe *p) 2216 { 2217 struct kprobe *kp; 2218 2219 lockdep_assert_held(&kprobe_mutex); 2220 2221 if (WARN_ON_ONCE(kprobe_gone(p))) 2222 return; 2223 2224 p->flags |= KPROBE_FLAG_GONE; 2225 if (kprobe_aggrprobe(p)) { 2226 /* 2227 * If this is an aggr_kprobe, we have to list all the 2228 * chained probes and mark them GONE. 2229 */ 2230 list_for_each_entry(kp, &p->list, list) 2231 kp->flags |= KPROBE_FLAG_GONE; 2232 p->post_handler = NULL; 2233 kill_optimized_kprobe(p); 2234 } 2235 /* 2236 * Here, we can remove insn_slot safely, because no thread calls 2237 * the original probed function (which will be freed soon) any more. 2238 */ 2239 arch_remove_kprobe(p); 2240 2241 /* 2242 * The module is going away. We should disarm the kprobe which 2243 * is using ftrace, because ftrace framework is still available at 2244 * MODULE_STATE_GOING notification. 2245 */ 2246 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed) 2247 disarm_kprobe_ftrace(p); 2248 } 2249 2250 /* Disable one kprobe */ 2251 int disable_kprobe(struct kprobe *kp) 2252 { 2253 int ret = 0; 2254 struct kprobe *p; 2255 2256 mutex_lock(&kprobe_mutex); 2257 2258 /* Disable this kprobe */ 2259 p = __disable_kprobe(kp); 2260 if (IS_ERR(p)) 2261 ret = PTR_ERR(p); 2262 2263 mutex_unlock(&kprobe_mutex); 2264 return ret; 2265 } 2266 EXPORT_SYMBOL_GPL(disable_kprobe); 2267 2268 /* Enable one kprobe */ 2269 int enable_kprobe(struct kprobe *kp) 2270 { 2271 int ret = 0; 2272 struct kprobe *p; 2273 2274 mutex_lock(&kprobe_mutex); 2275 2276 /* Check whether specified probe is valid. */ 2277 p = __get_valid_kprobe(kp); 2278 if (unlikely(p == NULL)) { 2279 ret = -EINVAL; 2280 goto out; 2281 } 2282 2283 if (kprobe_gone(kp)) { 2284 /* This kprobe has gone, we couldn't enable it. */ 2285 ret = -EINVAL; 2286 goto out; 2287 } 2288 2289 if (p != kp) 2290 kp->flags &= ~KPROBE_FLAG_DISABLED; 2291 2292 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2293 p->flags &= ~KPROBE_FLAG_DISABLED; 2294 ret = arm_kprobe(p); 2295 if (ret) 2296 p->flags |= KPROBE_FLAG_DISABLED; 2297 } 2298 out: 2299 mutex_unlock(&kprobe_mutex); 2300 return ret; 2301 } 2302 EXPORT_SYMBOL_GPL(enable_kprobe); 2303 2304 /* Caller must NOT call this in usual path. This is only for critical case */ 2305 void dump_kprobe(struct kprobe *kp) 2306 { 2307 pr_err("Dumping kprobe:\n"); 2308 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n", 2309 kp->symbol_name, kp->offset, kp->addr); 2310 } 2311 NOKPROBE_SYMBOL(dump_kprobe); 2312 2313 int kprobe_add_ksym_blacklist(unsigned long entry) 2314 { 2315 struct kprobe_blacklist_entry *ent; 2316 unsigned long offset = 0, size = 0; 2317 2318 if (!kernel_text_address(entry) || 2319 !kallsyms_lookup_size_offset(entry, &size, &offset)) 2320 return -EINVAL; 2321 2322 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2323 if (!ent) 2324 return -ENOMEM; 2325 ent->start_addr = entry; 2326 ent->end_addr = entry + size; 2327 INIT_LIST_HEAD(&ent->list); 2328 list_add_tail(&ent->list, &kprobe_blacklist); 2329 2330 return (int)size; 2331 } 2332 2333 /* Add all symbols in given area into kprobe blacklist */ 2334 int kprobe_add_area_blacklist(unsigned long start, unsigned long end) 2335 { 2336 unsigned long entry; 2337 int ret = 0; 2338 2339 for (entry = start; entry < end; entry += ret) { 2340 ret = kprobe_add_ksym_blacklist(entry); 2341 if (ret < 0) 2342 return ret; 2343 if (ret == 0) /* In case of alias symbol */ 2344 ret = 1; 2345 } 2346 return 0; 2347 } 2348 2349 /* Remove all symbols in given area from kprobe blacklist */ 2350 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end) 2351 { 2352 struct kprobe_blacklist_entry *ent, *n; 2353 2354 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) { 2355 if (ent->start_addr < start || ent->start_addr >= end) 2356 continue; 2357 list_del(&ent->list); 2358 kfree(ent); 2359 } 