xref: /openbmc/linux/kernel/kexec_file.c (revision a10c9ede)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec: kexec_file_load system call
4  *
5  * Copyright (C) 2014 Red Hat Inc.
6  * Authors:
7  *      Vivek Goyal <vgoyal@redhat.com>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha2.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/syscalls.h>
29 #include <linux/vmalloc.h>
30 #include "kexec_internal.h"
31 
32 static int kexec_calculate_store_digests(struct kimage *image);
33 
34 /* Maximum size in bytes for kernel/initrd files. */
35 #define KEXEC_FILE_SIZE_MAX	min_t(s64, 4LL << 30, SSIZE_MAX)
36 
37 /*
38  * Currently this is the only default function that is exported as some
39  * architectures need it to do additional handlings.
40  * In the future, other default functions may be exported too if required.
41  */
42 int kexec_image_probe_default(struct kimage *image, void *buf,
43 			      unsigned long buf_len)
44 {
45 	const struct kexec_file_ops * const *fops;
46 	int ret = -ENOEXEC;
47 
48 	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
49 		ret = (*fops)->probe(buf, buf_len);
50 		if (!ret) {
51 			image->fops = *fops;
52 			return ret;
53 		}
54 	}
55 
56 	return ret;
57 }
58 
59 /* Architectures can provide this probe function */
60 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
61 					 unsigned long buf_len)
62 {
63 	return kexec_image_probe_default(image, buf, buf_len);
64 }
65 
66 static void *kexec_image_load_default(struct kimage *image)
67 {
68 	if (!image->fops || !image->fops->load)
69 		return ERR_PTR(-ENOEXEC);
70 
71 	return image->fops->load(image, image->kernel_buf,
72 				 image->kernel_buf_len, image->initrd_buf,
73 				 image->initrd_buf_len, image->cmdline_buf,
74 				 image->cmdline_buf_len);
75 }
76 
77 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
78 {
79 	return kexec_image_load_default(image);
80 }
81 
82 int kexec_image_post_load_cleanup_default(struct kimage *image)
83 {
84 	if (!image->fops || !image->fops->cleanup)
85 		return 0;
86 
87 	return image->fops->cleanup(image->image_loader_data);
88 }
89 
90 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
91 {
92 	return kexec_image_post_load_cleanup_default(image);
93 }
94 
95 #ifdef CONFIG_KEXEC_SIG
96 static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
97 					  unsigned long buf_len)
98 {
99 	if (!image->fops || !image->fops->verify_sig) {
100 		pr_debug("kernel loader does not support signature verification.\n");
101 		return -EKEYREJECTED;
102 	}
103 
104 	return image->fops->verify_sig(buf, buf_len);
105 }
106 
107 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
108 					unsigned long buf_len)
109 {
110 	return kexec_image_verify_sig_default(image, buf, buf_len);
111 }
112 #endif
113 
114 /*
115  * Free up memory used by kernel, initrd, and command line. This is temporary
116  * memory allocation which is not needed any more after these buffers have
117  * been loaded into separate segments and have been copied elsewhere.
118  */
119 void kimage_file_post_load_cleanup(struct kimage *image)
120 {
121 	struct purgatory_info *pi = &image->purgatory_info;
122 
123 	vfree(image->kernel_buf);
124 	image->kernel_buf = NULL;
125 
126 	vfree(image->initrd_buf);
127 	image->initrd_buf = NULL;
128 
129 	kfree(image->cmdline_buf);
130 	image->cmdline_buf = NULL;
131 
132 	vfree(pi->purgatory_buf);
133 	pi->purgatory_buf = NULL;
134 
135 	vfree(pi->sechdrs);
136 	pi->sechdrs = NULL;
137 
138 #ifdef CONFIG_IMA_KEXEC
139 	vfree(image->ima_buffer);
140 	image->ima_buffer = NULL;
141 #endif /* CONFIG_IMA_KEXEC */
142 
143 	/* See if architecture has anything to cleanup post load */
144 	arch_kimage_file_post_load_cleanup(image);
145 
146 	/*
147 	 * Above call should have called into bootloader to free up
148 	 * any data stored in kimage->image_loader_data. It should
149 	 * be ok now to free it up.
150 	 */
151 	kfree(image->image_loader_data);
152 	image->image_loader_data = NULL;
153 }
154 
155 #ifdef CONFIG_KEXEC_SIG
156 static int
157 kimage_validate_signature(struct kimage *image)
158 {
159 	int ret;
160 
161 	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
162 					   image->kernel_buf_len);
163 	if (ret) {
164 
165 		if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
166 			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
167 			return ret;
168 		}
169 
170 		/*
171 		 * If IMA is guaranteed to appraise a signature on the kexec
172 		 * image, permit it even if the kernel is otherwise locked
173 		 * down.
