xref: /openbmc/linux/kernel/kexec_file.c (revision b1a3e75e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec: kexec_file_load system call
4  *
5  * Copyright (C) 2014 Red Hat Inc.
6  * Authors:
7  *      Vivek Goyal <vgoyal@redhat.com>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/syscalls.h>
28 #include <linux/vmalloc.h>
29 #include "kexec_internal.h"
30 
31 static int kexec_calculate_store_digests(struct kimage *image);
32 
33 /*
34  * Currently this is the only default function that is exported as some
35  * architectures need it to do additional handlings.
36  * In the future, other default functions may be exported too if required.
37  */
38 int kexec_image_probe_default(struct kimage *image, void *buf,
39 			      unsigned long buf_len)
40 {
41 	const struct kexec_file_ops * const *fops;
42 	int ret = -ENOEXEC;
43 
44 	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
45 		ret = (*fops)->probe(buf, buf_len);
46 		if (!ret) {
47 			image->fops = *fops;
48 			return ret;
49 		}
50 	}
51 
52 	return ret;
53 }
54 
55 /* Architectures can provide this probe function */
56 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
57 					 unsigned long buf_len)
58 {
59 	return kexec_image_probe_default(image, buf, buf_len);
60 }
61 
62 static void *kexec_image_load_default(struct kimage *image)
63 {
64 	if (!image->fops || !image->fops->load)
65 		return ERR_PTR(-ENOEXEC);
66 
67 	return image->fops->load(image, image->kernel_buf,
68 				 image->kernel_buf_len, image->initrd_buf,
69 				 image->initrd_buf_len, image->cmdline_buf,
70 				 image->cmdline_buf_len);
71 }
72 
73 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
74 {
75 	return kexec_image_load_default(image);
76 }
77 
78 int kexec_image_post_load_cleanup_default(struct kimage *image)
79 {
80 	if (!image->fops || !image->fops->cleanup)
81 		return 0;
82 
83 	return image->fops->cleanup(image->image_loader_data);
84 }
85 
86 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
87 {
88 	return kexec_image_post_load_cleanup_default(image);
89 }
90 
91 #ifdef CONFIG_KEXEC_SIG
92 static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
93 					  unsigned long buf_len)
94 {
95 	if (!image->fops || !image->fops->verify_sig) {
96 		pr_debug("kernel loader does not support signature verification.\n");
97 		return -EKEYREJECTED;
98 	}
99 
100 	return image->fops->verify_sig(buf, buf_len);
101 }
102 
103 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
104 					unsigned long buf_len)
105 {
106 	return kexec_image_verify_sig_default(image, buf, buf_len);
107 }
108 #endif
109 
110 /*
111  * arch_kexec_apply_relocations_add - apply relocations of type RELA
112  * @pi:		Purgatory to be relocated.
113  * @section:	Section relocations applying to.
114  * @relsec:	Section containing RELAs.
115  * @symtab:	Corresponding symtab.
116  *
117  * Return: 0 on success, negative errno on error.
118  */
119 int __weak
120 arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
121 				 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
122 {
123 	pr_err("RELA relocation unsupported.\n");
124 	return -ENOEXEC;
125 }
126 
127 /*
128  * arch_kexec_apply_relocations - apply relocations of type REL
129  * @pi:		Purgatory to be relocated.
130  * @section:	Section relocations applying to.
131  * @relsec:	Section containing RELs.
132  * @symtab:	Corresponding symtab.
133  *
134  * Return: 0 on success, negative errno on error.
135  */
136 int __weak
137 arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
138 			     const Elf_Shdr *relsec, const Elf_Shdr *symtab)
139 {
140 	pr_err("REL relocation unsupported.\n");
141 	return -ENOEXEC;
142 }
143 
144 /*
145  * Free up memory used by kernel, initrd, and command line. This is temporary
146  * memory allocation which is not needed any more after these buffers have
147  * been loaded into separate segments and have been copied elsewhere.
148  */
149 void kimage_file_post_load_cleanup(struct kimage *image)
150 {
151 	struct purgatory_info *pi = &image->purgatory_info;
152 
153 	vfree(image->kernel_buf);
154 	image->kernel_buf = NULL;
155 
156 	vfree(image->initrd_buf);
157 	image->initrd_buf = NULL;
158 
159 	kfree(image->cmdline_buf);
160 	image->cmdline_buf = NULL;
161 
162 	vfree(pi->purgatory_buf);
163 	pi->purgatory_buf = NULL;
164 
165 	vfree(pi->sechdrs);
166 	pi->sechdrs = NULL;
167 
168 	/* See if architecture has anything to cleanup post load */
169 	arch_kimage_file_post_load_cleanup(image);
170 
171 	/*
172 	 * Above call should have called into bootloader to free up
173 	 * any data stored in kimage->image_loader_data. It should
174 	 * be ok now to free it up.
