xref: /openbmc/linux/kernel/kprobes.c (revision 0ea820cf)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/kdebug.h>
46 #include <linux/memory.h>
47 
48 #include <asm-generic/sections.h>
49 #include <asm/cacheflush.h>
50 #include <asm/errno.h>
51 #include <asm/uaccess.h>
52 
53 #define KPROBE_HASH_BITS 6
54 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
55 
56 
57 /*
58  * Some oddball architectures like 64bit powerpc have function descriptors
59  * so this must be overridable.
60  */
61 #ifndef kprobe_lookup_name
62 #define kprobe_lookup_name(name, addr) \
63 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
64 #endif
65 
66 static int kprobes_initialized;
67 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
68 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
69 
70 /* NOTE: change this value only with kprobe_mutex held */
71 static bool kprobes_all_disarmed;
72 
73 static DEFINE_MUTEX(kprobe_mutex);	/* Protects kprobe_table */
74 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
75 static struct {
76 	spinlock_t lock ____cacheline_aligned_in_smp;
77 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
78 
79 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
80 {
81 	return &(kretprobe_table_locks[hash].lock);
82 }
83 
84 /*
85  * Normally, functions that we'd want to prohibit kprobes in, are marked
86  * __kprobes. But, there are cases where such functions already belong to
87  * a different section (__sched for preempt_schedule)
88  *
89  * For such cases, we now have a blacklist
90  */
91 static struct kprobe_blackpoint kprobe_blacklist[] = {
92 	{"preempt_schedule",},
93 	{"native_get_debugreg",},
94 	{"irq_entries_start",},
95 	{"common_interrupt",},
96 	{NULL}    /* Terminator */
97 };
98 
99 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
100 /*
101  * kprobe->ainsn.insn points to the copy of the instruction to be
102  * single-stepped. x86_64, POWER4 and above have no-exec support and
103  * stepping on the instruction on a vmalloced/kmalloced/data page
104  * is a recipe for disaster
105  */
106 #define INSNS_PER_PAGE	(PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
107 
108 struct kprobe_insn_page {
109 	struct list_head list;
110 	kprobe_opcode_t *insns;		/* Page of instruction slots */
111 	char slot_used[INSNS_PER_PAGE];
112 	int nused;
113 	int ngarbage;
114 };
115 
116 enum kprobe_slot_state {
117 	SLOT_CLEAN = 0,
118 	SLOT_DIRTY = 1,
119 	SLOT_USED = 2,
120 };
121 
122 static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_pages */
123 static LIST_HEAD(kprobe_insn_pages);
124 static int kprobe_garbage_slots;
125 static int collect_garbage_slots(void);
126 
127 static int __kprobes check_safety(void)
128 {
129 	int ret = 0;
130 #if defined(CONFIG_PREEMPT) && defined(CONFIG_FREEZER)
131 	ret = freeze_processes();
132 	if (ret == 0) {
133 		struct task_struct *p, *q;
134 		do_each_thread(p, q) {
135 			if (p != current && p->state == TASK_RUNNING &&
136 			    p->pid != 0) {
137 				printk("Check failed: %s is running\n",p->comm);
138 				ret = -1;
139 				goto loop_end;
140 			}
141 		} while_each_thread(p, q);
142 	}
143 loop_end:
144 	thaw_processes();
145 #else
146 	synchronize_sched();
147 #endif
148 	return ret;
149 }
150 
151 /**
152  * __get_insn_slot() - Find a slot on an executable page for an instruction.
153  * We allocate an executable page if there's no room on existing ones.
154  */
155 static kprobe_opcode_t __kprobes *__get_insn_slot(void)
156 {
157 	struct kprobe_insn_page *kip;
158 
159  retry:
160 	list_for_each_entry(kip, &kprobe_insn_pages, list) {
161 		if (kip->nused < INSNS_PER_PAGE) {
162 			int i;
163 			for (i = 0; i < INSNS_PER_PAGE; i++) {
164 				if (kip->slot_used[i] == SLOT_CLEAN) {
165 					kip->slot_used[i] = SLOT_USED;
166 					kip->nused++;
167 					return kip->insns + (i * MAX_INSN_SIZE);
168 				}
169 			}
170 			/* Surprise!  No unused slots.  Fix kip->nused. */
171 			kip->nused = INSNS_PER_PAGE;
172 		}
173 	}
174 
175 	/* If there are any garbage slots, collect it and try again. */
176 	if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
177 		goto retry;
178 	}
179 	/* All out of space.  Need to allocate a new page. Use slot 0. */
180 	kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
181 	if (!kip)
182 		return NULL;
183 
184 	/*
185 	 * Use module_alloc so this page is within +/- 2GB of where the
186 	 * kernel image and loaded module images reside. This is required
187 	 * so x86_64 can correctly handle the %rip-relative fixups.
188 	 */
189 	kip->insns = module_alloc(PAGE_SIZE);
190 	if (!kip->insns) {
191 		kfree(kip);
192 		return NULL;
193 	}
194 	INIT_LIST_HEAD(&kip->list);
195 	list_add(&kip->list, &kprobe_insn_pages);
196 	memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
197 	kip->slot_used[0] = SLOT_USED;
198 	kip->nused = 1;
199 	kip->ngarbage = 0;
200 	return kip->insns;
201 }
202 
203 kprobe_opcode_t __kprobes *get_insn_slot(void)
204 {
205 	kprobe_opcode_t *ret;
206 	mutex_lock(&kprobe_insn_mutex);
207 	ret = __get_insn_slot();
208 	mutex_unlock(&kprobe_insn_mutex);
209 	return ret;
210 }
211 
212 /* Return 1 if all garbages are collected, otherwise 0. */
213 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
214 {
215 	kip->slot_used[idx] = SLOT_CLEAN;
216 	kip->nused--;
217 	if (kip->nused == 0) {
218 		/*
219 		 * Page is no longer in use.  Free it unless
220 		 * it's the last one.  We keep the last one
221 		 * so as not to have to set it up again the
222 		 * next time somebody inserts a probe.
