1 /* 2 * Kernel Probes (KProbes) 3 * kernel/kprobes.c 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * Copyright (C) IBM Corporation, 2002, 2004 20 * 21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 22 * Probes initial implementation (includes suggestions from 23 * Rusty Russell). 24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 25 * hlists and exceptions notifier as suggested by Andi Kleen. 26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 27 * interface to access function arguments. 28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 29 * exceptions notifier to be first on the priority list. 30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 32 * <prasanna@in.ibm.com> added function-return probes. 33 */ 34 #include <linux/kprobes.h> 35 #include <linux/hash.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/stddef.h> 39 #include <linux/export.h> 40 #include <linux/moduleloader.h> 41 #include <linux/kallsyms.h> 42 #include <linux/freezer.h> 43 #include <linux/seq_file.h> 44 #include <linux/debugfs.h> 45 #include <linux/sysctl.h> 46 #include <linux/kdebug.h> 47 #include <linux/memory.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 #include <linux/jump_label.h> 51 52 #include <asm/sections.h> 53 #include <asm/cacheflush.h> 54 #include <asm/errno.h> 55 #include <linux/uaccess.h> 56 57 #define KPROBE_HASH_BITS 6 58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 59 60 61 static int kprobes_initialized; 62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 64 65 /* NOTE: change this value only with kprobe_mutex held */ 66 static bool kprobes_all_disarmed; 67 68 /* This protects kprobe_table and optimizing_list */ 69 static DEFINE_MUTEX(kprobe_mutex); 70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 71 static struct { 72 raw_spinlock_t lock ____cacheline_aligned_in_smp; 73 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 74 75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, 76 unsigned int __unused) 77 { 78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); 79 } 80 81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 82 { 83 return &(kretprobe_table_locks[hash].lock); 84 } 85 86 /* Blacklist -- list of struct kprobe_blacklist_entry */ 87 static LIST_HEAD(kprobe_blacklist); 88 89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 90 /* 91 * kprobe->ainsn.insn points to the copy of the instruction to be 92 * single-stepped. x86_64, POWER4 and above have no-exec support and 93 * stepping on the instruction on a vmalloced/kmalloced/data page 94 * is a recipe for disaster 95 */ 96 struct kprobe_insn_page { 97 struct list_head list; 98 kprobe_opcode_t *insns; /* Page of instruction slots */ 99 struct kprobe_insn_cache *cache; 100 int nused; 101 int ngarbage; 102 char slot_used[]; 103 }; 104 105 #define KPROBE_INSN_PAGE_SIZE(slots) \ 106 (offsetof(struct kprobe_insn_page, slot_used) + \ 107 (sizeof(char) * (slots))) 108 109 static int slots_per_page(struct kprobe_insn_cache *c) 110 { 111 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 112 } 113 114 enum kprobe_slot_state { 115 SLOT_CLEAN = 0, 116 SLOT_DIRTY = 1, 117 SLOT_USED = 2, 118 }; 119 120 void __weak *alloc_insn_page(void) 121 { 122 return module_alloc(PAGE_SIZE); 123 } 124 125 void __weak free_insn_page(void *page) 126 { 127 module_memfree(page); 128 } 129 130 struct kprobe_insn_cache kprobe_insn_slots = { 131 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 132 .alloc = alloc_insn_page, 133 .free = free_insn_page, 134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 135 .insn_size = MAX_INSN_SIZE, 136 .nr_garbage = 0, 137 }; 138 static int collect_garbage_slots(struct kprobe_insn_cache *c); 139 140 /** 141 * __get_insn_slot() - Find a slot on an executable page for an instruction. 142 * We allocate an executable page if there's no room on existing ones. 143 */ 144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 145 { 146 struct kprobe_insn_page *kip; 147 kprobe_opcode_t *slot = NULL; 148 149 /* Since the slot array is not protected by rcu, we need a mutex */ 150 mutex_lock(&c->mutex); 151 retry: 152 rcu_read_lock(); 153 list_for_each_entry_rcu(kip, &c->pages, list) { 154 if (kip->nused < slots_per_page(c)) { 155 int i; 156 for (i = 0; i < slots_per_page(c); i++) { 157 if (kip->slot_used[i] == SLOT_CLEAN) { 158 kip->slot_used[i] = SLOT_USED; 159 kip->nused++; 160 slot = kip->insns + (i * c->insn_size); 161 rcu_read_unlock(); 162 goto out; 163 } 164 } 165 /* kip->nused is broken. Fix it. */ 166 kip->nused = slots_per_page(c); 167 WARN_ON(1); 168 } 169 } 170 rcu_read_unlock(); 171 172 /* If there are any garbage slots, collect it and try again. */ 173 if (c->nr_garbage && collect_garbage_slots(c) == 0) 174 goto retry; 175 176 /* All out of space. Need to allocate a new page. */ 177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 178 if (!kip) 179 goto out; 180 181 /* 182 * Use module_alloc so this page is within +/- 2GB of where the 183 * kernel image and loaded module images reside. This is required 184 * so x86_64 can correctly handle the %rip-relative fixups. 185 */ 186 kip->insns = c->alloc(); 187 if (!kip->insns) { 188 kfree(kip); 189 goto out; 190 } 191 INIT_LIST_HEAD(&kip->list); 192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 193 kip->slot_used[0] = SLOT_USED; 194 kip->nused = 1; 195 kip->ngarbage = 0; 196 kip->cache = c; 197 list_add_rcu(&kip->list, &c->pages); 198 slot = kip->insns; 199 out: 200 mutex_unlock(&c->mutex); 201 return slot; 202 } 203 204 /* Return 1 if all garbages are collected, otherwise 0. */ 205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx) 206 { 207 kip->slot_used[idx] = SLOT_CLEAN; 208 kip->nused--; 209 if (kip->nused == 0) { 210 /* 211 * Page is no longer in use. Free it unless 212 * it's the last one. We keep the last one 213 * so as not to have to set it up again the 214 * next time somebody inserts a probe. 215 */ 216 if (!list_is_singular(&kip->list)) { 217 list_del_rcu(&kip->list); 218 synchronize_rcu(); 219 kip->cache->free(kip->insns); 220 kfree(kip); 221 } 222 return 1; 223 } 224 return 0; 225 } 226 227 static int collect_garbage_slots(struct kprobe_insn_cache *c) 228 { 229 struct kprobe_insn_page *kip, *next; 230 231 /* Ensure no-one is interrupted on the garbages */ 232 synchronize_sched(); 233 234 list_for_each_entry_safe(kip, next, &c->pages, list) { 235 int i; 236 if (kip->ngarbage == 0) 237 continue; 238 kip->ngarbage = 0; /* we will collect all garbages */ 239 for (i = 0; i < slots_per_page(c); i++) { 240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 241 break; 242 } 243 } 244 c->nr_garbage = 0; 245 return 0; 246 } 247 248 void __free_insn_slot(struct kprobe_insn_cache *c, 249 kprobe_opcode_t *slot, int dirty) 250 { 251 struct kprobe_insn_page *kip; 252 long idx; 253 254 mutex_lock(&c->mutex); 255 rcu_read_lock(); 256 list_for_each_entry_rcu(kip, &c->pages, list) { 257 idx = ((long)slot - (long)kip->insns) / 258 (c->insn_size * sizeof(kprobe_opcode_t)); 259 if (idx >= 0 && idx < slots_per_page(c)) 260 goto out; 261 } 262 /* Could not find this slot. */ 263 WARN_ON(1); 264 kip = NULL; 265 out: 266 rcu_read_unlock(); 267 /* Mark and sweep: this may sleep */ 268 if (kip) { 269 /* Check double free */ 270 WARN_ON(kip->slot_used[idx] != SLOT_USED); 271 if (dirty) { 272 kip->slot_used[idx] = SLOT_DIRTY; 273 kip->ngarbage++; 274 if (++c->nr_garbage > slots_per_page(c)) 275 collect_garbage_slots(c); 276 } else { 277 collect_one_slot(kip, idx); 278 } 279 } 280 mutex_unlock(&c->mutex); 281 } 282 283 /* 284 * Check given address is on the page of kprobe instruction slots. 285 * This will be used for checking whether the address on a stack 286 * is on a text area or not. 287 */ 288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 289 { 290 struct kprobe_insn_page *kip; 291 bool ret = false; 292 293 rcu_read_lock(); 294 list_for_each_entry_rcu(kip, &c->pages, list) { 295 if (addr >= (unsigned long)kip->insns && 296 addr < (unsigned long)kip->insns + PAGE_SIZE) { 297 ret = true; 298 break; 299 } 300 } 301 rcu_read_unlock(); 302 303 return ret; 304 } 305 306 #ifdef CONFIG_OPTPROBES 307 /* For optimized_kprobe buffer */ 308 struct kprobe_insn_cache kprobe_optinsn_slots = { 309 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 310 .alloc = alloc_insn_page, 311 .free = free_insn_page, 312 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 313 /* .insn_size is initialized later */ 314 .nr_garbage = 0, 315 }; 316 #endif 317 #endif 318 319 /* We have preemption disabled.. so it is safe to use __ versions */ 320 static inline void set_kprobe_instance(struct kprobe *kp) 321 { 322 __this_cpu_write(kprobe_instance, kp); 323 } 324 325 static inline void reset_kprobe_instance(void) 326 { 327 __this_cpu_write(kprobe_instance, NULL); 328 } 329 330 /* 331 * This routine is called either: 332 * - under the kprobe_mutex - during kprobe_[un]register() 333 * OR 334 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 335 */ 336 struct kprobe *get_kprobe(void *addr) 337 { 338 struct hlist_head *head; 339 struct kprobe *p; 340 341 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 342 hlist_for_each_entry_rcu(p, head, hlist) { 343 if (p->addr == addr) 344 return p; 345 } 346 347 return NULL; 348 } 349 NOKPROBE_SYMBOL(get_kprobe); 350 351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 352 353 /* Return true if the kprobe is an aggregator */ 354 static inline int kprobe_aggrprobe(struct kprobe *p) 355 { 356 return p->pre_handler == aggr_pre_handler; 357 } 358 359 /* Return true(!0) if the kprobe is unused */ 360 static inline int kprobe_unused(struct kprobe *p) 361 { 362 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 363 list_empty(&p->list); 364 } 365 366 /* 367 * Keep all fields in the kprobe consistent 368 */ 369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 370 { 371 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 372 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 373 } 374 375 #ifdef CONFIG_OPTPROBES 376 /* NOTE: change this value only with kprobe_mutex held */ 377 static bool kprobes_allow_optimization; 378 379 /* 380 * Call all pre_handler on the list, but ignores its return value. 