175 	 */
176 	kfree(image->image_loader_data);
177 	image->image_loader_data = NULL;
178 }
179 
180 #ifdef CONFIG_KEXEC_SIG
181 static int
182 kimage_validate_signature(struct kimage *image)
183 {
184 	int ret;
185 
186 	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
187 					   image->kernel_buf_len);
188 	if (ret) {
189 
190 		if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
191 			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
192 			return ret;
193 		}
194 
195 		/*
196 		 * If IMA is guaranteed to appraise a signature on the kexec
197 		 * image, permit it even if the kernel is otherwise locked
198 		 * down.
199 		 */
200 		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
201 		    security_locked_down(LOCKDOWN_KEXEC))
202 			return -EPERM;
203 
204 		pr_debug("kernel signature verification failed (%d).\n", ret);
205 	}
206 
207 	return 0;
208 }
209 #endif
210 
211 /*
212  * In file mode list of segments is prepared by kernel. Copy relevant
213  * data from user space, do error checking, prepare segment list
214  */
215 static int
216 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
217 			     const char __user *cmdline_ptr,
218 			     unsigned long cmdline_len, unsigned flags)
219 {
220 	int ret;
221 	void *ldata;
222 	loff_t size;
223 
224 	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
225 				       &size, INT_MAX, READING_KEXEC_IMAGE);
226 	if (ret)
227 		return ret;
228 	image->kernel_buf_len = size;
229 
230 	/* Call arch image probe handlers */
231 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
232 					    image->kernel_buf_len);
233 	if (ret)
234 		goto out;
235 
236 #ifdef CONFIG_KEXEC_SIG
237 	ret = kimage_validate_signature(image);
238 
239 	if (ret)
240 		goto out;
241 #endif
242 	/* It is possible that there no initramfs is being loaded */
243 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
244 		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
245 					       &size, INT_MAX,
246 					       READING_KEXEC_INITRAMFS);
247 		if (ret)
248 			goto out;
249 		image->initrd_buf_len = size;
250 	}
251 
252 	if (cmdline_len) {
253 		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
254 		if (IS_ERR(image->cmdline_buf)) {
255 			ret = PTR_ERR(image->cmdline_buf);
256 			image->cmdline_buf = NULL;
257 			goto out;
258 		}
259 
260 		image->cmdline_buf_len = cmdline_len;
261 
262 		/* command line should be a string with last byte null */
263 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
264 			ret = -EINVAL;
265 			goto out;
266 		}
267 
268 		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
269 				  image->cmdline_buf_len - 1);
270 	}
271 
272 	/* IMA needs to pass the measurement list to the next kernel. */
273 	ima_add_kexec_buffer(image);
274 
275 	/* Call arch image load handlers */
276 	ldata = arch_kexec_kernel_image_load(image);
277 
278 	if (IS_ERR(ldata)) {
279 		ret = PTR_ERR(ldata);
280 		goto out;
281 	}
282 
283 	image->image_loader_data = ldata;
284 out:
285 	/* In case of error, free up all allocated memory in this function */
286 	if (ret)
287 		kimage_file_post_load_cleanup(image);
288 	return ret;
289 }
290 
291 static int
292 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
293 		       int initrd_fd, const char __user *cmdline_ptr,
294 		       unsigned long cmdline_len, unsigned long flags)
295 {
296 	int ret;
297 	struct kimage *image;
298 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
299 
300 	image = do_kimage_alloc_init();
301 	if (!image)
302 		return -ENOMEM;
303 
304 	image->file_mode = 1;
305 
306 	if (kexec_on_panic) {
307 		/* Enable special crash kernel control page alloc policy. */
308 		image->control_page = crashk_res.start;
309 		image->type = KEXEC_TYPE_CRASH;
310 	}
311 
312 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
313 					   cmdline_ptr, cmdline_len, flags);
314 	if (ret)
315 		goto out_free_image;
316 
317 	ret = sanity_check_segment_list(image);
318 	if (ret)
319 		goto out_free_post_load_bufs;
320 
321 	ret = -ENOMEM;
322 	image->control_code_page = kimage_alloc_control_pages(image,
323 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
324 	if (!image->control_code_page) {
325 		pr_err("Could not allocate control_code_buffer\n");
326 		goto out_free_post_load_bufs;
327 	}
328 
329 	if (!kexec_on_panic) {
330 		image->swap_page = kimage_alloc_control_pages(image, 0);
331 		if (!image->swap_page) {
332 			pr_err("Could not allocate swap buffer\n");
333 			goto out_free_control_pages;
334 		}
335 	}
336 
337 	*rimage = image;
338 	return 0;
339 out_free_control_pages:
340 	kimage_free_page_list(&image->control_pages);
341 out_free_post_load_bufs:
342 	kimage_file_post_load_cleanup(image);
343 out_free_image:
344 	kfree(image);
345 	return ret;
346 }
347 
348 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
349 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
350 		unsigned long, flags)
351 {
352 	int ret = 0, i;
353 	struct kimage **dest_image, *image;
354 
355 	/* We only trust the superuser with rebooting the system. */
356 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
357 		return -EPERM;
358 
359 	/* Make sure we have a legal set of flags */
360 	if (flags != (flags & KEXEC_FILE_FLAGS))
361 		return -EINVAL;
362 
363 	image = NULL;
364 
365 	if (!mutex_trylock(&kexec_mutex))
366 		return -EBUSY;
367 
368 	dest_image = &kexec_image;
369 	if (flags & KEXEC_FILE_ON_CRASH) {
370 		dest_image = &kexec_crash_image;
371 		if (kexec_crash_image)
372 			arch_kexec_unprotect_crashkres();
373 	}
374 
375 	if (flags & KEXEC_FILE_UNLOAD)
376 		goto exchange;
377 
378 	/*
379 	 * In case of crash, new kernel gets loaded in reserved region. It is
380 	 * same memory where old crash kernel might be loaded. Free any
381 	 * current crash dump kernel before we corrupt it.