223 		 */
224 		if (!list_is_singular(&kprobe_insn_pages)) {
225 			list_del(&kip->list);
226 			module_free(NULL, kip->insns);
227 			kfree(kip);
228 		}
229 		return 1;
230 	}
231 	return 0;
232 }
233 
234 static int __kprobes collect_garbage_slots(void)
235 {
236 	struct kprobe_insn_page *kip, *next;
237 
238 	/* Ensure no-one is preepmted on the garbages */
239 	if (check_safety())
240 		return -EAGAIN;
241 
242 	list_for_each_entry_safe(kip, next, &kprobe_insn_pages, list) {
243 		int i;
244 		if (kip->ngarbage == 0)
245 			continue;
246 		kip->ngarbage = 0;	/* we will collect all garbages */
247 		for (i = 0; i < INSNS_PER_PAGE; i++) {
248 			if (kip->slot_used[i] == SLOT_DIRTY &&
249 			    collect_one_slot(kip, i))
250 				break;
251 		}
252 	}
253 	kprobe_garbage_slots = 0;
254 	return 0;
255 }
256 
257 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
258 {
259 	struct kprobe_insn_page *kip;
260 
261 	mutex_lock(&kprobe_insn_mutex);
262 	list_for_each_entry(kip, &kprobe_insn_pages, list) {
263 		if (kip->insns <= slot &&
264 		    slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
265 			int i = (slot - kip->insns) / MAX_INSN_SIZE;
266 			if (dirty) {
267 				kip->slot_used[i] = SLOT_DIRTY;
268 				kip->ngarbage++;
269 			} else
270 				collect_one_slot(kip, i);
271 			break;
272 		}
273 	}
274 
275 	if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
276 		collect_garbage_slots();
277 
278 	mutex_unlock(&kprobe_insn_mutex);
279 }
280 #endif
281 
282 /* We have preemption disabled.. so it is safe to use __ versions */
283 static inline void set_kprobe_instance(struct kprobe *kp)
284 {
285 	__get_cpu_var(kprobe_instance) = kp;
286 }
287 
288 static inline void reset_kprobe_instance(void)
289 {
290 	__get_cpu_var(kprobe_instance) = NULL;
291 }
292 
293 /*
294  * This routine is called either:
295  * 	- under the kprobe_mutex - during kprobe_[un]register()
296  * 				OR
297  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
298  */
299 struct kprobe __kprobes *get_kprobe(void *addr)
300 {
301 	struct hlist_head *head;
302 	struct hlist_node *node;
303 	struct kprobe *p;
304 
305 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
306 	hlist_for_each_entry_rcu(p, node, head, hlist) {
307 		if (p->addr == addr)
308 			return p;
309 	}
310 	return NULL;
311 }
312 
313 /* Arm a kprobe with text_mutex */
314 static void __kprobes arm_kprobe(struct kprobe *kp)
315 {
316 	mutex_lock(&text_mutex);
317 	arch_arm_kprobe(kp);
318 	mutex_unlock(&text_mutex);
319 }
320 
321 /* Disarm a kprobe with text_mutex */
322 static void __kprobes disarm_kprobe(struct kprobe *kp)
323 {
324 	mutex_lock(&text_mutex);
325 	arch_disarm_kprobe(kp);
326 	mutex_unlock(&text_mutex);
327 }
328 
329 /*
330  * Aggregate handlers for multiple kprobes support - these handlers
331  * take care of invoking the individual kprobe handlers on p->list
332  */
333 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
334 {
335 	struct kprobe *kp;
336 
337 	list_for_each_entry_rcu(kp, &p->list, list) {
338 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
339 			set_kprobe_instance(kp);
340 			if (kp->pre_handler(kp, regs))
341 				return 1;
342 		}
343 		reset_kprobe_instance();
344 	}
345 	return 0;
346 }
347 
348 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
349 					unsigned long flags)
350 {
351 	struct kprobe *kp;
352 
353 	list_for_each_entry_rcu(kp, &p->list, list) {
354 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
355 			set_kprobe_instance(kp);
356 			kp->post_handler(kp, regs, flags);
357 			reset_kprobe_instance();
358 		}
359 	}
360 }
361 
362 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
363 					int trapnr)
364 {
365 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
366 
367 	/*
368 	 * if we faulted "during" the execution of a user specified
369 	 * probe handler, invoke just that probe's fault handler
370 	 */
371 	if (cur && cur->fault_handler) {
372 		if (cur->fault_handler(cur, regs, trapnr))
373 			return 1;
374 	}
375 	return 0;
376 }
377 
378 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
379 {
380 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
381 	int ret = 0;
382 
383 	if (cur && cur->break_handler) {
384 		if (cur->break_handler(cur, regs))
385 			ret = 1;
386 	}
387 	reset_kprobe_instance();
388 	return ret;
389 }
390 
391 /* Walks the list and increments nmissed count for multiprobe case */
392 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
393 {
394 	struct kprobe *kp;
395 	if (p->pre_handler != aggr_pre_handler) {
396 		p->nmissed++;
397 	} else {
398 		list_for_each_entry_rcu(kp, &p->list, list)
399 			kp->nmissed++;
400 	}
401 	return;
402 }
403 
404 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
405 				struct hlist_head *head)
406 {
407 	struct kretprobe *rp = ri->rp;
408 
409 	/* remove rp inst off the rprobe_inst_table */
410 	hlist_del(&ri->hlist);
411 	INIT_HLIST_NODE(&ri->hlist);
412 	if (likely(rp)) {
413 		spin_lock(&rp->lock);
414 		hlist_add_head(&ri->hlist, &rp->free_instances);
415 		spin_unlock(&rp->lock);
416 	} else
417 		/* Unregistering */
418 		hlist_add_head(&ri->hlist, head);
419 }
420 
421 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
422 			 struct hlist_head **head, unsigned long *flags)
423 {
424 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
425 	spinlock_t *hlist_lock;
426 
427 	*head = &kretprobe_inst_table[hash];
428 	hlist_lock = kretprobe_table_lock_ptr(hash);
429 	spin_lock_irqsave(hlist_lock, *flags);
430 }
431 
432 static void __kprobes kretprobe_table_lock(unsigned long hash,
433 	unsigned long *flags)
434 {
435 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
436 	spin_lock_irqsave(hlist_lock, *flags);
437 }
438 
439 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
440 	unsigned long *flags)
441 {
442 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
443 	spinlock_t *hlist_lock;
444 
445 	hlist_lock = kretprobe_table_lock_ptr(hash);
446 	spin_unlock_irqrestore(hlist_lock, *flags);
447 }
448 
449 void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
450 {
451 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
452 	spin_unlock_irqrestore(hlist_lock, *flags);
453 }
454 
455 /*
456  * This function is called from finish_task_switch when task tk becomes dead,
457  * so that we can recycle any function-return probe instances associated
458  * with this task. These left over instances represent probed functions
459  * that have been called but will never return.
