xref: /openbmc/linux/kernel/kexec_file.c (revision 8730046c)
1 /*
2  * kexec: kexec_file_load system call
3  *
4  * Copyright (C) 2014 Red Hat Inc.
5  * Authors:
6  *      Vivek Goyal <vgoyal@redhat.com>
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.  See the file COPYING for more details.
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/file.h>
17 #include <linux/slab.h>
18 #include <linux/kexec.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
21 #include <linux/fs.h>
22 #include <linux/ima.h>
23 #include <crypto/hash.h>
24 #include <crypto/sha.h>
25 #include <linux/syscalls.h>
26 #include <linux/vmalloc.h>
27 #include "kexec_internal.h"
28 
29 /*
30  * Declare these symbols weak so that if architecture provides a purgatory,
31  * these will be overridden.
32  */
33 char __weak kexec_purgatory[0];
34 size_t __weak kexec_purgatory_size = 0;
35 
36 static int kexec_calculate_store_digests(struct kimage *image);
37 
38 /* Architectures can provide this probe function */
39 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
40 					 unsigned long buf_len)
41 {
42 	return -ENOEXEC;
43 }
44 
45 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
46 {
47 	return ERR_PTR(-ENOEXEC);
48 }
49 
50 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
51 {
52 	return -EINVAL;
53 }
54 
55 #ifdef CONFIG_KEXEC_VERIFY_SIG
56 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
57 					unsigned long buf_len)
58 {
59 	return -EKEYREJECTED;
60 }
61 #endif
62 
63 /* Apply relocations of type RELA */
64 int __weak
65 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
66 				 unsigned int relsec)
67 {
68 	pr_err("RELA relocation unsupported.\n");
69 	return -ENOEXEC;
70 }
71 
72 /* Apply relocations of type REL */
73 int __weak
74 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
75 			     unsigned int relsec)
76 {
77 	pr_err("REL relocation unsupported.\n");
78 	return -ENOEXEC;
79 }
80 
81 /*
82  * Free up memory used by kernel, initrd, and command line. This is temporary
83  * memory allocation which is not needed any more after these buffers have
84  * been loaded into separate segments and have been copied elsewhere.
85  */
86 void kimage_file_post_load_cleanup(struct kimage *image)
87 {
88 	struct purgatory_info *pi = &image->purgatory_info;
89 
90 	vfree(image->kernel_buf);
91 	image->kernel_buf = NULL;
92 
93 	vfree(image->initrd_buf);
94 	image->initrd_buf = NULL;
95 
96 	kfree(image->cmdline_buf);
97 	image->cmdline_buf = NULL;
98 
99 	vfree(pi->purgatory_buf);
100 	pi->purgatory_buf = NULL;
101 
102 	vfree(pi->sechdrs);
103 	pi->sechdrs = NULL;
104 
105 	/* See if architecture has anything to cleanup post load */
106 	arch_kimage_file_post_load_cleanup(image);
107 
108 	/*
109 	 * Above call should have called into bootloader to free up
110 	 * any data stored in kimage->image_loader_data. It should
111 	 * be ok now to free it up.
