xref: /openbmc/linux/kernel/kexec_file.c (revision f8523d0e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec: kexec_file_load system call
4  *
5  * Copyright (C) 2014 Red Hat Inc.
6  * Authors:
7  *      Vivek Goyal <vgoyal@redhat.com>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/syscalls.h>
28 #include <linux/vmalloc.h>
29 #include "kexec_internal.h"
30 
31 static int kexec_calculate_store_digests(struct kimage *image);
32 
33 /*
34  * Currently this is the only default function that is exported as some
35  * architectures need it to do additional handlings.
36  * In the future, other default functions may be exported too if required.
37  */
38 int kexec_image_probe_default(struct kimage *image, void *buf,
39 			      unsigned long buf_len)
40 {
41 	const struct kexec_file_ops * const *fops;
42 	int ret = -ENOEXEC;
43 
44 	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
45 		ret = (*fops)->probe(buf, buf_len);
46 		if (!ret) {
47 			image->fops = *fops;
48 			return ret;
49 		}
50 	}
51 
52 	return ret;
53 }
54 
55 /* Architectures can provide this probe function */
56 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
57 					 unsigned long buf_len)
58 {
59 	return kexec_image_probe_default(image, buf, buf_len);
60 }
61 
62 static void *kexec_image_load_default(struct kimage *image)
63 {
64 	if (!image->fops || !image->fops->load)
65 		return ERR_PTR(-ENOEXEC);
66 
67 	return image->fops->load(image, image->kernel_buf,
68 				 image->kernel_buf_len, image->initrd_buf,
69 				 image->initrd_buf_len, image->cmdline_buf,
70 				 image->cmdline_buf_len);
71 }
72 
73 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
74 {
75 	return kexec_image_load_default(image);
76 }
77 
78 int kexec_image_post_load_cleanup_default(struct kimage *image)
79 {
80 	if (!image->fops || !image->fops->cleanup)
81 		return 0;
82 
83 	return image->fops->cleanup(image->image_loader_data);
84 }
85 
86 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
87 {
88 	return kexec_image_post_load_cleanup_default(image);
89 }
90 
91 #ifdef CONFIG_KEXEC_SIG
92 static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
93 					  unsigned long buf_len)
94 {
95 	if (!image->fops || !image->fops->verify_sig) {
96 		pr_debug("kernel loader does not support signature verification.\n");
97 		return -EKEYREJECTED;
98 	}
99 
100 	return image->fops->verify_sig(buf, buf_len);
101 }
102 
103 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
104 					unsigned long buf_len)
105 {
106 	return kexec_image_verify_sig_default(image, buf, buf_len);
107 }
108 #endif
109 
110 /*
111  * arch_kexec_apply_relocations_add - apply relocations of type RELA
112  * @pi:		Purgatory to be relocated.
113  * @section:	Section relocations applying to.
114  * @relsec:	Section containing RELAs.
115  * @symtab:	Corresponding symtab.
116  *
117  * Return: 0 on success, negative errno on error.
118  */
119 int __weak
120 arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
121 				 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
122 {
123 	pr_err("RELA relocation unsupported.\n");
124 	return -ENOEXEC;
125 }
126 
127 /*
128  * arch_kexec_apply_relocations - apply relocations of type REL
129  * @pi:		Purgatory to be relocated.
130  * @section:	Section relocations applying to.
131  * @relsec:	Section containing RELs.
132  * @symtab:	Corresponding symtab.
133  *
134  * Return: 0 on success, negative errno on error.
135  */
136 int __weak
137 arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
138 			     const Elf_Shdr *relsec, const Elf_Shdr *symtab)
139 {
140 	pr_err("REL relocation unsupported.\n");
141 	return -ENOEXEC;
142 }
143 
144 /*
145  * Free up memory used by kernel, initrd, and command line. This is temporary
146  * memory allocation which is not needed any more after these buffers have
147  * been loaded into separate segments and have been copied elsewhere.
148  */
149 void kimage_file_post_load_cleanup(struct kimage *image)
150 {
151 	struct purgatory_info *pi = &image->purgatory_info;
152 
153 	vfree(image->kernel_buf);
154 	image->kernel_buf = NULL;
155 
156 	vfree(image->initrd_buf);
157 	image->initrd_buf = NULL;
158 
159 	kfree(image->cmdline_buf);
160 	image->cmdline_buf = NULL;
161 
162 	vfree(pi->purgatory_buf);
163 	pi->purgatory_buf = NULL;
164 
165 	vfree(pi->sechdrs);
166 	pi->sechdrs = NULL;
167 
168 	/* See if architecture has anything to cleanup post load */
169 	arch_kimage_file_post_load_cleanup(image);
170 
171 	/*
172 	 * Above call should have called into bootloader to free up
173 	 * any data stored in kimage->image_loader_data. It should
174 	 * be ok now to free it up.