174 		 */
175 		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
176 		    security_locked_down(LOCKDOWN_KEXEC))
177 			return -EPERM;
178 
179 		pr_debug("kernel signature verification failed (%d).\n", ret);
180 	}
181 
182 	return 0;
183 }
184 #endif
185 
186 /*
187  * In file mode list of segments is prepared by kernel. Copy relevant
188  * data from user space, do error checking, prepare segment list
189  */
190 static int
191 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
192 			     const char __user *cmdline_ptr,
193 			     unsigned long cmdline_len, unsigned flags)
194 {
195 	ssize_t ret;
196 	void *ldata;
197 
198 	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
199 				       KEXEC_FILE_SIZE_MAX, NULL,
200 				       READING_KEXEC_IMAGE);
201 	if (ret < 0)
202 		return ret;
203 	image->kernel_buf_len = ret;
204 
205 	/* Call arch image probe handlers */
206 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
207 					    image->kernel_buf_len);
208 	if (ret)
209 		goto out;
210 
211 #ifdef CONFIG_KEXEC_SIG
212 	ret = kimage_validate_signature(image);
213 
214 	if (ret)
215 		goto out;
216 #endif
217 	/* It is possible that there no initramfs is being loaded */
218 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
219 		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
220 					       KEXEC_FILE_SIZE_MAX, NULL,
221 					       READING_KEXEC_INITRAMFS);
222 		if (ret < 0)
223 			goto out;
224 		image->initrd_buf_len = ret;
225 		ret = 0;
226 	}
227 
228 	if (cmdline_len) {
229 		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
230 		if (IS_ERR(image->cmdline_buf)) {
231 			ret = PTR_ERR(image->cmdline_buf);
232 			image->cmdline_buf = NULL;
233 			goto out;
234 		}
235 
236 		image->cmdline_buf_len = cmdline_len;
237 
238 		/* command line should be a string with last byte null */
239 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
240 			ret = -EINVAL;
241 			goto out;
242 		}
243 
244 		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
245 				  image->cmdline_buf_len - 1);
246 	}
247 
248 	/* IMA needs to pass the measurement list to the next kernel. */
249 	ima_add_kexec_buffer(image);
250 
251 	/* Call arch image load handlers */
252 	ldata = arch_kexec_kernel_image_load(image);
253 
254 	if (IS_ERR(ldata)) {
255 		ret = PTR_ERR(ldata);
256 		goto out;
257 	}
258 
259 	image->image_loader_data = ldata;
260 out:
261 	/* In case of error, free up all allocated memory in this function */
262 	if (ret)
263 		kimage_file_post_load_cleanup(image);
264 	return ret;
265 }
266 
267 static int
268 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
269 		       int initrd_fd, const char __user *cmdline_ptr,
270 		       unsigned long cmdline_len, unsigned long flags)
271 {
272 	int ret;
273 	struct kimage *image;
274 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
275 
276 	image = do_kimage_alloc_init();
277 	if (!image)
278 		return -ENOMEM;
279 
280 	image->file_mode = 1;
281 
282 	if (kexec_on_panic) {
283 		/* Enable special crash kernel control page alloc policy. */
284 		image->control_page = crashk_res.start;
285 		image->type = KEXEC_TYPE_CRASH;
286 	}
287 
288 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
289 					   cmdline_ptr, cmdline_len, flags);
290 	if (ret)
291 		goto out_free_image;
292 
293 	ret = sanity_check_segment_list(image);
294 	if (ret)
295 		goto out_free_post_load_bufs;
296 
297 	ret = -ENOMEM;
298 	image->control_code_page = kimage_alloc_control_pages(image,
299 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
300 	if (!image->control_code_page) {
301 		pr_err("Could not allocate control_code_buffer\n");
302 		goto out_free_post_load_bufs;
303 	}
304 
305 	if (!kexec_on_panic) {
306 		image->swap_page = kimage_alloc_control_pages(image, 0);
307 		if (!image->swap_page) {
308 			pr_err("Could not allocate swap buffer\n");
309 			goto out_free_control_pages;
310 		}
311 	}
312 
313 	*rimage = image;
314 	return 0;
315 out_free_control_pages:
316 	kimage_free_page_list(&image->control_pages);
317 out_free_post_load_bufs:
318 	kimage_file_post_load_cleanup(image);
319 out_free_image:
320 	kfree(image);
321 	return ret;
322 }
323 
324 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
325 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
326 		unsigned long, flags)
327 {
328 	int ret = 0, i;
329 	struct kimage **dest_image, *image;
330 
331 	/* We only trust the superuser with rebooting the system. */
332 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
333 		return -EPERM;
334 
335 	/* Make sure we have a legal set of flags */
336 	if (flags != (flags & KEXEC_FILE_FLAGS))
337 		return -EINVAL;
338 
339 	image = NULL;
340 
341 	if (!mutex_trylock(&kexec_mutex))
342 		return -EBUSY;
343 
344 	dest_image = &kexec_image;
345 	if (flags & KEXEC_FILE_ON_CRASH) {
346 		dest_image = &kexec_crash_image;
347 		if (kexec_crash_image)
348 			arch_kexec_unprotect_crashkres();
349 	}
350 
351 	if (flags & KEXEC_FILE_UNLOAD)
352 		goto exchange;
353 
354 	/*
355 	 * In case of crash, new kernel gets loaded in reserved region. It is
356 	 * same memory where old crash kernel might be loaded. Free any
357 	 * current crash dump kernel before we corrupt it.