381 * This must be called from arch-dep optimized caller. 382 */ 383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 384 { 385 struct kprobe *kp; 386 387 list_for_each_entry_rcu(kp, &p->list, list) { 388 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 389 set_kprobe_instance(kp); 390 kp->pre_handler(kp, regs); 391 } 392 reset_kprobe_instance(); 393 } 394 } 395 NOKPROBE_SYMBOL(opt_pre_handler); 396 397 /* Free optimized instructions and optimized_kprobe */ 398 static void free_aggr_kprobe(struct kprobe *p) 399 { 400 struct optimized_kprobe *op; 401 402 op = container_of(p, struct optimized_kprobe, kp); 403 arch_remove_optimized_kprobe(op); 404 arch_remove_kprobe(p); 405 kfree(op); 406 } 407 408 /* Return true(!0) if the kprobe is ready for optimization. */ 409 static inline int kprobe_optready(struct kprobe *p) 410 { 411 struct optimized_kprobe *op; 412 413 if (kprobe_aggrprobe(p)) { 414 op = container_of(p, struct optimized_kprobe, kp); 415 return arch_prepared_optinsn(&op->optinsn); 416 } 417 418 return 0; 419 } 420 421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 422 static inline int kprobe_disarmed(struct kprobe *p) 423 { 424 struct optimized_kprobe *op; 425 426 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 427 if (!kprobe_aggrprobe(p)) 428 return kprobe_disabled(p); 429 430 op = container_of(p, struct optimized_kprobe, kp); 431 432 return kprobe_disabled(p) && list_empty(&op->list); 433 } 434 435 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 436 static int kprobe_queued(struct kprobe *p) 437 { 438 struct optimized_kprobe *op; 439 440 if (kprobe_aggrprobe(p)) { 441 op = container_of(p, struct optimized_kprobe, kp); 442 if (!list_empty(&op->list)) 443 return 1; 444 } 445 return 0; 446 } 447 448 /* 449 * Return an optimized kprobe whose optimizing code replaces 450 * instructions including addr (exclude breakpoint). 451 */ 452 static struct kprobe *get_optimized_kprobe(unsigned long addr) 453 { 454 int i; 455 struct kprobe *p = NULL; 456 struct optimized_kprobe *op; 457 458 /* Don't check i == 0, since that is a breakpoint case. */ 459 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 460 p = get_kprobe((void *)(addr - i)); 461 462 if (p && kprobe_optready(p)) { 463 op = container_of(p, struct optimized_kprobe, kp); 464 if (arch_within_optimized_kprobe(op, addr)) 465 return p; 466 } 467 468 return NULL; 469 } 470 471 /* Optimization staging list, protected by kprobe_mutex */ 472 static LIST_HEAD(optimizing_list); 473 static LIST_HEAD(unoptimizing_list); 474 static LIST_HEAD(freeing_list); 475 476 static void kprobe_optimizer(struct work_struct *work); 477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 478 #define OPTIMIZE_DELAY 5 479 480 /* 481 * Optimize (replace a breakpoint with a jump) kprobes listed on 482 * optimizing_list. 483 */ 484 static void do_optimize_kprobes(void) 485 { 486 /* 487 * The optimization/unoptimization refers online_cpus via 488 * stop_machine() and cpu-hotplug modifies online_cpus. 489 * And same time, text_mutex will be held in cpu-hotplug and here. 490 * This combination can cause a deadlock (cpu-hotplug try to lock 491 * text_mutex but stop_machine can not be done because online_cpus 492 * has been changed) 493 * To avoid this deadlock, caller must have locked cpu hotplug 494 * for preventing cpu-hotplug outside of text_mutex locking. 495 */ 496 lockdep_assert_cpus_held(); 497 498 /* Optimization never be done when disarmed */ 499 if (kprobes_all_disarmed || !kprobes_allow_optimization || 500 list_empty(&optimizing_list)) 501 return; 502 503 mutex_lock(&text_mutex); 504 arch_optimize_kprobes(&optimizing_list); 505 mutex_unlock(&text_mutex); 506 } 507 508 /* 509 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 510 * if need) kprobes listed on unoptimizing_list. 511 */ 512 static void do_unoptimize_kprobes(void) 513 { 514 struct optimized_kprobe *op, *tmp; 515 516 /* See comment in do_optimize_kprobes() */ 517 lockdep_assert_cpus_held(); 518 519 /* Unoptimization must be done anytime */ 520 if (list_empty(&unoptimizing_list)) 521 return; 522 523 mutex_lock(&text_mutex); 524 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 525 /* Loop free_list for disarming */ 526 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 527 /* Disarm probes if marked disabled */ 528 if (kprobe_disabled(&op->kp)) 529 arch_disarm_kprobe(&op->kp); 530 if (kprobe_unused(&op->kp)) { 531 /* 532 * Remove unused probes from hash list. After waiting 533 * for synchronization, these probes are reclaimed. 534 * (reclaiming is done by do_free_cleaned_kprobes.) 535 */ 536 hlist_del_rcu(&op->kp.hlist); 537 } else 538 list_del_init(&op->list); 539 } 540 mutex_unlock(&text_mutex); 541 } 542 543 /* Reclaim all kprobes on the free_list */ 544 static void do_free_cleaned_kprobes(void) 545 { 546 struct optimized_kprobe *op, *tmp; 547 548 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 549 BUG_ON(!kprobe_unused(&op->kp)); 550 list_del_init(&op->list); 551 free_aggr_kprobe(&op->kp); 552 } 553 } 554 555 /* Start optimizer after OPTIMIZE_DELAY passed */ 556 static void kick_kprobe_optimizer(void) 557 { 558 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 559 } 560 561 /* Kprobe jump optimizer */ 562 static void kprobe_optimizer(struct work_struct *work) 563 { 564 mutex_lock(&kprobe_mutex); 565 cpus_read_lock(); 566 /* Lock modules while optimizing kprobes */ 567 mutex_lock(&module_mutex); 568 569 /* 570 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 571 * kprobes before waiting for quiesence period. 572 */ 573 do_unoptimize_kprobes(); 574 575 /* 576 * Step 2: Wait for quiesence period to ensure all potentially 577 * preempted tasks to have normally scheduled. Because optprobe 578 * may modify multiple instructions, there is a chance that Nth 579 * instruction is preempted. In that case, such tasks can return 580 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. 581 * Note that on non-preemptive kernel, this is transparently converted 582 * to synchronoze_sched() to wait for all interrupts to have completed. 583 */ 584 synchronize_rcu_tasks(); 585 586 /* Step 3: Optimize kprobes after quiesence period */ 587 do_optimize_kprobes(); 588 589 /* Step 4: Free cleaned kprobes after quiesence period */ 590 do_free_cleaned_kprobes(); 591 592 mutex_unlock(&module_mutex); 593 cpus_read_unlock(); 594 mutex_unlock(&kprobe_mutex); 595 596 /* Step 5: Kick optimizer again if needed */ 597 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 598 kick_kprobe_optimizer(); 599 } 600 601 /* Wait for completing optimization and unoptimization */ 602 void wait_for_kprobe_optimizer(void) 603 { 604 mutex_lock(&kprobe_mutex); 605 606 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 607 mutex_unlock(&kprobe_mutex); 608 609 /* this will also make optimizing_work execute immmediately */ 610 flush_delayed_work(&optimizing_work); 611 /* @optimizing_work might not have been queued yet, relax */ 612 cpu_relax(); 613 614 mutex_lock(&kprobe_mutex); 615 } 616 617 mutex_unlock(&kprobe_mutex); 618 } 619 620 /* Optimize kprobe if p is ready to be optimized */ 621 static void optimize_kprobe(struct kprobe *p) 622 { 623 struct optimized_kprobe *op; 624 625 /* Check if the kprobe is disabled or not ready for optimization. */ 626 if (!kprobe_optready(p) || !kprobes_allow_optimization || 627 (kprobe_disabled(p) || kprobes_all_disarmed)) 628 return; 629 630 /* Both of break_handler and post_handler are not supported. */ 631 if (p->break_handler || p->post_handler) 632 return; 633 634 op = container_of(p, struct optimized_kprobe, kp); 635 636 /* Check there is no other kprobes at the optimized instructions */ 637 if (arch_check_optimized_kprobe(op) < 0) 638 return; 639 640 /* Check if it is already optimized. */ 641 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) 642 return; 643 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 644 645 if (!list_empty(&op->list)) 646 /* This is under