175 	 */
176 	kfree(image->image_loader_data);
177 	image->image_loader_data = NULL;
178 }
179 
180 #ifdef CONFIG_KEXEC_SIG
181 static int
182 kimage_validate_signature(struct kimage *image)
183 {
184 	const char *reason;
185 	int ret;
186 
187 	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
188 					   image->kernel_buf_len);
189 	switch (ret) {
190 	case 0:
191 		break;
192 
193 		/* Certain verification errors are non-fatal if we're not
194 		 * checking errors, provided we aren't mandating that there
195 		 * must be a valid signature.
196 		 */
197 	case -ENODATA:
198 		reason = "kexec of unsigned image";
199 		goto decide;
200 	case -ENOPKG:
201 		reason = "kexec of image with unsupported crypto";
202 		goto decide;
203 	case -ENOKEY:
204 		reason = "kexec of image with unavailable key";
205 	decide:
206 		if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
207 			pr_notice("%s rejected\n", reason);
208 			return ret;
209 		}
210 
211 		/* If IMA is guaranteed to appraise a signature on the kexec
212 		 * image, permit it even if the kernel is otherwise locked
213 		 * down.
214 		 */
215 		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
216 		    security_locked_down(LOCKDOWN_KEXEC))
217 			return -EPERM;
218 
219 		return 0;
220 
221 		/* All other errors are fatal, including nomem, unparseable
222 		 * signatures and signature check failures - even if signatures
223 		 * aren't required.
224 		 */
225 	default:
226 		pr_notice("kernel signature verification failed (%d).\n", ret);
227 	}
228 
229 	return ret;
230 }
231 #endif
232 
233 /*
234  * In file mode list of segments is prepared by kernel. Copy relevant
235  * data from user space, do error checking, prepare segment list
236  */
237 static int
238 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
239 			     const char __user *cmdline_ptr,
240 			     unsigned long cmdline_len, unsigned flags)
241 {
242 	int ret;
243 	void *ldata;
244 	loff_t size;
245 
246 	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
247 				       &size, INT_MAX, READING_KEXEC_IMAGE);
248 	if (ret)
249 		return ret;
250 	image->kernel_buf_len = size;
251 
252 	/* Call arch image probe handlers */
253 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
254 					    image->kernel_buf_len);
255 	if (ret)
256 		goto out;
257 
258 #ifdef CONFIG_KEXEC_SIG
259 	ret = kimage_validate_signature(image);
260 
261 	if (ret)
262 		goto out;
263 #endif
264 	/* It is possible that there no initramfs is being loaded */
265 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
266 		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
267 					       &size, INT_MAX,
268 					       READING_KEXEC_INITRAMFS);
269 		if (ret)
270 			goto out;
271 		image->initrd_buf_len = size;
272 	}
273 
274 	if (cmdline_len) {
275 		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
276 		if (IS_ERR(image->cmdline_buf)) {
277 			ret = PTR_ERR(image->cmdline_buf);
278 			image->cmdline_buf = NULL;
279 			goto out;
280 		}
281 
282 		image->cmdline_buf_len = cmdline_len;
283 
284 		/* command line should be a string with last byte null */
285 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
286 			ret = -EINVAL;
287 			goto out;
288 		}
289 
290 		ima_kexec_cmdline(image->cmdline_buf,
291 				  image->cmdline_buf_len - 1);
292 	}
293 
294 	/* IMA needs to pass the measurement list to the next kernel. */
295 	ima_add_kexec_buffer(image);
296 
297 	/* Call arch image load handlers */
298 	ldata = arch_kexec_kernel_image_load(image);
299 
300 	if (IS_ERR(ldata)) {
301 		ret = PTR_ERR(ldata);
302 		goto out;
303 	}
304 
305 	image->image_loader_data = ldata;
306 out:
307 	/* In case of error, free up all allocated memory in this function */
308 	if (ret)
309 		kimage_file_post_load_cleanup(image);
310 	return ret;
311 }
312 
313 static int
314 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
315 		       int initrd_fd, const char __user *cmdline_ptr,
316 		       unsigned long cmdline_len, unsigned long flags)
317 {
318 	int ret;
319 	struct kimage *image;
320 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
321 
322 	image = do_kimage_alloc_init();
323 	if (!image)
324 		return -ENOMEM;
325 
326 	image->file_mode = 1;
327 
328 	if (kexec_on_panic) {
329 		/* Enable special crash kernel control page alloc policy. */
330 		image->control_page = crashk_res.start;
331 		image->type = KEXEC_TYPE_CRASH;
332 	}
333 
334 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
335 					   cmdline_ptr, cmdline_len, flags);
336 	if (ret)
337 		goto out_free_image;
338 
339 	ret = sanity_check_segment_list(image);
340 	if (ret)
341 		goto out_free_post_load_bufs;
342 
343 	ret = -ENOMEM;
344 	image->control_code_page = kimage_alloc_control_pages(image,
345 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
346 	if (!image->control_code_page) {
347 		pr_err("Could not allocate control_code_buffer\n");
348 		goto out_free_post_load_bufs;
349 	}
350 
351 	if (!kexec_on_panic) {
352 		image->swap_page = kimage_alloc_control_pages(image, 0);
353 		if (!image->swap_page) {
354 			pr_err("Could not allocate swap buffer\n");
355 			goto out_free_control_pages;
356 		}
357 	}
358 
359 	*rimage = image;
360 	return 0;
361 out_free_control_pages:
362 	kimage_free_page_list(&image->control_pages);
363 out_free_post_load_bufs:
364 	kimage_file_post_load_cleanup(image);
365 out_free_image:
366 	kfree(image);
367 	return ret;
368 }
369 
370 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
371 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
372 		unsigned long, flags)
373 {
374 	int ret = 0, i;
375 	struct kimage **dest_image, *image;
376 
377 	/* We only trust the superuser with rebooting the system. */
378 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
379 		return -EPERM;
380 
381 	/* Make sure we have a legal set of flags */
382 	if (flags != (flags & KEXEC_FILE_FLAGS))
383 		return -EINVAL;
384 
385 	image = NULL;
386 
387 	if (!mutex_trylock(&kexec_mutex))
388 		return -EBUSY;
389 
390 	dest_image = &kexec_image;
391 	if (flags & KEXEC_FILE_ON_CRASH) {
392 		dest_image = &kexec_crash_image;
393 		if (kexec_crash_image)
394 			arch_kexec_unprotect_crashkres();
395 	}
396 
397 	if (flags & KEXEC_FILE_UNLOAD)
398 		goto exchange;
399 
400 	/*
401 	 * In case of crash, new kernel gets loaded in reserved region. It is
402 	 * same memory where old crash kernel might be loaded. Free any
403 	 * current crash dump kernel before we corrupt it.