358 	 */
359 	if (flags & KEXEC_FILE_ON_CRASH)
360 		kimage_free(xchg(&kexec_crash_image, NULL));
361 
362 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
363 				     cmdline_len, flags);
364 	if (ret)
365 		goto out;
366 
367 	ret = machine_kexec_prepare(image);
368 	if (ret)
369 		goto out;
370 
371 	/*
372 	 * Some architecture(like S390) may touch the crash memory before
373 	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
374 	 */
375 	ret = kimage_crash_copy_vmcoreinfo(image);
376 	if (ret)
377 		goto out;
378 
379 	ret = kexec_calculate_store_digests(image);
380 	if (ret)
381 		goto out;
382 
383 	for (i = 0; i < image->nr_segments; i++) {
384 		struct kexec_segment *ksegment;
385 
386 		ksegment = &image->segment[i];
387 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
388 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
389 			 ksegment->memsz);
390 
391 		ret = kimage_load_segment(image, &image->segment[i]);
392 		if (ret)
393 			goto out;
394 	}
395 
396 	kimage_terminate(image);
397 
398 	ret = machine_kexec_post_load(image);
399 	if (ret)
400 		goto out;
401 
402 	/*
403 	 * Free up any temporary buffers allocated which are not needed
404 	 * after image has been loaded
405 	 */
406 	kimage_file_post_load_cleanup(image);
407 exchange:
408 	image = xchg(dest_image, image);
409 out:
410 	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
411 		arch_kexec_protect_crashkres();
412 
413 	mutex_unlock(&kexec_mutex);
414 	kimage_free(image);
415 	return ret;
416 }
417 
418 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
419 				    struct kexec_buf *kbuf)
420 {
421 	struct kimage *image = kbuf->image;
422 	unsigned long temp_start, temp_end;
423 
424 	temp_end = min(end, kbuf->buf_max);
425 	temp_start = temp_end - kbuf->memsz;
426 
427 	do {
428 		/* align down start */
429 		temp_start = temp_start & (~(kbuf->buf_align - 1));
430 
431 		if (temp_start < start || temp_start < kbuf->buf_min)
432 			return 0;
433 
434 		temp_end = temp_start + kbuf->memsz - 1;
435 
436 		/*
437 		 * Make sure this does not conflict with any of existing
438 		 * segments
439 		 */
440 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
441 			temp_start = temp_start - PAGE_SIZE;
442 			continue;
443 		}
444 
445 		/* We found a suitable memory range */
446 		break;
447 	} while (1);
448 
449 	/* If we are here, we found a suitable memory range */
450 	kbuf->mem = temp_start;
451 
452 	/* Success, stop navigating through remaining System RAM ranges */
453 	return 1;
454 }
455 
456 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
457 				     struct kexec_buf *kbuf)
458 {
459 	struct kimage *image = kbuf->image;
460 	unsigned long temp_start, temp_end;
461 
462 	temp_start = max(start, kbuf->buf_min);
463 
464 	do {
465 		temp_start = ALIGN(temp_start, kbuf->buf_align);
466 		temp_end = temp_start + kbuf->memsz - 1;
467 
468 		if (temp_end > end || temp_end > kbuf->buf_max)
469 			return 0;
470 		/*
471 		 * Make sure this does not conflict with any of existing
472 		 * segments
473 		 */
474 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
475 			temp_start = temp_start + PAGE_SIZE;
476 			continue;
477 		}
478 
479 		/* We found a suitable memory range */
480 		break;
481 	} while (1);
482 
483 	/* If we are here, we found a suitable memory range */
484 	kbuf->mem = temp_start;
485 
486 	/* Success, stop navigating through remaining System RAM ranges */
487 	return 1;
488 }
489 
490 static int locate_mem_hole_callback(struct resource *res, void *arg)
491 {
492 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
493 	u64 start = res->start, end = res->end;
494 	unsigned long sz = end - start + 1;
495 
496 	/* Returning 0 will take to next memory range */
497 
498 	/* Don't use memory that will be detected and handled by a driver. */
499 	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
500 		return 0;
501 
502 	if (sz < kbuf->memsz)
503 		return 0;
504 
505 	if (end < kbuf->buf_min || start > kbuf->buf_max)
506 		return 0;
507 
508 	/*
509 	 * Allocate memory top down with-in ram range. Otherwise bottom up
510 	 * allocation.
511 	 */
512 	if (kbuf->top_down)
513 		return locate_mem_hole_top_down(start, end, kbuf);
514 	return locate_mem_hole_bottom_up(start, end, kbuf);
515 }
516 
517 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
518 static int kexec_walk_memblock(struct kexec_buf *kbuf,
519 			       int (*func)(struct resource *, void *))
520 {
521 	int ret = 0;
522 	u64 i;
523 	phys_addr_t mstart, mend;
524 	struct resource res = { };
525 
526 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
527 		return func(&crashk_res, kbuf);
528 
529 	/*
530 	 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
531 	 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
532 	 * locate_mem_hole_callback().