2360 } 2361 2362 static void kprobe_remove_ksym_blacklist(unsigned long entry) 2363 { 2364 kprobe_remove_area_blacklist(entry, entry + 1); 2365 } 2366 2367 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value, 2368 char *type, char *sym) 2369 { 2370 return -ERANGE; 2371 } 2372 2373 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 2374 char *sym) 2375 { 2376 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 2377 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym)) 2378 return 0; 2379 #ifdef CONFIG_OPTPROBES 2380 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym)) 2381 return 0; 2382 #endif 2383 #endif 2384 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym)) 2385 return 0; 2386 return -ERANGE; 2387 } 2388 2389 int __init __weak arch_populate_kprobe_blacklist(void) 2390 { 2391 return 0; 2392 } 2393 2394 /* 2395 * Lookup and populate the kprobe_blacklist. 2396 * 2397 * Unlike the kretprobe blacklist, we'll need to determine 2398 * the range of addresses that belong to the said functions, 2399 * since a kprobe need not necessarily be at the beginning 2400 * of a function. 2401 */ 2402 static int __init populate_kprobe_blacklist(unsigned long *start, 2403 unsigned long *end) 2404 { 2405 unsigned long entry; 2406 unsigned long *iter; 2407 int ret; 2408 2409 for (iter = start; iter < end; iter++) { 2410 entry = arch_deref_entry_point((void *)*iter); 2411 ret = kprobe_add_ksym_blacklist(entry); 2412 if (ret == -EINVAL) 2413 continue; 2414 if (ret < 0) 2415 return ret; 2416 } 2417 2418 /* Symbols in __kprobes_text are blacklisted */ 2419 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start, 2420 (unsigned long)__kprobes_text_end); 2421 if (ret) 2422 return ret; 2423 2424 /* Symbols in noinstr section are blacklisted */ 2425 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start, 2426 (unsigned long)__noinstr_text_end); 2427 2428 return ret ? : arch_populate_kprobe_blacklist(); 2429 } 2430 2431 static void add_module_kprobe_blacklist(struct module *mod) 2432 { 2433 unsigned long start, end; 2434 int i; 2435 2436 if (mod->kprobe_blacklist) { 2437 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2438 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]); 2439 } 2440 2441 start = (unsigned long)mod->kprobes_text_start; 2442 if (start) { 2443 end = start + mod->kprobes_text_size; 2444 kprobe_add_area_blacklist(start, end); 2445 } 2446 2447 start = (unsigned long)mod->noinstr_text_start; 2448 if (start) { 2449 end = start + mod->noinstr_text_size; 2450 kprobe_add_area_blacklist(start, end); 2451 } 2452 } 2453 2454 static void remove_module_kprobe_blacklist(struct module *mod) 2455 { 2456 unsigned long start, end; 2457 int i; 2458 2459 if (mod->kprobe_blacklist) { 2460 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2461 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]); 2462 } 2463 2464 start = (unsigned long)mod->kprobes_text_start; 2465 if (start) { 2466 end = start + mod->kprobes_text_size; 2467 kprobe_remove_area_blacklist(start, end); 2468 } 2469 2470 start = (unsigned long)mod->noinstr_text_start; 2471 if (start) { 2472 end = start + mod->noinstr_text_size; 2473 kprobe_remove_area_blacklist(start, end); 2474 } 2475 } 2476 2477 /* Module notifier call back, checking kprobes on the module */ 2478 static int kprobes_module_callback(struct notifier_block *nb, 2479 unsigned long val, void *data) 2480 { 2481 struct module *mod = data; 2482 struct hlist_head *head; 2483 struct kprobe *p; 2484 unsigned int i; 2485 int checkcore = (val == MODULE_STATE_GOING); 2486 2487 if (val == MODULE_STATE_COMING) { 2488 mutex_lock(&kprobe_mutex); 2489 add_module_kprobe_blacklist(mod); 2490 mutex_unlock(&kprobe_mutex); 2491 } 2492 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2493 return NOTIFY_DONE; 2494 2495 /* 2496 * When MODULE_STATE_GOING was notified, both of module .text and 2497 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2498 * notified, only .init.text section would be freed. We need to 2499 * disable kprobes which have been inserted in the sections. 