404 	 */
405 	if (flags & KEXEC_FILE_ON_CRASH)
406 		kimage_free(xchg(&kexec_crash_image, NULL));
407 
408 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
409 				     cmdline_len, flags);
410 	if (ret)
411 		goto out;
412 
413 	ret = machine_kexec_prepare(image);
414 	if (ret)
415 		goto out;
416 
417 	/*
418 	 * Some architecture(like S390) may touch the crash memory before
419 	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
420 	 */
421 	ret = kimage_crash_copy_vmcoreinfo(image);
422 	if (ret)
423 		goto out;
424 
425 	ret = kexec_calculate_store_digests(image);
426 	if (ret)
427 		goto out;
428 
429 	for (i = 0; i < image->nr_segments; i++) {
430 		struct kexec_segment *ksegment;
431 
432 		ksegment = &image->segment[i];
433 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
434 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
435 			 ksegment->memsz);
436 
437 		ret = kimage_load_segment(image, &image->segment[i]);
438 		if (ret)
439 			goto out;
440 	}
441 
442 	kimage_terminate(image);
443 
444 	ret = machine_kexec_post_load(image);
445 	if (ret)
446 		goto out;
447 
448 	/*
449 	 * Free up any temporary buffers allocated which are not needed
450 	 * after image has been loaded
451 	 */
452 	kimage_file_post_load_cleanup(image);
453 exchange:
454 	image = xchg(dest_image, image);
455 out:
456 	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
457 		arch_kexec_protect_crashkres();
458 
459 	mutex_unlock(&kexec_mutex);
460 	kimage_free(image);
461 	return ret;
462 }
463 
464 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
465 				    struct kexec_buf *kbuf)
466 {
467 	struct kimage *image = kbuf->image;
468 	unsigned long temp_start, temp_end;
469 
470 	temp_end = min(end, kbuf->buf_max);
471 	temp_start = temp_end - kbuf->memsz;
472 
473 	do {
474 		/* align down start */
475 		temp_start = temp_start & (~(kbuf->buf_align - 1));
476 
477 		if (temp_start < start || temp_start < kbuf->buf_min)
478 			return 0;
479 
480 		temp_end = temp_start + kbuf->memsz - 1;
481 
482 		/*
483 		 * Make sure this does not conflict with any of existing
484 		 * segments
485 		 */
486 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
487 			temp_start = temp_start - PAGE_SIZE;
488 			continue;
489 		}
490 
491 		/* We found a suitable memory range */
492 		break;
493 	} while (1);
494 
495 	/* If we are here, we found a suitable memory range */
496 	kbuf->mem = temp_start;
497 
498 	/* Success, stop navigating through remaining System RAM ranges */
499 	return 1;
500 }
501 
502 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
503 				     struct kexec_buf *kbuf)
504 {
505 	struct kimage *image = kbuf->image;
506 	unsigned long temp_start, temp_end;
507 
508 	temp_start = max(start, kbuf->buf_min);
509 
510 	do {
511 		temp_start = ALIGN(temp_start, kbuf->buf_align);
512 		temp_end = temp_start + kbuf->memsz - 1;
513 
514 		if (temp_end > end || temp_end > kbuf->buf_max)
515 			return 0;
516 		/*
517 		 * Make sure this does not conflict with any of existing
518 		 * segments
519 		 */
520 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
521 			temp_start = temp_start + PAGE_SIZE;
522 			continue;
523 		}
524 
525 		/* We found a suitable memory range */
526 		break;
527 	} while (1);
528 
529 	/* If we are here, we found a suitable memory range */
530 	kbuf->mem = temp_start;
531 
532 	/* Success, stop navigating through remaining System RAM ranges */
533 	return 1;
534 }
535 
536 static int locate_mem_hole_callback(struct resource *res, void *arg)
537 {
538 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
539 	u64 start = res->start, end = res->end;
540 	unsigned long sz = end - start + 1;
541 
542 	/* Returning 0 will take to next memory range */
543 
544 	/* Don't use memory that will be detected and handled by a driver. */
545 	if (res->flags & IORESOURCE_MEM_DRIVER_MANAGED)
546 		return 0;
547 
548 	if (sz < kbuf->memsz)
549 		return 0;
550 
551 	if (end < kbuf->buf_min || start > kbuf->buf_max)
552 		return 0;
553 
554 	/*
555 	 * Allocate memory top down with-in ram range. Otherwise bottom up
556 	 * allocation.