533 	 */
534 	if (kbuf->top_down) {
535 		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
536 						&mstart, &mend, NULL) {
537 			/*
538 			 * In memblock, end points to the first byte after the
539 			 * range while in kexec, end points to the last byte
540 			 * in the range.
541 			 */
542 			res.start = mstart;
543 			res.end = mend - 1;
544 			ret = func(&res, kbuf);
545 			if (ret)
546 				break;
547 		}
548 	} else {
549 		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
550 					&mstart, &mend, NULL) {
551 			/*
552 			 * In memblock, end points to the first byte after the
553 			 * range while in kexec, end points to the last byte
554 			 * in the range.
555 			 */
556 			res.start = mstart;
557 			res.end = mend - 1;
558 			ret = func(&res, kbuf);
559 			if (ret)
560 				break;
561 		}
562 	}
563 
564 	return ret;
565 }
566 #else
567 static int kexec_walk_memblock(struct kexec_buf *kbuf,
568 			       int (*func)(struct resource *, void *))
569 {
570 	return 0;
571 }
572 #endif
573 
574 /**
575  * kexec_walk_resources - call func(data) on free memory regions
576  * @kbuf:	Context info for the search. Also passed to @func.
577  * @func:	Function to call for each memory region.
578  *
579  * Return: The memory walk will stop when func returns a non-zero value
580  * and that value will be returned. If all free regions are visited without
581  * func returning non-zero, then zero will be returned.
582  */
583 static int kexec_walk_resources(struct kexec_buf *kbuf,
584 				int (*func)(struct resource *, void *))
585 {
586 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
587 		return walk_iomem_res_desc(crashk_res.desc,
588 					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
589 					   crashk_res.start, crashk_res.end,
590 					   kbuf, func);
591 	else
592 		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
593 }
594 
595 /**
596  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
597  * @kbuf:	Parameters for the memory search.
598  *
599  * On success, kbuf->mem will have the start address of the memory region found.
600  *
601  * Return: 0 on success, negative errno on error.
602  */
603 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
604 {
605 	int ret;
606 
607 	/* Arch knows where to place */
608 	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
609 		return 0;
610 
611 	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
612 		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
613 	else
614 		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
615 
616 	return ret == 1 ? 0 : -EADDRNOTAVAIL;
617 }
618 
619 /**
620  * arch_kexec_locate_mem_hole - Find free memory to place the segments.
621  * @kbuf:                       Parameters for the memory search.
622  *
623  * On success, kbuf->mem will have the start address of the memory region found.
624  *
625  * Return: 0 on success, negative errno on error.
626  */
627 int __weak arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
628 {
629 	return kexec_locate_mem_hole(kbuf);
630 }
631 
632 /**
633  * kexec_add_buffer - place a buffer in a kexec segment
634  * @kbuf:	Buffer contents and memory parameters.
635  *
636  * This function assumes that kexec_mutex is held.
637  * On successful return, @kbuf->mem will have the physical address of
638  * the buffer in memory.
639  *
640  * Return: 0 on success, negative errno on error.
641  */
642 int kexec_add_buffer(struct kexec_buf *kbuf)
643 {
644 	struct kexec_segment *ksegment;
645 	int ret;
646 
647 	/* Currently adding segment this way is allowed only in file mode */
648 	if (!kbuf->image->file_mode)
649 		return -EINVAL;
650 
651 	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
652 		return -EINVAL;
653 
654 	/*
655 	 * Make sure we are not trying to add buffer after allocating
656 	 * control pages. All segments need to be placed first before
657 	 * any control pages are allocated. As control page allocation
658 	 * logic goes through list of segments to make sure there are
659 	 * no destination overlaps.
