1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Kernel Probes (KProbes)
4 *
5 * Copyright (C) IBM Corporation, 2002, 2004
6 *
7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8 * Probes initial implementation (includes suggestions from
9 * Rusty Russell).
10 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
11 * hlists and exceptions notifier as suggested by Andi Kleen.
12 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
13 * interface to access function arguments.
14 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
15 * exceptions notifier to be first on the priority list.
16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18 * <prasanna@in.ibm.com> added function-return probes.
19 */
20
21 #define pr_fmt(fmt) "kprobes: " fmt
22
23 #include <linux/kprobes.h>
24 #include <linux/hash.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/stddef.h>
28 #include <linux/export.h>
29 #include <linux/moduleloader.h>
30 #include <linux/kallsyms.h>
31 #include <linux/freezer.h>
32 #include <linux/seq_file.h>
33 #include <linux/debugfs.h>
34 #include <linux/sysctl.h>
35 #include <linux/kdebug.h>
36 #include <linux/memory.h>
37 #include <linux/ftrace.h>
38 #include <linux/cpu.h>
39 #include <linux/jump_label.h>
40 #include <linux/static_call.h>
41 #include <linux/perf_event.h>
42
43 #include <asm/sections.h>
44 #include <asm/cacheflush.h>
45 #include <asm/errno.h>
46 #include <linux/uaccess.h>
47
48 #define KPROBE_HASH_BITS 6
49 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
50
51 #if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
52 #define kprobe_sysctls_init() do { } while (0)
53 #endif
54
55 static int kprobes_initialized;
56 /* kprobe_table can be accessed by
57 * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
58 * Or
59 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
60 */
61 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
62
63 /* NOTE: change this value only with 'kprobe_mutex' held */
64 static bool kprobes_all_disarmed;
65
66 /* This protects 'kprobe_table' and 'optimizing_list' */
67 static DEFINE_MUTEX(kprobe_mutex);
68 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
69
kprobe_lookup_name(const char * name,unsigned int __unused)70 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
71 unsigned int __unused)
72 {
73 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
74 }
75
76 /*
77 * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
78 * kprobes can not probe.
79 */
80 static LIST_HEAD(kprobe_blacklist);
81
82 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
83 /*
84 * 'kprobe::ainsn.insn' points to the copy of the instruction to be
85 * single-stepped. x86_64, POWER4 and above have no-exec support and
86 * stepping on the instruction on a vmalloced/kmalloced/data page
87 * is a recipe for disaster
88 */
89 struct kprobe_insn_page {
90 struct list_head list;
91 kprobe_opcode_t *insns; /* Page of instruction slots */
92 struct kprobe_insn_cache *cache;
93 int nused;
94 int ngarbage;
95 char slot_used[];
96 };
97
98 #define KPROBE_INSN_PAGE_SIZE(slots) \
99 (offsetof(struct kprobe_insn_page, slot_used) + \
100 (sizeof(char) * (slots)))
101
slots_per_page(struct kprobe_insn_cache * c)102 static int slots_per_page(struct kprobe_insn_cache *c)
103 {
104 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
105 }
106
107 enum kprobe_slot_state {
108 SLOT_CLEAN = 0,
109 SLOT_DIRTY = 1,
110 SLOT_USED = 2,
111 };
112
alloc_insn_page(void)113 void __weak *alloc_insn_page(void)
114 {
115 /*
116 * Use module_alloc() so this page is within +/- 2GB of where the
117 * kernel image and loaded module images reside. This is required
118 * for most of the architectures.
119 * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
120 */
121 return module_alloc(PAGE_SIZE);
122 }
123
free_insn_page(void * page)124 static void free_insn_page(void *page)
125 {
126 module_memfree(page);
127 }
128
129 struct kprobe_insn_cache kprobe_insn_slots = {
130 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
131 .alloc = alloc_insn_page,
132 .free = free_insn_page,
133 .sym = KPROBE_INSN_PAGE_SYM,
134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 .insn_size = MAX_INSN_SIZE,
136 .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
143 */
__get_insn_slot(struct kprobe_insn_cache * c)144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146 struct kprobe_insn_page *kip;
147 kprobe_opcode_t *slot = NULL;
148
149 /* Since the slot array is not protected by rcu, we need a mutex */
150 mutex_lock(&c->mutex);
151 retry:
152 rcu_read_lock();
153 list_for_each_entry_rcu(kip, &c->pages, list) {
154 if (kip->nused < slots_per_page(c)) {
155 int i;
156
157 for (i = 0; i < slots_per_page(c); i++) {
158 if (kip->slot_used[i] == SLOT_CLEAN) {
159 kip->slot_used[i] = SLOT_USED;
160 kip->nused++;
161 slot = kip->insns + (i * c->insn_size);
162 rcu_read_unlock();
163 goto out;
164 }
165 }
166 /* kip->nused is broken. Fix it. */
167 kip->nused = slots_per_page(c);
168 WARN_ON(1);
169 }
170 }
171 rcu_read_unlock();
172
173 /* If there are any garbage slots, collect it and try again. */
174 if (c->nr_garbage && collect_garbage_slots(c) == 0)
175 goto retry;
176
177 /* All out of space. Need to allocate a new page. */
178 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
179 if (!kip)
180 goto out;
181
182 kip->insns = c->alloc();
183 if (!kip->insns) {
184 kfree(kip);
185 goto out;
186 }
187 INIT_LIST_HEAD(&kip->list);
188 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
189 kip->slot_used[0] = SLOT_USED;
190 kip->nused = 1;
191 kip->ngarbage = 0;
192 kip->cache = c;
193 list_add_rcu(&kip->list, &c->pages);
194 slot = kip->insns;
195
196 /* Record the perf ksymbol register event after adding the page */
197 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
198 PAGE_SIZE, false, c->sym);
199 out:
200 mutex_unlock(&c->mutex);
201 return slot;
202 }
203
204 /* Return true if all garbages are collected, otherwise false. */
collect_one_slot(struct kprobe_insn_page * kip,int idx)205 static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207 kip->slot_used[idx] = SLOT_CLEAN;
208 kip->nused--;
209 if (kip->nused == 0) {
210 /*
211 * Page is no longer in use. Free it unless
212 * it's the last one. We keep the last one
213 * so as not to have to set it up again the
214 * next time somebody inserts a probe.
215 */
216 if (!list_is_singular(&kip->list)) {
217 /*
218 * Record perf ksymbol unregister event before removing
219 * the page.
220 */
221 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
222 (unsigned long)kip->insns, PAGE_SIZE, true,
223 kip->cache->sym);
224 list_del_rcu(&kip->list);
225 synchronize_rcu();
226 kip->cache->free(kip->insns);
227 kfree(kip);
228 }
229 return true;
230 }
231 return false;
232 }
233
collect_garbage_slots(struct kprobe_insn_cache * c)234 static int collect_garbage_slots(struct kprobe_insn_cache *c)
235 {
236 struct kprobe_insn_page *kip, *next;
237
238 /* Ensure no-one is interrupted on the garbages */
239 synchronize_rcu();
240
241 list_for_each_entry_safe(kip, next, &c->pages, list) {
242 int i;
243
244 if (kip->ngarbage == 0)
245 continue;
246 kip->ngarbage = 0; /* we will collect all garbages */
247 for (i = 0; i < slots_per_page(c); i++) {
248 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
249 break;
250 }
251 }
252 c->nr_garbage = 0;
253 return 0;
254 }
255
__free_insn_slot(struct kprobe_insn_cache * c,kprobe_opcode_t * slot,int dirty)256 void __free_insn_slot(struct kprobe_insn_cache *c,
257 kprobe_opcode_t *slot, int dirty)
258 {
259 struct kprobe_insn_page *kip;
260 long idx;
261
262 mutex_lock(&c->mutex);
263 rcu_read_lock();
264 list_for_each_entry_rcu(kip, &c->pages, list) {
265 idx = ((long)slot - (long)kip->insns) /
266 (c->insn_size * sizeof(kprobe_opcode_t));
267 if (idx >= 0 && idx < slots_per_page(c))
268 goto out;
269 }
270 /* Could not find this slot. */
271 WARN_ON(1);
272 kip = NULL;
273 out:
274 rcu_read_unlock();
275 /* Mark and sweep: this may sleep */
276 if (kip) {
277 /* Check double free */
278 WARN_ON(kip->slot_used[idx] != SLOT_USED);
279 if (dirty) {
280 kip->slot_used[idx] = SLOT_DIRTY;
281 kip->ngarbage++;
282 if (++c->nr_garbage > slots_per_page(c))
283 collect_garbage_slots(c);
284 } else {
285 collect_one_slot(kip, idx);
286 }
287 }
288 mutex_unlock(&c->mutex);
289 }
290
291 /*
292 * Check given address is on the page of kprobe instruction slots.
293 * This will be used for checking whether the address on a stack
294 * is on a text area or not.
295 */
__is_insn_slot_addr(struct kprobe_insn_cache * c,unsigned long addr)296 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
297 {
298 struct kprobe_insn_page *kip;
299 bool ret = false;
300
301 rcu_read_lock();
302 list_for_each_entry_rcu(kip, &c->pages, list) {
303 if (addr >= (unsigned long)kip->insns &&
304 addr < (unsigned long)kip->insns + PAGE_SIZE) {
305 ret = true;
306 break;
307 }
308 }
309 rcu_read_unlock();
310
311 return ret;
312 }
313
kprobe_cache_get_kallsym(struct kprobe_insn_cache * c,unsigned int * symnum,unsigned long * value,char * type,char * sym)314 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
315 unsigned long *value, char *type, char *sym)
316 {
317 struct kprobe_insn_page *kip;
318 int ret = -ERANGE;
319
320 rcu_read_lock();
321 list_for_each_entry_rcu(kip, &c->pages, list) {
322 if ((*symnum)--)
323 continue;
324 strscpy(sym, c->sym, KSYM_NAME_LEN);
325 *type = 't';
326 *value = (unsigned long)kip->insns;
327 ret = 0;
328 break;
329 }
330 rcu_read_unlock();
331
332 return ret;
333 }
334
335 #ifdef CONFIG_OPTPROBES
alloc_optinsn_page(void)336 void __weak *alloc_optinsn_page(void)
337 {
338 return alloc_insn_page();
339 }
340
free_optinsn_page(void * page)341 void __weak free_optinsn_page(void *page)
342 {
343 free_insn_page(page);
344 }
345
346 /* For optimized_kprobe buffer */
347 struct kprobe_insn_cache kprobe_optinsn_slots = {
348 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
349 .alloc = alloc_optinsn_page,
350 .free = free_optinsn_page,
351 .sym = KPROBE_OPTINSN_PAGE_SYM,
352 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
353 /* .insn_size is initialized later */
354 .nr_garbage = 0,
355 };
356 #endif
357 #endif
358
359 /* We have preemption disabled.. so it is safe to use __ versions */
set_kprobe_instance(struct kprobe * kp)360 static inline void set_kprobe_instance(struct kprobe *kp)
361 {
362 __this_cpu_write(kprobe_instance, kp);
363 }
364
reset_kprobe_instance(void)365 static inline void reset_kprobe_instance(void)
366 {
367 __this_cpu_write(kprobe_instance, NULL);
368 }
369
370 /*
371 * This routine is called either:
372 * - under the 'kprobe_mutex' - during kprobe_[un]register().
373 * OR
374 * - with preemption disabled - from architecture specific code.
375 */
get_kprobe(void * addr)376 struct kprobe *get_kprobe(void *addr)
377 {
378 struct hlist_head *head;
379 struct kprobe *p;
380
381 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
382 hlist_for_each_entry_rcu(p, head, hlist,
383 lockdep_is_held(&kprobe_mutex)) {
384 if (p->addr == addr)
385 return p;
386 }
387
388 return NULL;
389 }
390 NOKPROBE_SYMBOL(get_kprobe);
391
392 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
393
394 /* Return true if 'p' is an aggregator */
kprobe_aggrprobe(struct kprobe * p)395 static inline bool kprobe_aggrprobe(struct kprobe *p)
396 {
397 return p->pre_handler == aggr_pre_handler;
398 }
399
400 /* Return true if 'p' is unused */
kprobe_unused(struct kprobe * p)401 static inline bool kprobe_unused(struct kprobe *p)
402 {
403 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
404 list_empty(&p->list);
405 }
406
407 /* Keep all fields in the kprobe consistent. */
copy_kprobe(struct kprobe * ap,struct kprobe * p)408 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
409 {
410 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
411 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
412 }
413
414 #ifdef CONFIG_OPTPROBES
415 /* NOTE: This is protected by 'kprobe_mutex'. */
416 static bool kprobes_allow_optimization;
417
418 /*
419 * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
420 * This must be called from arch-dep optimized caller.