460  */
461 void __kprobes kprobe_flush_task(struct task_struct *tk)
462 {
463 	struct kretprobe_instance *ri;
464 	struct hlist_head *head, empty_rp;
465 	struct hlist_node *node, *tmp;
466 	unsigned long hash, flags = 0;
467 
468 	if (unlikely(!kprobes_initialized))
469 		/* Early boot.  kretprobe_table_locks not yet initialized. */
470 		return;
471 
472 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
473 	head = &kretprobe_inst_table[hash];
474 	kretprobe_table_lock(hash, &flags);
475 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
476 		if (ri->task == tk)
477 			recycle_rp_inst(ri, &empty_rp);
478 	}
479 	kretprobe_table_unlock(hash, &flags);
480 	INIT_HLIST_HEAD(&empty_rp);
481 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
482 		hlist_del(&ri->hlist);
483 		kfree(ri);
484 	}
485 }
486 
487 static inline void free_rp_inst(struct kretprobe *rp)
488 {
489 	struct kretprobe_instance *ri;
490 	struct hlist_node *pos, *next;
491 
492 	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
493 		hlist_del(&ri->hlist);
494 		kfree(ri);
495 	}
496 }
497 
498 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
499 {
500 	unsigned long flags, hash;
501 	struct kretprobe_instance *ri;
502 	struct hlist_node *pos, *next;
503 	struct hlist_head *head;
504 
505 	/* No race here */
506 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
507 		kretprobe_table_lock(hash, &flags);
508 		head = &kretprobe_inst_table[hash];
509 		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
510 			if (ri->rp == rp)
511 				ri->rp = NULL;
512 		}
513 		kretprobe_table_unlock(hash, &flags);
514 	}
515 	free_rp_inst(rp);
516 }
517 
518 /*
519  * Keep all fields in the kprobe consistent
520  */
521 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
522 {
523 	memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
524 	memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
525 }
526 
527 /*
528 * Add the new probe to ap->list. Fail if this is the
529 * second jprobe at the address - two jprobes can't coexist
530 */
531 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
532 {
533 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
534 	if (p->break_handler) {
535 		if (ap->break_handler)
536 			return -EEXIST;
537 		list_add_tail_rcu(&p->list, &ap->list);
538 		ap->break_handler = aggr_break_handler;
539 	} else
540 		list_add_rcu(&p->list, &ap->list);
541 	if (p->post_handler && !ap->post_handler)
542 		ap->post_handler = aggr_post_handler;
543 
544 	if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
545 		ap->flags &= ~KPROBE_FLAG_DISABLED;
546 		if (!kprobes_all_disarmed)
547 			/* Arm the breakpoint again. */
548 			arm_kprobe(ap);
549 	}
550 	return 0;
551 }
552 
553 /*
554  * Fill in the required fields of the "manager kprobe". Replace the
555  * earlier kprobe in the hlist with the manager kprobe
556  */
557 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
558 {
559 	copy_kprobe(p, ap);
560 	flush_insn_slot(ap);
561 	ap->addr = p->addr;
562 	ap->flags = p->flags;
563 	ap->pre_handler = aggr_pre_handler;
564 	ap->fault_handler = aggr_fault_handler;
565 	/* We don't care the kprobe which has gone. */
566 	if (p->post_handler && !kprobe_gone(p))
567 		ap->post_handler = aggr_post_handler;
568 	if (p->break_handler && !kprobe_gone(p))
569 		ap->break_handler = aggr_break_handler;
570 
571 	INIT_LIST_HEAD(&ap->list);
572 	list_add_rcu(&p->list, &ap->list);
573 
574 	hlist_replace_rcu(&p->hlist, &ap->hlist);
575 }
576 
577 /*
578  * This is the second or subsequent kprobe at the address - handle
579  * the intricacies
580  */
581 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
582 					  struct kprobe *p)
583 {
584 	int ret = 0;
585 	struct kprobe *ap = old_p;
586 
587 	if (old_p->pre_handler != aggr_pre_handler) {
588 		/* If old_p is not an aggr_probe, create new aggr_kprobe. */
589 		ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
590 		if (!ap)
591 			return -ENOMEM;
592 		add_aggr_kprobe(ap, old_p);
593 	}
594 
595 	if (kprobe_gone(ap)) {
596 		/*
597 		 * Attempting to insert new probe at the same location that
598 		 * had a probe in the module vaddr area which already
599 		 * freed. So, the instruction slot has already been
600 		 * released. We need a new slot for the new probe.
601 		 */
602 		ret = arch_prepare_kprobe(ap);
603 		if (ret)
604 			/*
605 			 * Even if fail to allocate new slot, don't need to
606 			 * free aggr_probe. It will be used next time, or
607 			 * freed by unregister_kprobe.
608 			 */
609 			return ret;
610 
611 		/*
612 		 * Clear gone flag to prevent allocating new slot again, and
613 		 * set disabled flag because it is not armed yet.
614 		 */
615 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
616 			    | KPROBE_FLAG_DISABLED;
617 	}
618 
619 	copy_kprobe(ap, p);
620 	return add_new_kprobe(ap, p);
621 }
622 
623 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/
624 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
625 {
626 	struct kprobe *kp;
627 
628 	list_for_each_entry_rcu(kp, &p->list, list) {
629 		if (!kprobe_disabled(kp))
630 			/*
631 			 * There is an active probe on the list.
632 			 * We can't disable aggr_kprobe.