557 	 */
558 	if (kbuf->top_down)
559 		return locate_mem_hole_top_down(start, end, kbuf);
560 	return locate_mem_hole_bottom_up(start, end, kbuf);
561 }
562 
563 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
564 static int kexec_walk_memblock(struct kexec_buf *kbuf,
565 			       int (*func)(struct resource *, void *))
566 {
567 	int ret = 0;
568 	u64 i;
569 	phys_addr_t mstart, mend;
570 	struct resource res = { };
571 
572 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
573 		return func(&crashk_res, kbuf);
574 
575 	if (kbuf->top_down) {
576 		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
577 						&mstart, &mend, NULL) {
578 			/*
579 			 * In memblock, end points to the first byte after the
580 			 * range while in kexec, end points to the last byte
581 			 * in the range.
582 			 */
583 			res.start = mstart;
584 			res.end = mend - 1;
585 			ret = func(&res, kbuf);
586 			if (ret)
587 				break;
588 		}
589 	} else {
590 		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
591 					&mstart, &mend, NULL) {
592 			/*
593 			 * In memblock, end points to the first byte after the
594 			 * range while in kexec, end points to the last byte
595 			 * in the range.
596 			 */
597 			res.start = mstart;
598 			res.end = mend - 1;
599 			ret = func(&res, kbuf);
600 			if (ret)
601 				break;
602 		}
603 	}
604 
605 	return ret;
606 }
607 #else
608 static int kexec_walk_memblock(struct kexec_buf *kbuf,
609 			       int (*func)(struct resource *, void *))
610 {
611 	return 0;
612 }
613 #endif
614 
615 /**
616  * kexec_walk_resources - call func(data) on free memory regions
617  * @kbuf:	Context info for the search. Also passed to @func.
618  * @func:	Function to call for each memory region.
619  *
620  * Return: The memory walk will stop when func returns a non-zero value
621  * and that value will be returned. If all free regions are visited without
622  * func returning non-zero, then zero will be returned.
623  */
624 static int kexec_walk_resources(struct kexec_buf *kbuf,
625 				int (*func)(struct resource *, void *))
626 {
627 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
628 		return walk_iomem_res_desc(crashk_res.desc,
629 					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
630 					   crashk_res.start, crashk_res.end,
631 					   kbuf, func);
632 	else
633 		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
634 }
635 
636 /**
637  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
638  * @kbuf:	Parameters for the memory search.
639  *
640  * On success, kbuf->mem will have the start address of the memory region found.
641  *
642  * Return: 0 on success, negative errno on error.
643  */
644 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
645 {
646 	int ret;
647 
648 	/* Arch knows where to place */
649 	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
650 		return 0;
651 
652 	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
653 		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
654 	else
655 		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
656 
657 	return ret == 1 ? 0 : -EADDRNOTAVAIL;
658 }
659 
660 /**
661  * kexec_add_buffer - place a buffer in a kexec segment
662  * @kbuf:	Buffer contents and memory parameters.
663  *
664  * This function assumes that kexec_mutex is held.
665  * On successful return, @kbuf->mem will have the physical address of
666  * the buffer in memory.
667  *
668  * Return: 0 on success, negative errno on error.
669  */
670 int kexec_add_buffer(struct kexec_buf *kbuf)
671 {
672 
673 	struct kexec_segment *ksegment;
674 	int ret;
675 
676 	/* Currently adding segment this way is allowed only in file mode */
677 	if (!kbuf->image->file_mode)
678 		return -EINVAL;
679 
680 	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
681 		return -EINVAL;
682 
683 	/*
684 	 * Make sure we are not trying to add buffer after allocating
685 	 * control pages. All segments need to be placed first before
686 	 * any control pages are allocated. As control page allocation
687 	 * logic goes through list of segments to make sure there are
688 	 * no destination overlaps.