660 	 */
661 	if (!list_empty(&kbuf->image->control_pages)) {
662 		WARN_ON(1);
663 		return -EINVAL;
664 	}
665 
666 	/* Ensure minimum alignment needed for segments. */
667 	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
668 	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
669 
670 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
671 	ret = arch_kexec_locate_mem_hole(kbuf);
672 	if (ret)
673 		return ret;
674 
675 	/* Found a suitable memory range */
676 	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
677 	ksegment->kbuf = kbuf->buffer;
678 	ksegment->bufsz = kbuf->bufsz;
679 	ksegment->mem = kbuf->mem;
680 	ksegment->memsz = kbuf->memsz;
681 	kbuf->image->nr_segments++;
682 	return 0;
683 }
684 
685 /* Calculate and store the digest of segments */
686 static int kexec_calculate_store_digests(struct kimage *image)
687 {
688 	struct crypto_shash *tfm;
689 	struct shash_desc *desc;
690 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
691 	size_t desc_size, nullsz;
692 	char *digest;
693 	void *zero_buf;
694 	struct kexec_sha_region *sha_regions;
695 	struct purgatory_info *pi = &image->purgatory_info;
696 
697 	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
698 		return 0;
699 
700 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
701 	zero_buf_sz = PAGE_SIZE;
702 
703 	tfm = crypto_alloc_shash("sha256", 0, 0);
704 	if (IS_ERR(tfm)) {
705 		ret = PTR_ERR(tfm);
706 		goto out;
707 	}
708 
709 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
710 	desc = kzalloc(desc_size, GFP_KERNEL);
711 	if (!desc) {
712 		ret = -ENOMEM;
713 		goto out_free_tfm;
714 	}
715 
716 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
717 	sha_regions = vzalloc(sha_region_sz);
718 	if (!sha_regions) {
719 		ret = -ENOMEM;
720 		goto out_free_desc;
721 	}
722 
723 	desc->tfm   = tfm;
724 
725 	ret = crypto_shash_init(desc);
726 	if (ret < 0)
727 		goto out_free_sha_regions;
728 
729 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
730 	if (!digest) {
731 		ret = -ENOMEM;
732 		goto out_free_sha_regions;
733 	}
734 
735 	for (j = i = 0; i < image->nr_segments; i++) {
736 		struct kexec_segment *ksegment;
737 
738 		ksegment = &image->segment[i];
739 		/*
740 		 * Skip purgatory as it will be modified once we put digest
741 		 * info in purgatory.
742 		 */
743 		if (ksegment->kbuf == pi->purgatory_buf)
744 			continue;
745 
746 		ret = crypto_shash_update(desc, ksegment->kbuf,
747 					  ksegment->bufsz);
748 		if (ret)
749 			break;
750 
751 		/*
752 		 * Assume rest of the buffer is filled with zero and
753 		 * update digest accordingly.
754 		 */
755 		nullsz = ksegment->memsz - ksegment->bufsz;
756 		while (nullsz) {
757 			unsigned long bytes = nullsz;
758 
759 			if (bytes > zero_buf_sz)
760 				bytes = zero_buf_sz;
761 			ret = crypto_shash_update(desc, zero_buf, bytes);
762 			if (ret)
763 				break;
764 			nullsz -= bytes;
765 		}
766 
767 		if (ret)
768 			break;
769 
770 		sha_regions[j].start = ksegment->mem;
771 		sha_regions[j].len = ksegment->memsz;
772 		j++;
773 	}
774 
775 	if (!ret) {
776 		ret = crypto_shash_final(desc, digest);
777 		if (ret)
778 			goto out_free_digest;
779 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
780 						     sha_regions, sha_region_sz, 0);
781 		if (ret)
782 			goto out_free_digest;
783 
784 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
785 						     digest, SHA256_DIGEST_SIZE, 0);
786 		if (ret)
787 			goto out_free_digest;
788 	}
789 
790 out_free_digest:
791 	kfree(digest);
792 out_free_sha_regions:
793 	vfree(sha_regions);
794 out_free_desc:
795 	kfree(desc);
796 out_free_tfm:
797 	kfree(tfm);
798 out:
799 	return ret;
800 }
801 
802 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
803 /*
804  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
805  * @pi:		Purgatory to be loaded.
806  * @kbuf:	Buffer to setup.
807  *
808  * Allocates the memory needed for the buffer. Caller is responsible to free
809  * the memory after use.
810  *
811  * Return: 0 on success, negative errno on error.
812  */
813 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
814 				      struct kexec_buf *kbuf)
815 {
816 	const Elf_Shdr *sechdrs;
817 	unsigned long bss_align;
818 	unsigned long bss_sz;
819 	unsigned long align;
820 	int i, ret;
821 
822 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
823 	kbuf->buf_align = bss_align = 1;
824 	kbuf->bufsz = bss_sz = 0;
825 
826 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
827 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
828 			continue;
829 
830 		align = sechdrs[i].sh_addralign;
831 		if (sechdrs[i].sh_type != SHT_NOBITS) {
832 			if (kbuf->buf_align < align)
833 				kbuf->buf_align = align;
834 			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
835 			kbuf->bufsz += sechdrs[i].sh_size;
836 		} else {
837 			if (bss_align < align)
838 				bss_align = align;
839 			bss_sz = ALIGN(bss_sz, align);
840 			bss_sz += sechdrs[i].sh_size;
841 		}
842 	}
843 	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
844 	kbuf->memsz = kbuf->bufsz + bss_sz;
845 	if (kbuf->buf_align < bss_align)
846 		kbuf->buf_align = bss_align;
847 
848 	kbuf->buffer = vzalloc(kbuf->bufsz);
849 	if (!kbuf->buffer)
850 		return -ENOMEM;
851 	pi->purgatory_buf = kbuf->buffer;
852 
853 	ret = kexec_add_buffer(kbuf);
854 	if (ret)
855 		goto out;
856 
857 	return 0;
858 out:
859 	vfree(pi->purgatory_buf);
860 	pi->purgatory_buf = NULL;
861 	return ret;
862 }
863 
864 /*
865  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
866  * @pi:		Purgatory to be loaded.
867  * @kbuf:	Buffer prepared to store purgatory.