421 */
opt_pre_handler(struct kprobe * p,struct pt_regs * regs)422 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
423 {
424 struct kprobe *kp;
425
426 list_for_each_entry_rcu(kp, &p->list, list) {
427 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
428 set_kprobe_instance(kp);
429 kp->pre_handler(kp, regs);
430 }
431 reset_kprobe_instance();
432 }
433 }
434 NOKPROBE_SYMBOL(opt_pre_handler);
435
436 /* Free optimized instructions and optimized_kprobe */
free_aggr_kprobe(struct kprobe * p)437 static void free_aggr_kprobe(struct kprobe *p)
438 {
439 struct optimized_kprobe *op;
440
441 op = container_of(p, struct optimized_kprobe, kp);
442 arch_remove_optimized_kprobe(op);
443 arch_remove_kprobe(p);
444 kfree(op);
445 }
446
447 /* Return true if the kprobe is ready for optimization. */
kprobe_optready(struct kprobe * p)448 static inline int kprobe_optready(struct kprobe *p)
449 {
450 struct optimized_kprobe *op;
451
452 if (kprobe_aggrprobe(p)) {
453 op = container_of(p, struct optimized_kprobe, kp);
454 return arch_prepared_optinsn(&op->optinsn);
455 }
456
457 return 0;
458 }
459
460 /* Return true if the kprobe is disarmed. Note: p must be on hash list */
kprobe_disarmed(struct kprobe * p)461 bool kprobe_disarmed(struct kprobe *p)
462 {
463 struct optimized_kprobe *op;
464
465 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
466 if (!kprobe_aggrprobe(p))
467 return kprobe_disabled(p);
468
469 op = container_of(p, struct optimized_kprobe, kp);
470
471 return kprobe_disabled(p) && list_empty(&op->list);
472 }
473
474 /* Return true if the probe is queued on (un)optimizing lists */
kprobe_queued(struct kprobe * p)475 static bool kprobe_queued(struct kprobe *p)
476 {
477 struct optimized_kprobe *op;
478
479 if (kprobe_aggrprobe(p)) {
480 op = container_of(p, struct optimized_kprobe, kp);
481 if (!list_empty(&op->list))
482 return true;
483 }
484 return false;
485 }
486
487 /*
488 * Return an optimized kprobe whose optimizing code replaces
489 * instructions including 'addr' (exclude breakpoint).
490 */
get_optimized_kprobe(kprobe_opcode_t * addr)491 static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
492 {
493 int i;
494 struct kprobe *p = NULL;
495 struct optimized_kprobe *op;
496
497 /* Don't check i == 0, since that is a breakpoint case. */
498 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
499 p = get_kprobe(addr - i);
500
501 if (p && kprobe_optready(p)) {
502 op = container_of(p, struct optimized_kprobe, kp);
503 if (arch_within_optimized_kprobe(op, addr))
504 return p;
505 }
506
507 return NULL;
508 }
509
510 /* Optimization staging list, protected by 'kprobe_mutex' */
511 static LIST_HEAD(optimizing_list);
512 static LIST_HEAD(unoptimizing_list);
513 static LIST_HEAD(freeing_list);
514
515 static void kprobe_optimizer(struct work_struct *work);
516 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
517 #define OPTIMIZE_DELAY 5
518
519 /*
520 * Optimize (replace a breakpoint with a jump) kprobes listed on
521 * 'optimizing_list'.
522 */
do_optimize_kprobes(void)523 static void do_optimize_kprobes(void)
524 {
525 lockdep_assert_held(&text_mutex);
526 /*
527 * The optimization/unoptimization refers 'online_cpus' via
528 * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
529 * And same time, 'text_mutex' will be held in cpu-hotplug and here.
530 * This combination can cause a deadlock (cpu-hotplug tries to lock
531 * 'text_mutex' but stop_machine() can not be done because
532 * the 'online_cpus' has been changed)
533 * To avoid this deadlock, caller must have locked cpu-hotplug
534 * for preventing cpu-hotplug outside of 'text_mutex' locking.
535 */
536 lockdep_assert_cpus_held();
537
538 /* Optimization never be done when disarmed */
539 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
540 list_empty(&optimizing_list))
541 return;
542
543 arch_optimize_kprobes(&optimizing_list);
544 }
545
546 /*
547 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
548 * if need) kprobes listed on 'unoptimizing_list'.
549 */
do_unoptimize_kprobes(void)550 static void do_unoptimize_kprobes(void)
551 {
552 struct optimized_kprobe *op, *tmp;
553
554 lockdep_assert_held(&text_mutex);
555 /* See comment in do_optimize_kprobes() */
556 lockdep_assert_cpus_held();
557
558 if (!list_empty(&unoptimizing_list))
559 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
560
561 /* Loop on 'freeing_list' for disarming and removing from kprobe hash list */
562 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
563 /* Switching from detour code to origin */
564 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
565 /* Disarm probes if marked disabled and not gone */
566 if (kprobe_disabled(&op->kp) && !kprobe_gone(&op->kp))
567 arch_disarm_kprobe(&op->kp);
568 if (kprobe_unused(&op->kp)) {
569 /*
570 * Remove unused probes from hash list. After waiting
571 * for synchronization, these probes are reclaimed.
572 * (reclaiming is done by do_free_cleaned_kprobes().)
573 */
574 hlist_del_rcu(&op->kp.hlist);
575 } else
576 list_del_init(&op->list);
577 }
578 }
579
580 /* Reclaim all kprobes on the 'freeing_list' */
do_free_cleaned_kprobes(void)581 static void do_free_cleaned_kprobes(void)
582 {
583 struct optimized_kprobe *op, *tmp;
584
585 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
586 list_del_init(&op->list);
587 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
588 /*
589 * This must not happen, but if there is a kprobe
590 * still in use, keep it on kprobes hash list.
591 */
592 continue;
593 }
594 free_aggr_kprobe(&op->kp);
595 }
596 }
597
598 /* Start optimizer after OPTIMIZE_DELAY passed */
kick_kprobe_optimizer(void)599 static void kick_kprobe_optimizer(void)
600 {
601 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
602 }
603
604 /* Kprobe jump optimizer */
kprobe_optimizer(struct work_struct * work)605 static void kprobe_optimizer(struct work_struct *work)
606 {
607 mutex_lock(&kprobe_mutex);
608 cpus_read_lock();
609 mutex_lock(&text_mutex);
610
611 /*
612 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
613 * kprobes before waiting for quiesence period.
614 */
615 do_unoptimize_kprobes();
616
617 /*
618 * Step 2: Wait for quiesence period to ensure all potentially
619 * preempted tasks to have normally scheduled. Because optprobe
620 * may modify multiple instructions, there is a chance that Nth
621 * instruction is preempted. In that case, such tasks can return
622 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
623 * Note that on non-preemptive kernel, this is transparently converted
624 * to synchronoze_sched() to wait for all interrupts to have completed.
625 */
626 synchronize_rcu_tasks();
627
628 /* Step 3: Optimize kprobes after quiesence period */
629 do_optimize_kprobes();
630
631 /* Step 4: Free cleaned kprobes after quiesence period */
632 do_free_cleaned_kprobes();
633
634 mutex_unlock(&text_mutex);
635 cpus_read_unlock();
636
637 /* Step 5: Kick optimizer again if needed */
638 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
639 kick_kprobe_optimizer();
640
641 mutex_unlock(&kprobe_mutex);
642 }
643
644 /* Wait for completing optimization and unoptimization */
wait_for_kprobe_optimizer(void)645 void wait_for_kprobe_optimizer(void)
646 {
647 mutex_lock(&kprobe_mutex);
648
649 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
650 mutex_unlock(&kprobe_mutex);
651
652 /* This will also make 'optimizing_work' execute immmediately */
653 flush_delayed_work(&optimizing_work);
654 /* 'optimizing_work' might not have been queued yet, relax */
655 cpu_relax();
656
657 mutex_lock(&kprobe_mutex);
658 }
659
660 mutex_unlock(&kprobe_mutex);
661 }
662
optprobe_queued_unopt(struct optimized_kprobe * op)663 bool optprobe_queued_unopt(struct optimized_kprobe *op)
664 {
665 struct optimized_kprobe *_op;
666
667 list_for_each_entry(_op, &unoptimizing_list, list) {
668 if (op == _op)
669 return true;
670 }
671
672 return false;
673 }
674
675 /* Optimize kprobe if p is ready to be optimized */
optimize_kprobe(struct kprobe * p)676 static void optimize_kprobe(struct kprobe *p)
677 {
678 struct optimized_kprobe *op;
679
680 /* Check if the kprobe is disabled or not ready for optimization. */
681 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
682 (kprobe_disabled(p) || kprobes_all_disarmed))
683 return;
684
685 /* kprobes with 'post_handler' can not be optimized */
686 if (p->post_handler)
687 return;
688
689 op = container_of(p, struct optimized_kprobe, kp);
690
691 /* Check there is no other kprobes at the optimized instructions */
692 if (arch_check_optimized_kprobe(op) < 0)
693 return;
694
695 /* Check if it is already optimized. */
696 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
697 if (optprobe_queued_unopt(op)) {
698 /* This is under unoptimizing. Just dequeue the probe */
699 list_del_init(&op->list);
700 }
701 return;
702 }
703 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
704
705 /*
706 * On the 'unoptimizing_list' and 'optimizing_list',
707 * 'op' must have OPTIMIZED flag
708 */
709 if (WARN_ON_ONCE(!list_empty(&op->list)))
710 return;
711
712 list_add(&op->list, &optimizing_list);
713 kick_kprobe_optimizer();
714 }
715
716 /* Short cut to direct unoptimizing */
force_unoptimize_kprobe(struct optimized_kprobe * op)717 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
718 {
719 lockdep_assert_cpus_held();
720 arch_unoptimize_kprobe(op);
721 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
722 }
723
724 /* Unoptimize a kprobe if p is optimized */
unoptimize_kprobe(struct kprobe * p,bool force)725 static void unoptimize_kprobe(struct kprobe *p, bool force)
726 {
727 struct optimized_kprobe *op;
728
729 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
730 return; /* This is not an optprobe nor optimized */
731
732 op = container_of(p, struct optimized_kprobe, kp);
733 if (!kprobe_optimized(p))
734 return;
735
736 if (!list_empty(&op->list)) {
737 if (optprobe_queued_unopt(op)) {
738 /* Queued in unoptimizing queue */
739 if (force) {
740 /*
741 * Forcibly unoptimize the kprobe here, and queue it
742 * in the freeing list for release afterwards.
743 */
744 force_unoptimize_kprobe(op);
745 list_move(&op->list, &freeing_list);
746 }
747 } else {
748 /* Dequeue from the optimizing queue */
749 list_del_init(&op->list);
750 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
751 }
752 return;
753 }
754
755 /* Optimized kprobe case */
756 if (force) {
757 /* Forcibly update the code: this is a special case */
758 force_unoptimize_kprobe(op);
759 } else {
760 list_add(&op->list, &unoptimizing_list);
761 kick_kprobe_optimizer();
762 }
763 }
764
765 /* Cancel unoptimizing for reusing */
reuse_unused_kprobe(struct kprobe * ap)766 static int reuse_unused_kprobe(struct kprobe *ap)
767 {
768 struct optimized_kprobe *op;
769
770 /*
771 * Unused kprobe MUST be on the way of delayed unoptimizing (means
772 * there is still a relative jump) and disabled.
773 */
774 op = container_of(ap, struct optimized_kprobe, kp);
775 WARN_ON_ONCE(list_empty(&op->list));
776 /* Enable the probe again */
777 ap->flags &= ~KPROBE_FLAG_DISABLED;
778 /* Optimize it again. (remove from 'op->list') */
779 if (!kprobe_optready(ap))
780 return -EINVAL;
781
782 optimize_kprobe(ap);
783 return 0;
784 }
785
786 /* Remove optimized instructions */
kill_optimized_kprobe(struct kprobe * p)787 static void kill_optimized_kprobe(struct kprobe *p)
788 {
789 struct optimized_kprobe *op;
790
791 op = container_of(p, struct optimized_kprobe, kp);
792 if (!list_empty(&op->list))
793 /* Dequeue from the (un)optimization queue */
794 list_del_init(&op->list);
795 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
796
797 if (kprobe_unused(p)) {
798 /*
799 * Unused kprobe is on unoptimizing or freeing list. We move it
800 * to freeing_list and let the kprobe_optimizer() remove it from
801 * the kprobe hash list and free it.