112 	 */
113 	kfree(image->image_loader_data);
114 	image->image_loader_data = NULL;
115 }
116 
117 /*
118  * In file mode list of segments is prepared by kernel. Copy relevant
119  * data from user space, do error checking, prepare segment list
120  */
121 static int
122 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
123 			     const char __user *cmdline_ptr,
124 			     unsigned long cmdline_len, unsigned flags)
125 {
126 	int ret = 0;
127 	void *ldata;
128 	loff_t size;
129 
130 	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
131 				       &size, INT_MAX, READING_KEXEC_IMAGE);
132 	if (ret)
133 		return ret;
134 	image->kernel_buf_len = size;
135 
136 	/* IMA needs to pass the measurement list to the next kernel. */
137 	ima_add_kexec_buffer(image);
138 
139 	/* Call arch image probe handlers */
140 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
141 					    image->kernel_buf_len);
142 	if (ret)
143 		goto out;
144 
145 #ifdef CONFIG_KEXEC_VERIFY_SIG
146 	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
147 					   image->kernel_buf_len);
148 	if (ret) {
149 		pr_debug("kernel signature verification failed.\n");
150 		goto out;
151 	}
152 	pr_debug("kernel signature verification successful.\n");
153 #endif
154 	/* It is possible that there no initramfs is being loaded */
155 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
156 		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
157 					       &size, INT_MAX,
158 					       READING_KEXEC_INITRAMFS);
159 		if (ret)
160 			goto out;
161 		image->initrd_buf_len = size;
162 	}
163 
164 	if (cmdline_len) {
165 		image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
166 		if (!image->cmdline_buf) {
167 			ret = -ENOMEM;
168 			goto out;
169 		}
170 
171 		ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
172 				     cmdline_len);
173 		if (ret) {
174 			ret = -EFAULT;
175 			goto out;
176 		}
177 
178 		image->cmdline_buf_len = cmdline_len;
179 
180 		/* command line should be a string with last byte null */
181 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
182 			ret = -EINVAL;
183 			goto out;
184 		}
185 	}
186 
187 	/* Call arch image load handlers */
188 	ldata = arch_kexec_kernel_image_load(image);
189 
190 	if (IS_ERR(ldata)) {
191 		ret = PTR_ERR(ldata);
192 		goto out;
193 	}
194 
195 	image->image_loader_data = ldata;
196 out:
197 	/* In case of error, free up all allocated memory in this function */
198 	if (ret)
199 		kimage_file_post_load_cleanup(image);
200 	return ret;
201 }
202 
203 static int
204 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
205 		       int initrd_fd, const char __user *cmdline_ptr,
206 		       unsigned long cmdline_len, unsigned long flags)
207 {
208 	int ret;
209 	struct kimage *image;
210 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
211 
212 	image = do_kimage_alloc_init();
213 	if (!image)
214 		return -ENOMEM;
215 
216 	image->file_mode = 1;
217 
218 	if (kexec_on_panic) {
219 		/* Enable special crash kernel control page alloc policy. */
220 		image->control_page = crashk_res.start;
221 		image->type = KEXEC_TYPE_CRASH;
222 	}
223 
224 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
225 					   cmdline_ptr, cmdline_len, flags);
226 	if (ret)
227 		goto out_free_image;
228 
229 	ret = sanity_check_segment_list(image);
230 	if (ret)
231 		goto out_free_post_load_bufs;
232 
233 	ret = -ENOMEM;
234 	image->control_code_page = kimage_alloc_control_pages(image,
235 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
236 	if (!image->control_code_page) {
237 		pr_err("Could not allocate control_code_buffer\n");
238 		goto out_free_post_load_bufs;
239 	}
240 
241 	if (!kexec_on_panic) {
242 		image->swap_page = kimage_alloc_control_pages(image, 0);
243 		if (!image->swap_page) {
244 			pr_err("Could not allocate swap buffer\n");
245 			goto out_free_control_pages;
246 		}
247 	}
248 
249 	*rimage = image;
250 	return 0;
251 out_free_control_pages:
252 	kimage_free_page_list(&image->control_pages);
253 out_free_post_load_bufs:
254 	kimage_file_post_load_cleanup(image);
255 out_free_image:
256 	kfree(image);
257 	return ret;
258 }
259 
260 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
261 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
262 		unsigned long, flags)
263 {
264 	int ret = 0, i;
265 	struct kimage **dest_image, *image;
266 
267 	/* We only trust the superuser with rebooting the system. */
268 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
269 		return -EPERM;
270 
271 	/* Make sure we have a legal set of flags */
272 	if (flags != (flags & KEXEC_FILE_FLAGS))
273 		return -EINVAL;
274 
275 	image = NULL;
276 
277 	if (!mutex_trylock(&kexec_mutex))
278 		return -EBUSY;
279 
280 	dest_image = &kexec_image;
281 	if (flags & KEXEC_FILE_ON_CRASH) {
282 		dest_image = &kexec_crash_image;
283 		if (kexec_crash_image)
284 			arch_kexec_unprotect_crashkres();
285 	}
286 
287 	if (flags & KEXEC_FILE_UNLOAD)
288 		goto exchange;
289 
290 	/*
291 	 * In case of crash, new kernel gets loaded in reserved region. It is
292 	 * same memory where old crash kernel might be loaded. Free any
293 	 * current crash dump kernel before we corrupt it.