689 	 */
690 	if (!list_empty(&kbuf->image->control_pages)) {
691 		WARN_ON(1);
692 		return -EINVAL;
693 	}
694 
695 	/* Ensure minimum alignment needed for segments. */
696 	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
697 	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
698 
699 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
700 	ret = kexec_locate_mem_hole(kbuf);
701 	if (ret)
702 		return ret;
703 
704 	/* Found a suitable memory range */
705 	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
706 	ksegment->kbuf = kbuf->buffer;
707 	ksegment->bufsz = kbuf->bufsz;
708 	ksegment->mem = kbuf->mem;
709 	ksegment->memsz = kbuf->memsz;
710 	kbuf->image->nr_segments++;
711 	return 0;
712 }
713 
714 /* Calculate and store the digest of segments */
715 static int kexec_calculate_store_digests(struct kimage *image)
716 {
717 	struct crypto_shash *tfm;
718 	struct shash_desc *desc;
719 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
720 	size_t desc_size, nullsz;
721 	char *digest;
722 	void *zero_buf;
723 	struct kexec_sha_region *sha_regions;
724 	struct purgatory_info *pi = &image->purgatory_info;
725 
726 	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
727 		return 0;
728 
729 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
730 	zero_buf_sz = PAGE_SIZE;
731 
732 	tfm = crypto_alloc_shash("sha256", 0, 0);
733 	if (IS_ERR(tfm)) {
734 		ret = PTR_ERR(tfm);
735 		goto out;
736 	}
737 
738 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
739 	desc = kzalloc(desc_size, GFP_KERNEL);
740 	if (!desc) {
741 		ret = -ENOMEM;
742 		goto out_free_tfm;
743 	}
744 
745 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
746 	sha_regions = vzalloc(sha_region_sz);
747 	if (!sha_regions)
748 		goto out_free_desc;
749 
750 	desc->tfm   = tfm;
751 
752 	ret = crypto_shash_init(desc);
753 	if (ret < 0)
754 		goto out_free_sha_regions;
755 
756 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
757 	if (!digest) {
758 		ret = -ENOMEM;
759 		goto out_free_sha_regions;
760 	}
761 
762 	for (j = i = 0; i < image->nr_segments; i++) {
763 		struct kexec_segment *ksegment;
764 
765 		ksegment = &image->segment[i];
766 		/*
767 		 * Skip purgatory as it will be modified once we put digest
768 		 * info in purgatory.
769 		 */
770 		if (ksegment->kbuf == pi->purgatory_buf)
771 			continue;
772 
773 		ret = crypto_shash_update(desc, ksegment->kbuf,
774 					  ksegment->bufsz);
775 		if (ret)
776 			break;
777 
778 		/*
779 		 * Assume rest of the buffer is filled with zero and
780 		 * update digest accordingly.
781 		 */
782 		nullsz = ksegment->memsz - ksegment->bufsz;
783 		while (nullsz) {
784 			unsigned long bytes = nullsz;
785 
786 			if (bytes > zero_buf_sz)
787 				bytes = zero_buf_sz;
788 			ret = crypto_shash_update(desc, zero_buf, bytes);
789 			if (ret)
790 				break;
791 			nullsz -= bytes;
792 		}
793 
794 		if (ret)
795 			break;
796 
797 		sha_regions[j].start = ksegment->mem;
798 		sha_regions[j].len = ksegment->memsz;
799 		j++;
800 	}
801 
802 	if (!ret) {
803 		ret = crypto_shash_final(desc, digest);
804 		if (ret)
805 			goto out_free_digest;
806 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
807 						     sha_regions, sha_region_sz, 0);
808 		if (ret)
809 			goto out_free_digest;
810 
811 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
812 						     digest, SHA256_DIGEST_SIZE, 0);
813 		if (ret)
814 			goto out_free_digest;
815 	}
816 
817 out_free_digest:
818 	kfree(digest);
819 out_free_sha_regions:
820 	vfree(sha_regions);
821 out_free_desc:
822 	kfree(desc);
823 out_free_tfm:
824 	kfree(tfm);
825 out:
826 	return ret;
827 }
828 
829 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
830 /*
831  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
832  * @pi:		Purgatory to be loaded.
833  * @kbuf:	Buffer to setup.
834  *
835  * Allocates the memory needed for the buffer. Caller is responsible to free
836  * the memory after use.
837  *
838  * Return: 0 on success, negative errno on error.
839  */
840 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
841 				      struct kexec_buf *kbuf)
842 {
843 	const Elf_Shdr *sechdrs;
844 	unsigned long bss_align;
845 	unsigned long bss_sz;
846 	unsigned long align;
847 	int i, ret;
848 
849 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
850 	kbuf->buf_align = bss_align = 1;
851 	kbuf->bufsz = bss_sz = 0;
852 
853 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
854 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
855 			continue;
856 
857 		align = sechdrs[i].sh_addralign;
858 		if (sechdrs[i].sh_type != SHT_NOBITS) {
859 			if (kbuf->buf_align < align)
860 				kbuf->buf_align = align;
861 			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
862 			kbuf->bufsz += sechdrs[i].sh_size;
863 		} else {
864 			if (bss_align < align)
865 				bss_align = align;
866 			bss_sz = ALIGN(bss_sz, align);
867 			bss_sz += sechdrs[i].sh_size;
868 		}
869 	}
870 	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
871 	kbuf->memsz = kbuf->bufsz + bss_sz;
872 	if (kbuf->buf_align < bss_align)
873 		kbuf->buf_align = bss_align;
874 
875 	kbuf->buffer = vzalloc(kbuf->bufsz);
876 	if (!kbuf->buffer)
877 		return -ENOMEM;
878 	pi->purgatory_buf = kbuf->buffer;
879 
880 	ret = kexec_add_buffer(kbuf);
881 	if (ret)
882 		goto out;
883 
884 	return 0;
885 out:
886 	vfree(pi->purgatory_buf);
887 	pi->purgatory_buf = NULL;
888 	return ret;
889 }
890 
891 /*
892  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
893  * @pi:		Purgatory to be loaded.