802 */
803 if (optprobe_queued_unopt(op))
804 list_move(&op->list, &freeing_list);
805 }
806
807 /* Don't touch the code, because it is already freed. */
808 arch_remove_optimized_kprobe(op);
809 }
810
811 static inline
__prepare_optimized_kprobe(struct optimized_kprobe * op,struct kprobe * p)812 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
813 {
814 if (!kprobe_ftrace(p))
815 arch_prepare_optimized_kprobe(op, p);
816 }
817
818 /* Try to prepare optimized instructions */
prepare_optimized_kprobe(struct kprobe * p)819 static void prepare_optimized_kprobe(struct kprobe *p)
820 {
821 struct optimized_kprobe *op;
822
823 op = container_of(p, struct optimized_kprobe, kp);
824 __prepare_optimized_kprobe(op, p);
825 }
826
827 /* Allocate new optimized_kprobe and try to prepare optimized instructions. */
alloc_aggr_kprobe(struct kprobe * p)828 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
829 {
830 struct optimized_kprobe *op;
831
832 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
833 if (!op)
834 return NULL;
835
836 INIT_LIST_HEAD(&op->list);
837 op->kp.addr = p->addr;
838 __prepare_optimized_kprobe(op, p);
839
840 return &op->kp;
841 }
842
843 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
844
845 /*
846 * Prepare an optimized_kprobe and optimize it.
847 * NOTE: 'p' must be a normal registered kprobe.
848 */
try_to_optimize_kprobe(struct kprobe * p)849 static void try_to_optimize_kprobe(struct kprobe *p)
850 {
851 struct kprobe *ap;
852 struct optimized_kprobe *op;
853
854 /* Impossible to optimize ftrace-based kprobe. */
855 if (kprobe_ftrace(p))
856 return;
857
858 /* For preparing optimization, jump_label_text_reserved() is called. */
859 cpus_read_lock();
860 jump_label_lock();
861 mutex_lock(&text_mutex);
862
863 ap = alloc_aggr_kprobe(p);
864 if (!ap)
865 goto out;
866
867 op = container_of(ap, struct optimized_kprobe, kp);
868 if (!arch_prepared_optinsn(&op->optinsn)) {
869 /* If failed to setup optimizing, fallback to kprobe. */
870 arch_remove_optimized_kprobe(op);
871 kfree(op);
872 goto out;
873 }
874
875 init_aggr_kprobe(ap, p);
876 optimize_kprobe(ap); /* This just kicks optimizer thread. */
877
878 out:
879 mutex_unlock(&text_mutex);
880 jump_label_unlock();
881 cpus_read_unlock();
882 }
883
optimize_all_kprobes(void)884 static void optimize_all_kprobes(void)
885 {
886 struct hlist_head *head;
887 struct kprobe *p;
888 unsigned int i;
889
890 mutex_lock(&kprobe_mutex);
891 /* If optimization is already allowed, just return. */
892 if (kprobes_allow_optimization)
893 goto out;
894
895 cpus_read_lock();
896 kprobes_allow_optimization = true;
897 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
898 head = &kprobe_table[i];
899 hlist_for_each_entry(p, head, hlist)
900 if (!kprobe_disabled(p))
901 optimize_kprobe(p);
902 }
903 cpus_read_unlock();
904 pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
905 out:
906 mutex_unlock(&kprobe_mutex);
907 }
908
909 #ifdef CONFIG_SYSCTL
unoptimize_all_kprobes(void)910 static void unoptimize_all_kprobes(void)
911 {
912 struct hlist_head *head;
913 struct kprobe *p;
914 unsigned int i;
915
916 mutex_lock(&kprobe_mutex);
917 /* If optimization is already prohibited, just return. */
918 if (!kprobes_allow_optimization) {
919 mutex_unlock(&kprobe_mutex);
920 return;
921 }
922
923 cpus_read_lock();
924 kprobes_allow_optimization = false;
925 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
926 head = &kprobe_table[i];
927 hlist_for_each_entry(p, head, hlist) {
928 if (!kprobe_disabled(p))
929 unoptimize_kprobe(p, false);
930 }
931 }
932 cpus_read_unlock();
933 mutex_unlock(&kprobe_mutex);
934
935 /* Wait for unoptimizing completion. */
936 wait_for_kprobe_optimizer();
937 pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
938 }
939
940 static DEFINE_MUTEX(kprobe_sysctl_mutex);
941 static int sysctl_kprobes_optimization;
proc_kprobes_optimization_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)942 static int proc_kprobes_optimization_handler(struct ctl_table *table,
943 int write, void *buffer,
944 size_t *length, loff_t *ppos)
945 {
946 int ret;
947
948 mutex_lock(&kprobe_sysctl_mutex);
949 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
950 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
951
952 if (sysctl_kprobes_optimization)
953 optimize_all_kprobes();
954 else
955 unoptimize_all_kprobes();
956 mutex_unlock(&kprobe_sysctl_mutex);
957
958 return ret;
959 }
960
961 static struct ctl_table kprobe_sysctls[] = {
962 {
963 .procname = "kprobes-optimization",
964 .data = &sysctl_kprobes_optimization,
965 .maxlen = sizeof(int),
966 .mode = 0644,
967 .proc_handler = proc_kprobes_optimization_handler,
968 .extra1 = SYSCTL_ZERO,
969 .extra2 = SYSCTL_ONE,
970 },
971 {}
972 };
973
kprobe_sysctls_init(void)974 static void __init kprobe_sysctls_init(void)
975 {
976 register_sysctl_init("debug", kprobe_sysctls);
977 }
978 #endif /* CONFIG_SYSCTL */
979
980 /* Put a breakpoint for a probe. */
__arm_kprobe(struct kprobe * p)981 static void __arm_kprobe(struct kprobe *p)
982 {
983 struct kprobe *_p;
984
985 lockdep_assert_held(&text_mutex);
986
987 /* Find the overlapping optimized kprobes. */
988 _p = get_optimized_kprobe(p->addr);
989 if (unlikely(_p))
990 /* Fallback to unoptimized kprobe */
991 unoptimize_kprobe(_p, true);
992
993 arch_arm_kprobe(p);
994 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
995 }
996
997 /* Remove the breakpoint of a probe. */
__disarm_kprobe(struct kprobe * p,bool reopt)998 static void __disarm_kprobe(struct kprobe *p, bool reopt)
999 {
1000 struct kprobe *_p;
1001
1002 lockdep_assert_held(&text_mutex);
1003
1004 /* Try to unoptimize */
1005 unoptimize_kprobe(p, kprobes_all_disarmed);
1006
1007 if (!kprobe_queued(p)) {
1008 arch_disarm_kprobe(p);
1009 /* If another kprobe was blocked, re-optimize it. */
1010 _p = get_optimized_kprobe(p->addr);
1011 if (unlikely(_p) && reopt)
1012 optimize_kprobe(_p);
1013 }
1014 /*
1015 * TODO: Since unoptimization and real disarming will be done by
1016 * the worker thread, we can not check whether another probe are
1017 * unoptimized because of this probe here. It should be re-optimized
1018 * by the worker thread.
1019 */
1020 }
1021
1022 #else /* !CONFIG_OPTPROBES */
1023
1024 #define optimize_kprobe(p) do {} while (0)
1025 #define unoptimize_kprobe(p, f) do {} while (0)
1026 #define kill_optimized_kprobe(p) do {} while (0)
1027 #define prepare_optimized_kprobe(p) do {} while (0)
1028 #define try_to_optimize_kprobe(p) do {} while (0)
1029 #define __arm_kprobe(p) arch_arm_kprobe(p)
1030 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
1031 #define kprobe_disarmed(p) kprobe_disabled(p)
1032 #define wait_for_kprobe_optimizer() do {} while (0)
1033
reuse_unused_kprobe(struct kprobe * ap)1034 static int reuse_unused_kprobe(struct kprobe *ap)
1035 {
1036 /*
1037 * If the optimized kprobe is NOT supported, the aggr kprobe is
1038 * released at the same time that the last aggregated kprobe is
1039 * unregistered.
1040 * Thus there should be no chance to reuse unused kprobe.
1041 */
1042 WARN_ON_ONCE(1);
1043 return -EINVAL;
1044 }
1045
free_aggr_kprobe(struct kprobe * p)1046 static void free_aggr_kprobe(struct kprobe *p)
1047 {
1048 arch_remove_kprobe(p);
1049 kfree(p);
1050 }
1051
alloc_aggr_kprobe(struct kprobe * p)1052 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1053 {
1054 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1055 }
1056 #endif /* CONFIG_OPTPROBES */
1057
1058 #ifdef CONFIG_KPROBES_ON_FTRACE
1059 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1060 .func = kprobe_ftrace_handler,
1061 .flags = FTRACE_OPS_FL_SAVE_REGS,
1062 };
1063
1064 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1065 .func = kprobe_ftrace_handler,
1066 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1067 };
1068
1069 static int kprobe_ipmodify_enabled;
1070 static int kprobe_ftrace_enabled;
1071 bool kprobe_ftrace_disabled;
1072
__arm_kprobe_ftrace(struct kprobe * p,struct ftrace_ops * ops,int * cnt)1073 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1074 int *cnt)
1075 {
1076 int ret;
1077
1078 lockdep_assert_held(&kprobe_mutex);
1079
1080 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1081 if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1082 return ret;
1083
1084 if (*cnt == 0) {
1085 ret = register_ftrace_function(ops);
1086 if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
1087 goto err_ftrace;
1088 }
1089
1090 (*cnt)++;
1091 return ret;
1092
1093 err_ftrace:
1094 /*
1095 * At this point, sinec ops is not registered, we should be sefe from
1096 * registering empty filter.