868  *
869  * Allocates the memory needed for the buffer. Caller is responsible to free
870  * the memory after use.
871  *
872  * Return: 0 on success, negative errno on error.
873  */
874 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
875 					 struct kexec_buf *kbuf)
876 {
877 	unsigned long bss_addr;
878 	unsigned long offset;
879 	Elf_Shdr *sechdrs;
880 	int i;
881 
882 	/*
883 	 * The section headers in kexec_purgatory are read-only. In order to
884 	 * have them modifiable make a temporary copy.
885 	 */
886 	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
887 	if (!sechdrs)
888 		return -ENOMEM;
889 	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
890 	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
891 	pi->sechdrs = sechdrs;
892 
893 	offset = 0;
894 	bss_addr = kbuf->mem + kbuf->bufsz;
895 	kbuf->image->start = pi->ehdr->e_entry;
896 
897 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
898 		unsigned long align;
899 		void *src, *dst;
900 
901 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
902 			continue;
903 
904 		align = sechdrs[i].sh_addralign;
905 		if (sechdrs[i].sh_type == SHT_NOBITS) {
906 			bss_addr = ALIGN(bss_addr, align);
907 			sechdrs[i].sh_addr = bss_addr;
908 			bss_addr += sechdrs[i].sh_size;
909 			continue;
910 		}
911 
912 		offset = ALIGN(offset, align);
913 		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
914 		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
915 		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
916 					 + sechdrs[i].sh_size)) {
917 			kbuf->image->start -= sechdrs[i].sh_addr;
918 			kbuf->image->start += kbuf->mem + offset;
919 		}
920 
921 		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
922 		dst = pi->purgatory_buf + offset;
923 		memcpy(dst, src, sechdrs[i].sh_size);
924 
925 		sechdrs[i].sh_addr = kbuf->mem + offset;
926 		sechdrs[i].sh_offset = offset;
927 		offset += sechdrs[i].sh_size;
928 	}
929 
930 	return 0;
931 }
932 
933 static int kexec_apply_relocations(struct kimage *image)
934 {
935 	int i, ret;
936 	struct purgatory_info *pi = &image->purgatory_info;
937 	const Elf_Shdr *sechdrs;
938 
939 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
940 
941 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
942 		const Elf_Shdr *relsec;
943 		const Elf_Shdr *symtab;
944 		Elf_Shdr *section;
945 
946 		relsec = sechdrs + i;
947 
948 		if (relsec->sh_type != SHT_RELA &&
949 		    relsec->sh_type != SHT_REL)
950 			continue;
951 
952 		/*
953 		 * For section of type SHT_RELA/SHT_REL,
954 		 * ->sh_link contains section header index of associated
955 		 * symbol table. And ->sh_info contains section header
956 		 * index of section to which relocations apply.
957 		 */
958 		if (relsec->sh_info >= pi->ehdr->e_shnum ||
959 		    relsec->sh_link >= pi->ehdr->e_shnum)
960 			return -ENOEXEC;
961 
962 		section = pi->sechdrs + relsec->sh_info;
963 		symtab = sechdrs + relsec->sh_link;
964 
965 		if (!(section->sh_flags & SHF_ALLOC))
966 			continue;
967 
968 		/*
969 		 * symtab->sh_link contain section header index of associated
970 		 * string table.
971 		 */
972 		if (symtab->sh_link >= pi->ehdr->e_shnum)
973 			/* Invalid section number? */
974 			continue;
975 
976 		/*
977 		 * Respective architecture needs to provide support for applying
978 		 * relocations of type SHT_RELA/SHT_REL.
979 		 */
980 		if (relsec->sh_type == SHT_RELA)
981 			ret = arch_kexec_apply_relocations_add(pi, section,
982 							       relsec, symtab);
983 		else if (relsec->sh_type == SHT_REL)
984 			ret = arch_kexec_apply_relocations(pi, section,
985 							   relsec, symtab);
986 		if (ret)
987 			return ret;
988 	}
989 
990 	return 0;
991 }
992 
993 /*
994  * kexec_load_purgatory - Load and relocate the purgatory object.
995  * @image:	Image to add the purgatory to.
996  * @kbuf:	Memory parameters to use.
997  *
998  * Allocates the memory needed for image->purgatory_info.sechdrs and
999  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1000  * to free the memory after use.
1001  *
1002  * Return: 0 on success, negative errno on error.
1003  */
1004 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1005 {
1006 	struct purgatory_info *pi = &image->purgatory_info;
1007 	int ret;
1008 
1009 	if (kexec_purgatory_size <= 0)
1010 		return -EINVAL;
1011 
1012 	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1013 
1014 	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1015 	if (ret)
1016 		return ret;
1017 
1018 	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1019 	if (ret)
1020 		goto out_free_kbuf;
1021 
1022 	ret = kexec_apply_relocations(image);
1023 	if (ret)
1024 		goto out;
1025 
1026 	return 0;
1027 out:
1028 	vfree(pi->sechdrs);
1029 	pi->sechdrs = NULL;
1030 out_free_kbuf:
1031 	vfree(pi->purgatory_buf);
1032 	pi->purgatory_buf = NULL;
1033 	return ret;
1034 }
1035 
1036 /*
1037  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1038  * @pi:		Purgatory to search in.