294 	 */
295 	if (flags & KEXEC_FILE_ON_CRASH)
296 		kimage_free(xchg(&kexec_crash_image, NULL));
297 
298 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
299 				     cmdline_len, flags);
300 	if (ret)
301 		goto out;
302 
303 	ret = machine_kexec_prepare(image);
304 	if (ret)
305 		goto out;
306 
307 	ret = kexec_calculate_store_digests(image);
308 	if (ret)
309 		goto out;
310 
311 	for (i = 0; i < image->nr_segments; i++) {
312 		struct kexec_segment *ksegment;
313 
314 		ksegment = &image->segment[i];
315 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
316 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
317 			 ksegment->memsz);
318 
319 		ret = kimage_load_segment(image, &image->segment[i]);
320 		if (ret)
321 			goto out;
322 	}
323 
324 	kimage_terminate(image);
325 
326 	/*
327 	 * Free up any temporary buffers allocated which are not needed
328 	 * after image has been loaded
329 	 */
330 	kimage_file_post_load_cleanup(image);
331 exchange:
332 	image = xchg(dest_image, image);
333 out:
334 	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
335 		arch_kexec_protect_crashkres();
336 
337 	mutex_unlock(&kexec_mutex);
338 	kimage_free(image);
339 	return ret;
340 }
341 
342 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
343 				    struct kexec_buf *kbuf)
344 {
345 	struct kimage *image = kbuf->image;
346 	unsigned long temp_start, temp_end;
347 
348 	temp_end = min(end, kbuf->buf_max);
349 	temp_start = temp_end - kbuf->memsz;
350 
351 	do {
352 		/* align down start */
353 		temp_start = temp_start & (~(kbuf->buf_align - 1));
354 
355 		if (temp_start < start || temp_start < kbuf->buf_min)
356 			return 0;
357 
358 		temp_end = temp_start + kbuf->memsz - 1;
359 
360 		/*
361 		 * Make sure this does not conflict with any of existing
362 		 * segments
363 		 */
364 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
365 			temp_start = temp_start - PAGE_SIZE;
366 			continue;
367 		}
368 
369 		/* We found a suitable memory range */
370 		break;
371 	} while (1);
372 
373 	/* If we are here, we found a suitable memory range */
374 	kbuf->mem = temp_start;
375 
376 	/* Success, stop navigating through remaining System RAM ranges */
377 	return 1;
378 }
379 
380 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
381 				     struct kexec_buf *kbuf)
382 {
383 	struct kimage *image = kbuf->image;
384 	unsigned long temp_start, temp_end;
385 
386 	temp_start = max(start, kbuf->buf_min);
387 
388 	do {
389 		temp_start = ALIGN(temp_start, kbuf->buf_align);
390 		temp_end = temp_start + kbuf->memsz - 1;
391 
392 		if (temp_end > end || temp_end > kbuf->buf_max)
393 			return 0;
394 		/*
395 		 * Make sure this does not conflict with any of existing
396 		 * segments
397 		 */
398 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
399 			temp_start = temp_start + PAGE_SIZE;
400 			continue;
401 		}
402 
403 		/* We found a suitable memory range */
404 		break;
405 	} while (1);
406 
407 	/* If we are here, we found a suitable memory range */
408 	kbuf->mem = temp_start;
409 
410 	/* Success, stop navigating through remaining System RAM ranges */
411 	return 1;
412 }
413 
414 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
415 {
416 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
417 	unsigned long sz = end - start + 1;
418 
419 	/* Returning 0 will take to next memory range */
420 	if (sz < kbuf->memsz)
421 		return 0;
422 
423 	if (end < kbuf->buf_min || start > kbuf->buf_max)
424 		return 0;
425 
426 	/*
427 	 * Allocate memory top down with-in ram range. Otherwise bottom up
428 	 * allocation.