633 			 */
634 			return 0;
635 	}
636 	p->flags |= KPROBE_FLAG_DISABLED;
637 	return 1;
638 }
639 
640 static int __kprobes in_kprobes_functions(unsigned long addr)
641 {
642 	struct kprobe_blackpoint *kb;
643 
644 	if (addr >= (unsigned long)__kprobes_text_start &&
645 	    addr < (unsigned long)__kprobes_text_end)
646 		return -EINVAL;
647 	/*
648 	 * If there exists a kprobe_blacklist, verify and
649 	 * fail any probe registration in the prohibited area
650 	 */
651 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
652 		if (kb->start_addr) {
653 			if (addr >= kb->start_addr &&
654 			    addr < (kb->start_addr + kb->range))
655 				return -EINVAL;
656 		}
657 	}
658 	return 0;
659 }
660 
661 /*
662  * If we have a symbol_name argument, look it up and add the offset field
663  * to it. This way, we can specify a relative address to a symbol.
664  */
665 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
666 {
667 	kprobe_opcode_t *addr = p->addr;
668 	if (p->symbol_name) {
669 		if (addr)
670 			return NULL;
671 		kprobe_lookup_name(p->symbol_name, addr);
672 	}
673 
674 	if (!addr)
675 		return NULL;
676 	return (kprobe_opcode_t *)(((char *)addr) + p->offset);
677 }
678 
679 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
680 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
681 {
682 	struct kprobe *old_p, *list_p;
683 
684 	old_p = get_kprobe(p->addr);
685 	if (unlikely(!old_p))
686 		return NULL;
687 
688 	if (p != old_p) {
689 		list_for_each_entry_rcu(list_p, &old_p->list, list)
690 			if (list_p == p)
691 			/* kprobe p is a valid probe */
692 				goto valid;
693 		return NULL;
694 	}
695 valid:
696 	return old_p;
697 }
698 
699 /* Return error if the kprobe is being re-registered */
700 static inline int check_kprobe_rereg(struct kprobe *p)
701 {
702 	int ret = 0;
703 	struct kprobe *old_p;
704 
705 	mutex_lock(&kprobe_mutex);
706 	old_p = __get_valid_kprobe(p);
707 	if (old_p)
708 		ret = -EINVAL;
709 	mutex_unlock(&kprobe_mutex);
710 	return ret;
711 }
712 
713 int __kprobes register_kprobe(struct kprobe *p)
714 {
715 	int ret = 0;
716 	struct kprobe *old_p;
717 	struct module *probed_mod;
718 	kprobe_opcode_t *addr;
719 
720 	addr = kprobe_addr(p);
721 	if (!addr)
722 		return -EINVAL;
723 	p->addr = addr;
724 
725 	ret = check_kprobe_rereg(p);
726 	if (ret)
727 		return ret;
728 
729 	preempt_disable();
730 	if (!kernel_text_address((unsigned long) p->addr) ||
731 	    in_kprobes_functions((unsigned long) p->addr)) {
732 		preempt_enable();
733 		return -EINVAL;
734 	}
735 
736 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
737 	p->flags &= KPROBE_FLAG_DISABLED;
738 
739 	/*
740 	 * Check if are we probing a module.
741 	 */
742 	probed_mod = __module_text_address((unsigned long) p->addr);
743 	if (probed_mod) {
744 		/*
745 		 * We must hold a refcount of the probed module while updating
746 		 * its code to prohibit unexpected unloading.
747 		 */
748 		if (unlikely(!try_module_get(probed_mod))) {
749 			preempt_enable();
750 			return -EINVAL;
751 		}
752 		/*
753 		 * If the module freed .init.text, we couldn't insert
754 		 * kprobes in there.
755 		 */
756 		if (within_module_init((unsigned long)p->addr, probed_mod) &&
757 		    probed_mod->state != MODULE_STATE_COMING) {
758 			module_put(probed_mod);
759 			preempt_enable();
760 			return -EINVAL;
761 		}
762 	}
763 	preempt_enable();
764 
765 	p->nmissed = 0;
766 	INIT_LIST_HEAD(&p->list);
767 	mutex_lock(&kprobe_mutex);
768 	old_p = get_kprobe(p->addr);
769 	if (old_p) {
770 		ret = register_aggr_kprobe(old_p, p);
771 		goto out;
772 	}
773 
774 	mutex_lock(&text_mutex);
775 	ret = arch_prepare_kprobe(p);
776 	if (ret)
777 		goto out_unlock_text;
778 
779 	INIT_HLIST_NODE(&p->hlist);
780 	hlist_add_head_rcu(&p->hlist,
781 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
782 
783 	if (!kprobes_all_disarmed && !kprobe_disabled(p))
784 		arch_arm_kprobe(p);
785 
786 out_unlock_text:
787 	mutex_unlock(&text_mutex);
788 out:
789 	mutex_unlock(&kprobe_mutex);
790 
791 	if (probed_mod)
792 		module_put(probed_mod);
793 
794 	return ret;
795 }
796 EXPORT_SYMBOL_GPL(register_kprobe);
797 
798 /*
799  * Unregister a kprobe without a scheduler synchronization.
800  */
801 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
802 {
803 	struct kprobe *old_p, *list_p;
804 
805 	old_p = __get_valid_kprobe(p);
806 	if (old_p == NULL)
807 		return -EINVAL;
808 
809 	if (old_p == p ||
810 	    (old_p->pre_handler == aggr_pre_handler &&
811 	     list_is_singular(&old_p->list))) {
812 		/*
813 		 * Only probe on the hash list. Disarm only if kprobes are
814 		 * enabled and not gone - otherwise, the breakpoint would
815 		 * already have been removed. We save on flushing icache.