1097 */
1098 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1099 return ret;
1100 }
1101
arm_kprobe_ftrace(struct kprobe * p)1102 static int arm_kprobe_ftrace(struct kprobe *p)
1103 {
1104 bool ipmodify = (p->post_handler != NULL);
1105
1106 return __arm_kprobe_ftrace(p,
1107 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1108 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1109 }
1110
__disarm_kprobe_ftrace(struct kprobe * p,struct ftrace_ops * ops,int * cnt)1111 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1112 int *cnt)
1113 {
1114 int ret;
1115
1116 lockdep_assert_held(&kprobe_mutex);
1117
1118 if (*cnt == 1) {
1119 ret = unregister_ftrace_function(ops);
1120 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1121 return ret;
1122 }
1123
1124 (*cnt)--;
1125
1126 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1127 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1128 p->addr, ret);
1129 return ret;
1130 }
1131
disarm_kprobe_ftrace(struct kprobe * p)1132 static int disarm_kprobe_ftrace(struct kprobe *p)
1133 {
1134 bool ipmodify = (p->post_handler != NULL);
1135
1136 return __disarm_kprobe_ftrace(p,
1137 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1138 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1139 }
1140
kprobe_ftrace_kill(void)1141 void kprobe_ftrace_kill(void)
1142 {
1143 kprobe_ftrace_disabled = true;
1144 }
1145 #else /* !CONFIG_KPROBES_ON_FTRACE */
arm_kprobe_ftrace(struct kprobe * p)1146 static inline int arm_kprobe_ftrace(struct kprobe *p)
1147 {
1148 return -ENODEV;
1149 }
1150
disarm_kprobe_ftrace(struct kprobe * p)1151 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1152 {
1153 return -ENODEV;
1154 }
1155 #endif
1156
prepare_kprobe(struct kprobe * p)1157 static int prepare_kprobe(struct kprobe *p)
1158 {
1159 /* Must ensure p->addr is really on ftrace */
1160 if (kprobe_ftrace(p))
1161 return arch_prepare_kprobe_ftrace(p);
1162
1163 return arch_prepare_kprobe(p);
1164 }
1165
arm_kprobe(struct kprobe * kp)1166 static int arm_kprobe(struct kprobe *kp)
1167 {
1168 if (unlikely(kprobe_ftrace(kp)))
1169 return arm_kprobe_ftrace(kp);
1170
1171 cpus_read_lock();
1172 mutex_lock(&text_mutex);
1173 __arm_kprobe(kp);
1174 mutex_unlock(&text_mutex);
1175 cpus_read_unlock();
1176
1177 return 0;
1178 }
1179
disarm_kprobe(struct kprobe * kp,bool reopt)1180 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1181 {
1182 if (unlikely(kprobe_ftrace(kp)))
1183 return disarm_kprobe_ftrace(kp);
1184
1185 cpus_read_lock();
1186 mutex_lock(&text_mutex);
1187 __disarm_kprobe(kp, reopt);
1188 mutex_unlock(&text_mutex);
1189 cpus_read_unlock();
1190
1191 return 0;
1192 }
1193
1194 /*
1195 * Aggregate handlers for multiple kprobes support - these handlers
1196 * take care of invoking the individual kprobe handlers on p->list
1197 */
aggr_pre_handler(struct kprobe * p,struct pt_regs * regs)1198 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1199 {
1200 struct kprobe *kp;
1201
1202 list_for_each_entry_rcu(kp, &p->list, list) {
1203 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1204 set_kprobe_instance(kp);
1205 if (kp->pre_handler(kp, regs))
1206 return 1;
1207 }
1208 reset_kprobe_instance();
1209 }
1210 return 0;
1211 }
1212 NOKPROBE_SYMBOL(aggr_pre_handler);
1213
aggr_post_handler(struct kprobe * p,struct pt_regs * regs,unsigned long flags)1214 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1215 unsigned long flags)
1216 {
1217 struct kprobe *kp;
1218
1219 list_for_each_entry_rcu(kp, &p->list, list) {
1220 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1221 set_kprobe_instance(kp);
1222 kp->post_handler(kp, regs, flags);
1223 reset_kprobe_instance();
1224 }
1225 }
1226 }
1227 NOKPROBE_SYMBOL(aggr_post_handler);
1228
1229 /* Walks the list and increments 'nmissed' if 'p' has child probes. */
kprobes_inc_nmissed_count(struct kprobe * p)1230 void kprobes_inc_nmissed_count(struct kprobe *p)
1231 {
1232 struct kprobe *kp;
1233
1234 if (!kprobe_aggrprobe(p)) {
1235 p->nmissed++;
1236 } else {
1237 list_for_each_entry_rcu(kp, &p->list, list)
1238 kp->nmissed++;
1239 }
1240 }
1241 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1242
1243 static struct kprobe kprobe_busy = {
1244 .addr = (void *) get_kprobe,
1245 };
1246
kprobe_busy_begin(void)1247 void kprobe_busy_begin(void)
1248 {
1249 struct kprobe_ctlblk *kcb;
1250
1251 preempt_disable();
1252 __this_cpu_write(current_kprobe, &kprobe_busy);
1253 kcb = get_kprobe_ctlblk();
1254 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1255 }
1256
kprobe_busy_end(void)1257 void kprobe_busy_end(void)
1258 {
1259 __this_cpu_write(current_kprobe, NULL);
1260 preempt_enable();
1261 }
1262
1263 /* Add the new probe to 'ap->list'. */
add_new_kprobe(struct kprobe * ap,struct kprobe * p)1264 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1265 {
1266 if (p->post_handler)
1267 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1268
1269 list_add_rcu(&p->list, &ap->list);
1270 if (p->post_handler && !ap->post_handler)
1271 ap->post_handler = aggr_post_handler;
1272
1273 return 0;
1274 }
1275
1276 /*
1277 * Fill in the required fields of the aggregator kprobe. Replace the
1278 * earlier kprobe in the hlist with the aggregator kprobe.
1279 */
init_aggr_kprobe(struct kprobe * ap,struct kprobe * p)1280 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1281 {
1282 /* Copy the insn slot of 'p' to 'ap'. */
1283 copy_kprobe(p, ap);
1284 flush_insn_slot(ap);
1285 ap->addr = p->addr;
1286 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1287 ap->pre_handler = aggr_pre_handler;
1288 /* We don't care the kprobe which has gone. */
1289 if (p->post_handler && !kprobe_gone(p))
1290 ap->post_handler = aggr_post_handler;
1291
1292 INIT_LIST_HEAD(&ap->list);
1293 INIT_HLIST_NODE(&ap->hlist);
1294
1295 list_add_rcu(&p->list, &ap->list);
1296 hlist_replace_rcu(&p->hlist, &ap->hlist);
1297 }
1298
1299 /*
1300 * This registers the second or subsequent kprobe at the same address.
1301 */
register_aggr_kprobe(struct kprobe * orig_p,struct kprobe * p)1302 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1303 {
1304 int ret = 0;
1305 struct kprobe *ap = orig_p;
1306
1307 cpus_read_lock();
1308
1309 /* For preparing optimization, jump_label_text_reserved() is called */
1310 jump_label_lock();
1311 mutex_lock(&text_mutex);
1312
1313 if (!kprobe_aggrprobe(orig_p)) {
1314 /* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1315 ap = alloc_aggr_kprobe(orig_p);
1316 if (!ap) {
1317 ret = -ENOMEM;
1318 goto out;
1319 }
1320 init_aggr_kprobe(ap, orig_p);
1321 } else if (kprobe_unused(ap)) {
1322 /* This probe is going to die. Rescue it */
1323 ret = reuse_unused_kprobe(ap);
1324 if (ret)
1325 goto out;
1326 }
1327
1328 if (kprobe_gone(ap)) {
1329 /*
1330 * Attempting to insert new probe at the same location that
1331 * had a probe in the module vaddr area which already
1332 * freed. So, the instruction slot has already been
1333 * released. We need a new slot for the new probe.
1334 */
1335 ret = arch_prepare_kprobe(ap);
1336 if (ret)
1337 /*
1338 * Even if fail to allocate new slot, don't need to
1339 * free the 'ap'. It will be used next time, or
1340 * freed by unregister_kprobe().
1341 */
1342 goto out;
1343
1344 /* Prepare optimized instructions if possible. */
1345 prepare_optimized_kprobe(ap);
1346
1347 /*
1348 * Clear gone flag to prevent allocating new slot again, and
1349 * set disabled flag because it is not armed yet.
1350 */
1351 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1352 | KPROBE_FLAG_DISABLED;
1353 }
1354
1355 /* Copy the insn slot of 'p' to 'ap'. */
1356 copy_kprobe(ap, p);
1357 ret = add_new_kprobe(ap, p);
1358
1359 out:
1360 mutex_unlock(&text_mutex);
1361 jump_label_unlock();
1362 cpus_read_unlock();
1363
1364 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1365 ap->flags &= ~KPROBE_FLAG_DISABLED;
1366 if (!kprobes_all_disarmed) {
1367 /* Arm the breakpoint again. */
1368 ret = arm_kprobe(ap);
1369 if (ret) {
1370 ap->flags |= KPROBE_FLAG_DISABLED;
1371 list_del_rcu(&p->list);
1372 synchronize_rcu();
1373 }
1374 }
1375 }
1376 return ret;
1377 }
1378
arch_within_kprobe_blacklist(unsigned long addr)1379 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1380 {
1381 /* The '__kprobes' functions and entry code must not be probed. */
1382 return addr >= (unsigned long)__kprobes_text_start &&
1383 addr < (unsigned long)__kprobes_text_end;
1384 }
1385
__within_kprobe_blacklist(unsigned long addr)1386 static bool __within_kprobe_blacklist(unsigned long addr)
1387 {
1388 struct kprobe_blacklist_entry *ent;
1389
1390 if (arch_within_kprobe_blacklist(addr))
1391 return true;
1392 /*
1393 * If 'kprobe_blacklist' is defined, check the address and
1394 * reject any probe registration in the prohibited area.
1395 */
1396 list_for_each_entry(ent, &kprobe_blacklist, list) {
1397 if (addr >= ent->start_addr && addr < ent->end_addr)
1398 return true;
1399 }
1400 return false;
1401 }
1402
within_kprobe_blacklist(unsigned long addr)1403 bool within_kprobe_blacklist(unsigned long addr)
1404 {
1405 char symname[KSYM_NAME_LEN], *p;
1406
1407 if (__within_kprobe_blacklist(addr))
1408 return true;
1409
1410 /* Check if the address is on a suffixed-symbol */
1411 if (!lookup_symbol_name(addr, symname)) {
1412 p = strchr(symname, '.');
1413 if (!p)
1414 return false;
1415 *p = '\0';
1416 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1417 if (addr)
1418 return __within_kprobe_blacklist(addr);
1419 }
1420 return false;
1421 }
1422
1423 /*
1424 * arch_adjust_kprobe_addr - adjust the address
1425 * @addr: symbol base address
1426 * @offset: offset within the symbol
1427 * @on_func_entry: was this @addr+@offset on the function entry
1428 *
1429 * Typically returns @addr + @offset, except for special cases where the
1430 * function might be prefixed by a CFI landing pad, in that case any offset
1431 * inside the landing pad is mapped to the first 'real' instruction of the
1432 * symbol.
1433 *
1434 * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1435 * instruction at +0.
1436 */
arch_adjust_kprobe_addr(unsigned long addr,unsigned long offset,bool * on_func_entry)1437 kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1438 unsigned long offset,
1439 bool *on_func_entry)
1440 {
1441 *on_func_entry = !offset;
1442 return (kprobe_opcode_t *)(addr + offset);
1443 }
1444
1445 /*
1446 * If 'symbol_name' is specified, look it up and add the 'offset'
1447 * to it. This way, we can specify a relative address to a symbol.
1448 * This returns encoded errors if it fails to look up symbol or invalid
1449 * combination of parameters.
1450 */
1451 static kprobe_opcode_t *
_kprobe_addr(kprobe_opcode_t * addr,const char * symbol_name,unsigned long offset,bool * on_func_entry)1452 _kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1453 unsigned long offset, bool *on_func_entry)
1454 {
1455 if ((symbol_name && addr) || (!symbol_name && !addr))
1456 goto invalid;
1457
1458 if (symbol_name) {
1459 /*
1460 * Input: @sym + @offset
1461 * Output: @addr + @offset
1462 *
1463 * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1464 * argument into it's output!
1465 */
1466 addr = kprobe_lookup_name(symbol_name, offset);
1467 if (!addr)
1468 return ERR_PTR(-ENOENT);
1469 }
1470
1471 /*
1472 * So here we have @addr + @offset, displace it into a new
1473 * @addr' + @offset' where @addr' is the symbol start address.
1474 */
1475 addr = (void *)addr + offset;
1476 if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1477 return ERR_PTR(-ENOENT);
1478 addr = (void *)addr - offset;
1479
1480 /*
1481 * Then ask the architecture to re-combine them, taking care of
1482 * magical function entry details while telling us if this was indeed
1483 * at the start of the function.
1484 */
1485 addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1486 if (addr)
1487 return addr;
1488
1489 invalid:
1490 return ERR_PTR(-EINVAL);
1491 }
1492
kprobe_addr(struct kprobe * p)1493 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1494 {
1495 bool on_func_entry;
1496 return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1497 }
1498
1499 /*
1500 * Check the 'p' is valid and return the aggregator kprobe
1501 * at the same address.
1502 */
__get_valid_kprobe(struct kprobe * p)1503 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1504 {
1505 struct kprobe *ap, *list_p;
1506
1507 lockdep_assert_held(&kprobe_mutex);
1508
1509 ap = get_kprobe(p->addr);
1510 if (unlikely(!ap))
1511 return NULL;
1512
1513 if (p != ap) {
1514 list_for_each_entry(list_p, &ap->list, list)
1515 if (list_p == p)
1516 /* kprobe p is a valid probe */
1517 goto valid;
1518 return NULL;
1519 }
1520 valid:
1521 return ap;
1522 }
1523
1524 /*
1525 * Warn and return error if the kprobe is being re-registered since
1526 * there must be a software bug.