894  * @kbuf:	Buffer prepared to store purgatory.
895  *
896  * Allocates the memory needed for the buffer. Caller is responsible to free
897  * the memory after use.
898  *
899  * Return: 0 on success, negative errno on error.
900  */
901 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
902 					 struct kexec_buf *kbuf)
903 {
904 	unsigned long bss_addr;
905 	unsigned long offset;
906 	Elf_Shdr *sechdrs;
907 	int i;
908 
909 	/*
910 	 * The section headers in kexec_purgatory are read-only. In order to
911 	 * have them modifiable make a temporary copy.
912 	 */
913 	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
914 	if (!sechdrs)
915 		return -ENOMEM;
916 	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
917 	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
918 	pi->sechdrs = sechdrs;
919 
920 	offset = 0;
921 	bss_addr = kbuf->mem + kbuf->bufsz;
922 	kbuf->image->start = pi->ehdr->e_entry;
923 
924 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
925 		unsigned long align;
926 		void *src, *dst;
927 
928 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
929 			continue;
930 
931 		align = sechdrs[i].sh_addralign;
932 		if (sechdrs[i].sh_type == SHT_NOBITS) {
933 			bss_addr = ALIGN(bss_addr, align);
934 			sechdrs[i].sh_addr = bss_addr;
935 			bss_addr += sechdrs[i].sh_size;
936 			continue;
937 		}
938 
939 		offset = ALIGN(offset, align);
940 		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
941 		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
942 		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
943 					 + sechdrs[i].sh_size)) {
944 			kbuf->image->start -= sechdrs[i].sh_addr;
945 			kbuf->image->start += kbuf->mem + offset;
946 		}
947 
948 		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
949 		dst = pi->purgatory_buf + offset;
950 		memcpy(dst, src, sechdrs[i].sh_size);
951 
952 		sechdrs[i].sh_addr = kbuf->mem + offset;
953 		sechdrs[i].sh_offset = offset;
954 		offset += sechdrs[i].sh_size;
955 	}
956 
957 	return 0;
958 }
959 
960 static int kexec_apply_relocations(struct kimage *image)
961 {
962 	int i, ret;
963 	struct purgatory_info *pi = &image->purgatory_info;
964 	const Elf_Shdr *sechdrs;
965 
966 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
967 
968 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
969 		const Elf_Shdr *relsec;
970 		const Elf_Shdr *symtab;
971 		Elf_Shdr *section;
972 
973 		relsec = sechdrs + i;
974 
975 		if (relsec->sh_type != SHT_RELA &&
976 		    relsec->sh_type != SHT_REL)
977 			continue;
978 
979 		/*
980 		 * For section of type SHT_RELA/SHT_REL,
981 		 * ->sh_link contains section header index of associated
982 		 * symbol table. And ->sh_info contains section header
983 		 * index of section to which relocations apply.
984 		 */
985 		if (relsec->sh_info >= pi->ehdr->e_shnum ||
986 		    relsec->sh_link >= pi->ehdr->e_shnum)
987 			return -ENOEXEC;
988 
989 		section = pi->sechdrs + relsec->sh_info;
990 		symtab = sechdrs + relsec->sh_link;
991 
992 		if (!(section->sh_flags & SHF_ALLOC))
993 			continue;
994 
995 		/*
996 		 * symtab->sh_link contain section header index of associated
997 		 * string table.
998 		 */
999 		if (symtab->sh_link >= pi->ehdr->e_shnum)
1000 			/* Invalid section number? */
1001 			continue;
1002 
1003 		/*
1004 		 * Respective architecture needs to provide support for applying
1005 		 * relocations of type SHT_RELA/SHT_REL.
1006 		 */
1007 		if (relsec->sh_type == SHT_RELA)
1008 			ret = arch_kexec_apply_relocations_add(pi, section,
1009 							       relsec, symtab);
1010 		else if (relsec->sh_type == SHT_REL)
1011 			ret = arch_kexec_apply_relocations(pi, section,
1012 							   relsec, symtab);
1013 		if (ret)
1014 			return ret;
1015 	}
1016 
1017 	return 0;
1018 }
1019 
1020 /*
1021  * kexec_load_purgatory - Load and relocate the purgatory object.
1022  * @image:	Image to add the purgatory to.
1023  * @kbuf:	Memory parameters to use.
1024  *
1025  * Allocates the memory needed for image->purgatory_info.sechdrs and
1026  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1027  * to free the memory after use.
1028  *
1029  * Return: 0 on success, negative errno on error.