382 	 */
383 	if (flags & KEXEC_FILE_ON_CRASH)
384 		kimage_free(xchg(&kexec_crash_image, NULL));
385 
386 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
387 				     cmdline_len, flags);
388 	if (ret)
389 		goto out;
390 
391 	ret = machine_kexec_prepare(image);
392 	if (ret)
393 		goto out;
394 
395 	/*
396 	 * Some architecture(like S390) may touch the crash memory before
397 	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
398 	 */
399 	ret = kimage_crash_copy_vmcoreinfo(image);
400 	if (ret)
401 		goto out;
402 
403 	ret = kexec_calculate_store_digests(image);
404 	if (ret)
405 		goto out;
406 
407 	for (i = 0; i < image->nr_segments; i++) {
408 		struct kexec_segment *ksegment;
409 
410 		ksegment = &image->segment[i];
411 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
412 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
413 			 ksegment->memsz);
414 
415 		ret = kimage_load_segment(image, &image->segment[i]);
416 		if (ret)
417 			goto out;
418 	}
419 
420 	kimage_terminate(image);
421 
422 	ret = machine_kexec_post_load(image);
423 	if (ret)
424 		goto out;
425 
426 	/*
427 	 * Free up any temporary buffers allocated which are not needed
428 	 * after image has been loaded
429 	 */
430 	kimage_file_post_load_cleanup(image);
431 exchange:
432 	image = xchg(dest_image, image);
433 out:
434 	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
435 		arch_kexec_protect_crashkres();
436 
437 	mutex_unlock(&kexec_mutex);
438 	kimage_free(image);
439 	return ret;
440 }
441 
442 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
443 				    struct kexec_buf *kbuf)
444 {
445 	struct kimage *image = kbuf->image;
446 	unsigned long temp_start, temp_end;
447 
448 	temp_end = min(end, kbuf->buf_max);
449 	temp_start = temp_end - kbuf->memsz;
450 
451 	do {
452 		/* align down start */
453 		temp_start = temp_start & (~(kbuf->buf_align - 1));
454 
455 		if (temp_start < start || temp_start < kbuf->buf_min)
456 			return 0;
457 
458 		temp_end = temp_start + kbuf->memsz - 1;
459 
460 		/*
461 		 * Make sure this does not conflict with any of existing
462 		 * segments
463 		 */
464 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
465 			temp_start = temp_start - PAGE_SIZE;
466 			continue;
467 		}
468 
469 		/* We found a suitable memory range */
470 		break;
471 	} while (1);
472 
473 	/* If we are here, we found a suitable memory range */
474 	kbuf->mem = temp_start;
475 
476 	/* Success, stop navigating through remaining System RAM ranges */
477 	return 1;
478 }
479 
480 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
481 				     struct kexec_buf *kbuf)
482 {
483 	struct kimage *image = kbuf->image;
484 	unsigned long temp_start, temp_end;
485 
486 	temp_start = max(start, kbuf->buf_min);
487 
488 	do {
489 		temp_start = ALIGN(temp_start, kbuf->buf_align);
490 		temp_end = temp_start + kbuf->memsz - 1;
491 
492 		if (temp_end > end || temp_end > kbuf->buf_max)
493 			return 0;
494 		/*
495 		 * Make sure this does not conflict with any of existing
496 		 * segments
497 		 */
498 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
499 			temp_start = temp_start + PAGE_SIZE;
500 			continue;
501 		}
502 
503 		/* We found a suitable memory range */
504 		break;
505 	} while (1);
506 
507 	/* If we are here, we found a suitable memory range */
508 	kbuf->mem = temp_start;
509 
510 	/* Success, stop navigating through remaining System RAM ranges */
511 	return 1;
512 }
513 
514 static int locate_mem_hole_callback(struct resource *res, void *arg)
515 {
516 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
517 	u64 start = res->start, end = res->end;
518 	unsigned long sz = end - start + 1;
519 
520 	/* Returning 0 will take to next memory range */
521 
522 	/* Don't use memory that will be detected and handled by a driver. */
523 	if (res->flags & IORESOURCE_MEM_DRIVER_MANAGED)
524 		return 0;
525 
526 	if (sz < kbuf->memsz)
527 		return 0;
528 
529 	if (end < kbuf->buf_min || start > kbuf->buf_max)
530 		return 0;
531 
532 	/*
533 	 * Allocate memory top down with-in ram range. Otherwise bottom up
534 	 * allocation.