1039  * @name:	Name of the symbol.
1040  *
1041  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1042  */
1043 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1044 						  const char *name)
1045 {
1046 	const Elf_Shdr *sechdrs;
1047 	const Elf_Ehdr *ehdr;
1048 	const Elf_Sym *syms;
1049 	const char *strtab;
1050 	int i, k;
1051 
1052 	if (!pi->ehdr)
1053 		return NULL;
1054 
1055 	ehdr = pi->ehdr;
1056 	sechdrs = (void *)ehdr + ehdr->e_shoff;
1057 
1058 	for (i = 0; i < ehdr->e_shnum; i++) {
1059 		if (sechdrs[i].sh_type != SHT_SYMTAB)
1060 			continue;
1061 
1062 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1063 			/* Invalid strtab section number */
1064 			continue;
1065 		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1066 		syms = (void *)ehdr + sechdrs[i].sh_offset;
1067 
1068 		/* Go through symbols for a match */
1069 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1070 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1071 				continue;
1072 
1073 			if (strcmp(strtab + syms[k].st_name, name) != 0)
1074 				continue;
1075 
1076 			if (syms[k].st_shndx == SHN_UNDEF ||
1077 			    syms[k].st_shndx >= ehdr->e_shnum) {
1078 				pr_debug("Symbol: %s has bad section index %d.\n",
1079 						name, syms[k].st_shndx);
1080 				return NULL;
1081 			}
1082 
1083 			/* Found the symbol we are looking for */
1084 			return &syms[k];
1085 		}
1086 	}
1087 
1088 	return NULL;
1089 }
1090 
1091 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1092 {
1093 	struct purgatory_info *pi = &image->purgatory_info;
1094 	const Elf_Sym *sym;
1095 	Elf_Shdr *sechdr;
1096 
1097 	sym = kexec_purgatory_find_symbol(pi, name);
1098 	if (!sym)
1099 		return ERR_PTR(-EINVAL);
1100 
1101 	sechdr = &pi->sechdrs[sym->st_shndx];
1102 
1103 	/*
1104 	 * Returns the address where symbol will finally be loaded after
1105 	 * kexec_load_segment()
1106 	 */
1107 	return (void *)(sechdr->sh_addr + sym->st_value);
1108 }
1109 
1110 /*
1111  * Get or set value of a symbol. If "get_value" is true, symbol value is
1112  * returned in buf otherwise symbol value is set based on value in buf.
1113  */
1114 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1115 				   void *buf, unsigned int size, bool get_value)
1116 {
1117 	struct purgatory_info *pi = &image->purgatory_info;
1118 	const Elf_Sym *sym;
1119 	Elf_Shdr *sec;
1120 	char *sym_buf;
1121 
1122 	sym = kexec_purgatory_find_symbol(pi, name);
1123 	if (!sym)
1124 		return -EINVAL;
1125 
1126 	if (sym->st_size != size) {
1127 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1128 		       name, (unsigned long)sym->st_size, size);
1129 		return -EINVAL;
1130 	}
1131 
1132 	sec = pi->sechdrs + sym->st_shndx;
1133 
1134 	if (sec->sh_type == SHT_NOBITS) {
1135 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1136 		       get_value ? "get" : "set");
1137 		return -EINVAL;
1138 	}
1139 
1140 	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1141 
1142 	if (get_value)
1143 		memcpy((void *)buf, sym_buf, size);
1144 	else
1145 		memcpy((void *)sym_buf, buf, size);
1146 
1147 	return 0;
1148 }
1149 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1150 
1151 int crash_exclude_mem_range(struct crash_mem *mem,
1152 			    unsigned long long mstart, unsigned long long mend)
1153 {
1154 	int i, j;
1155 	unsigned long long start, end, p_start, p_end;
1156 	struct crash_mem_range temp_range = {0, 0};
1157 
1158 	for (i = 0; i < mem->nr_ranges; i++) {
1159 		start = mem->ranges[i].start;
1160 		end = mem->ranges[i].end;
1161 		p_start = mstart;
1162 		p_end = mend;
1163 
1164 		if (mstart > end || mend < start)
1165 			continue;
1166 
1167 		/* Truncate any area outside of range */
1168 		if (mstart < start)
1169 			p_start = start;
1170 		if (mend > end)
1171 			p_end = end;
1172 
1173 		/* Found completely overlapping range */
1174 		if (p_start == start && p_end == end) {
1175 			mem->ranges[i].start = 0;
1176 			mem->ranges[i].end = 0;
1177 			if (i < mem->nr_ranges - 1) {
1178 				/* Shift rest of the ranges to left */
1179 				for (j = i; j < mem->nr_ranges - 1; j++) {
1180 					mem->ranges[j].start =
1181 						mem->ranges[j+1].start;
1182 					mem->ranges[j].end =
1183 							mem->ranges[j+1].end;
1184 				}
1185 
1186 				/*
1187 				 * Continue to check if there are another overlapping ranges
1188 				 * from the current position because of shifting the above
1189 				 * mem ranges.