1527 */
warn_kprobe_rereg(struct kprobe * p)1528 static inline int warn_kprobe_rereg(struct kprobe *p)
1529 {
1530 int ret = 0;
1531
1532 mutex_lock(&kprobe_mutex);
1533 if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1534 ret = -EINVAL;
1535 mutex_unlock(&kprobe_mutex);
1536
1537 return ret;
1538 }
1539
check_ftrace_location(struct kprobe * p)1540 static int check_ftrace_location(struct kprobe *p)
1541 {
1542 unsigned long addr = (unsigned long)p->addr;
1543
1544 if (ftrace_location(addr) == addr) {
1545 #ifdef CONFIG_KPROBES_ON_FTRACE
1546 p->flags |= KPROBE_FLAG_FTRACE;
1547 #else /* !CONFIG_KPROBES_ON_FTRACE */
1548 return -EINVAL;
1549 #endif
1550 }
1551 return 0;
1552 }
1553
is_cfi_preamble_symbol(unsigned long addr)1554 static bool is_cfi_preamble_symbol(unsigned long addr)
1555 {
1556 char symbuf[KSYM_NAME_LEN];
1557
1558 if (lookup_symbol_name(addr, symbuf))
1559 return false;
1560
1561 return str_has_prefix(symbuf, "__cfi_") ||
1562 str_has_prefix(symbuf, "__pfx_");
1563 }
1564
check_kprobe_address_safe(struct kprobe * p,struct module ** probed_mod)1565 static int check_kprobe_address_safe(struct kprobe *p,
1566 struct module **probed_mod)
1567 {
1568 int ret;
1569
1570 ret = check_ftrace_location(p);
1571 if (ret)
1572 return ret;
1573 jump_label_lock();
1574 preempt_disable();
1575
1576 /* Ensure the address is in a text area, and find a module if exists. */
1577 *probed_mod = NULL;
1578 if (!core_kernel_text((unsigned long) p->addr)) {
1579 *probed_mod = __module_text_address((unsigned long) p->addr);
1580 if (!(*probed_mod)) {
1581 ret = -EINVAL;
1582 goto out;
1583 }
1584 }
1585 /* Ensure it is not in reserved area. */
1586 if (in_gate_area_no_mm((unsigned long) p->addr) ||
1587 within_kprobe_blacklist((unsigned long) p->addr) ||
1588 jump_label_text_reserved(p->addr, p->addr) ||
1589 static_call_text_reserved(p->addr, p->addr) ||
1590 find_bug((unsigned long)p->addr) ||
1591 is_cfi_preamble_symbol((unsigned long)p->addr)) {
1592 ret = -EINVAL;
1593 goto out;
1594 }
1595
1596 /* Get module refcount and reject __init functions for loaded modules. */
1597 if (*probed_mod) {
1598 /*
1599 * We must hold a refcount of the probed module while updating
1600 * its code to prohibit unexpected unloading.
1601 */
1602 if (unlikely(!try_module_get(*probed_mod))) {
1603 ret = -ENOENT;
1604 goto out;
1605 }
1606
1607 /*
1608 * If the module freed '.init.text', we couldn't insert
1609 * kprobes in there.
1610 */
1611 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1612 (*probed_mod)->state != MODULE_STATE_COMING) {
1613 module_put(*probed_mod);
1614 *probed_mod = NULL;
1615 ret = -ENOENT;
1616 }
1617 }
1618 out:
1619 preempt_enable();
1620 jump_label_unlock();
1621
1622 return ret;
1623 }
1624
register_kprobe(struct kprobe * p)1625 int register_kprobe(struct kprobe *p)
1626 {
1627 int ret;
1628 struct kprobe *old_p;
1629 struct module *probed_mod;
1630 kprobe_opcode_t *addr;
1631 bool on_func_entry;
1632
1633 /* Adjust probe address from symbol */
1634 addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1635 if (IS_ERR(addr))
1636 return PTR_ERR(addr);
1637 p->addr = addr;
1638
1639 ret = warn_kprobe_rereg(p);
1640 if (ret)
1641 return ret;
1642
1643 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1644 p->flags &= KPROBE_FLAG_DISABLED;
1645 p->nmissed = 0;
1646 INIT_LIST_HEAD(&p->list);
1647
1648 ret = check_kprobe_address_safe(p, &probed_mod);
1649 if (ret)
1650 return ret;
1651
1652 mutex_lock(&kprobe_mutex);
1653
1654 if (on_func_entry)
1655 p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY;
1656
1657 old_p = get_kprobe(p->addr);
1658 if (old_p) {
1659 /* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1660 ret = register_aggr_kprobe(old_p, p);
1661 goto out;
1662 }
1663
1664 cpus_read_lock();
1665 /* Prevent text modification */
1666 mutex_lock(&text_mutex);
1667 ret = prepare_kprobe(p);
1668 mutex_unlock(&text_mutex);
1669 cpus_read_unlock();
1670 if (ret)
1671 goto out;
1672
1673 INIT_HLIST_NODE(&p->hlist);
1674 hlist_add_head_rcu(&p->hlist,
1675 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1676
1677 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1678 ret = arm_kprobe(p);
1679 if (ret) {
1680 hlist_del_rcu(&p->hlist);
1681 synchronize_rcu();
1682 goto out;
1683 }
1684 }
1685
1686 /* Try to optimize kprobe */
1687 try_to_optimize_kprobe(p);
1688 out:
1689 mutex_unlock(&kprobe_mutex);
1690
1691 if (probed_mod)
1692 module_put(probed_mod);
1693
1694 return ret;
1695 }
1696 EXPORT_SYMBOL_GPL(register_kprobe);
1697
1698 /* Check if all probes on the 'ap' are disabled. */
aggr_kprobe_disabled(struct kprobe * ap)1699 static bool aggr_kprobe_disabled(struct kprobe *ap)
1700 {
1701 struct kprobe *kp;
1702
1703 lockdep_assert_held(&kprobe_mutex);
1704
1705 list_for_each_entry(kp, &ap->list, list)
1706 if (!kprobe_disabled(kp))
1707 /*
1708 * Since there is an active probe on the list,
1709 * we can't disable this 'ap'.
1710 */
1711 return false;
1712
1713 return true;
1714 }
1715
__disable_kprobe(struct kprobe * p)1716 static struct kprobe *__disable_kprobe(struct kprobe *p)
1717 {
1718 struct kprobe *orig_p;
1719 int ret;
1720
1721 lockdep_assert_held(&kprobe_mutex);
1722
1723 /* Get an original kprobe for return */
1724 orig_p = __get_valid_kprobe(p);
1725 if (unlikely(orig_p == NULL))
1726 return ERR_PTR(-EINVAL);
1727
1728 if (!kprobe_disabled(p)) {
1729 /* Disable probe if it is a child probe */
1730 if (p != orig_p)
1731 p->flags |= KPROBE_FLAG_DISABLED;
1732
1733 /* Try to disarm and disable this/parent probe */
1734 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1735 /*
1736 * Don't be lazy here. Even if 'kprobes_all_disarmed'
1737 * is false, 'orig_p' might not have been armed yet.
1738 * Note arm_all_kprobes() __tries__ to arm all kprobes
1739 * on the best effort basis.
1740 */
1741 if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1742 ret = disarm_kprobe(orig_p, true);
1743 if (ret) {
1744 p->flags &= ~KPROBE_FLAG_DISABLED;
1745 return ERR_PTR(ret);
1746 }
1747 }
1748 orig_p->flags |= KPROBE_FLAG_DISABLED;
1749 }
1750 }
1751
1752 return orig_p;
1753 }
1754
1755 /*
1756 * Unregister a kprobe without a scheduler synchronization.
1757 */
__unregister_kprobe_top(struct kprobe * p)1758 static int __unregister_kprobe_top(struct kprobe *p)
1759 {
1760 struct kprobe *ap, *list_p;
1761
1762 /* Disable kprobe. This will disarm it if needed. */
1763 ap = __disable_kprobe(p);
1764 if (IS_ERR(ap))
1765 return PTR_ERR(ap);
1766
1767 if (ap == p)
1768 /*
1769 * This probe is an independent(and non-optimized) kprobe
1770 * (not an aggrprobe). Remove from the hash list.
1771 */
1772 goto disarmed;
1773
1774 /* Following process expects this probe is an aggrprobe */
1775 WARN_ON(!kprobe_aggrprobe(ap));
1776
1777 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1778 /*
1779 * !disarmed could be happen if the probe is under delayed
1780 * unoptimizing.
1781 */
1782 goto disarmed;
1783 else {
1784 /* If disabling probe has special handlers, update aggrprobe */
1785 if (p->post_handler && !kprobe_gone(p)) {
1786 list_for_each_entry(list_p, &ap->list, list) {
1787 if ((list_p != p) && (list_p->post_handler))
1788 goto noclean;
1789 }
1790 /*
1791 * For the kprobe-on-ftrace case, we keep the
1792 * post_handler setting to identify this aggrprobe
1793 * armed with kprobe_ipmodify_ops.
1794 */
1795 if (!kprobe_ftrace(ap))
1796 ap->post_handler = NULL;
1797 }
1798 noclean:
1799 /*
1800 * Remove from the aggrprobe: this path will do nothing in
1801 * __unregister_kprobe_bottom().
1802 */
1803 list_del_rcu(&p->list);
1804 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1805 /*
1806 * Try to optimize this probe again, because post
1807 * handler may have been changed.
1808 */
1809 optimize_kprobe(ap);
1810 }
1811 return 0;
1812
1813 disarmed:
1814 hlist_del_rcu(&ap->hlist);
1815 return 0;
1816 }
1817
__unregister_kprobe_bottom(struct kprobe * p)1818 static void __unregister_kprobe_bottom(struct kprobe *p)
1819 {
1820 struct kprobe *ap;
1821
1822 if (list_empty(&p->list))
1823 /* This is an independent kprobe */
1824 arch_remove_kprobe(p);
1825 else if (list_is_singular(&p->list)) {
1826 /* This is the last child of an aggrprobe */
1827 ap = list_entry(p->list.next, struct kprobe, list);
1828 list_del(&p->list);
1829 free_aggr_kprobe(ap);
1830 }
1831 /* Otherwise, do nothing. */
1832 }
1833
register_kprobes(struct kprobe ** kps,int num)1834 int register_kprobes(struct kprobe **kps, int num)
1835 {
1836 int i, ret = 0;
1837
1838 if (num <= 0)
1839 return -EINVAL;
1840 for (i = 0; i < num; i++) {
1841 ret = register_kprobe(kps[i]);
1842 if (ret < 0) {
1843 if (i > 0)
1844 unregister_kprobes(kps, i);
1845 break;
1846 }
1847 }
1848 return ret;
1849 }
1850 EXPORT_SYMBOL_GPL(register_kprobes);
1851
unregister_kprobe(struct kprobe * p)1852 void unregister_kprobe(struct kprobe *p)
1853 {
1854 unregister_kprobes(&p, 1);
1855 }
1856 EXPORT_SYMBOL_GPL(unregister_kprobe);
1857
unregister_kprobes(struct kprobe ** kps,int num)1858 void unregister_kprobes(struct kprobe **kps, int num)
1859 {
1860 int i;
1861
1862 if (num <= 0)
1863 return;
1864 mutex_lock(&kprobe_mutex);
1865 for (i = 0; i < num; i++)
1866 if (__unregister_kprobe_top(kps[i]) < 0)
1867 kps[i]->addr = NULL;
1868 mutex_unlock(&kprobe_mutex);
1869
1870 synchronize_rcu();
1871 for (i = 0; i < num; i++)
1872 if (kps[i]->addr)
1873 __unregister_kprobe_bottom(kps[i]);
1874 }
1875 EXPORT_SYMBOL_GPL(unregister_kprobes);
1876
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)1877 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1878 unsigned long val, void *data)
1879 {
1880 return NOTIFY_DONE;
1881 }
1882 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1883
1884 static struct notifier_block kprobe_exceptions_nb = {
1885 .notifier_call = kprobe_exceptions_notify,
1886 .priority = 0x7fffffff /* we need to be notified first */
1887 };
1888
1889 #ifdef CONFIG_KRETPROBES
1890
1891 #if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
free_rp_inst_rcu(struct rcu_head * head)1892 static void free_rp_inst_rcu(struct rcu_head *head)
1893 {
1894 struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1895
1896 if (refcount_dec_and_test(&ri->rph->ref))
1897 kfree(ri->rph);
1898 kfree(ri);
1899 }
1900 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1901
recycle_rp_inst(struct kretprobe_instance * ri)1902 static void recycle_rp_inst(struct kretprobe_instance *ri)
1903 {
1904 struct kretprobe *rp = get_kretprobe(ri);
1905
1906 if (likely(rp))
1907 freelist_add(&ri->freelist, &rp->freelist);
1908 else
1909 call_rcu(&ri->rcu, free_rp_inst_rcu);
1910 }
1911 NOKPROBE_SYMBOL(recycle_rp_inst);
1912
1913 /*
1914 * This function is called from delayed_put_task_struct() when a task is
1915 * dead and cleaned up to recycle any kretprobe instances associated with
1916 * this task. These left over instances represent probed functions that
1917 * have been called but will never return.