2500 */ 2501 mutex_lock(&kprobe_mutex); 2502 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2503 head = &kprobe_table[i]; 2504 hlist_for_each_entry(p, head, hlist) { 2505 if (kprobe_gone(p)) 2506 continue; 2507 2508 if (within_module_init((unsigned long)p->addr, mod) || 2509 (checkcore && 2510 within_module_core((unsigned long)p->addr, mod))) { 2511 /* 2512 * The vaddr this probe is installed will soon 2513 * be vfreed buy not synced to disk. Hence, 2514 * disarming the breakpoint isn't needed. 2515 * 2516 * Note, this will also move any optimized probes 2517 * that are pending to be removed from their 2518 * corresponding lists to the freeing_list and 2519 * will not be touched by the delayed 2520 * kprobe_optimizer work handler. 2521 */ 2522 kill_kprobe(p); 2523 } 2524 } 2525 } 2526 if (val == MODULE_STATE_GOING) 2527 remove_module_kprobe_blacklist(mod); 2528 mutex_unlock(&kprobe_mutex); 2529 return NOTIFY_DONE; 2530 } 2531 2532 static struct notifier_block kprobe_module_nb = { 2533 .notifier_call = kprobes_module_callback, 2534 .priority = 0 2535 }; 2536 2537 /* Markers of _kprobe_blacklist section */ 2538 extern unsigned long __start_kprobe_blacklist[]; 2539 extern unsigned long __stop_kprobe_blacklist[]; 2540 2541 void kprobe_free_init_mem(void) 2542 { 2543 void *start = (void *)(&__init_begin); 2544 void *end = (void *)(&__init_end); 2545 struct hlist_head *head; 2546 struct kprobe *p; 2547 int i; 2548 2549 mutex_lock(&kprobe_mutex); 2550 2551 /* Kill all kprobes on initmem */ 2552 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2553 head = &kprobe_table[i]; 2554 hlist_for_each_entry(p, head, hlist) { 2555 if (start <= (void *)p->addr && (void *)p->addr < end) 2556 kill_kprobe(p); 2557 } 2558 } 2559 2560 mutex_unlock(&kprobe_mutex); 2561 } 2562 2563 static int __init init_kprobes(void) 2564 { 2565 int i, err = 0; 2566 2567 /* FIXME allocate the probe table, currently defined statically */ 2568 /* initialize all list heads */ 2569 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2570 INIT_HLIST_HEAD(&kprobe_table[i]); 2571 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 2572 raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); 2573 } 2574 2575 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2576 __stop_kprobe_blacklist); 2577 if (err) { 2578 pr_err("kprobes: failed to populate blacklist: %d\n", err); 2579 pr_err("Please take care of using kprobes.\n"); 2580 } 2581 2582 if (kretprobe_blacklist_size) { 2583 /* lookup the function address from its name */ 2584 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2585 kretprobe_blacklist[i].addr = 2586 kprobe_lookup_name(kretprobe_blacklist[i].name, 0); 2587 if (!kretprobe_blacklist[i].addr) 2588 printk("kretprobe: lookup failed: %s\n", 2589 kretprobe_blacklist[i].name); 2590 } 2591 } 2592 2593 #if defined(CONFIG_OPTPROBES) 2594 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2595 /* Init kprobe_optinsn_slots */ 2596 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2597 #endif 2598 /* By default, kprobes can be optimized */ 2599 kprobes_allow_optimization = true; 2600 #endif 2601 2602 /* By default, kprobes are armed */ 2603 kprobes_all_disarmed = false; 2604 2605 err = arch_init_kprobes(); 2606 if (!err) 2607 err = register_die_notifier(&kprobe_exceptions_nb); 2608 if (!err) 2609 err = register_module_notifier(&kprobe_module_nb); 2610 2611 kprobes_initialized = (err == 0); 2612 2613 if (!err) 2614 init_test_probes(); 2615 return err; 2616 } 2617 early_initcall(init_kprobes); 2618 2619 #ifdef CONFIG_DEBUG_FS 2620 static void report_probe(struct