816 		 */
817 		if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
818 			disarm_kprobe(p);
819 		hlist_del_rcu(&old_p->hlist);
820 	} else {
821 		if (p->break_handler && !kprobe_gone(p))
822 			old_p->break_handler = NULL;
823 		if (p->post_handler && !kprobe_gone(p)) {
824 			list_for_each_entry_rcu(list_p, &old_p->list, list) {
825 				if ((list_p != p) && (list_p->post_handler))
826 					goto noclean;
827 			}
828 			old_p->post_handler = NULL;
829 		}
830 noclean:
831 		list_del_rcu(&p->list);
832 		if (!kprobe_disabled(old_p)) {
833 			try_to_disable_aggr_kprobe(old_p);
834 			if (!kprobes_all_disarmed && kprobe_disabled(old_p))
835 				disarm_kprobe(old_p);
836 		}
837 	}
838 	return 0;
839 }
840 
841 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
842 {
843 	struct kprobe *old_p;
844 
845 	if (list_empty(&p->list))
846 		arch_remove_kprobe(p);
847 	else if (list_is_singular(&p->list)) {
848 		/* "p" is the last child of an aggr_kprobe */
849 		old_p = list_entry(p->list.next, struct kprobe, list);
850 		list_del(&p->list);
851 		arch_remove_kprobe(old_p);
852 		kfree(old_p);
853 	}
854 }
855 
856 int __kprobes register_kprobes(struct kprobe **kps, int num)
857 {
858 	int i, ret = 0;
859 
860 	if (num <= 0)
861 		return -EINVAL;
862 	for (i = 0; i < num; i++) {
863 		ret = register_kprobe(kps[i]);
864 		if (ret < 0) {
865 			if (i > 0)
866 				unregister_kprobes(kps, i);
867 			break;
868 		}
869 	}
870 	return ret;
871 }
872 EXPORT_SYMBOL_GPL(register_kprobes);
873 
874 void __kprobes unregister_kprobe(struct kprobe *p)
875 {
876 	unregister_kprobes(&p, 1);
877 }
878 EXPORT_SYMBOL_GPL(unregister_kprobe);
879 
880 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
881 {
882 	int i;
883 
884 	if (num <= 0)
885 		return;
886 	mutex_lock(&kprobe_mutex);
887 	for (i = 0; i < num; i++)
888 		if (__unregister_kprobe_top(kps[i]) < 0)
889 			kps[i]->addr = NULL;
890 	mutex_unlock(&kprobe_mutex);
891 
892 	synchronize_sched();
893 	for (i = 0; i < num; i++)
894 		if (kps[i]->addr)
895 			__unregister_kprobe_bottom(kps[i]);
896 }
897 EXPORT_SYMBOL_GPL(unregister_kprobes);
898 
899 static struct notifier_block kprobe_exceptions_nb = {
900 	.notifier_call = kprobe_exceptions_notify,
901 	.priority = 0x7fffffff /* we need to be notified first */
902 };
903 
904 unsigned long __weak arch_deref_entry_point(void *entry)
905 {
906 	return (unsigned long)entry;
907 }
908 
909 int __kprobes register_jprobes(struct jprobe **jps, int num)
910 {
911 	struct jprobe *jp;
912 	int ret = 0, i;
913 
914 	if (num <= 0)
915 		return -EINVAL;
916 	for (i = 0; i < num; i++) {
917 		unsigned long addr;
918 		jp = jps[i];
919 		addr = arch_deref_entry_point(jp->entry);
920 
921 		if (!kernel_text_address(addr))
922 			ret = -EINVAL;
923 		else {
924 			/* Todo: Verify probepoint is a function entry point */
925 			jp->kp.pre_handler = setjmp_pre_handler;
926 			jp->kp.break_handler = longjmp_break_handler;
927 			ret = register_kprobe(&jp->kp);
928 		}
929 		if (ret < 0) {
930 			if (i > 0)
931 				unregister_jprobes(jps, i);
932 			break;
933 		}
934 	}
935 	return ret;
936 }
937 EXPORT_SYMBOL_GPL(register_jprobes);
938 
939 int __kprobes register_jprobe(struct jprobe *jp)
940 {
941 	return register_jprobes(&jp, 1);
942 }
943 EXPORT_SYMBOL_GPL(register_jprobe);
944 
945 void __kprobes unregister_jprobe(struct jprobe *jp)
946 {
947 	unregister_jprobes(&jp, 1);
948 }
949 EXPORT_SYMBOL_GPL(unregister_jprobe);
950 
951 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
952 {
953 	int i;
954 
955 	if (num <= 0)
956 		return;
957 	mutex_lock(&kprobe_mutex);
958 	for (i = 0; i < num; i++)
959 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
960 			jps[i]->kp.addr = NULL;
961 	mutex_unlock(&kprobe_mutex);
962 
963 	synchronize_sched();
964 	for (i = 0; i < num; i++) {
965 		if (jps[i]->kp.addr)
966 			__unregister_kprobe_bottom(&jps[i]->kp);
967 	}
968 }
969 EXPORT_SYMBOL_GPL(unregister_jprobes);
970 
971 #ifdef CONFIG_KRETPROBES
972 /*
973  * This kprobe pre_handler is registered with every kretprobe. When probe
974  * hits it will set up the return probe.
975  */
976 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
977 					   struct pt_regs *regs)
978 {
979 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
980 	unsigned long hash, flags = 0;
981 	struct kretprobe_instance *ri;
982 
983 	/*TODO: consider to only swap the RA after the last pre_handler fired */
984 	hash = hash_ptr(current, KPROBE_HASH_BITS);
985 	spin_lock_irqsave(&rp->lock, flags);
986 	if (!hlist_empty(&rp->free_instances)) {
987 		ri = hlist_entry(rp->free_instances.first,
988 				struct kretprobe_instance, hlist);
989 		hlist_del(&ri->hlist);
990 		spin_unlock_irqrestore(&rp->lock, flags);
991 
992 		ri->rp = rp;
993 		ri->task = current;
994 
995 		if (rp->entry_handler && rp->entry_handler(ri, regs))
996 			return 0;
997 
998 		arch_prepare_kretprobe(ri, regs);
999 
1000 		/* XXX(hch): why is there no hlist_move_head? */
1001 		INIT_HLIST_NODE(&ri->hlist);
1002 		kretprobe_table_lock(hash, &flags);
1003 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1004 		kretprobe_table_unlock(hash, &flags);
1005 	} else {
1006 		rp->nmissed++;
1007 		spin_unlock_irqrestore(&rp->lock, flags);
1008 	}
1009 	return 0;
1010 }
1011 
1012 int __kprobes register_kretprobe(struct kretprobe *rp)
1013 {
1014 	int ret = 0;
1015 	struct kretprobe_instance *inst;
1016 	int i;
1017 	void *addr;
1018 