1190 				 */
1191 				i--;
1192 				mem->nr_ranges--;
1193 				continue;
1194 			}
1195 			mem->nr_ranges--;
1196 			return 0;
1197 		}
1198 
1199 		if (p_start > start && p_end < end) {
1200 			/* Split original range */
1201 			mem->ranges[i].end = p_start - 1;
1202 			temp_range.start = p_end + 1;
1203 			temp_range.end = end;
1204 		} else if (p_start != start)
1205 			mem->ranges[i].end = p_start - 1;
1206 		else
1207 			mem->ranges[i].start = p_end + 1;
1208 		break;
1209 	}
1210 
1211 	/* If a split happened, add the split to array */
1212 	if (!temp_range.end)
1213 		return 0;
1214 
1215 	/* Split happened */
1216 	if (i == mem->max_nr_ranges - 1)
1217 		return -ENOMEM;
1218 
1219 	/* Location where new range should go */
1220 	j = i + 1;
1221 	if (j < mem->nr_ranges) {
1222 		/* Move over all ranges one slot towards the end */
1223 		for (i = mem->nr_ranges - 1; i >= j; i--)
1224 			mem->ranges[i + 1] = mem->ranges[i];
1225 	}
1226 
1227 	mem->ranges[j].start = temp_range.start;
1228 	mem->ranges[j].end = temp_range.end;
1229 	mem->nr_ranges++;
1230 	return 0;
1231 }
1232 
1233 int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
1234 			  void **addr, unsigned long *sz)
1235 {
1236 	Elf64_Ehdr *ehdr;
1237 	Elf64_Phdr *phdr;
1238 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1239 	unsigned char *buf;
1240 	unsigned int cpu, i;
1241 	unsigned long long notes_addr;
1242 	unsigned long mstart, mend;
1243 
1244 	/* extra phdr for vmcoreinfo ELF note */
1245 	nr_phdr = nr_cpus + 1;
1246 	nr_phdr += mem->nr_ranges;
1247 
1248 	/*
1249 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1250 	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1251 	 * I think this is required by tools like gdb. So same physical
1252 	 * memory will be mapped in two ELF headers. One will contain kernel
1253 	 * text virtual addresses and other will have __va(physical) addresses.
1254 	 */
1255 
1256 	nr_phdr++;
1257 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1258 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1259 
1260 	buf = vzalloc(elf_sz);
1261 	if (!buf)
1262 		return -ENOMEM;
1263 
1264 	ehdr = (Elf64_Ehdr *)buf;
1265 	phdr = (Elf64_Phdr *)(ehdr + 1);
1266 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1267 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1268 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1269 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1270 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1271 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1272 	ehdr->e_type = ET_CORE;
1273 	ehdr->e_machine = ELF_ARCH;
1274 	ehdr->e_version = EV_CURRENT;
1275 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1276 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1277 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1278 
1279 	/* Prepare one phdr of type PT_NOTE for each present CPU */
1280 	for_each_present_cpu(cpu) {
1281 		phdr->p_type = PT_NOTE;
1282 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1283 		phdr->p_offset = phdr->p_paddr = notes_addr;
1284 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1285 		(ehdr->e_phnum)++;
1286 		phdr++;
1287 	}
1288 
1289 	/* Prepare one PT_NOTE header for vmcoreinfo */
1290 	phdr->p_type = PT_NOTE;
1291 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1292 	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1293 	(ehdr->e_phnum)++;
1294 	phdr++;
1295 
1296 	/* Prepare PT_LOAD type program header for kernel text region */
1297 	if (need_kernel_map) {
1298 		phdr->p_type = PT_LOAD;
1299 		phdr->p_flags = PF_R|PF_W|PF_X;
1300 		phdr->p_vaddr = (unsigned long) _text;
1301 		phdr->p_filesz = phdr->p_memsz = _end - _text;
1302 		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1303 		ehdr->e_phnum++;
1304 		phdr++;
1305 	}
1306 
1307 	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1308 	for (i = 0; i < mem->nr_ranges; i++) {
1309 		mstart = mem->ranges[i].start;
1310 		mend = mem->ranges[i].end;
1311 
1312 		phdr->p_type = PT_LOAD;
1313 		phdr->p_flags = PF_R|PF_W|PF_X;
1314 		phdr->p_offset  = mstart;
1315 
1316 		phdr->p_paddr = mstart;
1317 		phdr->p_vaddr = (unsigned long) __va(mstart);
1318 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1319 		phdr->p_align = 0;
1320 		ehdr->e_phnum++;
1321 		pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1322 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1323 			ehdr->e_phnum, phdr->p_offset);
1324 		phdr++;
1325 	}
1326 
1327 	*addr = buf;
1328 	*sz = elf_sz;
1329 	return 0;
1330 }
1331