unoptimizing. Just dequeue the probe */ 647 list_del_init(&op->list); 648 else { 649 list_add(&op->list, &optimizing_list); 650 kick_kprobe_optimizer(); 651 } 652 } 653 654 /* Short cut to direct unoptimizing */ 655 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 656 { 657 lockdep_assert_cpus_held(); 658 arch_unoptimize_kprobe(op); 659 if (kprobe_disabled(&op->kp)) 660 arch_disarm_kprobe(&op->kp); 661 } 662 663 /* Unoptimize a kprobe if p is optimized */ 664 static void unoptimize_kprobe(struct kprobe *p, bool force) 665 { 666 struct optimized_kprobe *op; 667 668 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 669 return; /* This is not an optprobe nor optimized */ 670 671 op = container_of(p, struct optimized_kprobe, kp); 672 if (!kprobe_optimized(p)) { 673 /* Unoptimized or unoptimizing case */ 674 if (force && !list_empty(&op->list)) { 675 /* 676 * Only if this is unoptimizing kprobe and forced, 677 * forcibly unoptimize it. (No need to unoptimize 678 * unoptimized kprobe again :) 679 */ 680 list_del_init(&op->list); 681 force_unoptimize_kprobe(op); 682 } 683 return; 684 } 685 686 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 687 if (!list_empty(&op->list)) { 688 /* Dequeue from the optimization queue */ 689 list_del_init(&op->list); 690 return; 691 } 692 /* Optimized kprobe case */ 693 if (force) 694 /* Forcibly update the code: this is a special case */ 695 force_unoptimize_kprobe(op); 696 else { 697 list_add(&op->list, &unoptimizing_list); 698 kick_kprobe_optimizer(); 699 } 700 } 701 702 /* Cancel unoptimizing for reusing */ 703 static void reuse_unused_kprobe(struct kprobe *ap) 704 { 705 struct optimized_kprobe *op; 706 707 BUG_ON(!kprobe_unused(ap)); 708 /* 709 * Unused kprobe MUST be on the way of delayed unoptimizing (means 710 * there is still a relative jump) and disabled. 711 */ 712 op = container_of(ap, struct optimized_kprobe, kp); 713 if (unlikely(list_empty(&op->list))) 714 printk(KERN_WARNING "Warning: found a stray unused " 715 "aggrprobe@%p\n", ap->addr); 716 /* Enable the probe again */ 717 ap->flags &= ~KPROBE_FLAG_DISABLED; 718 /* Optimize it again (remove from op->list) */ 719 BUG_ON(!kprobe_optready(ap)); 720 optimize_kprobe(ap); 721 } 722 723 /* Remove optimized instructions */ 724 static void kill_optimized_kprobe(struct kprobe *p) 725 { 726 struct optimized_kprobe *op; 727 728 op = container_of(p, struct optimized_kprobe, kp); 729 if (!list_empty(&op->list)) 730 /* Dequeue from the (un)optimization queue */ 731 list_del_init(&op->list); 732 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 733 734 if (kprobe_unused(p)) { 735 /* Enqueue if it is unused */ 736 list_add(&op->list, &freeing_list); 737 /* 738 * Remove unused probes from the hash list. After waiting 739 * for synchronization, this probe is reclaimed. 740 * (reclaiming is done by do_free_cleaned_kprobes().) 741 */ 742 hlist_del_rcu(&op->kp.hlist); 743 } 744 745 /* Don't touch the code, because it is already freed. */ 746 arch_remove_optimized_kprobe(op); 747 } 748 749 static inline 750 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) 751 { 752 if (!kprobe_ftrace(p)) 753 arch_prepare_optimized_kprobe(op, p); 754 } 755 756 /* Try to prepare optimized instructions */ 757 static void prepare_optimized_kprobe(struct kprobe *p) 758 { 759 struct optimized_kprobe *op; 760 761 op = container_of(p, struct optimized_kprobe, kp); 762 __prepare_optimized_kprobe(op, p); 763 } 764 765 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 766 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 767 { 768 struct optimized_kprobe *op; 769 770 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 771 if (!op) 772 return NULL; 773 774 INIT_LIST_HEAD(&op->list); 775 op->kp.addr = p->addr; 776 __prepare_optimized_kprobe(op, p); 777 778 return &op->kp; 779 } 780 781 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 782 783 /* 784 * Prepare an optimized_kprobe and optimize it 785 * NOTE: p must be a normal registered kprobe 786 */ 787 static void try_to_optimize_kprobe(struct kprobe *p) 788 { 789 struct kprobe *ap; 790 struct optimized_kprobe *op; 791 792 /* Impossible to optimize ftrace-based kprobe */ 793 if (kprobe_ftrace(p)) 794 return; 795 796 /* For preparing optimization, jump_label_text_reserved() is called */ 797 cpus_read_lock(); 798 jump_label_lock(); 799 mutex_lock(&text_mutex); 800 801 ap = alloc_aggr_kprobe(p); 802 if (!ap) 803 goto out; 804 805 op = container_of(ap, struct optimized_kprobe, kp); 806 if (!arch_prepared_optinsn(&op->optinsn)) { 807 /* If failed to setup optimizing, fallback to kprobe */ 808 arch_remove_optimized_kprobe(op); 809 kfree(op); 810 goto out; 811 } 812 813 init_aggr_kprobe(ap, p); 814 optimize_kprobe(ap); /* This just kicks optimizer thread */ 815 816 out: 817 mutex_unlock(&text_mutex); 818 jump_label_unlock(); 819 cpus_read_unlock(); 820 } 821 822 #ifdef CONFIG_SYSCTL 823 static void optimize_all_kprobes(void) 824 { 825 struct hlist_head *head; 826 struct kprobe *p; 827 unsigned int i; 828 829 mutex_lock(&kprobe_mutex); 830 /* If optimization is already allowed, just return */ 831 if (kprobes_allow_optimization) 832 goto out; 833 834 cpus_read_lock(); 835 kprobes_allow_optimization = true; 836 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 837 head = &kprobe_table[i]; 838 hlist_for_each_entry_rcu(p, head, hlist) 839 if (!kprobe_disabled(p)) 840 optimize_kprobe(p); 841 } 842 cpus_read_unlock(); 843 printk(KERN_INFO "Kprobes globally optimized\n"); 844 out: 845 mutex_unlock(&kprobe_mutex); 846 } 847 848 static void unoptimize_all_kprobes(void) 849 { 850 struct hlist_head *head; 851 struct kprobe *p; 852 unsigned int i; 853 854 mutex_lock(&kprobe_mutex); 855 /* If optimization is already prohibited, just return */ 856 if (!kprobes_allow_optimization) { 857 mutex_unlock(&kprobe_mutex); 858 return; 859 } 860 861 cpus_read_lock(); 862 kprobes_allow_optimization = false; 863 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 864 head = &kprobe_table[i]; 865 hlist_for_each_entry_rcu(p, head, hlist) { 866 if (!kprobe_disabled(p)) 867 unoptimize_kprobe(p, false); 868 } 869 } 870 cpus_read_unlock(); 871 mutex_unlock(&kprobe_mutex); 872 873 /* Wait for unoptimizing completion */ 874 wait_for_kprobe_optimizer(); 875 printk(KERN_INFO "Kprobes globally unoptimized\n"); 876 } 877 878 static DEFINE_MUTEX(kprobe_sysctl_mutex); 879 int sysctl_kprobes_optimization; 880 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 881 void __user *buffer, size_t *length, 882 loff_t *ppos) 883 { 884 int ret; 885 886 mutex_lock(&kprobe_sysctl_mutex); 887 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 888 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 889 890 if (sysctl_kprobes_optimization) 891 optimize_all_kprobes(); 892 else 893 unoptimize_all_kprobes(); 894 mutex_unlock(&kprobe_sysctl_mutex); 895 896 return ret; 897 } 898 #endif /* CONFIG_SYSCTL */ 899 900 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 901 static void __arm_kprobe(struct kprobe *p) 902 { 903 struct kprobe *_p; 904 905 /* Check collision with other optimized kprobes */ 906 _p = get_optimized_kprobe((unsigned long)p->addr); 907 if (unlikely(_p)) 908 /* Fallback to unoptimized kprobe */ 909 unoptimize_kprobe(_p, true); 910 911 arch_arm_kprobe(p); 912 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 913 } 914 915 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 916 static void __disarm_kprobe(struct kprobe *p, bool reopt) 917 { 918 struct kprobe *_p; 919 920 /* Try to unoptimize */ 921 unoptimize_kprobe(p, kprobes_all_disarmed); 922 923 if (!kprobe_queued(p)) { 924 arch_disarm_kprobe(p); 925 /* If another kprobe was blocked, optimize it. */ 926 _p = get_optimized_kprobe((unsigned long)p->addr); 927 if (unlikely(_p) && reopt) 928 optimize_kprobe(_p); 929 } 930 /* TODO: reoptimize others after unoptimized this probe */ 931 } 932 933 #else /* !CONFIG_OPTPROBES */ 934 935 #define optimize_kprobe(p) do {} while (0) 936 #define unoptimize_kprobe(p, f) do {} while (0) 937 #define kill_optimized_kprobe(p) do {} while (0) 938 #define prepare_optimized_kprobe(p) do {} while (0) 939 #define try_to_optimize_kprobe(p) do {} while (0) 940 #define __arm_kprobe(p) arch_arm_kprobe(p) 941 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 942 #define kprobe_disarmed(p) kprobe_disabled(p) 943 #define wait_for_kprobe_optimizer() do {} while (0) 944 945 /* There should be no unused kprobes can be reused without optimization */ 946 static void reuse_unused_kprobe(struct kprobe *ap) 947 { 948 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 949 BUG_ON(kprobe_unused(ap)); 950 } 951 952 static void free_aggr_kprobe(struct kprobe *p) 953 { 954 arch_remove_kprobe(p); 955 kfree(p); 956 } 957 958 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 959 { 960 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 961 } 962 #endif /* CONFIG_OPTPROBES */ 963 964 #ifdef CONFIG_KPROBES_ON_FTRACE 965 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 966 .func = kprobe_ftrace_handler, 967 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 968 }; 969 static int kprobe_ftrace_enabled; 970 971 /* Must ensure p->addr is really on ftrace */ 972 static int prepare_kprobe(struct kprobe *p) 973 { 974 if (!kprobe_ftrace(p)) 975 return arch_prepare_kprobe(p); 976 977 return arch_prepare_kprobe_ftrace(p); 978 } 979 980 /* Caller must lock kprobe_mutex */ 981 static int arm_kprobe_ftrace(struct kprobe *p) 982 { 983 int ret = 0; 984 985 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 986 (unsigned long)p->addr, 0, 0); 987 if (ret) { 988 pr_debug("Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret); 989 return ret; 990 } 991 992 if (kprobe_ftrace_enabled == 0) { 993 ret = register_ftrace_function(&kprobe_ftrace_ops); 994 if (ret) { 995 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret); 996 goto err_ftrace; 997 } 998 } 999 1000 kprobe_ftrace_enabled++; 1001 return ret; 1002 1003 err_ftrace: 1004 /* 1005 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a 1006 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental 1007 * empty filter_hash which would undesirably trace all functions. 