1019 	if (kretprobe_blacklist_size) {
1020 		addr = kprobe_addr(&rp->kp);
1021 		if (!addr)
1022 			return -EINVAL;
1023 
1024 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1025 			if (kretprobe_blacklist[i].addr == addr)
1026 				return -EINVAL;
1027 		}
1028 	}
1029 
1030 	rp->kp.pre_handler = pre_handler_kretprobe;
1031 	rp->kp.post_handler = NULL;
1032 	rp->kp.fault_handler = NULL;
1033 	rp->kp.break_handler = NULL;
1034 
1035 	/* Pre-allocate memory for max kretprobe instances */
1036 	if (rp->maxactive <= 0) {
1037 #ifdef CONFIG_PREEMPT
1038 		rp->maxactive = max(10, 2 * num_possible_cpus());
1039 #else
1040 		rp->maxactive = num_possible_cpus();
1041 #endif
1042 	}
1043 	spin_lock_init(&rp->lock);
1044 	INIT_HLIST_HEAD(&rp->free_instances);
1045 	for (i = 0; i < rp->maxactive; i++) {
1046 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1047 			       rp->data_size, GFP_KERNEL);
1048 		if (inst == NULL) {
1049 			free_rp_inst(rp);
1050 			return -ENOMEM;
1051 		}
1052 		INIT_HLIST_NODE(&inst->hlist);
1053 		hlist_add_head(&inst->hlist, &rp->free_instances);
1054 	}
1055 
1056 	rp->nmissed = 0;
1057 	/* Establish function entry probe point */
1058 	ret = register_kprobe(&rp->kp);
1059 	if (ret != 0)
1060 		free_rp_inst(rp);
1061 	return ret;
1062 }
1063 EXPORT_SYMBOL_GPL(register_kretprobe);
1064 
1065 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1066 {
1067 	int ret = 0, i;
1068 
1069 	if (num <= 0)
1070 		return -EINVAL;
1071 	for (i = 0; i < num; i++) {
1072 		ret = register_kretprobe(rps[i]);
1073 		if (ret < 0) {
1074 			if (i > 0)
1075 				unregister_kretprobes(rps, i);
1076 			break;
1077 		}
1078 	}
1079 	return ret;
1080 }
1081 EXPORT_SYMBOL_GPL(register_kretprobes);
1082 
1083 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1084 {
1085 	unregister_kretprobes(&rp, 1);
1086 }
1087 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1088 
1089 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1090 {
1091 	int i;
1092 
1093 	if (num <= 0)
1094 		return;
1095 	mutex_lock(&kprobe_mutex);
1096 	for (i = 0; i < num; i++)
1097 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1098 			rps[i]->kp.addr = NULL;
1099 	mutex_unlock(&kprobe_mutex);
1100 
1101 	synchronize_sched();
1102 	for (i = 0; i < num; i++) {
1103 		if (rps[i]->kp.addr) {
1104 			__unregister_kprobe_bottom(&rps[i]->kp);
1105 			cleanup_rp_inst(rps[i]);
1106 		}
1107 	}
1108 }
1109 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1110 
1111 #else /* CONFIG_KRETPROBES */
1112 int __kprobes register_kretprobe(struct kretprobe *rp)
1113 {
1114 	return -ENOSYS;
1115 }
1116 EXPORT_SYMBOL_GPL(register_kretprobe);
1117 
1118 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1119 {
1120 	return -ENOSYS;
1121 }
1122 EXPORT_SYMBOL_GPL(register_kretprobes);
1123 
1124 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1125 {
1126 }
1127 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1128 
1129 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1130 {
1131 }
1132 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1133 
1134 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1135 					   struct pt_regs *regs)
1136 {
1137 	return 0;
1138 }
1139 
1140 #endif /* CONFIG_KRETPROBES */
1141 
1142 /* Set the kprobe gone and remove its instruction buffer. */
1143 static void __kprobes kill_kprobe(struct kprobe *p)
1144 {
1145 	struct kprobe *kp;
1146 
1147 	p->flags |= KPROBE_FLAG_GONE;
1148 	if (p->pre_handler == aggr_pre_handler) {
1149 		/*
1150 		 * If this is an aggr_kprobe, we have to list all the
1151 		 * chained probes and mark them GONE.
1152 		 */
1153 		list_for_each_entry_rcu(kp, &p->list, list)
1154 			kp->flags |= KPROBE_FLAG_GONE;
1155 		p->post_handler = NULL;
1156 		p->break_handler = NULL;
1157 	}
1158 	/*
1159 	 * Here, we can remove insn_slot safely, because no thread calls
1160 	 * the original probed function (which will be freed soon) any more.
1161 	 */
1162 	arch_remove_kprobe(p);
1163 }
1164 
1165 void __kprobes dump_kprobe(struct kprobe *kp)
1166 {
1167 	printk(KERN_WARNING "Dumping kprobe:\n");
1168 	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1169 	       kp->symbol_name, kp->addr, kp->offset);
1170 }
1171 
1172 /* Module notifier call back, checking kprobes on the module */
1173 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1174 					     unsigned long val, void *data)
1175 {
1176 	struct module *mod = data;
1177 	struct hlist_head *head;
1178 	struct hlist_node *node;
1179 	struct kprobe *p;
1180 	unsigned int i;
1181 	int checkcore = (val == MODULE_STATE_GOING);
1182 
1183 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1184 		return NOTIFY_DONE;
1185 
1186 	/*
1187 	 * When MODULE_STATE_GOING was notified, both of module .text and
1188 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1189 	 * notified, only .init.text section would be freed. We need to
1190 	 * disable kprobes which have been inserted in the sections.
1191 	 */
1192 	mutex_lock(&kprobe_mutex);
1193 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1194 		head = &kprobe_table[i];
1195 		hlist_for_each_entry_rcu(p, node, head, hlist)
1196 			if (within_module_init((unsigned long)p->addr, mod) ||
1197 			    (checkcore &&
1198 			     within_module_core((unsigned long)p->addr, mod))) {
1199 				/*
1200 				 * The vaddr this probe is installed will soon
1201 				 * be vfreed buy not synced to disk. Hence,
1202 				 * disarming the breakpoint isn't needed.