535 	 */
536 	if (kbuf->top_down)
537 		return locate_mem_hole_top_down(start, end, kbuf);
538 	return locate_mem_hole_bottom_up(start, end, kbuf);
539 }
540 
541 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
542 static int kexec_walk_memblock(struct kexec_buf *kbuf,
543 			       int (*func)(struct resource *, void *))
544 {
545 	int ret = 0;
546 	u64 i;
547 	phys_addr_t mstart, mend;
548 	struct resource res = { };
549 
550 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
551 		return func(&crashk_res, kbuf);
552 
553 	if (kbuf->top_down) {
554 		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
555 						&mstart, &mend, NULL) {
556 			/*
557 			 * In memblock, end points to the first byte after the
558 			 * range while in kexec, end points to the last byte
559 			 * in the range.
560 			 */
561 			res.start = mstart;
562 			res.end = mend - 1;
563 			ret = func(&res, kbuf);
564 			if (ret)
565 				break;
566 		}
567 	} else {
568 		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
569 					&mstart, &mend, NULL) {
570 			/*
571 			 * In memblock, end points to the first byte after the
572 			 * range while in kexec, end points to the last byte
573 			 * in the range.
574 			 */
575 			res.start = mstart;
576 			res.end = mend - 1;
577 			ret = func(&res, kbuf);
578 			if (ret)
579 				break;
580 		}
581 	}
582 
583 	return ret;
584 }
585 #else
586 static int kexec_walk_memblock(struct kexec_buf *kbuf,
587 			       int (*func)(struct resource *, void *))
588 {
589 	return 0;
590 }
591 #endif
592 
593 /**
594  * kexec_walk_resources - call func(data) on free memory regions
595  * @kbuf:	Context info for the search. Also passed to @func.
596  * @func:	Function to call for each memory region.
597  *
598  * Return: The memory walk will stop when func returns a non-zero value
599  * and that value will be returned. If all free regions are visited without
600  * func returning non-zero, then zero will be returned.
601  */
602 static int kexec_walk_resources(struct kexec_buf *kbuf,
603 				int (*func)(struct resource *, void *))
604 {
605 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
606 		return walk_iomem_res_desc(crashk_res.desc,
607 					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
608 					   crashk_res.start, crashk_res.end,
609 					   kbuf, func);
610 	else
611 		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
612 }
613 
614 /**
615  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
616  * @kbuf:	Parameters for the memory search.
617  *
618  * On success, kbuf->mem will have the start address of the memory region found.
619  *
620  * Return: 0 on success, negative errno on error.
621  */
622 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
623 {
624 	int ret;
625 
626 	/* Arch knows where to place */
627 	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
628 		return 0;
629 
630 	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
631 		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
632 	else
633 		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
634 
635 	return ret == 1 ? 0 : -EADDRNOTAVAIL;
636 }
637 
638 /**
639  * arch_kexec_locate_mem_hole - Find free memory to place the segments.
640  * @kbuf:                       Parameters for the memory search.
641  *
642  * On success, kbuf->mem will have the start address of the memory region found.
643  *
644  * Return: 0 on success, negative errno on error.
645  */
646 int __weak arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
647 {
648 	return kexec_locate_mem_hole(kbuf);
649 }
650 
651 /**
652  * kexec_add_buffer - place a buffer in a kexec segment
653  * @kbuf:	Buffer contents and memory parameters.
654  *
655  * This function assumes that kexec_mutex is held.
656  * On successful return, @kbuf->mem will have the physical address of
657  * the buffer in memory.
658  *
659  * Return: 0 on success, negative errno on error.
660  */
661 int kexec_add_buffer(struct kexec_buf *kbuf)
662 {
663 	struct kexec_segment *ksegment;
664 	int ret;
665 
666 	/* Currently adding segment this way is allowed only in file mode */
667 	if (!kbuf->image->file_mode)
668 		return -EINVAL;
669 
670 	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
671 		return -EINVAL;
672 
673 	/*
674 	 * Make sure we are not trying to add buffer after allocating
675 	 * control pages. All segments need to be placed first before
676 	 * any control pages are allocated. As control page allocation
677 	 * logic goes through list of segments to make sure there are
678 	 * no destination overlaps.