1918 */
kprobe_flush_task(struct task_struct * tk)1919 void kprobe_flush_task(struct task_struct *tk)
1920 {
1921 struct kretprobe_instance *ri;
1922 struct llist_node *node;
1923
1924 /* Early boot, not yet initialized. */
1925 if (unlikely(!kprobes_initialized))
1926 return;
1927
1928 kprobe_busy_begin();
1929
1930 node = __llist_del_all(&tk->kretprobe_instances);
1931 while (node) {
1932 ri = container_of(node, struct kretprobe_instance, llist);
1933 node = node->next;
1934
1935 recycle_rp_inst(ri);
1936 }
1937
1938 kprobe_busy_end();
1939 }
1940 NOKPROBE_SYMBOL(kprobe_flush_task);
1941
free_rp_inst(struct kretprobe * rp)1942 static inline void free_rp_inst(struct kretprobe *rp)
1943 {
1944 struct kretprobe_instance *ri;
1945 struct freelist_node *node;
1946 int count = 0;
1947
1948 node = rp->freelist.head;
1949 while (node) {
1950 ri = container_of(node, struct kretprobe_instance, freelist);
1951 node = node->next;
1952
1953 kfree(ri);
1954 count++;
1955 }
1956
1957 if (refcount_sub_and_test(count, &rp->rph->ref)) {
1958 kfree(rp->rph);
1959 rp->rph = NULL;
1960 }
1961 }
1962
1963 /* This assumes the 'tsk' is the current task or the is not running. */
__kretprobe_find_ret_addr(struct task_struct * tsk,struct llist_node ** cur)1964 static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1965 struct llist_node **cur)
1966 {
1967 struct kretprobe_instance *ri = NULL;
1968 struct llist_node *node = *cur;
1969
1970 if (!node)
1971 node = tsk->kretprobe_instances.first;
1972 else
1973 node = node->next;
1974
1975 while (node) {
1976 ri = container_of(node, struct kretprobe_instance, llist);
1977 if (ri->ret_addr != kretprobe_trampoline_addr()) {
1978 *cur = node;
1979 return ri->ret_addr;
1980 }
1981 node = node->next;
1982 }
1983 return NULL;
1984 }
1985 NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1986
1987 /**
1988 * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1989 * @tsk: Target task
1990 * @fp: A frame pointer
1991 * @cur: a storage of the loop cursor llist_node pointer for next call
1992 *
1993 * Find the correct return address modified by a kretprobe on @tsk in unsigned
1994 * long type. If it finds the return address, this returns that address value,
1995 * or this returns 0.
1996 * The @tsk must be 'current' or a task which is not running. @fp is a hint
1997 * to get the currect return address - which is compared with the
1998 * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1999 * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
2000 * first call, but '@cur' itself must NOT NULL.
2001 */
kretprobe_find_ret_addr(struct task_struct * tsk,void * fp,struct llist_node ** cur)2002 unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
2003 struct llist_node **cur)
2004 {
2005 struct kretprobe_instance *ri = NULL;
2006 kprobe_opcode_t *ret;
2007
2008 if (WARN_ON_ONCE(!cur))
2009 return 0;
2010
2011 do {
2012 ret = __kretprobe_find_ret_addr(tsk, cur);
2013 if (!ret)
2014 break;
2015 ri = container_of(*cur, struct kretprobe_instance, llist);
2016 } while (ri->fp != fp);
2017
2018 return (unsigned long)ret;
2019 }
2020 NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
2021
arch_kretprobe_fixup_return(struct pt_regs * regs,kprobe_opcode_t * correct_ret_addr)2022 void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
2023 kprobe_opcode_t *correct_ret_addr)
2024 {
2025 /*
2026 * Do nothing by default. Please fill this to update the fake return
2027 * address on the stack with the correct one on each arch if possible.
2028 */
2029 }
2030
__kretprobe_trampoline_handler(struct pt_regs * regs,void * frame_pointer)2031 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
2032 void *frame_pointer)
2033 {
2034 struct kretprobe_instance *ri = NULL;
2035 struct llist_node *first, *node = NULL;
2036 kprobe_opcode_t *correct_ret_addr;
2037 struct kretprobe *rp;
2038
2039 /* Find correct address and all nodes for this frame. */
2040 correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2041 if (!correct_ret_addr) {
2042 pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2043 BUG_ON(1);
2044 }
2045
2046 /*
2047 * Set the return address as the instruction pointer, because if the
2048 * user handler calls stack_trace_save_regs() with this 'regs',
2049 * the stack trace will start from the instruction pointer.
2050 */
2051 instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
2052
2053 /* Run the user handler of the nodes. */
2054 first = current->kretprobe_instances.first;
2055 while (first) {
2056 ri = container_of(first, struct kretprobe_instance, llist);
2057
2058 if (WARN_ON_ONCE(ri->fp != frame_pointer))
2059 break;
2060
2061 rp = get_kretprobe(ri);
2062 if (rp && rp->handler) {
2063 struct kprobe *prev = kprobe_running();
2064
2065 __this_cpu_write(current_kprobe, &rp->kp);
2066 ri->ret_addr = correct_ret_addr;
2067 rp->handler(ri, regs);
2068 __this_cpu_write(current_kprobe, prev);
2069 }
2070 if (first == node)
2071 break;
2072
2073 first = first->next;
2074 }
2075
2076 arch_kretprobe_fixup_return(regs, correct_ret_addr);
2077
2078 /* Unlink all nodes for this frame. */
2079 first = current->kretprobe_instances.first;
2080 current->kretprobe_instances.first = node->next;
2081 node->next = NULL;
2082
2083 /* Recycle free instances. */
2084 while (first) {
2085 ri = container_of(first, struct kretprobe_instance, llist);
2086 first = first->next;
2087
2088 recycle_rp_inst(ri);
2089 }
2090
2091 return (unsigned long)correct_ret_addr;
2092 }
NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)2093 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2094
2095 /*
2096 * This kprobe pre_handler is registered with every kretprobe. When probe
2097 * hits it will set up the return probe.
2098 */
2099 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2100 {
2101 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2102 struct kretprobe_instance *ri;
2103 struct freelist_node *fn;
2104
2105 fn = freelist_try_get(&rp->freelist);
2106 if (!fn) {
2107 rp->nmissed++;
2108 return 0;
2109 }
2110
2111 ri = container_of(fn, struct kretprobe_instance, freelist);
2112
2113 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2114 freelist_add(&ri->freelist, &rp->freelist);
2115 return 0;
2116 }
2117
2118 arch_prepare_kretprobe(ri, regs);
2119
2120 __llist_add(&ri->llist, ¤t->kretprobe_instances);
2121
2122 return 0;
2123 }
2124 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2125 #else /* CONFIG_KRETPROBE_ON_RETHOOK */
2126 /*
2127 * This kprobe pre_handler is registered with every kretprobe. When probe
2128 * hits it will set up the return probe.
2129 */
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)2130 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2131 {
2132 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2133 struct kretprobe_instance *ri;
2134 struct rethook_node *rhn;
2135
2136 rhn = rethook_try_get(rp->rh);
2137 if (!rhn) {
2138 rp->nmissed++;
2139 return 0;
2140 }
2141
2142 ri = container_of(rhn, struct kretprobe_instance, node);
2143
2144 if (rp->entry_handler && rp->entry_handler(ri, regs))
2145 rethook_recycle(rhn);
2146 else
2147 rethook_hook(rhn, regs, kprobe_ftrace(p));
2148
2149 return 0;
2150 }
2151 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2152
kretprobe_rethook_handler(struct rethook_node * rh,void * data,unsigned long ret_addr,struct pt_regs * regs)2153 static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2154 unsigned long ret_addr,
2155 struct pt_regs *regs)
2156 {
2157 struct kretprobe *rp = (struct kretprobe *)data;
2158 struct kretprobe_instance *ri;
2159 struct kprobe_ctlblk *kcb;
2160
2161 /* The data must NOT be null. This means rethook data structure is broken. */
2162 if (WARN_ON_ONCE(!data) || !rp->handler)
2163 return;
2164
2165 __this_cpu_write(current_kprobe, &rp->kp);
2166 kcb = get_kprobe_ctlblk();
2167 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2168
2169 ri = container_of(rh, struct kretprobe_instance, node);
2170 rp->handler(ri, regs);
2171
2172 __this_cpu_write(current_kprobe, NULL);
2173 }
2174 NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2175
2176 #endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2177
2178 /**
2179 * kprobe_on_func_entry() -- check whether given address is function entry
2180 * @addr: Target address
2181 * @sym: Target symbol name
2182 * @offset: The offset from the symbol or the address
2183 *
2184 * This checks whether the given @addr+@offset or @sym+@offset is on the
2185 * function entry address or not.
2186 * This returns 0 if it is the function entry, or -EINVAL if it is not.
2187 * And also it returns -ENOENT if it fails the symbol or address lookup.
2188 * Caller must pass @addr or @sym (either one must be NULL), or this
2189 * returns -EINVAL.
2190 */
kprobe_on_func_entry(kprobe_opcode_t * addr,const char * sym,unsigned long offset)2191 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2192 {
2193 bool on_func_entry;
2194 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2195
2196 if (IS_ERR(kp_addr))
2197 return PTR_ERR(kp_addr);
2198
2199 if (!on_func_entry)
2200 return -EINVAL;
2201
2202 return 0;
2203 }
2204
register_kretprobe(struct kretprobe * rp)2205 int register_kretprobe(struct kretprobe *rp)
2206 {
2207 int ret;
2208 struct kretprobe_instance *inst;
2209 int i;
2210 void *addr;
2211
2212 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2213 if (ret)
2214 return ret;
2215
2216 /* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2217 if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2218 return -EINVAL;
2219
2220 if (kretprobe_blacklist_size) {
2221 addr = kprobe_addr(&rp->kp);
2222 if (IS_ERR(addr))
2223 return PTR_ERR(addr);
2224
2225 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2226 if (kretprobe_blacklist[i].addr == addr)
2227 return -EINVAL;
2228 }
2229 }
2230
2231 if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2232 return -E2BIG;
2233
2234 rp->kp.pre_handler = pre_handler_kretprobe;
2235 rp->kp.post_handler = NULL;
2236
2237 /* Pre-allocate memory for max kretprobe instances */
2238 if (rp->maxactive <= 0)
2239 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2240
2241 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2242 rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler);
2243 if (!rp->rh)
2244 return -ENOMEM;
2245
2246 for (i = 0; i < rp->maxactive; i++) {
2247 inst = kzalloc(struct_size(inst, data, rp->data_size), GFP_KERNEL);
2248 if (inst == NULL) {
2249 rethook_free(rp->rh);
2250 rp->rh = NULL;
2251 return -ENOMEM;
2252 }
2253 rethook_add_node(rp->rh, &inst->node);
2254 }
2255 rp->nmissed = 0;
2256 /* Establish function entry probe point */
2257 ret = register_kprobe(&rp->kp);
2258 if (ret != 0) {
2259 rethook_free(rp->rh);
2260 rp->rh = NULL;
2261 }
2262 #else /* !CONFIG_KRETPROBE_ON_RETHOOK */
2263 rp->freelist.head = NULL;
2264 rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2265 if (!rp->rph)
2266 return -ENOMEM;
2267
2268 rcu_assign_pointer(rp->rph->rp, rp);
2269 for (i = 0; i < rp->maxactive; i++) {
2270 inst = kzalloc(struct_size(inst, data, rp->data_size), GFP_KERNEL);
2271 if (inst == NULL) {
2272 refcount_set(&rp->rph->ref, i);
2273 free_rp_inst(rp);
2274 return -ENOMEM;
2275 }
2276 inst->rph = rp->rph;
2277 freelist_add(&inst->freelist, &rp->freelist);
2278 }
2279 refcount_set(&rp->rph->ref, i);
2280
2281 rp->nmissed = 0;
2282 /* Establish function entry probe point */
2283 ret = register_kprobe(&rp->kp);
2284 if (ret != 0)
2285 free_rp_inst(rp);
2286 #endif
2287 return ret;
2288 }
2289 EXPORT_SYMBOL_GPL(register_kretprobe);
2290
register_kretprobes(struct kretprobe ** rps,int num)2291 int register_kretprobes(struct kretprobe **rps, int num)
2292 {
2293 int ret = 0, i;
2294
2295 if (num <= 0)
2296 return -EINVAL;
2297 for (i = 0; i < num; i++) {
2298 ret = register_kretprobe(rps[i]);
2299 if (ret < 0) {
2300 if (i > 0)
2301 unregister_kretprobes(rps, i);
2302 break;
2303 }
2304 }
2305 return ret;
2306 }
2307 EXPORT_SYMBOL_GPL(register_kretprobes);
2308
unregister_kretprobe(struct kretprobe * rp)2309 void unregister_kretprobe(struct kretprobe *rp)
2310 {
2311 unregister_kretprobes(&rp, 1);
2312 }
2313 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2314
unregister_kretprobes(struct kretprobe ** rps,int num)2315 void unregister_kretprobes(struct kretprobe **rps, int num)
2316 {
2317 int i;
2318
2319 if (num <= 0)
2320 return;
2321 mutex_lock(&kprobe_mutex);
2322 for (i = 0; i < num; i++) {
2323 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2324 rps[i]->kp.addr = NULL;
2325 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2326 rethook_free(rps[i]->rh);
2327 #else
2328 rcu_assign_pointer(rps[i]->rph->rp, NULL);
2329 #endif
2330 }
2331 mutex_unlock(&kprobe_mutex);
2332
2333 synchronize_rcu();
2334 for (i = 0; i < num; i++) {
2335 if (rps[i]->kp.addr) {
2336 __unregister_kprobe_bottom(&rps[i]->kp);
2337 #ifndef CONFIG_KRETPROBE_ON_RETHOOK
2338 free_rp_inst(rps[i]);
2339 #endif
2340 }
2341 }
2342 }
2343 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2344
2345 #else /* CONFIG_KRETPROBES */
register_kretprobe(struct kretprobe * rp)2346 int register_kretprobe(struct kretprobe *rp)
2347 {
2348 return -EOPNOTSUPP;
2349 }
2350 EXPORT_SYMBOL_GPL(register_kretprobe);
2351
register_kretprobes(struct kretprobe ** rps,int num)2352 int register_kretprobes(struct kretprobe **rps, int num)
2353 {
2354 return -EOPNOTSUPP;
2355 }
2356 EXPORT_SYMBOL_GPL(register_kretprobes);
2357
unregister_kretprobe(struct kretprobe * rp)2358 void unregister_kretprobe(struct kretprobe *rp)
2359 {
2360 }
2361 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2362
unregister_kretprobes(struct kretprobe ** rps,int num)2363 void unregister_kretprobes(struct kretprobe **rps, int num)
2364 {
2365 }
2366 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2367
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)2368 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2369 {
2370 return 0;
2371 }
2372 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2373
2374 #endif /* CONFIG_KRETPROBES */
2375
2376 /* Set the kprobe gone and remove its instruction buffer. */
kill_kprobe(struct kprobe * p)2377 static void kill_kprobe(struct kprobe *p)
2378 {
2379 struct kprobe *kp;
2380
2381 lockdep_assert_held(&kprobe_mutex);
2382
2383 /*
2384 * The module is going away. We should disarm the kprobe which
2385 * is using ftrace, because ftrace framework is still available at
2386 * 'MODULE_STATE_GOING' notification.