1008 */ 1009 ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0); 1010 return ret; 1011 } 1012 1013 /* Caller must lock kprobe_mutex */ 1014 static int disarm_kprobe_ftrace(struct kprobe *p) 1015 { 1016 int ret = 0; 1017 1018 if (kprobe_ftrace_enabled == 1) { 1019 ret = unregister_ftrace_function(&kprobe_ftrace_ops); 1020 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret)) 1021 return ret; 1022 } 1023 1024 kprobe_ftrace_enabled--; 1025 1026 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 1027 (unsigned long)p->addr, 1, 0); 1028 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret); 1029 return ret; 1030 } 1031 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1032 #define prepare_kprobe(p) arch_prepare_kprobe(p) 1033 #define arm_kprobe_ftrace(p) (-ENODEV) 1034 #define disarm_kprobe_ftrace(p) (-ENODEV) 1035 #endif 1036 1037 /* Arm a kprobe with text_mutex */ 1038 static int arm_kprobe(struct kprobe *kp) 1039 { 1040 if (unlikely(kprobe_ftrace(kp))) 1041 return arm_kprobe_ftrace(kp); 1042 1043 cpus_read_lock(); 1044 mutex_lock(&text_mutex); 1045 __arm_kprobe(kp); 1046 mutex_unlock(&text_mutex); 1047 cpus_read_unlock(); 1048 1049 return 0; 1050 } 1051 1052 /* Disarm a kprobe with text_mutex */ 1053 static int disarm_kprobe(struct kprobe *kp, bool reopt) 1054 { 1055 if (unlikely(kprobe_ftrace(kp))) 1056 return disarm_kprobe_ftrace(kp); 1057 1058 cpus_read_lock(); 1059 mutex_lock(&text_mutex); 1060 __disarm_kprobe(kp, reopt); 1061 mutex_unlock(&text_mutex); 1062 cpus_read_unlock(); 1063 1064 return 0; 1065 } 1066 1067 /* 1068 * Aggregate handlers for multiple kprobes support - these handlers 1069 * take care of invoking the individual kprobe handlers on p->list 1070 */ 1071 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1072 { 1073 struct kprobe *kp; 1074 1075 list_for_each_entry_rcu(kp, &p->list, list) { 1076 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1077 set_kprobe_instance(kp); 1078 if (kp->pre_handler(kp, regs)) 1079 return 1; 1080 } 1081 reset_kprobe_instance(); 1082 } 1083 return 0; 1084 } 1085 NOKPROBE_SYMBOL(aggr_pre_handler); 1086 1087 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1088 unsigned long flags) 1089 { 1090 struct kprobe *kp; 1091 1092 list_for_each_entry_rcu(kp, &p->list, list) { 1093 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1094 set_kprobe_instance(kp); 1095 kp->post_handler(kp, regs, flags); 1096 reset_kprobe_instance(); 1097 } 1098 } 1099 } 1100 NOKPROBE_SYMBOL(aggr_post_handler); 1101 1102 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 1103 int trapnr) 1104 { 1105 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1106 1107 /* 1108 * if we faulted "during" the execution of a user specified 1109 * probe handler, invoke just that probe's fault handler 1110 */ 1111 if (cur && cur->fault_handler) { 1112 if (cur->fault_handler(cur, regs, trapnr)) 1113 return 1; 1114 } 1115 return 0; 1116 } 1117 NOKPROBE_SYMBOL(aggr_fault_handler); 1118 1119 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs) 1120 { 1121 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1122 int ret = 0; 1123 1124 if (cur && cur->break_handler) { 1125 if (cur->break_handler(cur, regs)) 1126 ret = 1; 1127 } 1128 reset_kprobe_instance(); 1129 return ret; 1130 } 1131 NOKPROBE_SYMBOL(aggr_break_handler); 1132 1133 /* Walks the list and increments nmissed count for multiprobe case */ 1134 void kprobes_inc_nmissed_count(struct kprobe *p) 1135 { 1136 struct kprobe *kp; 1137 if (!kprobe_aggrprobe(p)) { 1138 p->nmissed++; 1139 } else { 1140 list_for_each_entry_rcu(kp, &p->list, list) 1141 kp->nmissed++; 1142 } 1143 return; 1144 } 1145 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1146 1147 void recycle_rp_inst(struct kretprobe_instance *ri, 1148 struct hlist_head *head) 1149 { 1150 struct kretprobe *rp = ri->rp; 1151 1152 /* remove rp inst off the rprobe_inst_table */ 1153 hlist_del(&ri->hlist); 1154 INIT_HLIST_NODE(&ri->hlist); 1155 if (likely(rp)) { 1156 raw_spin_lock(&rp->lock); 1157 hlist_add_head(&ri->hlist, &rp->free_instances); 1158 raw_spin_unlock(&rp->lock); 1159 } else 1160 /* Unregistering */ 1161 hlist_add_head(&ri->hlist, head); 1162 } 1163 NOKPROBE_SYMBOL(recycle_rp_inst); 1164 1165 void kretprobe_hash_lock(struct task_struct *tsk, 1166 struct hlist_head **head, unsigned long *flags) 1167 __acquires(hlist_lock) 1168 { 1169 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1170 raw_spinlock_t *hlist_lock; 1171 1172 *head = &kretprobe_inst_table[hash]; 1173 hlist_lock = kretprobe_table_lock_ptr(hash); 1174 raw_spin_lock_irqsave(hlist_lock, *flags); 1175 } 1176 NOKPROBE_SYMBOL(kretprobe_hash_lock); 1177 1178 static void kretprobe_table_lock(unsigned long hash, 1179 unsigned long *flags) 1180 __acquires(hlist_lock) 1181 { 1182 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1183 raw_spin_lock_irqsave(hlist_lock, *flags); 1184 } 1185 NOKPROBE_SYMBOL(kretprobe_table_lock); 1186 1187 void kretprobe_hash_unlock(struct task_struct *tsk, 1188 unsigned long *flags) 1189 __releases(hlist_lock) 1190 { 1191 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1192 raw_spinlock_t *hlist_lock; 1193 1194 hlist_lock = kretprobe_table_lock_ptr(hash); 1195 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1196 } 1197 NOKPROBE_SYMBOL(kretprobe_hash_unlock); 1198 1199 static void kretprobe_table_unlock(unsigned long hash, 1200 unsigned long *flags) 1201 __releases(hlist_lock) 1202 { 1203 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1204 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1205 } 1206 NOKPROBE_SYMBOL(kretprobe_table_unlock); 1207 1208 /* 1209 * This function is called from finish_task_switch when task tk becomes dead, 1210 * so that we can recycle any function-return probe instances associated 1211 * with this task. These left over instances represent probed functions 1212 * that have been called but will never return. 1213 */ 1214 void kprobe_flush_task(struct task_struct *tk) 1215 { 1216 struct kretprobe_instance *ri; 1217 struct hlist_head *head, empty_rp; 1218 struct hlist_node *tmp; 1219 unsigned long hash, flags = 0; 1220 1221 if (unlikely(!kprobes_initialized)) 1222 /* Early boot. kretprobe_table_locks not yet initialized. */ 1223 return; 1224 1225 INIT_HLIST_HEAD(&empty_rp); 1226 hash = hash_ptr(tk, KPROBE_HASH_BITS); 1227 head = &kretprobe_inst_table[hash]; 1228 kretprobe_table_lock(hash, &flags); 1229 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 1230 if (ri->task == tk) 1231 recycle_rp_inst(ri, &empty_rp); 1232 } 1233 kretprobe_table_unlock(hash, &flags); 1234 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 1235 hlist_del(&ri->hlist); 1236 kfree(ri); 1237 } 1238 } 1239 NOKPROBE_SYMBOL(kprobe_flush_task); 1240 1241 static inline void free_rp_inst(struct kretprobe *rp) 1242 { 1243 struct kretprobe_instance *ri; 1244 struct hlist_node *next; 1245 1246 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) { 1247 hlist_del(&ri->hlist); 1248 kfree(ri); 1249 } 1250 } 1251 1252 static void cleanup_rp_inst(struct kretprobe *rp) 1253 { 1254 unsigned long flags, hash; 1255 struct kretprobe_instance *ri; 1256 struct hlist_node *next; 1257 struct hlist_head *head; 1258 1259 /* No race here */ 1260 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 1261 kretprobe_table_lock(hash, &flags); 1262 head = &kretprobe_inst_table[hash]; 1263 hlist_for_each_entry_safe(ri, next, head, hlist) { 1264 if (ri->rp == rp) 1265 ri->rp = NULL; 1266 } 1267 kretprobe_table_unlock(hash, &flags); 1268 } 1269 free_rp_inst(rp); 1270 } 1271 NOKPROBE_SYMBOL(cleanup_rp_inst); 1272 1273 /* 1274 * Add the new probe to ap->list. Fail if this is the 1275 * second jprobe at the address - two jprobes can't coexist 1276 */ 1277 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1278 { 1279 BUG_ON(kprobe_gone(ap) || kprobe_gone(p)); 1280 1281 if (p->break_handler || p->post_handler) 1282 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1283 1284 if (p->break_handler) { 1285 if (ap->break_handler) 