429 	 */
430 	if (kbuf->top_down)
431 		return locate_mem_hole_top_down(start, end, kbuf);
432 	return locate_mem_hole_bottom_up(start, end, kbuf);
433 }
434 
435 /**
436  * arch_kexec_walk_mem - call func(data) on free memory regions
437  * @kbuf:	Context info for the search. Also passed to @func.
438  * @func:	Function to call for each memory region.
439  *
440  * Return: The memory walk will stop when func returns a non-zero value
441  * and that value will be returned. If all free regions are visited without
442  * func returning non-zero, then zero will be returned.
443  */
444 int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
445 			       int (*func)(u64, u64, void *))
446 {
447 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
448 		return walk_iomem_res_desc(crashk_res.desc,
449 					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
450 					   crashk_res.start, crashk_res.end,
451 					   kbuf, func);
452 	else
453 		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
454 }
455 
456 /**
457  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
458  * @kbuf:	Parameters for the memory search.
459  *
460  * On success, kbuf->mem will have the start address of the memory region found.
461  *
462  * Return: 0 on success, negative errno on error.
463  */
464 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
465 {
466 	int ret;
467 
468 	ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
469 
470 	return ret == 1 ? 0 : -EADDRNOTAVAIL;
471 }
472 
473 /**
474  * kexec_add_buffer - place a buffer in a kexec segment
475  * @kbuf:	Buffer contents and memory parameters.
476  *
477  * This function assumes that kexec_mutex is held.
478  * On successful return, @kbuf->mem will have the physical address of
479  * the buffer in memory.
480  *
481  * Return: 0 on success, negative errno on error.
482  */
483 int kexec_add_buffer(struct kexec_buf *kbuf)
484 {
485 
486 	struct kexec_segment *ksegment;
487 	int ret;
488 
489 	/* Currently adding segment this way is allowed only in file mode */
490 	if (!kbuf->image->file_mode)
491 		return -EINVAL;
492 
493 	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
494 		return -EINVAL;
495 
496 	/*
497 	 * Make sure we are not trying to add buffer after allocating
498 	 * control pages. All segments need to be placed first before
499 	 * any control pages are allocated. As control page allocation
500 	 * logic goes through list of segments to make sure there are
501 	 * no destination overlaps.
502 	 */
503 	if (!list_empty(&kbuf->image->control_pages)) {
504 		WARN_ON(1);
505 		return -EINVAL;
506 	}
507 
508 	/* Ensure minimum alignment needed for segments. */
509 	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
510 	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
511 
512 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
513 	ret = kexec_locate_mem_hole(kbuf);
514 	if (ret)
515 		return ret;
516 
517 	/* Found a suitable memory range */
518 	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
519 	ksegment->kbuf = kbuf->buffer;
520 	ksegment->bufsz = kbuf->bufsz;
521 	ksegment->mem = kbuf->mem;
522 	ksegment->memsz = kbuf->memsz;
523 	kbuf->image->nr_segments++;
524 	return 0;
525 }
526 
527 /* Calculate and store the digest of segments */
528 static int kexec_calculate_store_digests(struct kimage *image)
529 {
530 	struct crypto_shash *tfm;
531 	struct shash_desc *desc;
532 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
533 	size_t desc_size, nullsz;
534 	char *digest;
535 	void *zero_buf;
536 	struct kexec_sha_region *sha_regions;
537 	struct purgatory_info *pi = &image->purgatory_info;
538 
539 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
540 	zero_buf_sz = PAGE_SIZE;
541 
542 	tfm = crypto_alloc_shash("sha256", 0, 0);
543 	if (IS_ERR(tfm)) {
544 		ret = PTR_ERR(tfm);
545 		goto out;
546 	}
547 
548 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
549 	desc = kzalloc(desc_size, GFP_KERNEL);
550 	if (!desc) {
551 		ret = -ENOMEM;
552 		goto out_free_tfm;
553 	}
554 
555 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
556 	sha_regions = vzalloc(sha_region_sz);
557 	if (!sha_regions)
558 		goto out_free_desc;
559 
560 	desc->tfm   = tfm;
561 	desc->flags = 0;
562 
563 	ret = crypto_shash_init(desc);
564 	if (ret < 0)
565 		goto out_free_sha_regions;
566 
567 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
568 	if (!digest) {
569 		ret = -ENOMEM;
570 		goto out_free_sha_regions;
571 	}
572 
573 	for (j = i = 0; i < image->nr_segments; i++) {
574 		struct kexec_segment *ksegment;
575 
576 		ksegment = &image->segment[i];
577 		/*
578 		 * Skip purgatory as it will be modified once we put digest
579 		 * info in purgatory.