679 	 */
680 	if (!list_empty(&kbuf->image->control_pages)) {
681 		WARN_ON(1);
682 		return -EINVAL;
683 	}
684 
685 	/* Ensure minimum alignment needed for segments. */
686 	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
687 	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
688 
689 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
690 	ret = arch_kexec_locate_mem_hole(kbuf);
691 	if (ret)
692 		return ret;
693 
694 	/* Found a suitable memory range */
695 	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
696 	ksegment->kbuf = kbuf->buffer;
697 	ksegment->bufsz = kbuf->bufsz;
698 	ksegment->mem = kbuf->mem;
699 	ksegment->memsz = kbuf->memsz;
700 	kbuf->image->nr_segments++;
701 	return 0;
702 }
703 
704 /* Calculate and store the digest of segments */
705 static int kexec_calculate_store_digests(struct kimage *image)
706 {
707 	struct crypto_shash *tfm;
708 	struct shash_desc *desc;
709 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
710 	size_t desc_size, nullsz;
711 	char *digest;
712 	void *zero_buf;
713 	struct kexec_sha_region *sha_regions;
714 	struct purgatory_info *pi = &image->purgatory_info;
715 
716 	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
717 		return 0;
718 
719 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
720 	zero_buf_sz = PAGE_SIZE;
721 
722 	tfm = crypto_alloc_shash("sha256", 0, 0);
723 	if (IS_ERR(tfm)) {
724 		ret = PTR_ERR(tfm);
725 		goto out;
726 	}
727 
728 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
729 	desc = kzalloc(desc_size, GFP_KERNEL);
730 	if (!desc) {
731 		ret = -ENOMEM;
732 		goto out_free_tfm;
733 	}
734 
735 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
736 	sha_regions = vzalloc(sha_region_sz);
737 	if (!sha_regions)
738 		goto out_free_desc;
739 
740 	desc->tfm   = tfm;
741 
742 	ret = crypto_shash_init(desc);
743 	if (ret < 0)
744 		goto out_free_sha_regions;
745 
746 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
747 	if (!digest) {
748 		ret = -ENOMEM;
749 		goto out_free_sha_regions;
750 	}
751 
752 	for (j = i = 0; i < image->nr_segments; i++) {
753 		struct kexec_segment *ksegment;
754 
755 		ksegment = &image->segment[i];
756 		/*
757 		 * Skip purgatory as it will be modified once we put digest
758 		 * info in purgatory.
759 		 */
760 		if (ksegment->kbuf == pi->purgatory_buf)
761 			continue;
762 
763 		ret = crypto_shash_update(desc, ksegment->kbuf,
764 					  ksegment->bufsz);
765 		if (ret)
766 			break;
767 
768 		/*
769 		 * Assume rest of the buffer is filled with zero and
770 		 * update digest accordingly.
771 		 */
772 		nullsz = ksegment->memsz - ksegment->bufsz;
773 		while (nullsz) {
774 			unsigned long bytes = nullsz;
775 
776 			if (bytes > zero_buf_sz)
777 				bytes = zero_buf_sz;
778 			ret = crypto_shash_update(desc, zero_buf, bytes);
779 			if (ret)
780 				break;
781 			nullsz -= bytes;
782 		}
783 
784 		if (ret)
785 			break;
786 
787 		sha_regions[j].start = ksegment->mem;
788 		sha_regions[j].len = ksegment->memsz;
789 		j++;
790 	}
791 
792 	if (!ret) {
793 		ret = crypto_shash_final(desc, digest);
794 		if (ret)
795 			goto out_free_digest;
796 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
797 						     sha_regions, sha_region_sz, 0);
798 		if (ret)
799 			goto out_free_digest;
800 
801 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
802 						     digest, SHA256_DIGEST_SIZE, 0);
803 		if (ret)
804 			goto out_free_digest;
805 	}
806 
807 out_free_digest:
808 	kfree(digest);
809 out_free_sha_regions:
810 	vfree(sha_regions);
811 out_free_desc:
812 	kfree(desc);
813 out_free_tfm:
814 	kfree(tfm);
815 out:
816 	return ret;
817 }
818 
819 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
820 /*
821  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
822  * @pi:		Purgatory to be loaded.
823  * @kbuf:	Buffer to setup.
824  *
825  * Allocates the memory needed for the buffer. Caller is responsible to free
826  * the memory after use.
827  *
828  * Return: 0 on success, negative errno on error.
829  */
830 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
831 				      struct kexec_buf *kbuf)
832 {
833 	const Elf_Shdr *sechdrs;
834 	unsigned long bss_align;
835 	unsigned long bss_sz;
836 	unsigned long align;
837 	int i, ret;
838 
839 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
840 	kbuf->buf_align = bss_align = 1;
841 	kbuf->bufsz = bss_sz = 0;
842 
843 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
844 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
845 			continue;
846 
847 		align = sechdrs[i].sh_addralign;
848 		if (sechdrs[i].sh_type != SHT_NOBITS) {
849 			if (kbuf->buf_align < align)
850 				kbuf->buf_align = align;
851 			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
852 			kbuf->bufsz += sechdrs[i].sh_size;
853 		} else {
854 			if (bss_align < align)
855 				bss_align = align;
856 			bss_sz = ALIGN(bss_sz, align);
857 			bss_sz += sechdrs[i].sh_size;
858 		}
859 	}
860 	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
861 	kbuf->memsz = kbuf->bufsz + bss_sz;
862 	if (kbuf->buf_align < bss_align)
863 		kbuf->buf_align = bss_align;
864 
865 	kbuf->buffer = vzalloc(kbuf->bufsz);
866 	if (!kbuf->buffer)
867 		return -ENOMEM;
868 	pi->purgatory_buf = kbuf->buffer;
869 
870 	ret = kexec_add_buffer(kbuf);
871 	if (ret)
872 		goto out;
873 
874 	return 0;
875 out:
876 	vfree(pi->purgatory_buf);
877 	pi->purgatory_buf = NULL;
878 	return ret;
879 }
880 
881 /*
882  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
883  * @pi:		Purgatory to be loaded.