1286 return -EEXIST; 1287 list_add_tail_rcu(&p->list, &ap->list); 1288 ap->break_handler = aggr_break_handler; 1289 } else 1290 list_add_rcu(&p->list, &ap->list); 1291 if (p->post_handler && !ap->post_handler) 1292 ap->post_handler = aggr_post_handler; 1293 1294 return 0; 1295 } 1296 1297 /* 1298 * Fill in the required fields of the "manager kprobe". Replace the 1299 * earlier kprobe in the hlist with the manager kprobe 1300 */ 1301 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1302 { 1303 /* Copy p's insn slot to ap */ 1304 copy_kprobe(p, ap); 1305 flush_insn_slot(ap); 1306 ap->addr = p->addr; 1307 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1308 ap->pre_handler = aggr_pre_handler; 1309 ap->fault_handler = aggr_fault_handler; 1310 /* We don't care the kprobe which has gone. */ 1311 if (p->post_handler && !kprobe_gone(p)) 1312 ap->post_handler = aggr_post_handler; 1313 if (p->break_handler && !kprobe_gone(p)) 1314 ap->break_handler = aggr_break_handler; 1315 1316 INIT_LIST_HEAD(&ap->list); 1317 INIT_HLIST_NODE(&ap->hlist); 1318 1319 list_add_rcu(&p->list, &ap->list); 1320 hlist_replace_rcu(&p->hlist, &ap->hlist); 1321 } 1322 1323 /* 1324 * This is the second or subsequent kprobe at the address - handle 1325 * the intricacies 1326 */ 1327 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1328 { 1329 int ret = 0; 1330 struct kprobe *ap = orig_p; 1331 1332 cpus_read_lock(); 1333 1334 /* For preparing optimization, jump_label_text_reserved() is called */ 1335 jump_label_lock(); 1336 mutex_lock(&text_mutex); 1337 1338 if (!kprobe_aggrprobe(orig_p)) { 1339 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1340 ap = alloc_aggr_kprobe(orig_p); 1341 if (!ap) { 1342 ret = -ENOMEM; 1343 goto out; 1344 } 1345 init_aggr_kprobe(ap, orig_p); 1346 } else if (kprobe_unused(ap)) 1347 /* This probe is going to die. Rescue it */ 1348 reuse_unused_kprobe(ap); 1349 1350 if (kprobe_gone(ap)) { 1351 /* 1352 * Attempting to insert new probe at the same location that 1353 * had a probe in the module vaddr area which already 1354 * freed. So, the instruction slot has already been 1355 * released. We need a new slot for the new probe. 1356 */ 1357 ret = arch_prepare_kprobe(ap); 1358 if (ret) 1359 /* 1360 * Even if fail to allocate new slot, don't need to 1361 * free aggr_probe. It will be used next time, or 1362 * freed by unregister_kprobe. 1363 */ 1364 goto out; 1365 1366 /* Prepare optimized instructions if possible. */ 1367 prepare_optimized_kprobe(ap); 1368 1369 /* 1370 * Clear gone flag to prevent allocating new slot again, and 1371 * set disabled flag because it is not armed yet. 1372 */ 1373 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1374 | KPROBE_FLAG_DISABLED; 1375 } 1376 1377 /* Copy ap's insn slot to p */ 1378 copy_kprobe(ap, p); 1379 ret = add_new_kprobe(ap, p); 1380 1381 out: 1382 mutex_unlock(&text_mutex); 1383 jump_label_unlock(); 1384 cpus_read_unlock(); 1385 1386 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1387 ap->flags &= ~KPROBE_FLAG_DISABLED; 1388 if (!kprobes_all_disarmed) { 1389 /* Arm the breakpoint again. */ 1390 ret = arm_kprobe(ap); 1391 if (ret) { 1392 ap->flags |= KPROBE_FLAG_DISABLED; 1393 list_del_rcu(&p->list); 1394 synchronize_sched(); 1395 } 1396 } 1397 } 1398 return ret; 1399 } 1400 1401 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1402 { 1403 /* The __kprobes marked functions and entry code must not be probed */ 1404 return addr >= (unsigned long)__kprobes_text_start && 1405 addr < (unsigned long)__kprobes_text_end; 1406 } 1407 1408 bool within_kprobe_blacklist(unsigned long addr) 1409 { 1410 struct kprobe_blacklist_entry *ent; 1411 1412 if (arch_within_kprobe_blacklist(addr)) 1413 return true; 1414 /* 1415 * If there exists a kprobe_blacklist, verify and 1416 * fail any probe registration in the prohibited area 1417 */ 1418 list_for_each_entry(ent, &kprobe_blacklist, list) { 1419 if (addr >= ent->start_addr && addr < ent->end_addr) 1420 return true; 1421 } 1422 1423 return false; 1424 } 1425 1426 /* 1427 * If we have a symbol_name argument, look it up and add the offset field 1428 * to it. This way, we can specify a relative address to a symbol. 1429 * This returns encoded errors if it fails to look up symbol or invalid 1430 * combination of parameters. 1431 */ 1432 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr, 1433 const char *symbol_name, unsigned int offset) 1434 { 1435 if ((symbol_name && addr) || (!symbol_name && !addr)) 1436 goto invalid; 1437 1438 if (symbol_name) { 1439 addr = kprobe_lookup_name(symbol_name, offset); 1440 if (!addr) 1441 return ERR_PTR(-ENOENT); 1442 } 1443 1444 addr = (kprobe_opcode_t *)(((char *)addr) + offset); 1445 if (addr) 1446 return addr; 1447 1448 invalid: 1449 return ERR_PTR(-EINVAL); 1450 } 1451 1452 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1453 { 1454 return _kprobe_addr(p->addr, p->symbol_name, p->offset); 1455 } 1456 1457 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1458 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1459 { 1460 struct kprobe *ap, *list_p; 1461 1462 ap = get_kprobe(p->addr); 1463 if (unlikely(!ap)) 1464 return NULL; 1465 1466 if (p != ap) { 1467 list_for_each_entry_rcu(list_p, &ap->list, list) 1468 if (list_p == p) 1469 /* kprobe p is a valid probe */ 1470 goto valid; 1471 return NULL; 1472 } 1473 valid: 1474 return ap; 1475 } 1476 1477 /* Return error if the kprobe is being re-registered */ 1478 static inline int check_kprobe_rereg(struct kprobe *p) 1479 { 1480 int ret = 0; 1481 1482 mutex_lock(&kprobe_mutex); 1483 if (__get_valid_kprobe(p)) 1484 ret = -EINVAL; 1485 mutex_unlock(&kprobe_mutex); 1486 1487 return ret; 1488 } 1489 1490 int __weak arch_check_ftrace_location(struct kprobe *p) 1491 { 1492 unsigned long ftrace_addr; 1493 1494 ftrace_addr = ftrace_location((unsigned long)p->addr); 1495 if (ftrace_addr) { 1496 #ifdef CONFIG_KPROBES_ON_FTRACE 1497 /* Given address is not on the instruction boundary */ 1498 if ((unsigned long)p->addr != ftrace_addr) 1499 return -EILSEQ; 1500 p->flags |= KPROBE_FLAG_FTRACE; 1501 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1502 return -EINVAL; 1503 #endif 1504 } 1505 return 0; 1506 } 1507 1508 static int check_kprobe_address_safe(struct kprobe *p, 1509 struct module **probed_mod) 1510 { 1511 int ret; 1512 1513 ret = arch_check_ftrace_location(p); 1514 if (ret) 1515 return ret; 1516 jump_label_lock(); 1517 preempt_disable(); 1518 1519 /* Ensure it is not in reserved area nor out of text */ 1520 if (!kernel_text_address((unsigned long) p->addr) || 1521 within_kprobe_blacklist((unsigned long) p->addr) || 1522 jump_label_text_reserved(p->addr, p->addr)) { 1523 ret = -EINVAL; 1524 goto out; 1525 } 1526 1527 /* Check if are we probing a module */ 1528 *probed_mod = __module_text_address((unsigned long) p->addr); 1529 if (*probed_mod) { 1530 /* 1531 * We must hold a refcount of the probed module while updating 1532 * its code to prohibit unexpected unloading. 1533 */ 1534 if (unlikely(!try_module_get(*probed_mod))) { 1535 ret = -ENOENT; 1536 goto out; 1537 } 1538 1539 /* 1540 * If the module freed .init.text, we couldn't insert 1541 * kprobes in there. 1542 */ 1543 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1544 (*probed_mod)->state != MODULE_STATE_COMING) { 1545 module_put(*probed_mod); 1546 *probed_mod = NULL; 1547 ret = -ENOENT; 1548 } 1549 } 1550 out: 1551 preempt_enable(); 1552 jump_label_unlock(); 1553 1554 return ret; 1555 } 1556 1557 int register_kprobe(struct kprobe *p) 1558 { 1559 int ret; 1560 struct kprobe *old_p; 1561 struct module *probed_mod; 1562 kprobe_opcode_t *addr; 1563 1564 /* Adjust probe address from symbol */ 1565 addr = kprobe_addr(p); 1566 if (IS_ERR(addr)) 1567 return PTR_ERR(addr); 1568 p->addr = addr; 1569 1570 ret = check_kprobe_rereg(p); 1571 if (ret) 1572 return ret; 1573 1574 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1575 p->flags &= KPROBE_FLAG_DISABLED; 1576 p->nmissed = 0; 1577 INIT_LIST_HEAD(&p->list); 1578 1579 ret = check_kprobe_address_safe(p, &probed_mod); 1580 if (ret) 1581 return ret; 1582 1583 mutex_lock(&kprobe_mutex); 1584 1585 old_p = get_kprobe(p->addr); 1586 if (old_p) { 1587 /* Since this may unoptimize old_p, locking text_mutex. */ 1588 ret = register_aggr_kprobe(old_p, p); 1589 goto out; 1590 } 1591 1592 cpus_read_lock(); 1593 /* Prevent text modification */ 1594 mutex_lock(&text_mutex); 1595 ret = prepare_kprobe(p); 1596 mutex_unlock(&text_mutex); 1597 cpus_read_unlock(); 1598 if (ret) 1599 goto out; 1600 1601 INIT_HLIST_NODE(&p->hlist); 1602 hlist_add_head_rcu(&p->hlist, 1603 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1604 1605 if (!kprobes_all_disarmed && !kprobe_disabled(p)) { 1606 ret = arm_kprobe(p); 1607 if (ret) { 1608 hlist_del_rcu(&p->hlist); 1609 synchronize_sched(); 1610 goto out; 1611 } 1612 } 1613 1614 /* Try to optimize kprobe */ 1615 try_to_optimize_kprobe(p); 1616 out: 1617 mutex_unlock(&kprobe_mutex); 1618 1619 if (probed_mod) 1620 module_put(probed_mod); 1621 1622 return ret; 1623 } 1624 EXPORT_SYMBOL_GPL(register_kprobe); 1625 1626 /* Check if all probes on the aggrprobe are disabled */ 1627 static int aggr_kprobe_disabled(struct kprobe *ap) 1628 { 1629 struct kprobe *kp; 1630 1631 list_for_each_entry_rcu(kp, &ap->list, list) 1632 if (!kprobe_disabled(kp)) 1633 /* 1634 * There is an active probe on the list. 1635 * We can't disable this ap. 1636 */ 1637 return 0; 1638 1639 return 1; 1640 } 1641 1642 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1643 static struct kprobe *__disable_kprobe(struct kprobe *p) 1644 { 1645 struct kprobe *orig_p; 1646 int ret; 1647 1648 /* Get an original kprobe for return */ 1649 orig_p = __get_valid_kprobe(p); 1650 if (unlikely(orig_p == NULL)) 1651 return ERR_PTR(-EINVAL); 1652 1653 if (!kprobe_disabled(p)) { 1654 /* Disable probe if it is a child probe */ 1655 if (p != orig_p) 1656 p->flags |= KPROBE_FLAG_DISABLED; 1657 1658 /* Try to disarm and disable this/parent probe */ 1659 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1660 /* 1661 * If kprobes_all_disarmed is set, orig_p 1662 * should have already been disarmed, so 1663 * skip unneed disarming process. 