1030  */
1031 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1032 {
1033 	struct purgatory_info *pi = &image->purgatory_info;
1034 	int ret;
1035 
1036 	if (kexec_purgatory_size <= 0)
1037 		return -EINVAL;
1038 
1039 	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1040 
1041 	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1042 	if (ret)
1043 		return ret;
1044 
1045 	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1046 	if (ret)
1047 		goto out_free_kbuf;
1048 
1049 	ret = kexec_apply_relocations(image);
1050 	if (ret)
1051 		goto out;
1052 
1053 	return 0;
1054 out:
1055 	vfree(pi->sechdrs);
1056 	pi->sechdrs = NULL;
1057 out_free_kbuf:
1058 	vfree(pi->purgatory_buf);
1059 	pi->purgatory_buf = NULL;
1060 	return ret;
1061 }
1062 
1063 /*
1064  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1065  * @pi:		Purgatory to search in.
1066  * @name:	Name of the symbol.
1067  *
1068  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1069  */
1070 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1071 						  const char *name)
1072 {
1073 	const Elf_Shdr *sechdrs;
1074 	const Elf_Ehdr *ehdr;
1075 	const Elf_Sym *syms;
1076 	const char *strtab;
1077 	int i, k;
1078 
1079 	if (!pi->ehdr)
1080 		return NULL;
1081 
1082 	ehdr = pi->ehdr;
1083 	sechdrs = (void *)ehdr + ehdr->e_shoff;
1084 
1085 	for (i = 0; i < ehdr->e_shnum; i++) {
1086 		if (sechdrs[i].sh_type != SHT_SYMTAB)
1087 			continue;
1088 
1089 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1090 			/* Invalid strtab section number */
1091 			continue;
1092 		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1093 		syms = (void *)ehdr + sechdrs[i].sh_offset;
1094 
1095 		/* Go through symbols for a match */
1096 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1097 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1098 				continue;
1099 
1100 			if (strcmp(strtab + syms[k].st_name, name) != 0)
1101 				continue;
1102 
1103 			if (syms[k].st_shndx == SHN_UNDEF ||
1104 			    syms[k].st_shndx >= ehdr->e_shnum) {
1105 				pr_debug("Symbol: %s has bad section index %d.\n",
1106 						name, syms[k].st_shndx);
1107 				return NULL;
1108 			}
1109 
1110 			/* Found the symbol we are looking for */
1111 			return &syms[k];
1112 		}
1113 	}
1114 
1115 	return NULL;
1116 }
1117 
1118 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1119 {
1120 	struct purgatory_info *pi = &image->purgatory_info;
1121 	const Elf_Sym *sym;
1122 	Elf_Shdr *sechdr;
1123 
1124 	sym = kexec_purgatory_find_symbol(pi, name);
1125 	if (!sym)
1126 		return ERR_PTR(-EINVAL);
1127 
1128 	sechdr = &pi->sechdrs[sym->st_shndx];
1129 
1130 	/*
1131 	 * Returns the address where symbol will finally be loaded after
1132 	 * kexec_load_segment()
1133 	 */
1134 	return (void *)(sechdr->sh_addr + sym->st_value);
1135 }
1136 
1137 /*
1138  * Get or set value of a symbol. If "get_value" is true, symbol value is
1139  * returned in buf otherwise symbol value is set based on value in buf.
1140  */
1141 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1142 				   void *buf, unsigned int size, bool get_value)
1143 {
1144 	struct purgatory_info *pi = &image->purgatory_info;
1145 	const Elf_Sym *sym;
1146 	Elf_Shdr *sec;
1147 	char *sym_buf;
1148 
1149 	sym = kexec_purgatory_find_symbol(pi, name);
1150 	if (!sym)
1151 		return -EINVAL;
1152 
1153 	if (sym->st_size != size) {
1154 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1155 		       name, (unsigned long)sym->st_size, size);
1156 		return -EINVAL;
1157 	}
1158 
1159 	sec = pi->sechdrs + sym->st_shndx;
1160 
1161 	if (sec->sh_type == SHT_NOBITS) {
1162 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1163 		       get_value ? "get" : "set");
1164 		return -EINVAL;
1165 	}
1166 
1167 	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1168 
1169 	if (get_value)
1170 		memcpy((void *)buf, sym_buf, size);
1171 	else
1172 		memcpy((void *)sym_buf, buf, size);
1173 
1174 	return 0;
1175 }
1176 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1177 
1178 int crash_exclude_mem_range(struct crash_mem *mem,
1179 			    unsigned long long mstart, unsigned long long mend)
1180 {
1181 	int i, j;
1182 	unsigned long long start, end;
1183 	struct crash_mem_range temp_range = {0, 0};
1184 
1185 	for (i = 0; i < mem->nr_ranges; i++) {
1186 		start = mem->ranges[i].start;
1187 		end = mem->ranges[i].end;
1188 
1189 		if (mstart > end || mend < start)
1190 			continue;
1191 
1192 		/* Truncate any area outside of range */
1193 		if (mstart < start)
1194 			mstart = start;
1195 		if (mend > end)
1196 			mend = end;
1197 
1198 		/* Found completely overlapping range */
1199 		if (mstart == start && mend == end) {
1200 			mem->ranges[i].start = 0;
1201 			mem->ranges[i].end = 0;