1203 				 */
1204 				kill_kprobe(p);
1205 			}
1206 	}
1207 	mutex_unlock(&kprobe_mutex);
1208 	return NOTIFY_DONE;
1209 }
1210 
1211 static struct notifier_block kprobe_module_nb = {
1212 	.notifier_call = kprobes_module_callback,
1213 	.priority = 0
1214 };
1215 
1216 static int __init init_kprobes(void)
1217 {
1218 	int i, err = 0;
1219 	unsigned long offset = 0, size = 0;
1220 	char *modname, namebuf[128];
1221 	const char *symbol_name;
1222 	void *addr;
1223 	struct kprobe_blackpoint *kb;
1224 
1225 	/* FIXME allocate the probe table, currently defined statically */
1226 	/* initialize all list heads */
1227 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1228 		INIT_HLIST_HEAD(&kprobe_table[i]);
1229 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1230 		spin_lock_init(&(kretprobe_table_locks[i].lock));
1231 	}
1232 
1233 	/*
1234 	 * Lookup and populate the kprobe_blacklist.
1235 	 *
1236 	 * Unlike the kretprobe blacklist, we'll need to determine
1237 	 * the range of addresses that belong to the said functions,
1238 	 * since a kprobe need not necessarily be at the beginning
1239 	 * of a function.
1240 	 */
1241 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1242 		kprobe_lookup_name(kb->name, addr);
1243 		if (!addr)
1244 			continue;
1245 
1246 		kb->start_addr = (unsigned long)addr;
1247 		symbol_name = kallsyms_lookup(kb->start_addr,
1248 				&size, &offset, &modname, namebuf);
1249 		if (!symbol_name)
1250 			kb->range = 0;
1251 		else
1252 			kb->range = size;
1253 	}
1254 
1255 	if (kretprobe_blacklist_size) {
1256 		/* lookup the function address from its name */
1257 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1258 			kprobe_lookup_name(kretprobe_blacklist[i].name,
1259 					   kretprobe_blacklist[i].addr);
1260 			if (!kretprobe_blacklist[i].addr)
1261 				printk("kretprobe: lookup failed: %s\n",
1262 				       kretprobe_blacklist[i].name);
1263 		}
1264 	}
1265 
1266 	/* By default, kprobes are armed */
1267 	kprobes_all_disarmed = false;
1268 
1269 	err = arch_init_kprobes();
1270 	if (!err)
1271 		err = register_die_notifier(&kprobe_exceptions_nb);
1272 	if (!err)
1273 		err = register_module_notifier(&kprobe_module_nb);
1274 
1275 	kprobes_initialized = (err == 0);
1276 
1277 	if (!err)
1278 		init_test_probes();
1279 	return err;
1280 }
1281 
1282 #ifdef CONFIG_DEBUG_FS
1283 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1284 		const char *sym, int offset,char *modname)
1285 {
1286 	char *kprobe_type;
1287 
1288 	if (p->pre_handler == pre_handler_kretprobe)
1289 		kprobe_type = "r";
1290 	else if (p->pre_handler == setjmp_pre_handler)
1291 		kprobe_type = "j";
1292 	else
1293 		kprobe_type = "k";
1294 	if (sym)
1295 		seq_printf(pi, "%p  %s  %s+0x%x  %s %s%s\n",
1296 			p->addr, kprobe_type, sym, offset,
1297 			(modname ? modname : " "),
1298 			(kprobe_gone(p) ? "[GONE]" : ""),
1299 			((kprobe_disabled(p) && !kprobe_gone(p)) ?
1300 			 "[DISABLED]" : ""));
1301 	else
1302 		seq_printf(pi, "%p  %s  %p %s%s\n",
1303 			p->addr, kprobe_type, p->addr,
1304 			(kprobe_gone(p) ? "[GONE]" : ""),
1305 			((kprobe_disabled(p) && !kprobe_gone(p)) ?
1306 			 "[DISABLED]" : ""));
1307 }
1308 
1309 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1310 {
1311 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1312 }
1313 
1314 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1315 {
1316 	(*pos)++;
1317 	if (*pos >= KPROBE_TABLE_SIZE)
1318 		return NULL;
1319 	return pos;
1320 }
1321 
1322 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1323 {
1324 	/* Nothing to do */
1325 }
1326 
1327 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1328 {
1329 	struct hlist_head *head;
1330 	struct hlist_node *node;
1331 	struct kprobe *p, *kp;
1332 	const char *sym = NULL;
1333 	unsigned int i = *(loff_t *) v;
1334 	unsigned long offset = 0;
1335 	char *modname, namebuf[128];
1336 
1337 	head = &kprobe_table[i];
1338 	preempt_disable();
1339 	hlist_for_each_entry_rcu(p, node, head, hlist) {
1340 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1341 					&offset, &modname, namebuf);
1342 		if (p->pre_handler == aggr_pre_handler) {
1343 			list_for_each_entry_rcu(kp, &p->list, list)
1344 				report_probe(pi, kp, sym, offset, modname);
1345 		} else
1346 			report_probe(pi, p, sym, offset, modname);
1347 	}
1348 	preempt_enable();
1349 	return 0;
1350 }
1351 
1352 static const struct seq_operations kprobes_seq_ops = {
1353 	.start = kprobe_seq_start,
1354 	.next  = kprobe_seq_next,
1355 	.stop  = kprobe_seq_stop,
1356 	.show  = show_kprobe_addr
1357 };
1358 
1359 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1360 {
1361 	return seq_open(filp, &kprobes_seq_ops);
1362 }
1363 
1364 static const struct file_operations debugfs_kprobes_operations = {
1365 	.open           = kprobes_open,
1366 	.read           = seq_read,
1367 	.llseek         = seq_lseek,
1368 	.release        = seq_release,
1369 };
1370 
1371 /* Disable one kprobe */
1372 int __kprobes disable_kprobe(struct kprobe *kp)
1373 {
1374 	int ret = 0;
1375 	struct kprobe *p;
1376 
1377 	mutex_lock(&kprobe_mutex);
1378 
1379 	/* Check whether specified probe is valid. */