1664 */ 1665 if (!kprobes_all_disarmed) { 1666 ret = disarm_kprobe(orig_p, true); 1667 if (ret) { 1668 p->flags &= ~KPROBE_FLAG_DISABLED; 1669 return ERR_PTR(ret); 1670 } 1671 } 1672 orig_p->flags |= KPROBE_FLAG_DISABLED; 1673 } 1674 } 1675 1676 return orig_p; 1677 } 1678 1679 /* 1680 * Unregister a kprobe without a scheduler synchronization. 1681 */ 1682 static int __unregister_kprobe_top(struct kprobe *p) 1683 { 1684 struct kprobe *ap, *list_p; 1685 1686 /* Disable kprobe. This will disarm it if needed. */ 1687 ap = __disable_kprobe(p); 1688 if (IS_ERR(ap)) 1689 return PTR_ERR(ap); 1690 1691 if (ap == p) 1692 /* 1693 * This probe is an independent(and non-optimized) kprobe 1694 * (not an aggrprobe). Remove from the hash list. 1695 */ 1696 goto disarmed; 1697 1698 /* Following process expects this probe is an aggrprobe */ 1699 WARN_ON(!kprobe_aggrprobe(ap)); 1700 1701 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1702 /* 1703 * !disarmed could be happen if the probe is under delayed 1704 * unoptimizing. 1705 */ 1706 goto disarmed; 1707 else { 1708 /* If disabling probe has special handlers, update aggrprobe */ 1709 if (p->break_handler && !kprobe_gone(p)) 1710 ap->break_handler = NULL; 1711 if (p->post_handler && !kprobe_gone(p)) { 1712 list_for_each_entry_rcu(list_p, &ap->list, list) { 1713 if ((list_p != p) && (list_p->post_handler)) 1714 goto noclean; 1715 } 1716 ap->post_handler = NULL; 1717 } 1718 noclean: 1719 /* 1720 * Remove from the aggrprobe: this path will do nothing in 1721 * __unregister_kprobe_bottom(). 1722 */ 1723 list_del_rcu(&p->list); 1724 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1725 /* 1726 * Try to optimize this probe again, because post 1727 * handler may have been changed. 1728 */ 1729 optimize_kprobe(ap); 1730 } 1731 return 0; 1732 1733 disarmed: 1734 BUG_ON(!kprobe_disarmed(ap)); 1735 hlist_del_rcu(&ap->hlist); 1736 return 0; 1737 } 1738 1739 static void __unregister_kprobe_bottom(struct kprobe *p) 1740 { 1741 struct kprobe *ap; 1742 1743 if (list_empty(&p->list)) 1744 /* This is an independent kprobe */ 1745 arch_remove_kprobe(p); 1746 else if (list_is_singular(&p->list)) { 1747 /* This is the last child of an aggrprobe */ 1748 ap = list_entry(p->list.next, struct kprobe, list); 1749 list_del(&p->list); 1750 free_aggr_kprobe(ap); 1751 } 1752 /* Otherwise, do nothing. */ 1753 } 1754 1755 int register_kprobes(struct kprobe **kps, int num) 1756 { 1757 int i, ret = 0; 1758 1759 if (num <= 0) 1760 return -EINVAL; 1761 for (i = 0; i < num; i++) { 1762 ret = register_kprobe(kps[i]); 1763 if (ret < 0) { 1764 if (i > 0) 1765 unregister_kprobes(kps, i); 1766 break; 1767 } 1768 } 1769 return ret; 1770 } 1771 EXPORT_SYMBOL_GPL(register_kprobes); 1772 1773 void unregister_kprobe(struct kprobe *p) 1774 { 1775 unregister_kprobes(&p, 1); 1776 } 1777 EXPORT_SYMBOL_GPL(unregister_kprobe); 1778 1779 void unregister_kprobes(struct kprobe **kps, int num) 1780 { 1781 int i; 1782 1783 if (num <= 0) 1784 return; 1785 mutex_lock(&kprobe_mutex); 1786 for (i = 0; i < num; i++) 1787 if (__unregister_kprobe_top(kps[i]) < 0) 1788 kps[i]->addr = NULL; 1789 mutex_unlock(&kprobe_mutex); 1790 1791 synchronize_sched(); 1792 for (i = 0; i < num; i++) 1793 if (kps[i]->addr) 1794 __unregister_kprobe_bottom(kps[i]); 1795 } 1796 EXPORT_SYMBOL_GPL(unregister_kprobes); 1797 1798 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1799 unsigned long val, void *data) 1800 { 1801 return NOTIFY_DONE; 1802 } 1803 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1804 1805 static struct notifier_block kprobe_exceptions_nb = { 1806 .notifier_call = kprobe_exceptions_notify, 1807 .priority = 0x7fffffff /* we need to be notified first */ 1808 }; 1809 1810 unsigned long __weak arch_deref_entry_point(void *entry) 1811 { 1812 return (unsigned long)entry; 1813 } 1814 1815 #if 0 1816 int register_jprobes(struct jprobe **jps, int num) 1817 { 1818 int ret = 0, i; 1819 1820 if (num <= 0) 1821 return -EINVAL; 1822 1823 for (i = 0; i < num; i++) { 1824 ret = register_jprobe(jps[i]); 1825 1826 if (ret < 0) { 1827 if (i > 0) 1828 unregister_jprobes(jps, i); 1829 break; 1830 } 1831 } 1832 1833 return ret; 1834 } 1835 EXPORT_SYMBOL_GPL(register_jprobes); 1836 1837 int register_jprobe(struct jprobe *jp) 1838 { 1839 unsigned long addr, offset; 1840 struct kprobe *kp = &jp->kp; 1841 1842 /* 1843 * Verify probepoint as well as the jprobe handler are 1844 * valid function entry points. 1845 */ 1846 addr = arch_deref_entry_point(jp->entry); 1847 1848 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0 && 1849 kprobe_on_func_entry(kp->addr, kp->symbol_name, kp->offset)) { 1850 kp->pre_handler = setjmp_pre_handler; 1851 kp->break_handler = longjmp_break_handler; 1852 return register_kprobe(kp); 1853 } 1854 1855 return -EINVAL; 1856 } 1857 EXPORT_SYMBOL_GPL(register_jprobe); 1858 1859 void unregister_jprobe(struct jprobe *jp) 1860 { 1861 unregister_jprobes(&jp, 1); 1862 } 1863 EXPORT_SYMBOL_GPL(unregister_jprobe); 1864 1865 void unregister_jprobes(struct jprobe **jps, int num) 1866 { 1867 int i; 1868 1869 if (num <= 0) 1870 return; 1871 mutex_lock(&kprobe_mutex); 1872 for (i = 0; i < num; i++) 1873 if (__unregister_kprobe_top(&jps[i]->kp) < 0) 1874 jps[i]->kp.addr = NULL; 1875 mutex_unlock(&kprobe_mutex); 1876 1877 synchronize_sched(); 1878 for (i = 0; i < num; i++) { 1879 if (jps[i]->kp.addr) 1880 __unregister_kprobe_bottom(&jps[i]->kp); 1881 } 1882 } 1883 EXPORT_SYMBOL_GPL(unregister_jprobes); 1884 #endif 1885 1886 #ifdef CONFIG_KRETPROBES 1887 /* 1888 * This kprobe pre_handler is registered with every kretprobe. When probe 1889 * hits it will set up the return probe. 1890 */ 1891 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 1892 { 1893 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1894 unsigned long hash, flags = 0; 1895 struct kretprobe_instance *ri; 1896 1897 /* 1898 * To avoid deadlocks, prohibit return probing in NMI contexts, 1899 * just skip the probe and increase the (inexact) 'nmissed' 1900 * statistical counter, so that the user is informed that 1901 * something happened: 1902 */ 1903 if (unlikely(in_nmi())) { 1904 rp->nmissed++; 1905 return 0; 1906 } 1907 1908 /* TODO: consider to only swap the RA after the last pre_handler fired */ 1909 hash = hash_ptr(current, KPROBE_HASH_BITS); 1910 raw_spin_lock_irqsave(&rp->lock, flags); 1911 if (!hlist_empty(&rp->free_instances)) { 1912 ri = hlist_entry(rp->free_instances.first, 1913 struct kretprobe_instance, hlist); 1914 hlist_del(&ri->hlist); 1915 raw_spin_unlock_irqrestore(&rp->lock, flags); 1916 1917 ri->rp = rp; 1918 ri->task = current; 1919 1920 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 1921 raw_spin_lock_irqsave(&rp->lock, flags); 1922 hlist_add_head(&ri->hlist, &rp->free_instances); 1923 raw_spin_unlock_irqrestore(&rp->lock, flags); 1924 return 0; 1925 } 1926 1927 arch_prepare_kretprobe(ri, regs); 1928 1929 /* XXX(hch): why is there no hlist_move_head? */ 1930 INIT_HLIST_NODE(&ri->hlist); 1931 kretprobe_table_lock(hash, &flags); 1932 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 1933 kretprobe_table_unlock(hash, &flags); 1934 } else { 1935 rp->nmissed++; 1936 raw_spin_unlock_irqrestore(&rp->lock, flags); 1937 } 1938 return 0; 1939 } 1940 NOKPROBE_SYMBOL(pre_handler_kretprobe); 1941 1942 bool __weak arch_kprobe_on_func_entry(unsigned long offset) 1943 { 1944 return !offset; 1945 } 1946 1947 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 1948 { 1949 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset); 1950 1951 if (IS_ERR(kp_addr)) 1952 return false; 1953 1954 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) || 1955 !arch_kprobe_on_func_entry(offset)) 1956 return false; 1957 1958 return true; 1959 } 1960 1961 int register_kretprobe(struct kretprobe *rp) 1962 { 1963 int ret = 0; 1964 struct kretprobe_instance *inst; 1965 int i; 1966 void *addr; 1967 1968 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset)) 1969 return -EINVAL; 1970 1971 if (kretprobe_blacklist_size) { 1972 addr = kprobe_addr(&rp->kp); 1973 if (IS_ERR(addr)) 1974 return PTR_ERR(addr); 1975 1976 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1977 if (kretprobe_blacklist[i].addr == addr) 1978 return -EINVAL; 1979 } 1980 } 1981 1982 rp->kp.pre_handler = pre_handler_kretprobe; 1983 rp->kp.post_handler = NULL; 1984 rp->kp.fault_handler = NULL; 1985 rp->kp.break_handler = NULL; 1986 1987 /* Pre-allocate memory for max kretprobe instances */ 1988 if (rp->maxactive <= 0) { 1989 #ifdef CONFIG_PREEMPT 1990 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 1991 #else 1992 rp->maxactive = num_possible_cpus(); 1993 #endif 1994 } 1995 raw_spin_lock_init(&rp->lock); 1996 INIT_HLIST_HEAD(&rp->free_instances); 1997 for (i = 0; i < rp->maxactive; i++) { 1998 inst = kmalloc(sizeof(struct kretprobe_instance) + 1999 rp->data_size, GFP_KERNEL); 2000 if (inst == NULL) { 2001 free_rp_inst(rp); 2002 return -ENOMEM; 2003 } 2004 INIT_HLIST_NODE(&inst->hlist); 2005 hlist_add_head(&inst->hlist, &rp->free_instances); 2006 } 2007 2008 rp->nmissed = 0; 2009 /* Establish function entry probe point */ 2010 ret = register_kprobe(&rp->kp); 2011 if (ret != 0) 2012 free_rp_inst(rp); 2013 return ret; 2014 } 2015 EXPORT_SYMBOL_GPL(register_kretprobe); 2016 2017 int register_kretprobes(struct kretprobe **rps, int num) 2018 { 2019 int ret = 0, i; 2020 2021 if (num <= 0) 2022 return -EINVAL; 2023 for (i = 0; i < num; i++) { 2024 ret = register_kretprobe(rps[i]); 2025 if (ret < 0) { 2026 if (i > 0) 2027 unregister_kretprobes(rps, i); 2028 break; 2029 } 2030 } 2031 return ret; 2032 } 2033 EXPORT_SYMBOL_GPL(register_kretprobes); 2034 2035 void unregister_kretprobe(struct kretprobe *rp) 2036 { 2037 unregister_kretprobes(&rp, 1); 2038 } 2039 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2040 2041 void unregister_kretprobes(struct kretprobe **rps, int num) 2042 { 2043 int i; 2044 2045 if (num <= 0) 2046 return; 2047 mutex_lock(&kprobe_mutex); 2048 for (i = 0; i < num; i++) 2049 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 2050 rps[i]->kp.addr = NULL; 2051 mutex_unlock(&kprobe_mutex); 2052 2053 synchronize_sched(); 2054 for (i = 0; i < num; i++) { 2055 if (rps[i]->kp.addr) { 2056 __unregister_kprobe_bottom(&rps[i]->kp); 2057 cleanup_rp_inst(rps[i]); 2058 } 2059 } 2060 } 2061 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2062 2063 #else /* CONFIG_KRETPROBES */ 2064 int register_kretprobe(struct kretprobe *rp) 2065 { 2066 return -ENOSYS; 2067 } 2068 EXPORT_SYMBOL_GPL(register_kretprobe); 2069 2070 int register_kretprobes(struct kretprobe **rps, int num) 2071 { 2072 return -ENOSYS; 2073 } 2074 EXPORT_SYMBOL_GPL(register_kretprobes); 2075 2076 void unregister_kretprobe(struct kretprobe *rp) 2077 { 2078 } 2079 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2080 2081 void unregister_kretprobes(struct kretprobe **rps, int num) 2082 { 2083 } 2084 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2085 2086 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2087 { 2088 return 0; 2089 } 2090 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2091 2092 #endif /* CONFIG_KRETPROBES */ 2093 2094 /* Set the kprobe gone and remove its instruction buffer. */ 2095 static void kill_kprobe(struct kprobe *p) 2096 { 2097 struct kprobe *kp; 2098 2099 p->flags |= KPROBE_FLAG_GONE; 2100 if (kprobe_aggrprobe(p)) { 2101 /* 2102 * If this is an aggr_kprobe, we have to list all the 2103 * chained probes and mark them GONE. 2104 */ 2105 list_for_each_entry_rcu(kp, &p->list, list) 2106 kp->flags |= KPROBE_FLAG_GONE; 2107 p->post_handler = NULL; 2108 p->break_handler = NULL; 2109 kill_optimized_kprobe(p); 2110 } 2111 /* 2112 * Here, we can remove insn_slot safely, because no thread calls 2113 * the original probed function (which will be freed soon) any more. 2114 */ 2115 arch_remove_kprobe(p); 2116 } 2117 2118 /* Disable one kprobe */ 2119 int disable_kprobe(struct kprobe *kp) 2120 { 2121 int ret = 0; 2122 struct kprobe *p; 2123 2124 mutex_lock(&kprobe_mutex); 2125 2126 /* Disable this kprobe */ 2127 p = __disable_kprobe(kp); 2128 if (IS_ERR(p)) 2129 ret = PTR_ERR(p); 2130 2131 mutex_unlock(&kprobe_mutex); 2132 return ret; 2133 } 2134 EXPORT_SYMBOL_GPL(disable_kprobe); 2135 2136 /* Enable one kprobe */ 2137 int enable_kprobe(struct kprobe *kp) 2138 { 2139 int ret = 0; 2140 struct kprobe *p; 2141 2142 mutex_lock(&kprobe_mutex); 2143 2144 /* Check whether specified probe is valid. */ 2145 p = __get_valid_kprobe(kp); 2146 if (unlikely(p == NULL)) { 2147 ret = -EINVAL; 2148 goto out; 2149 } 2150 2151 if (kprobe_gone(kp)) { 2152 /* This kprobe has gone, we couldn't enable it. */ 2153 ret = -EINVAL; 2154 goto out; 2155 } 2156 2157 if (p != kp) 2158 kp->flags &= ~KPROBE_FLAG_DISABLED; 2159 2160 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2161 p->flags &= ~KPROBE_FLAG_DISABLED; 2162 ret = arm_kprobe(p); 2163 if (ret) 2164 p->flags |= KPROBE_FLAG_DISABLED; 2165 } 2166 out: 2167 mutex_unlock(&kprobe_mutex); 2168 return ret; 2169 } 2170 EXPORT_SYMBOL_GPL(enable_kprobe); 2171 2172 void dump_kprobe(struct kprobe *kp) 2173 { 2174 printk(KERN_WARNING "Dumping kprobe:\n"); 2175 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n", 2176 kp->symbol_name, kp->addr, kp->offset); 2177 } 2178 NOKPROBE_SYMBOL(dump_kprobe); 2179 2180 /* 2181 * Lookup and populate the kprobe_blacklist. 2182 * 2183 * Unlike the kretprobe blacklist, we'll need to determine 2184 * the range of addresses that belong to the said functions, 2185 * since a kprobe need not necessarily be at the beginning 2186 * of a function. 2187 */ 2188 static int __init populate_kprobe_blacklist(unsigned long *start, 2189 unsigned long *end) 2190 { 2191 unsigned long *iter; 2192 struct kprobe_blacklist_entry *ent; 2193 unsigned long entry, offset = 0, size = 0; 2194 2195 for (iter = start; iter < end; iter++) { 2196 entry = arch_deref_entry_point((void *)*iter); 2197 2198 if (!kernel_text_address(entry) || 2199 !kallsyms_lookup_size_offset(entry, &size, &offset)) { 2200 pr_err("Failed to find blacklist at %p\n", 2201 (void *)entry); 2202 continue; 2203 } 2204 2205 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2206 if (!ent) 2207 return -ENOMEM; 2208 ent->start_addr = entry; 2209 ent->end_addr = entry + size; 2210 INIT_LIST_HEAD(&ent->list); 2211 list_add_tail(&ent->list, &kprobe_blacklist); 2212 } 2213 return 0; 2214 } 2215 2216 /* Module notifier call back, checking kprobes on the module */ 2217 static int kprobes_module_callback(struct notifier_block *nb, 2218 unsigned long val, void *data) 2219 { 2220 struct module *mod = data; 2221 struct hlist_head *head; 2222 struct kprobe *p; 2223 unsigned int i; 2224 int checkcore = (val == MODULE_STATE_GOING); 2225 2226 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2227 return NOTIFY_DONE; 2228 2229 /* 2230 * When MODULE_STATE_GOING was notified, both of module .text and 2231 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2232 * notified, only .init.text section would be freed. We need to 2233 * disable kprobes which have been inserted in the sections. 2234 */ 2235 mutex_lock(&kprobe_mutex); 2236 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2237 head = &kprobe_table[i]; 2238 hlist_for_each_entry_rcu(p, head, hlist) 2239 if (within_module_init((unsigned long)p->addr, mod) || 2240 (checkcore && 2241 within_module_core((unsigned long)p->addr, mod))) { 2242 /* 2243 * The vaddr this probe is installed will soon 2244 * be vfreed buy not synced to disk. Hence, 2245 * disarming the breakpoint isn't needed. 2246 * 2247 * Note, this will also move any optimized probes 2248 * that are pending to be removed from their 2249 * corresponding lists to the freeing_list and 2250 * will not be touched by the delayed 2251 * kprobe_optimizer work handler. 2252 */ 2253 kill_kprobe(p); 2254 } 2255 } 2256 mutex_unlock(&kprobe_mutex); 2257 return NOTIFY_DONE; 2258 } 2259 2260 static struct notifier_block kprobe_module_nb = { 2261 .notifier_call = kprobes_module_callback, 2262 .priority = 0 2263 }; 2264 2265 /* Markers of _kprobe_blacklist section */ 2266 extern unsigned long __start_kprobe_blacklist[]; 2267 extern unsigned long __stop_kprobe_blacklist[]; 2268 2269 static int __init init_kprobes(void) 2270 { 2271 int i, err = 0; 2272 2273 /* FIXME allocate the probe table, currently defined statically */ 2274 /* initialize all list heads */ 2275 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2276 INIT_HLIST_HEAD(&kprobe_table[i]); 2277 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 2278 raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); 2279 } 2280 2281 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2282 __stop_kprobe_blacklist); 2283 if (err) { 2284 pr_err("kprobes: failed to populate blacklist: %d\n", err); 2285 pr_err("Please take care of using kprobes.