2387 */
2388 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2389 disarm_kprobe_ftrace(p);
2390
2391 p->flags |= KPROBE_FLAG_GONE;
2392 if (kprobe_aggrprobe(p)) {
2393 /*
2394 * If this is an aggr_kprobe, we have to list all the
2395 * chained probes and mark them GONE.
2396 */
2397 list_for_each_entry(kp, &p->list, list)
2398 kp->flags |= KPROBE_FLAG_GONE;
2399 p->post_handler = NULL;
2400 kill_optimized_kprobe(p);
2401 }
2402 /*
2403 * Here, we can remove insn_slot safely, because no thread calls
2404 * the original probed function (which will be freed soon) any more.
2405 */
2406 arch_remove_kprobe(p);
2407 }
2408
2409 /* Disable one kprobe */
disable_kprobe(struct kprobe * kp)2410 int disable_kprobe(struct kprobe *kp)
2411 {
2412 int ret = 0;
2413 struct kprobe *p;
2414
2415 mutex_lock(&kprobe_mutex);
2416
2417 /* Disable this kprobe */
2418 p = __disable_kprobe(kp);
2419 if (IS_ERR(p))
2420 ret = PTR_ERR(p);
2421
2422 mutex_unlock(&kprobe_mutex);
2423 return ret;
2424 }
2425 EXPORT_SYMBOL_GPL(disable_kprobe);
2426
2427 /* Enable one kprobe */
enable_kprobe(struct kprobe * kp)2428 int enable_kprobe(struct kprobe *kp)
2429 {
2430 int ret = 0;
2431 struct kprobe *p;
2432
2433 mutex_lock(&kprobe_mutex);
2434
2435 /* Check whether specified probe is valid. */
2436 p = __get_valid_kprobe(kp);
2437 if (unlikely(p == NULL)) {
2438 ret = -EINVAL;
2439 goto out;
2440 }
2441
2442 if (kprobe_gone(kp)) {
2443 /* This kprobe has gone, we couldn't enable it. */
2444 ret = -EINVAL;
2445 goto out;
2446 }
2447
2448 if (p != kp)
2449 kp->flags &= ~KPROBE_FLAG_DISABLED;
2450
2451 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2452 p->flags &= ~KPROBE_FLAG_DISABLED;
2453 ret = arm_kprobe(p);
2454 if (ret) {
2455 p->flags |= KPROBE_FLAG_DISABLED;
2456 if (p != kp)
2457 kp->flags |= KPROBE_FLAG_DISABLED;
2458 }
2459 }
2460 out:
2461 mutex_unlock(&kprobe_mutex);
2462 return ret;
2463 }
2464 EXPORT_SYMBOL_GPL(enable_kprobe);
2465
2466 /* Caller must NOT call this in usual path. This is only for critical case */
dump_kprobe(struct kprobe * kp)2467 void dump_kprobe(struct kprobe *kp)
2468 {
2469 pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2470 kp->symbol_name, kp->offset, kp->addr);
2471 }
2472 NOKPROBE_SYMBOL(dump_kprobe);
2473
kprobe_add_ksym_blacklist(unsigned long entry)2474 int kprobe_add_ksym_blacklist(unsigned long entry)
2475 {
2476 struct kprobe_blacklist_entry *ent;
2477 unsigned long offset = 0, size = 0;
2478
2479 if (!kernel_text_address(entry) ||
2480 !kallsyms_lookup_size_offset(entry, &size, &offset))
2481 return -EINVAL;
2482
2483 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2484 if (!ent)
2485 return -ENOMEM;
2486 ent->start_addr = entry;
2487 ent->end_addr = entry + size;
2488 INIT_LIST_HEAD(&ent->list);
2489 list_add_tail(&ent->list, &kprobe_blacklist);
2490
2491 return (int)size;
2492 }
2493
2494 /* Add all symbols in given area into kprobe blacklist */
kprobe_add_area_blacklist(unsigned long start,unsigned long end)2495 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2496 {
2497 unsigned long entry;
2498 int ret = 0;
2499
2500 for (entry = start; entry < end; entry += ret) {
2501 ret = kprobe_add_ksym_blacklist(entry);
2502 if (ret < 0)
2503 return ret;
2504 if (ret == 0) /* In case of alias symbol */
2505 ret = 1;
2506 }
2507 return 0;
2508 }
2509
2510 /* Remove all symbols in given area from kprobe blacklist */
kprobe_remove_area_blacklist(unsigned long start,unsigned long end)2511 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2512 {
2513 struct kprobe_blacklist_entry *ent, *n;
2514
2515 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2516 if (ent->start_addr < start || ent->start_addr >= end)
2517 continue;
2518 list_del(&ent->list);
2519 kfree(ent);
2520 }
2521 }
2522
kprobe_remove_ksym_blacklist(unsigned long entry)2523 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2524 {
2525 kprobe_remove_area_blacklist(entry, entry + 1);
2526 }
2527
arch_kprobe_get_kallsym(unsigned int * symnum,unsigned long * value,char * type,char * sym)2528 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2529 char *type, char *sym)
2530 {
2531 return -ERANGE;
2532 }
2533
kprobe_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)2534 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2535 char *sym)
2536 {
2537 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2538 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2539 return 0;
2540 #ifdef CONFIG_OPTPROBES
2541 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2542 return 0;
2543 #endif
2544 #endif
2545 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2546 return 0;
2547 return -ERANGE;
2548 }
2549
arch_populate_kprobe_blacklist(void)2550 int __init __weak arch_populate_kprobe_blacklist(void)
2551 {
2552 return 0;
2553 }
2554
2555 /*
2556 * Lookup and populate the kprobe_blacklist.
2557 *
2558 * Unlike the kretprobe blacklist, we'll need to determine
2559 * the range of addresses that belong to the said functions,
2560 * since a kprobe need not necessarily be at the beginning
2561 * of a function.
2562 */
populate_kprobe_blacklist(unsigned long * start,unsigned long * end)2563 static int __init populate_kprobe_blacklist(unsigned long *start,
2564 unsigned long *end)
2565 {
2566 unsigned long entry;
2567 unsigned long *iter;
2568 int ret;
2569
2570 for (iter = start; iter < end; iter++) {
2571 entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2572 ret = kprobe_add_ksym_blacklist(entry);
2573 if (ret == -EINVAL)
2574 continue;
2575 if (ret < 0)
2576 return ret;
2577 }
2578
2579 /* Symbols in '__kprobes_text' are blacklisted */
2580 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2581 (unsigned long)__kprobes_text_end);
2582 if (ret)
2583 return ret;
2584
2585 /* Symbols in 'noinstr' section are blacklisted */
2586 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2587 (unsigned long)__noinstr_text_end);
2588
2589 return ret ? : arch_populate_kprobe_blacklist();
2590 }
2591
add_module_kprobe_blacklist(struct module * mod)2592 static void add_module_kprobe_blacklist(struct module *mod)
2593 {
2594 unsigned long start, end;
2595 int i;
2596
2597 if (mod->kprobe_blacklist) {
2598 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2599 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2600 }
2601
2602 start = (unsigned long)mod->kprobes_text_start;
2603 if (start) {
2604 end = start + mod->kprobes_text_size;
2605 kprobe_add_area_blacklist(start, end);
2606 }
2607
2608 start = (unsigned long)mod->noinstr_text_start;
2609 if (start) {
2610 end = start + mod->noinstr_text_size;
2611 kprobe_add_area_blacklist(start, end);
2612 }
2613 }
2614
remove_module_kprobe_blacklist(struct module * mod)2615 static void remove_module_kprobe_blacklist(struct module *mod)
2616 {
2617 unsigned long start, end;
2618 int i;
2619
2620 if (mod->kprobe_blacklist) {
2621 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2622 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2623 }
2624
2625 start = (unsigned long)mod->kprobes_text_start;
2626 if (start) {
2627 end = start + mod->kprobes_text_size;
2628 kprobe_remove_area_blacklist(start, end);
2629 }
2630
2631 start = (unsigned long)mod->noinstr_text_start;
2632 if (start) {
2633 end = start + mod->noinstr_text_size;
2634 kprobe_remove_area_blacklist(start, end);
2635 }
2636 }
2637
2638 /* Module notifier call back, checking kprobes on the module */
kprobes_module_callback(struct notifier_block * nb,unsigned long val,void * data)2639 static int kprobes_module_callback(struct notifier_block *nb,
2640 unsigned long val, void *data)
2641 {
2642 struct module *mod = data;
2643 struct hlist_head *head;
2644 struct kprobe *p;
2645 unsigned int i;
2646 int checkcore = (val == MODULE_STATE_GOING);
2647
2648 if (val == MODULE_STATE_COMING) {
2649 mutex_lock(&kprobe_mutex);
2650 add_module_kprobe_blacklist(mod);
2651 mutex_unlock(&kprobe_mutex);
2652 }
2653 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2654 return NOTIFY_DONE;
2655
2656 /*
2657 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2658 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2659 * notified, only '.init.text' section would be freed. We need to
2660 * disable kprobes which have been inserted in the sections.