884  * @kbuf:	Buffer prepared to store purgatory.
885  *
886  * Allocates the memory needed for the buffer. Caller is responsible to free
887  * the memory after use.
888  *
889  * Return: 0 on success, negative errno on error.
890  */
891 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
892 					 struct kexec_buf *kbuf)
893 {
894 	unsigned long bss_addr;
895 	unsigned long offset;
896 	Elf_Shdr *sechdrs;
897 	int i;
898 
899 	/*
900 	 * The section headers in kexec_purgatory are read-only. In order to
901 	 * have them modifiable make a temporary copy.
902 	 */
903 	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
904 	if (!sechdrs)
905 		return -ENOMEM;
906 	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
907 	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
908 	pi->sechdrs = sechdrs;
909 
910 	offset = 0;
911 	bss_addr = kbuf->mem + kbuf->bufsz;
912 	kbuf->image->start = pi->ehdr->e_entry;
913 
914 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
915 		unsigned long align;
916 		void *src, *dst;
917 
918 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
919 			continue;
920 
921 		align = sechdrs[i].sh_addralign;
922 		if (sechdrs[i].sh_type == SHT_NOBITS) {
923 			bss_addr = ALIGN(bss_addr, align);
924 			sechdrs[i].sh_addr = bss_addr;
925 			bss_addr += sechdrs[i].sh_size;
926 			continue;
927 		}
928 
929 		offset = ALIGN(offset, align);
930 		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
931 		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
932 		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
933 					 + sechdrs[i].sh_size)) {
934 			kbuf->image->start -= sechdrs[i].sh_addr;
935 			kbuf->image->start += kbuf->mem + offset;
936 		}
937 
938 		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
939 		dst = pi->purgatory_buf + offset;
940 		memcpy(dst, src, sechdrs[i].sh_size);
941 
942 		sechdrs[i].sh_addr = kbuf->mem + offset;
943 		sechdrs[i].sh_offset = offset;
944 		offset += sechdrs[i].sh_size;
945 	}
946 
947 	return 0;
948 }
949 
950 static int kexec_apply_relocations(struct kimage *image)
951 {
952 	int i, ret;
953 	struct purgatory_info *pi = &image->purgatory_info;
954 	const Elf_Shdr *sechdrs;
955 
956 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
957 
958 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
959 		const Elf_Shdr *relsec;
960 		const Elf_Shdr *symtab;
961 		Elf_Shdr *section;
962 
963 		relsec = sechdrs + i;
964 
965 		if (relsec->sh_type != SHT_RELA &&
966 		    relsec->sh_type != SHT_REL)
967 			continue;
968 
969 		/*
970 		 * For section of type SHT_RELA/SHT_REL,
971 		 * ->sh_link contains section header index of associated
972 		 * symbol table. And ->sh_info contains section header
973 		 * index of section to which relocations apply.
974 		 */
975 		if (relsec->sh_info >= pi->ehdr->e_shnum ||
976 		    relsec->sh_link >= pi->ehdr->e_shnum)
977 			return -ENOEXEC;
978 
979 		section = pi->sechdrs + relsec->sh_info;
980 		symtab = sechdrs + relsec->sh_link;
981 
982 		if (!(section->sh_flags & SHF_ALLOC))
983 			continue;
984 
985 		/*
986 		 * symtab->sh_link contain section header index of associated
987 		 * string table.
988 		 */
989 		if (symtab->sh_link >= pi->ehdr->e_shnum)
990 			/* Invalid section number? */
991 			continue;
992 
993 		/*
994 		 * Respective architecture needs to provide support for applying
995 		 * relocations of type SHT_RELA/SHT_REL.
996 		 */
997 		if (relsec->sh_type == SHT_RELA)
998 			ret = arch_kexec_apply_relocations_add(pi, section,
999 							       relsec, symtab);
1000 		else if (relsec->sh_type == SHT_REL)
1001 			ret = arch_kexec_apply_relocations(pi, section,
1002 							   relsec, symtab);
1003 		if (ret)
1004 			return ret;
1005 	}
1006 
1007 	return 0;
1008 }
1009 
1010 /*
1011  * kexec_load_purgatory - Load and relocate the purgatory object.
1012  * @image:	Image to add the purgatory to.
1013  * @kbuf:	Memory parameters to use.
1014  *
1015  * Allocates the memory needed for image->purgatory_info.sechdrs and
1016  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1017  * to free the memory after use.
1018  *
1019  * Return: 0 on success, negative errno on error.