1380 	p = __get_valid_kprobe(kp);
1381 	if (unlikely(p == NULL)) {
1382 		ret = -EINVAL;
1383 		goto out;
1384 	}
1385 
1386 	/* If the probe is already disabled (or gone), just return */
1387 	if (kprobe_disabled(kp))
1388 		goto out;
1389 
1390 	kp->flags |= KPROBE_FLAG_DISABLED;
1391 	if (p != kp)
1392 		/* When kp != p, p is always enabled. */
1393 		try_to_disable_aggr_kprobe(p);
1394 
1395 	if (!kprobes_all_disarmed && kprobe_disabled(p))
1396 		disarm_kprobe(p);
1397 out:
1398 	mutex_unlock(&kprobe_mutex);
1399 	return ret;
1400 }
1401 EXPORT_SYMBOL_GPL(disable_kprobe);
1402 
1403 /* Enable one kprobe */
1404 int __kprobes enable_kprobe(struct kprobe *kp)
1405 {
1406 	int ret = 0;
1407 	struct kprobe *p;
1408 
1409 	mutex_lock(&kprobe_mutex);
1410 
1411 	/* Check whether specified probe is valid. */
1412 	p = __get_valid_kprobe(kp);
1413 	if (unlikely(p == NULL)) {
1414 		ret = -EINVAL;
1415 		goto out;
1416 	}
1417 
1418 	if (kprobe_gone(kp)) {
1419 		/* This kprobe has gone, we couldn't enable it. */
1420 		ret = -EINVAL;
1421 		goto out;
1422 	}
1423 
1424 	if (!kprobes_all_disarmed && kprobe_disabled(p))
1425 		arm_kprobe(p);
1426 
1427 	p->flags &= ~KPROBE_FLAG_DISABLED;
1428 	if (p != kp)
1429 		kp->flags &= ~KPROBE_FLAG_DISABLED;
1430 out:
1431 	mutex_unlock(&kprobe_mutex);
1432 	return ret;
1433 }
1434 EXPORT_SYMBOL_GPL(enable_kprobe);
1435 
1436 static void __kprobes arm_all_kprobes(void)
1437 {
1438 	struct hlist_head *head;
1439 	struct hlist_node *node;
1440 	struct kprobe *p;
1441 	unsigned int i;
1442 
1443 	mutex_lock(&kprobe_mutex);
1444 
1445 	/* If kprobes are armed, just return */
1446 	if (!kprobes_all_disarmed)
1447 		goto already_enabled;
1448 
1449 	mutex_lock(&text_mutex);
1450 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1451 		head = &kprobe_table[i];
1452 		hlist_for_each_entry_rcu(p, node, head, hlist)
1453 			if (!kprobe_disabled(p))
1454 				arch_arm_kprobe(p);
1455 	}
1456 	mutex_unlock(&text_mutex);
1457 
1458 	kprobes_all_disarmed = false;
1459 	printk(KERN_INFO "Kprobes globally enabled\n");
1460 
1461 already_enabled:
1462 	mutex_unlock(&kprobe_mutex);
1463 	return;
1464 }
1465 
1466 static void __kprobes disarm_all_kprobes(void)
1467 {
1468 	struct hlist_head *head;
1469 	struct hlist_node *node;
1470 	struct kprobe *p;
1471 	unsigned int i;
1472 
1473 	mutex_lock(&kprobe_mutex);
1474 
1475 	/* If kprobes are already disarmed, just return */
1476 	if (kprobes_all_disarmed)
1477 		goto already_disabled;
1478 
1479 	kprobes_all_disarmed = true;
1480 	printk(KERN_INFO "Kprobes globally disabled\n");
1481 	mutex_lock(&text_mutex);
1482 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1483 		head = &kprobe_table[i];
1484 		hlist_for_each_entry_rcu(p, node, head, hlist) {
1485 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1486 				arch_disarm_kprobe(p);
1487 		}
1488 	}
1489 
1490 	mutex_unlock(&text_mutex);
1491 	mutex_unlock(&kprobe_mutex);
1492 	/* Allow all currently running kprobes to complete */
1493 	synchronize_sched();
1494 	return;
1495 
1496 already_disabled:
1497 	mutex_unlock(&kprobe_mutex);
1498 	return;
1499 }
1500 
1501 /*
1502  * XXX: The debugfs bool file interface doesn't allow for callbacks
1503  * when the bool state is switched. We can reuse that facility when
1504  * available
1505  */
1506 static ssize_t read_enabled_file_bool(struct file *file,
1507 	       char __user *user_buf, size_t count, loff_t *ppos)
1508 {
1509 	char buf[3];
1510 
1511 	if (!kprobes_all_disarmed)
1512 		buf[0] = '1';
1513 	else
1514 		buf[0] = '0';
1515 	buf[1] = '\n';
1516 	buf[2] = 0x00;
1517 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1518 }
1519 
1520 static ssize_t write_enabled_file_bool(struct file *file,
1521 	       const char __user *user_buf, size_t count, loff_t *ppos)
1522 {
1523 	char buf[32];
1524 	int buf_size;
1525 
1526 	buf_size = min(count, (sizeof(buf)-1));
1527 	if (copy_from_user(buf, user_buf, buf_size))
1528 		return -EFAULT;
1529 
1530 	switch (buf[0]) {
1531 	case 'y':
1532 	case 'Y':
1533 	case '1':
1534 		arm_all_kprobes();
1535 		break;
1536 	case 'n':
1537 	case 'N':
1538 	case '0':
1539 		disarm_all_kprobes();
1540 		break;
1541 	}
1542 
1543 	return count;
1544 }
1545 
1546 static const struct file_operations fops_kp = {
1547 	.read =         read_enabled_file_bool,
1548 	.write =        write_enabled_file_bool,
1549 };
1550 
1551 static int __kprobes debugfs_kprobe_init(void)
1552 {
1553 	struct dentry *dir, *file;
1554 	unsigned int value = 1;
1555 
1556 	dir = debugfs_create_dir("kprobes", NULL);
1557 	if (!dir)
1558 		return -ENOMEM;
1559 
1560 	file = debugfs_create_file("list", 0444, dir, NULL,
1561 				&debugfs_kprobes_operations);
1562 	if (!file) {
1563 		debugfs_remove(dir);
1564 		return -ENOMEM;
1565 	}
1566 
1567 	file = debugfs_create_file("enabled", 0600, dir,
1568 					&value, &fops_kp);
1569 	if (!file) {
1570 		debugfs_remove(dir);
1571 		return -ENOMEM;
1572 	}
1573 
1574 	return 0;
1575 }
1576 
1577 late_initcall(debugfs_kprobe_init);
1578 #endif /* CONFIG_DEBUG_FS */
1579 
1580 module_init(init_kprobes);
1581 
1582 /* defined in arch/.../kernel/kprobes.c */
1583 EXPORT_SYMBOL_GPL(jprobe_return);
1584