1202 			if (i < mem->nr_ranges - 1) {
1203 				/* Shift rest of the ranges to left */
1204 				for (j = i; j < mem->nr_ranges - 1; j++) {
1205 					mem->ranges[j].start =
1206 						mem->ranges[j+1].start;
1207 					mem->ranges[j].end =
1208 							mem->ranges[j+1].end;
1209 				}
1210 			}
1211 			mem->nr_ranges--;
1212 			return 0;
1213 		}
1214 
1215 		if (mstart > start && mend < end) {
1216 			/* Split original range */
1217 			mem->ranges[i].end = mstart - 1;
1218 			temp_range.start = mend + 1;
1219 			temp_range.end = end;
1220 		} else if (mstart != start)
1221 			mem->ranges[i].end = mstart - 1;
1222 		else
1223 			mem->ranges[i].start = mend + 1;
1224 		break;
1225 	}
1226 
1227 	/* If a split happened, add the split to array */
1228 	if (!temp_range.end)
1229 		return 0;
1230 
1231 	/* Split happened */
1232 	if (i == mem->max_nr_ranges - 1)
1233 		return -ENOMEM;
1234 
1235 	/* Location where new range should go */
1236 	j = i + 1;
1237 	if (j < mem->nr_ranges) {
1238 		/* Move over all ranges one slot towards the end */
1239 		for (i = mem->nr_ranges - 1; i >= j; i--)
1240 			mem->ranges[i + 1] = mem->ranges[i];
1241 	}
1242 
1243 	mem->ranges[j].start = temp_range.start;
1244 	mem->ranges[j].end = temp_range.end;
1245 	mem->nr_ranges++;
1246 	return 0;
1247 }
1248 
1249 int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1250 			  void **addr, unsigned long *sz)
1251 {
1252 	Elf64_Ehdr *ehdr;
1253 	Elf64_Phdr *phdr;
1254 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1255 	unsigned char *buf;
1256 	unsigned int cpu, i;
1257 	unsigned long long notes_addr;
1258 	unsigned long mstart, mend;
1259 
1260 	/* extra phdr for vmcoreinfo elf note */
1261 	nr_phdr = nr_cpus + 1;
1262 	nr_phdr += mem->nr_ranges;
1263 
1264 	/*
1265 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1266 	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1267 	 * I think this is required by tools like gdb. So same physical
1268 	 * memory will be mapped in two elf headers. One will contain kernel
1269 	 * text virtual addresses and other will have __va(physical) addresses.
1270 	 */
1271 
1272 	nr_phdr++;
1273 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1274 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1275 
1276 	buf = vzalloc(elf_sz);
1277 	if (!buf)
1278 		return -ENOMEM;
1279 
1280 	ehdr = (Elf64_Ehdr *)buf;
1281 	phdr = (Elf64_Phdr *)(ehdr + 1);
1282 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1283 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1284 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1285 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1286 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1287 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1288 	ehdr->e_type = ET_CORE;
1289 	ehdr->e_machine = ELF_ARCH;
1290 	ehdr->e_version = EV_CURRENT;
1291 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1292 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1293 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1294 
1295 	/* Prepare one phdr of type PT_NOTE for each present cpu */
1296 	for_each_present_cpu(cpu) {
1297 		phdr->p_type = PT_NOTE;
1298 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1299 		phdr->p_offset = phdr->p_paddr = notes_addr;
1300 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1301 		(ehdr->e_phnum)++;
1302 		phdr++;
1303 	}
1304 
1305 	/* Prepare one PT_NOTE header for vmcoreinfo */
1306 	phdr->p_type = PT_NOTE;
1307 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1308 	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1309 	(ehdr->e_phnum)++;
1310 	phdr++;
1311 
1312 	/* Prepare PT_LOAD type program header for kernel text region */
1313 	if (kernel_map) {
1314 		phdr->p_type = PT_LOAD;
1315 		phdr->p_flags = PF_R|PF_W|PF_X;
1316 		phdr->p_vaddr = (unsigned long) _text;
1317 		phdr->p_filesz = phdr->p_memsz = _end - _text;
1318 		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1319 		ehdr->e_phnum++;
1320 		phdr++;
1321 	}
1322 
1323 	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1324 	for (i = 0; i < mem->nr_ranges; i++) {
1325 		mstart = mem->ranges[i].start;
1326 		mend = mem->ranges[i].end;
1327 
1328 		phdr->p_type = PT_LOAD;
1329 		phdr->p_flags = PF_R|PF_W|PF_X;
1330 		phdr->p_offset  = mstart;
1331 
1332 		phdr->p_paddr = mstart;
1333 		phdr->p_vaddr = (unsigned long) __va(mstart);
1334 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1335 		phdr->p_align = 0;
1336 		ehdr->e_phnum++;
1337 		phdr++;
1338 		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1339 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1340 			ehdr->e_phnum, phdr->p_offset);
1341 	}
1342 
1343 	*addr = buf;
1344 	*sz = elf_sz;
1345 	return 0;
1346 }
1347