seq_file *pi, struct kprobe *p, 2621 const char *sym, int offset, char *modname, struct kprobe *pp) 2622 { 2623 char *kprobe_type; 2624 void *addr = p->addr; 2625 2626 if (p->pre_handler == pre_handler_kretprobe) 2627 kprobe_type = "r"; 2628 else 2629 kprobe_type = "k"; 2630 2631 if (!kallsyms_show_value(pi->file->f_cred)) 2632 addr = NULL; 2633 2634 if (sym) 2635 seq_printf(pi, "%px %s %s+0x%x %s ", 2636 addr, kprobe_type, sym, offset, 2637 (modname ? modname : " ")); 2638 else /* try to use %pS */ 2639 seq_printf(pi, "%px %s %pS ", 2640 addr, kprobe_type, p->addr); 2641 2642 if (!pp) 2643 pp = p; 2644 seq_printf(pi, "%s%s%s%s\n", 2645 (kprobe_gone(p) ? "[GONE]" : ""), 2646 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2647 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2648 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2649 } 2650 2651 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2652 { 2653 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2654 } 2655 2656 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2657 { 2658 (*pos)++; 2659 if (*pos >= KPROBE_TABLE_SIZE) 2660 return NULL; 2661 return pos; 2662 } 2663 2664 static void kprobe_seq_stop(struct seq_file *f, void *v) 2665 { 2666 /* Nothing to do */ 2667 } 2668 2669 static int show_kprobe_addr(struct seq_file *pi, void *v) 2670 { 2671 struct hlist_head *head; 2672 struct kprobe *p, *kp; 2673 const char *sym = NULL; 2674 unsigned int i = *(loff_t *) v; 2675 unsigned long offset = 0; 2676 char *modname, namebuf[KSYM_NAME_LEN]; 2677 2678 head = &kprobe_table[i]; 2679 preempt_disable(); 2680 hlist_for_each_entry_rcu(p, head, hlist) { 2681 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2682 &offset, &modname, namebuf); 2683 if (kprobe_aggrprobe(p)) { 2684 list_for_each_entry_rcu(kp, &p->list, list) 2685 report_probe(pi, kp, sym, offset, modname, p); 2686 } else 2687 report_probe(pi, p, sym, offset, modname, NULL); 2688 } 2689 preempt_enable(); 2690 return 0; 2691 } 2692 2693 static const struct seq_operations kprobes_sops = { 2694 .start = kprobe_seq_start, 2695 .next = kprobe_seq_next, 2696 .stop = kprobe_seq_stop, 2697 .show = show_kprobe_addr 2698 }; 2699 2700 DEFINE_SEQ_ATTRIBUTE(kprobes); 2701 2702 /* kprobes/blacklist -- shows which functions can not be probed */ 2703 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2704 { 2705 mutex_lock(&kprobe_mutex); 2706 return seq_list_start(&kprobe_blacklist, *pos); 2707 } 2708 2709 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2710 { 2711 return seq_list_next(v, &kprobe_blacklist, pos); 2712 } 2713 2714 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2715 { 2716 struct kprobe_blacklist_entry *ent = 2717 list_entry(v, struct kprobe_blacklist_entry, list); 2718 2719 /* 2720 * If /proc/kallsyms is not showing kernel address, we won't 2721 * show them here either. 2722 */ 2723 if (!kallsyms_show_value(m->file->f_cred)) 2724 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL, 2725 (void *)ent->start_addr); 2726 else 2727 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr, 2728 (void *)ent->end_addr, (void *)ent->start_addr); 2729 return 0; 2730 } 2731 2732 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v) 2733 { 2734 mutex_unlock(&kprobe_mutex); 2735 } 2736 2737 static const struct seq_operations kprobe_blacklist_sops = { 2738 .start = kprobe_blacklist_seq_start, 2739 .next = kprobe_blacklist_seq_next, 2740 .stop = kprobe_blacklist_seq_stop, 2741 .show = kprobe_blacklist_seq_show, 2742 }; 2743 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist); 2744 2745 static int arm_all_kprobes(void) 2746 { 2747 struct hlist_head *head; 2748 struct kprobe *p; 2749 unsigned int i, total = 0, errors = 0; 2750 int err, ret = 0; 2751 2752 mutex_lock(&kprobe_mutex); 2753 2754 /* If kprobes are armed, just return */ 2755 if (!kprobes_all_disarmed) 2756 goto already_enabled; 2757 2758 /* 2759 * optimize_kprobe() called by arm_kprobe() checks 2760 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2761 * arm_kprobe. 