2661 */
2662 mutex_lock(&kprobe_mutex);
2663 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2664 head = &kprobe_table[i];
2665 hlist_for_each_entry(p, head, hlist)
2666 if (within_module_init((unsigned long)p->addr, mod) ||
2667 (checkcore &&
2668 within_module_core((unsigned long)p->addr, mod))) {
2669 /*
2670 * The vaddr this probe is installed will soon
2671 * be vfreed buy not synced to disk. Hence,
2672 * disarming the breakpoint isn't needed.
2673 *
2674 * Note, this will also move any optimized probes
2675 * that are pending to be removed from their
2676 * corresponding lists to the 'freeing_list' and
2677 * will not be touched by the delayed
2678 * kprobe_optimizer() work handler.
2679 */
2680 kill_kprobe(p);
2681 }
2682 }
2683 if (val == MODULE_STATE_GOING)
2684 remove_module_kprobe_blacklist(mod);
2685 mutex_unlock(&kprobe_mutex);
2686 return NOTIFY_DONE;
2687 }
2688
2689 static struct notifier_block kprobe_module_nb = {
2690 .notifier_call = kprobes_module_callback,
2691 .priority = 0
2692 };
2693
kprobe_free_init_mem(void)2694 void kprobe_free_init_mem(void)
2695 {
2696 void *start = (void *)(&__init_begin);
2697 void *end = (void *)(&__init_end);
2698 struct hlist_head *head;
2699 struct kprobe *p;
2700 int i;
2701
2702 mutex_lock(&kprobe_mutex);
2703
2704 /* Kill all kprobes on initmem because the target code has been freed. */
2705 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2706 head = &kprobe_table[i];
2707 hlist_for_each_entry(p, head, hlist) {
2708 if (start <= (void *)p->addr && (void *)p->addr < end)
2709 kill_kprobe(p);
2710 }
2711 }
2712
2713 mutex_unlock(&kprobe_mutex);
2714 }
2715
init_kprobes(void)2716 static int __init init_kprobes(void)
2717 {
2718 int i, err;
2719
2720 /* FIXME allocate the probe table, currently defined statically */
2721 /* initialize all list heads */
2722 for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2723 INIT_HLIST_HEAD(&kprobe_table[i]);
2724
2725 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2726 __stop_kprobe_blacklist);
2727 if (err)
2728 pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2729
2730 if (kretprobe_blacklist_size) {
2731 /* lookup the function address from its name */
2732 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2733 kretprobe_blacklist[i].addr =
2734 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2735 if (!kretprobe_blacklist[i].addr)
2736 pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2737 kretprobe_blacklist[i].name);
2738 }
2739 }
2740
2741 /* By default, kprobes are armed */
2742 kprobes_all_disarmed = false;
2743
2744 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2745 /* Init 'kprobe_optinsn_slots' for allocation */
2746 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2747 #endif
2748
2749 err = arch_init_kprobes();
2750 if (!err)
2751 err = register_die_notifier(&kprobe_exceptions_nb);
2752 if (!err)
2753 err = register_module_notifier(&kprobe_module_nb);
2754
2755 kprobes_initialized = (err == 0);
2756 kprobe_sysctls_init();
2757 return err;
2758 }
2759 early_initcall(init_kprobes);
2760
2761 #if defined(CONFIG_OPTPROBES)
init_optprobes(void)2762 static int __init init_optprobes(void)
2763 {
2764 /*
2765 * Enable kprobe optimization - this kicks the optimizer which
2766 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2767 * not spawned in early initcall. So delay the optimization.
2768 */
2769 optimize_all_kprobes();
2770
2771 return 0;
2772 }
2773 subsys_initcall(init_optprobes);
2774 #endif
2775
2776 #ifdef CONFIG_DEBUG_FS
report_probe(struct seq_file * pi,struct kprobe * p,const char * sym,int offset,char * modname,struct kprobe * pp)2777 static void report_probe(struct seq_file *pi, struct kprobe *p,
2778 const char *sym, int offset, char *modname, struct kprobe *pp)
2779 {
2780 char *kprobe_type;
2781 void *addr = p->addr;
2782
2783 if (p->pre_handler == pre_handler_kretprobe)
2784 kprobe_type = "r";
2785 else
2786 kprobe_type = "k";
2787
2788 if (!kallsyms_show_value(pi->file->f_cred))
2789 addr = NULL;
2790
2791 if (sym)
2792 seq_printf(pi, "%px %s %s+0x%x %s ",
2793 addr, kprobe_type, sym, offset,
2794 (modname ? modname : " "));
2795 else /* try to use %pS */
2796 seq_printf(pi, "%px %s %pS ",
2797 addr, kprobe_type, p->addr);
2798
2799 if (!pp)
2800 pp = p;
2801 seq_printf(pi, "%s%s%s%s\n",
2802 (kprobe_gone(p) ? "[GONE]" : ""),
2803 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2804 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2805 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2806 }
2807
kprobe_seq_start(struct seq_file * f,loff_t * pos)2808 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2809 {
2810 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2811 }
2812
kprobe_seq_next(struct seq_file * f,void * v,loff_t * pos)2813 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2814 {
2815 (*pos)++;
2816 if (*pos >= KPROBE_TABLE_SIZE)
2817 return NULL;
2818 return pos;
2819 }
2820
kprobe_seq_stop(struct seq_file * f,void * v)2821 static void kprobe_seq_stop(struct seq_file *f, void *v)
2822 {
2823 /* Nothing to do */
2824 }
2825
show_kprobe_addr(struct seq_file * pi,void * v)2826 static int show_kprobe_addr(struct seq_file *pi, void *v)
2827 {
2828 struct hlist_head *head;
2829 struct kprobe *p, *kp;
2830 const char *sym = NULL;
2831 unsigned int i = *(loff_t *) v;
2832 unsigned long offset = 0;
2833 char *modname, namebuf[KSYM_NAME_LEN];
2834
2835 head = &kprobe_table[i];
2836 preempt_disable();
2837 hlist_for_each_entry_rcu(p, head, hlist) {
2838 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2839 &offset, &modname, namebuf);
2840 if (kprobe_aggrprobe(p)) {
2841 list_for_each_entry_rcu(kp, &p->list, list)
2842 report_probe(pi, kp, sym, offset, modname, p);
2843 } else
2844 report_probe(pi, p, sym, offset, modname, NULL);
2845 }
2846 preempt_enable();
2847 return 0;
2848 }
2849
2850 static const struct seq_operations kprobes_sops = {
2851 .start = kprobe_seq_start,
2852 .next = kprobe_seq_next,
2853 .stop = kprobe_seq_stop,
2854 .show = show_kprobe_addr
2855 };
2856
2857 DEFINE_SEQ_ATTRIBUTE(kprobes);
2858
2859 /* kprobes/blacklist -- shows which functions can not be probed */
kprobe_blacklist_seq_start(struct seq_file * m,loff_t * pos)2860 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2861 {
2862 mutex_lock(&kprobe_mutex);
2863 return seq_list_start(&kprobe_blacklist, *pos);
2864 }
2865
kprobe_blacklist_seq_next(struct seq_file * m,void * v,loff_t * pos)2866 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2867 {
2868 return seq_list_next(v, &kprobe_blacklist, pos);
2869 }
2870
kprobe_blacklist_seq_show(struct seq_file * m,void * v)2871 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2872 {
2873 struct kprobe_blacklist_entry *ent =
2874 list_entry(v, struct kprobe_blacklist_entry, list);
2875
2876 /*
2877 * If '/proc/kallsyms' is not showing kernel address, we won't
2878 * show them here either.
2879 */
2880 if (!kallsyms_show_value(m->file->f_cred))
2881 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2882 (void *)ent->start_addr);
2883 else
2884 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2885 (void *)ent->end_addr, (void *)ent->start_addr);
2886 return 0;
2887 }
2888
kprobe_blacklist_seq_stop(struct seq_file * f,void * v)2889 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2890 {
2891 mutex_unlock(&kprobe_mutex);
2892 }
2893
2894 static const struct seq_operations kprobe_blacklist_sops = {
2895 .start = kprobe_blacklist_seq_start,
2896 .next = kprobe_blacklist_seq_next,
2897 .stop = kprobe_blacklist_seq_stop,
2898 .show = kprobe_blacklist_seq_show,
2899 };
2900 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2901
arm_all_kprobes(void)2902 static int arm_all_kprobes(void)
2903 {
2904 struct hlist_head *head;
2905 struct kprobe *p;
2906 unsigned int i, total = 0, errors = 0;
2907 int err, ret = 0;
2908
2909 mutex_lock(&kprobe_mutex);
2910
2911 /* If kprobes are armed, just return */
2912 if (!kprobes_all_disarmed)
2913 goto already_enabled;
2914
2915 /*
2916 * optimize_kprobe() called by arm_kprobe() checks
2917 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2918 * arm_kprobe.
2919 */
2920 kprobes_all_disarmed = false;
2921 /* Arming kprobes doesn't optimize kprobe itself */
2922 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2923 head = &kprobe_table[i];
2924 /* Arm all kprobes on a best-effort basis */
2925 hlist_for_each_entry(p, head, hlist) {
2926 if (!kprobe_disabled(p)) {
2927 err = arm_kprobe(p);
2928 if (err) {
2929 errors++;
2930 ret = err;
2931 }
2932 total++;
2933 }
2934 }
2935 }
2936
2937 if (errors)
2938 pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2939 errors, total);
2940 else
2941 pr_info("Kprobes globally enabled\n");
2942
2943 already_enabled:
2944 mutex_unlock(&kprobe_mutex);
2945 return ret;
2946 }
2947
disarm_all_kprobes(void)2948 static int disarm_all_kprobes(void)
2949 {
2950 struct hlist_head *head;
2951 struct kprobe *p;
2952 unsigned int i, total = 0, errors = 0;
2953 int err, ret = 0;
2954
2955 mutex_lock(&kprobe_mutex);
2956
2957 /* If kprobes are already disarmed, just return */
2958 if (kprobes_all_disarmed) {
2959 mutex_unlock(&kprobe_mutex);
2960 return 0;
2961 }
2962
2963 kprobes_all_disarmed = true;
2964
2965 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2966 head = &kprobe_table[i];
2967 /* Disarm all kprobes on a best-effort basis */
2968 hlist_for_each_entry(p, head, hlist) {
2969 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2970 err = disarm_kprobe(p, false);
2971 if (err) {
2972 errors++;
2973 ret = err;
2974 }
2975 total++;
2976 }
2977 }
2978 }
2979
2980 if (errors)
2981 pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2982 errors, total);
2983 else
2984 pr_info("Kprobes globally disabled\n");
2985
2986 mutex_unlock(&kprobe_mutex);
2987
2988 /* Wait for disarming all kprobes by optimizer */
2989 wait_for_kprobe_optimizer();
2990
2991 return ret;
2992 }
2993
2994 /*
2995 * XXX: The debugfs bool file interface doesn't allow for callbacks
2996 * when the bool state is switched. We can reuse that facility when
2997 * available
2998 */
read_enabled_file_bool(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)2999 static ssize_t read_enabled_file_bool(struct file *file,
3000 char __user *user_buf, size_t count, loff_t *ppos)
3001 {
3002 char buf[3];
3003
3004 if (!kprobes_all_disarmed)
3005 buf[0] = '1';
3006 else
3007 buf[0] = '0';
3008 buf[1] = '\n';
3009 buf[2] = 0x00;
3010 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
3011 }
3012
write_enabled_file_bool(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)3013 static ssize_t write_enabled_file_bool(struct file *file,
3014 const char __user *user_buf, size_t count, loff_t *ppos)
3015 {
3016 bool enable;
3017 int ret;
3018
3019 ret = kstrtobool_from_user(user_buf, count, &enable);
3020 if (ret)
3021 return ret;
3022
3023 ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
3024 if (ret)
3025 return ret;
3026
3027 return count;
3028 }
3029
3030 static const struct file_operations fops_kp = {
3031 .read = read_enabled_file_bool,
3032 .write = write_enabled_file_bool,
3033 .llseek = default_llseek,
3034 };
3035
debugfs_kprobe_init(void)3036 static int __init debugfs_kprobe_init(void)
3037 {
3038 struct dentry *dir;
3039
3040 dir = debugfs_create_dir("kprobes", NULL);
3041
3042 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
3043
3044 debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
3045
3046 debugfs_create_file("blacklist", 0400, dir, NULL,
3047 &kprobe_blacklist_fops);
3048
3049 return 0;
3050 }
3051
3052 late_initcall(debugfs_kprobe_init);
3053 #endif /* CONFIG_DEBUG_FS */
3054