\n"); 2286 } 2287 2288 if (kretprobe_blacklist_size) { 2289 /* lookup the function address from its name */ 2290 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2291 kretprobe_blacklist[i].addr = 2292 kprobe_lookup_name(kretprobe_blacklist[i].name, 0); 2293 if (!kretprobe_blacklist[i].addr) 2294 printk("kretprobe: lookup failed: %s\n", 2295 kretprobe_blacklist[i].name); 2296 } 2297 } 2298 2299 #if defined(CONFIG_OPTPROBES) 2300 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2301 /* Init kprobe_optinsn_slots */ 2302 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2303 #endif 2304 /* By default, kprobes can be optimized */ 2305 kprobes_allow_optimization = true; 2306 #endif 2307 2308 /* By default, kprobes are armed */ 2309 kprobes_all_disarmed = false; 2310 2311 err = arch_init_kprobes(); 2312 if (!err) 2313 err = register_die_notifier(&kprobe_exceptions_nb); 2314 if (!err) 2315 err = register_module_notifier(&kprobe_module_nb); 2316 2317 kprobes_initialized = (err == 0); 2318 2319 if (!err) 2320 init_test_probes(); 2321 return err; 2322 } 2323 2324 #ifdef CONFIG_DEBUG_FS 2325 static void report_probe(struct seq_file *pi, struct kprobe *p, 2326 const char *sym, int offset, char *modname, struct kprobe *pp) 2327 { 2328 char *kprobe_type; 2329 2330 if (p->pre_handler == pre_handler_kretprobe) 2331 kprobe_type = "r"; 2332 else if (p->pre_handler == setjmp_pre_handler) 2333 kprobe_type = "j"; 2334 else 2335 kprobe_type = "k"; 2336 2337 if (sym) 2338 seq_printf(pi, "%p %s %s+0x%x %s ", 2339 p->addr, kprobe_type, sym, offset, 2340 (modname ? modname : " ")); 2341 else 2342 seq_printf(pi, "%p %s %p ", 2343 p->addr, kprobe_type, p->addr); 2344 2345 if (!pp) 2346 pp = p; 2347 seq_printf(pi, "%s%s%s%s\n", 2348 (kprobe_gone(p) ? "[GONE]" : ""), 2349 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2350 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2351 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2352 } 2353 2354 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2355 { 2356 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2357 } 2358 2359 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2360 { 2361 (*pos)++; 2362 if (*pos >= KPROBE_TABLE_SIZE) 2363 return NULL; 2364 return pos; 2365 } 2366 2367 static void kprobe_seq_stop(struct seq_file *f, void *v) 2368 { 2369 /* Nothing to do */ 2370 } 2371 2372 static int show_kprobe_addr(struct seq_file *pi, void *v) 2373 { 2374 struct hlist_head *head; 2375 struct kprobe *p, *kp; 2376 const char *sym = NULL; 2377 unsigned int i = *(loff_t *) v; 2378 unsigned long offset = 0; 2379 char *modname, namebuf[KSYM_NAME_LEN]; 2380 2381 head = &kprobe_table[i]; 2382 preempt_disable(); 2383 hlist_for_each_entry_rcu(p, head, hlist) { 2384 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2385 &offset, &modname, namebuf); 2386 if (kprobe_aggrprobe(p)) { 2387 list_for_each_entry_rcu(kp, &p->list, list) 2388 report_probe(pi, kp, sym, offset, modname, p); 2389 } else 2390 report_probe(pi, p, sym, offset, modname, NULL); 2391 } 2392 preempt_enable(); 2393 return 0; 2394 } 2395 2396 static const struct seq_operations kprobes_seq_ops = { 2397 .start = kprobe_seq_start, 2398 .next = kprobe_seq_next, 2399 .stop = kprobe_seq_stop, 2400 .show = show_kprobe_addr 2401 }; 2402 2403 static int kprobes_open(struct inode *inode, struct file *filp) 2404 { 2405 return seq_open(filp, &kprobes_seq_ops); 2406 } 2407 2408 static const struct file_operations debugfs_kprobes_operations = { 2409 .open = kprobes_open, 2410 .read = seq_read, 2411 .llseek = seq_lseek, 2412 .release = seq_release, 2413 }; 2414 2415 /* kprobes/blacklist -- shows which functions can not be probed */ 2416 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2417 { 2418 return seq_list_start(&kprobe_blacklist, *pos); 2419 } 2420 2421 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2422 { 2423 return seq_list_next(v, &kprobe_blacklist, pos); 2424 } 2425 2426 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2427 { 2428 struct kprobe_blacklist_entry *ent = 2429 list_entry(v, struct kprobe_blacklist_entry, list); 2430 2431 seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr, 2432 (void *)ent->end_addr, (void *)ent->start_addr); 2433 return 0; 2434 } 2435 2436 static const struct seq_operations kprobe_blacklist_seq_ops = { 2437 .start = kprobe_blacklist_seq_start, 2438 .next = kprobe_blacklist_seq_next, 2439 .stop = kprobe_seq_stop, /* Reuse void function */ 2440 .show = kprobe_blacklist_seq_show, 2441 }; 2442 2443 static int kprobe_blacklist_open(struct inode *inode, struct file *filp) 2444 { 2445 return seq_open(filp, &kprobe_blacklist_seq_ops); 2446 } 2447 2448 static const struct file_operations debugfs_kprobe_blacklist_ops = { 2449 .open = kprobe_blacklist_open, 2450 .read = seq_read, 2451 .llseek = seq_lseek, 2452 .release = seq_release, 2453 }; 2454 2455 static int arm_all_kprobes(void) 2456 { 2457 struct hlist_head *head; 2458 struct kprobe *p; 2459 unsigned int i, total = 0, errors = 0; 2460 int err, ret = 0; 2461 2462 mutex_lock(&kprobe_mutex); 2463 2464 /* If kprobes are armed, just return */ 2465 if (!kprobes_all_disarmed) 2466 goto already_enabled; 2467 2468 /* 2469 * optimize_kprobe() called by arm_kprobe() checks 2470 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2471 * arm_kprobe. 2472 */ 2473 kprobes_all_disarmed = false; 2474 /* Arming kprobes doesn't optimize kprobe itself */ 2475 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2476 head = &kprobe_table[i]; 2477 /* Arm all kprobes on a best-effort basis */ 2478 hlist_for_each_entry_rcu(p, head, hlist) { 2479 if (!kprobe_disabled(p)) { 2480 err = arm_kprobe(p); 2481 if (err) { 2482 errors++; 2483 ret = err; 2484 } 2485 total++; 2486 } 2487 } 2488 } 2489 2490 if (errors) 2491 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n", 2492 errors, total); 2493 else 2494 pr_info("Kprobes globally enabled\n"); 2495 2496 already_enabled: 2497 mutex_unlock(&kprobe_mutex); 2498 return ret; 2499 } 2500 2501 static int disarm_all_kprobes(void) 2502 { 2503 struct hlist_head *head; 2504 struct kprobe *p; 2505 unsigned int i, total = 0, errors = 0; 2506 int err, ret = 0; 2507 2508 mutex_lock(&kprobe_mutex); 2509 2510 /* If kprobes are already disarmed, just return */ 2511 if (kprobes_all_disarmed) { 2512 mutex_unlock(&kprobe_mutex); 2513 return 0; 2514 } 2515 2516 kprobes_all_disarmed = true; 2517 2518 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2519 head = &kprobe_table[i]; 2520 /* Disarm all kprobes on a best-effort basis */ 2521 hlist_for_each_entry_rcu(p, head, hlist) { 2522 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { 2523 err = disarm_kprobe(p, false); 2524 if (err) { 2525 errors++; 2526 ret = err; 2527 } 2528 total++; 2529 } 2530 } 2531 } 2532 2533 if (errors) 2534 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n", 2535 errors, total); 2536 else 2537 pr_info("Kprobes globally disabled\n"); 2538 2539 mutex_unlock(&kprobe_mutex); 2540 2541 /* Wait for disarming all kprobes by optimizer */ 2542 wait_for_kprobe_optimizer(); 2543 2544 return ret; 2545 } 2546 2547 /* 2548 * XXX: The debugfs bool file interface doesn't allow for callbacks 2549 * when the bool state is switched. We can reuse that facility when 2550 * available 2551 */ 2552 static ssize_t read_enabled_file_bool(struct file *file, 2553 char __user *user_buf, size_t count, loff_t *ppos) 2554 { 2555 char buf[3]; 2556 2557 if (!kprobes_all_disarmed) 2558 buf[0] = '1'; 2559 else 2560 buf[0] = '0'; 2561 buf[1] = '\n'; 2562 buf[2] = 0x00; 2563 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2564 } 2565 2566 static ssize_t write_enabled_file_bool(struct file *file, 2567 const char __user *user_buf, size_t count, loff_t *ppos) 2568 { 2569 char buf[32]; 2570 size_t buf_size; 2571 int ret = 0; 2572 2573 buf_size = min(count, (sizeof(buf)-1)); 2574 if (copy_from_user(buf, user_buf, buf_size)) 2575 return -EFAULT; 2576 2577 buf[buf_size] = '\0'; 2578 switch (buf[0]) { 2579 case 'y': 2580 case 'Y': 2581 case '1': 2582 ret = arm_all_kprobes(); 2583 break; 2584 case 'n': 2585 case 'N': 2586 case '0': 2587 ret = disarm_all_kprobes(); 2588 break; 2589 default: 2590 return -EINVAL; 2591 } 2592 2593 if (ret) 2594 return ret; 2595 2596 return count; 2597 } 2598 2599 static const struct file_operations fops_kp = { 2600 .read = read_enabled_file_bool, 2601 .write = write_enabled_file_bool, 2602 .llseek = default_llseek, 2603 }; 2604 2605 static int __init debugfs_kprobe_init(void) 2606 { 2607 struct dentry *dir, *file; 2608 unsigned int value = 1; 2609 2610 dir = debugfs_create_dir("kprobes", NULL); 2611 if (!dir) 2612 return -ENOMEM; 2613 2614 file = debugfs_create_file("list", 0444, dir, NULL, 2615 &debugfs_kprobes_operations); 2616 if (!file) 2617 goto error; 2618 2619 file = debugfs_create_file("enabled", 0600, dir, 2620 &value, &fops_kp); 2621 if (!file) 2622 goto error; 2623 2624 file = debugfs_create_file("blacklist", 0444, dir, NULL, 2625 &debugfs_kprobe_blacklist_ops); 2626 if (!file) 2627 goto error; 2628 2629 return 0; 2630 2631 error: 2632 debugfs_remove(dir); 2633 return -ENOMEM; 2634 } 2635 2636 late_initcall(debugfs_kprobe_init); 2637 #endif /* CONFIG_DEBUG_FS */ 2638 2639 module_init(init_kprobes); 2640 2641 /* defined in arch/.../kernel/kprobes.c */ 2642 EXPORT_SYMBOL_GPL(jprobe_return); 2643