2762 */ 2763 kprobes_all_disarmed = false; 2764 /* Arming kprobes doesn't optimize kprobe itself */ 2765 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2766 head = &kprobe_table[i]; 2767 /* Arm all kprobes on a best-effort basis */ 2768 hlist_for_each_entry(p, head, hlist) { 2769 if (!kprobe_disabled(p)) { 2770 err = arm_kprobe(p); 2771 if (err) { 2772 errors++; 2773 ret = err; 2774 } 2775 total++; 2776 } 2777 } 2778 } 2779 2780 if (errors) 2781 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n", 2782 errors, total); 2783 else 2784 pr_info("Kprobes globally enabled\n"); 2785 2786 already_enabled: 2787 mutex_unlock(&kprobe_mutex); 2788 return ret; 2789 } 2790 2791 static int disarm_all_kprobes(void) 2792 { 2793 struct hlist_head *head; 2794 struct kprobe *p; 2795 unsigned int i, total = 0, errors = 0; 2796 int err, ret = 0; 2797 2798 mutex_lock(&kprobe_mutex); 2799 2800 /* If kprobes are already disarmed, just return */ 2801 if (kprobes_all_disarmed) { 2802 mutex_unlock(&kprobe_mutex); 2803 return 0; 2804 } 2805 2806 kprobes_all_disarmed = true; 2807 2808 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2809 head = &kprobe_table[i]; 2810 /* Disarm all kprobes on a best-effort basis */ 2811 hlist_for_each_entry(p, head, hlist) { 2812 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { 2813 err = disarm_kprobe(p, false); 2814 if (err) { 2815 errors++; 2816 ret = err; 2817 } 2818 total++; 2819 } 2820 } 2821 } 2822 2823 if (errors) 2824 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n", 2825 errors, total); 2826 else 2827 pr_info("Kprobes globally disabled\n"); 2828 2829 mutex_unlock(&kprobe_mutex); 2830 2831 /* Wait for disarming all kprobes by optimizer */ 2832 wait_for_kprobe_optimizer(); 2833 2834 return ret; 2835 } 2836 2837 /* 2838 * XXX: The debugfs bool file interface doesn't allow for callbacks 2839 * when the bool state is switched. We can reuse that facility when 2840 * available 2841 */ 2842 static ssize_t read_enabled_file_bool(struct file *file, 2843 char __user *user_buf, size_t count, loff_t *ppos) 2844 { 2845 char buf[3]; 2846 2847 if (!kprobes_all_disarmed) 2848 buf[0] = '1'; 2849 else 2850 buf[0] = '0'; 2851 buf[1] = '\n'; 2852 buf[2] = 0x00; 2853 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2854 } 2855 2856 static ssize_t write_enabled_file_bool(struct file *file, 2857 const char __user *user_buf, size_t count, loff_t *ppos) 2858 { 2859 char buf[32]; 2860 size_t buf_size; 2861 int ret = 0; 2862 2863 buf_size = min(count, (sizeof(buf)-1)); 2864 if (copy_from_user(buf, user_buf, buf_size)) 2865 return -EFAULT; 2866 2867 buf[buf_size] = '\0'; 2868 switch (buf[0]) { 2869 case 'y': 2870 case 'Y': 2871 case '1': 2872 ret = arm_all_kprobes(); 2873 break; 2874 case 'n': 2875 case 'N': 2876 case '0': 2877 ret = disarm_all_kprobes(); 2878 break; 2879 default: 2880 return -EINVAL; 2881 } 2882 2883 if (ret) 2884 return ret; 2885 2886 return count; 2887 } 2888 2889 static const struct file_operations fops_kp = { 2890 .read = read_enabled_file_bool, 2891 .write = write_enabled_file_bool, 2892 .llseek = default_llseek, 2893 }; 2894 2895 static int __init debugfs_kprobe_init(void) 2896 { 2897 struct dentry *dir; 2898 unsigned int value = 1; 2899 2900 dir = debugfs_create_dir("kprobes", NULL); 2901 2902 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops); 2903 2904 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp); 2905 2906 debugfs_create_file("blacklist", 0400, dir, NULL, 2907 &kprobe_blacklist_fops); 2908 2909 return 0; 2910 } 2911 2912 late_initcall(debugfs_kprobe_init); 2913 #endif /* CONFIG_DEBUG_FS */ 2914