1020  */
1021 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1022 {
1023 	struct purgatory_info *pi = &image->purgatory_info;
1024 	int ret;
1025 
1026 	if (kexec_purgatory_size <= 0)
1027 		return -EINVAL;
1028 
1029 	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1030 
1031 	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1032 	if (ret)
1033 		return ret;
1034 
1035 	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1036 	if (ret)
1037 		goto out_free_kbuf;
1038 
1039 	ret = kexec_apply_relocations(image);
1040 	if (ret)
1041 		goto out;
1042 
1043 	return 0;
1044 out:
1045 	vfree(pi->sechdrs);
1046 	pi->sechdrs = NULL;
1047 out_free_kbuf:
1048 	vfree(pi->purgatory_buf);
1049 	pi->purgatory_buf = NULL;
1050 	return ret;
1051 }
1052 
1053 /*
1054  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1055  * @pi:		Purgatory to search in.
1056  * @name:	Name of the symbol.
1057  *
1058  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1059  */
1060 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1061 						  const char *name)
1062 {
1063 	const Elf_Shdr *sechdrs;
1064 	const Elf_Ehdr *ehdr;
1065 	const Elf_Sym *syms;
1066 	const char *strtab;
1067 	int i, k;
1068 
1069 	if (!pi->ehdr)
1070 		return NULL;
1071 
1072 	ehdr = pi->ehdr;
1073 	sechdrs = (void *)ehdr + ehdr->e_shoff;
1074 
1075 	for (i = 0; i < ehdr->e_shnum; i++) {
1076 		if (sechdrs[i].sh_type != SHT_SYMTAB)
1077 			continue;
1078 
1079 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1080 			/* Invalid strtab section number */
1081 			continue;
1082 		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1083 		syms = (void *)ehdr + sechdrs[i].sh_offset;
1084 
1085 		/* Go through symbols for a match */
1086 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1087 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1088 				continue;
1089 
1090 			if (strcmp(strtab + syms[k].st_name, name) != 0)
1091 				continue;
1092 
1093 			if (syms[k].st_shndx == SHN_UNDEF ||
1094 			    syms[k].st_shndx >= ehdr->e_shnum) {
1095 				pr_debug("Symbol: %s has bad section index %d.\n",
1096 						name, syms[k].st_shndx);
1097 				return NULL;
1098 			}
1099 
1100 			/* Found the symbol we are looking for */
1101 			return &syms[k];
1102 		}
1103 	}
1104 
1105 	return NULL;
1106 }
1107 
1108 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1109 {
1110 	struct purgatory_info *pi = &image->purgatory_info;
1111 	const Elf_Sym *sym;
1112 	Elf_Shdr *sechdr;
1113 
1114 	sym = kexec_purgatory_find_symbol(pi, name);
1115 	if (!sym)
1116 		return ERR_PTR(-EINVAL);
1117 
1118 	sechdr = &pi->sechdrs[sym->st_shndx];
1119 
1120 	/*
1121 	 * Returns the address where symbol will finally be loaded after
1122 	 * kexec_load_segment()
1123 	 */
1124 	return (void *)(sechdr->sh_addr + sym->st_value);
1125 }
1126 
1127 /*
1128  * Get or set value of a symbol. If "get_value" is true, symbol value is
1129  * returned in buf otherwise symbol value is set based on value in buf.
1130  */
1131 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1132 				   void *buf, unsigned int size, bool get_value)
1133 {
1134 	struct purgatory_info *pi = &image->purgatory_info;
1135 	const Elf_Sym *sym;
1136 	Elf_Shdr *sec;
1137 	char *sym_buf;
1138 
1139 	sym = kexec_purgatory_find_symbol(pi, name);
1140 	if (!sym)
1141 		return -EINVAL;
1142 
1143 	if (sym->st_size != size) {
1144 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1145 		       name, (unsigned long)sym->st_size, size);
1146 		return -EINVAL;
1147 	}
1148 
1149 	sec = pi->sechdrs + sym->st_shndx;
1150 
1151 	if (sec->sh_type == SHT_NOBITS) {
1152 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1153 		       get_value ? "get" : "set");
1154 		return -EINVAL;
1155 	}
1156 
1157 	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1158 
1159 	if (get_value)
1160 		memcpy((void *)buf, sym_buf, size);
1161 	else
1162 		memcpy((void *)sym_buf, buf, size);
1163 
1164 	return 0;
1165 }
1166 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1167 
1168 int crash_exclude_mem_range(struct crash_mem *mem,
1169 			    unsigned long long mstart, unsigned long long mend)
1170 {
1171 	int i, j;
1172 	unsigned long long start, end;
1173 	struct crash_mem_range temp_range = {0, 0};
1174 
1175 	for (i = 0; i < mem->nr_ranges; i++) {
1176 		start = mem->ranges[i].start;
1177 		end = mem->ranges[i].end;
1178 
1179 		if (mstart > end || mend < start)
1180 			continue;
1181 
1182 		/* Truncate any area outside of range */
1183 		if (mstart < start)
1184 			mstart = start;
1185 		if (mend > end)
1186 			mend = end;
1187 
1188 		/* Found completely overlapping range */
1189 		if (mstart == start && mend == end) {
1190 			mem->ranges[i].start = 0;
1191 			mem->ranges[i].end = 0;
1192 			if (i < mem->nr_ranges - 1) {
1193 				/* Shift rest of the ranges to left */
1194 				for (j = i; j < mem->nr_ranges - 1; j++) {
1195 					mem->ranges[j].start =
1196 						mem->ranges[j+1].start;
1197 					mem->ranges[j].end =
1198 							mem->ranges[j+1].end;
1199 				}
1200 			}
1201 			mem->nr_ranges--;
1202 			return 0;
1203 		}
1204 
1205 		if (mstart > start && mend < end) {
1206 			/* Split original range */
1207 			mem->ranges[i].end = mstart - 1;
1208 			temp_range.start = mend + 1;
1209 			temp_range.end = end;
1210 		} else if (mstart != start)
1211 			mem->ranges[i].end = mstart - 1;
1212 		else
1213 			mem->ranges[i].start = mend + 1;
1214 		break;
1215 	}
1216 
1217 	/* If a split happened, add the split to array */
1218 	if (!temp_range.end)
1219 		return 0;
1220 
1221 	/* Split happened */
1222 	if (i == mem->max_nr_ranges - 1)
1223 		return -ENOMEM;
1224 
1225 	/* Location where new range should go */
1226 	j = i + 1;
1227 	if (j < mem->nr_ranges) {
1228 		/* Move over all ranges one slot towards the end */
1229 		for (i = mem->nr_ranges - 1; i >= j; i--)
1230 			mem->ranges[i + 1] = mem->ranges[i];
1231 	}
1232 
1233 	mem->ranges[j].start = temp_range.start;
1234 	mem->ranges[j].end = temp_range.end;
1235 	mem->nr_ranges++;
1236 	return 0;
1237 }
1238 
1239 int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1240 			  void **addr, unsigned long *sz)
1241 {
1242 	Elf64_Ehdr *ehdr;
1243 	Elf64_Phdr *phdr;
1244 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1245 	unsigned char *buf;
1246 	unsigned int cpu, i;
1247 	unsigned long long notes_addr;
1248 	unsigned long mstart, mend;
1249 
1250 	/* extra phdr for vmcoreinfo elf note */
1251 	nr_phdr = nr_cpus + 1;
1252 	nr_phdr += mem->nr_ranges;
1253 
1254 	/*
1255 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1256 	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1257 	 * I think this is required by tools like gdb. So same physical
1258 	 * memory will be mapped in two elf headers. One will contain kernel
1259 	 * text virtual addresses and other will have __va(physical) addresses.
1260 	 */
1261 
1262 	nr_phdr++;
1263 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1264 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1265 
1266 	buf = vzalloc(elf_sz);
1267 	if (!buf)
1268 		return -ENOMEM;
1269 
1270 	ehdr = (Elf64_Ehdr *)buf;
1271 	phdr = (Elf64_Phdr *)(ehdr + 1);
1272 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1273 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1274 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1275 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1276 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1277 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1278 	ehdr->e_type = ET_CORE;
1279 	ehdr->e_machine = ELF_ARCH;
1280 	ehdr->e_version = EV_CURRENT;
1281 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1282 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1283 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1284 
1285 	/* Prepare one phdr of type PT_NOTE for each present cpu */
1286 	for_each_present_cpu(cpu) {
1287 		phdr->p_type = PT_NOTE;
1288 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1289 		phdr->p_offset = phdr->p_paddr = notes_addr;
1290 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1291 		(ehdr->e_phnum)++;
1292 		phdr++;
1293 	}
1294 
1295 	/* Prepare one PT_NOTE header for vmcoreinfo */
1296 	phdr->p_type = PT_NOTE;
1297 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1298 	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1299 	(ehdr->e_phnum)++;
1300 	phdr++;
1301 
1302 	/* Prepare PT_LOAD type program header for kernel text region */
1303 	if (kernel_map) {
1304 		phdr->p_type = PT_LOAD;
1305 		phdr->p_flags = PF_R|PF_W|PF_X;
1306 		phdr->p_vaddr = (unsigned long) _text;
1307 		phdr->p_filesz = phdr->p_memsz = _end - _text;
1308 		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1309 		ehdr->e_phnum++;
1310 		phdr++;
1311 	}
1312 
1313 	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1314 	for (i = 0; i < mem->nr_ranges; i++) {
1315 		mstart = mem->ranges[i].start;
1316 		mend = mem->ranges[i].end;
1317 
1318 		phdr->p_type = PT_LOAD;
1319 		phdr->p_flags = PF_R|PF_W|PF_X;
1320 		phdr->p_offset  = mstart;
1321 
1322 		phdr->p_paddr = mstart;
1323 		phdr->p_vaddr = (unsigned long) __va(mstart);
1324 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1325 		phdr->p_align = 0;
1326 		ehdr->e_phnum++;
1327 		phdr++;
1328 		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1329 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1330 			ehdr->e_phnum, phdr->p_offset);
1331 	}
1332 
1333 	*addr = buf;
1334 	*sz = elf_sz;
1335 	return 0;
1336 }
1337