580 		 */
581 		if (ksegment->kbuf == pi->purgatory_buf)
582 			continue;
583 
584 		ret = crypto_shash_update(desc, ksegment->kbuf,
585 					  ksegment->bufsz);
586 		if (ret)
587 			break;
588 
589 		/*
590 		 * Assume rest of the buffer is filled with zero and
591 		 * update digest accordingly.
592 		 */
593 		nullsz = ksegment->memsz - ksegment->bufsz;
594 		while (nullsz) {
595 			unsigned long bytes = nullsz;
596 
597 			if (bytes > zero_buf_sz)
598 				bytes = zero_buf_sz;
599 			ret = crypto_shash_update(desc, zero_buf, bytes);
600 			if (ret)
601 				break;
602 			nullsz -= bytes;
603 		}
604 
605 		if (ret)
606 			break;
607 
608 		sha_regions[j].start = ksegment->mem;
609 		sha_regions[j].len = ksegment->memsz;
610 		j++;
611 	}
612 
613 	if (!ret) {
614 		ret = crypto_shash_final(desc, digest);
615 		if (ret)
616 			goto out_free_digest;
617 		ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
618 						sha_regions, sha_region_sz, 0);
619 		if (ret)
620 			goto out_free_digest;
621 
622 		ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
623 						digest, SHA256_DIGEST_SIZE, 0);
624 		if (ret)
625 			goto out_free_digest;
626 	}
627 
628 out_free_digest:
629 	kfree(digest);
630 out_free_sha_regions:
631 	vfree(sha_regions);
632 out_free_desc:
633 	kfree(desc);
634 out_free_tfm:
635 	kfree(tfm);
636 out:
637 	return ret;
638 }
639 
640 /* Actually load purgatory. Lot of code taken from kexec-tools */
641 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
642 				  unsigned long max, int top_down)
643 {
644 	struct purgatory_info *pi = &image->purgatory_info;
645 	unsigned long align, bss_align, bss_sz, bss_pad;
646 	unsigned long entry, load_addr, curr_load_addr, bss_addr, offset;
647 	unsigned char *buf_addr, *src;
648 	int i, ret = 0, entry_sidx = -1;
649 	const Elf_Shdr *sechdrs_c;
650 	Elf_Shdr *sechdrs = NULL;
651 	struct kexec_buf kbuf = { .image = image, .bufsz = 0, .buf_align = 1,
652 				  .buf_min = min, .buf_max = max,
653 				  .top_down = top_down };
654 
655 	/*
656 	 * sechdrs_c points to section headers in purgatory and are read
657 	 * only. No modifications allowed.
658 	 */
659 	sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
660 
661 	/*
662 	 * We can not modify sechdrs_c[] and its fields. It is read only.
663 	 * Copy it over to a local copy where one can store some temporary
664 	 * data and free it at the end. We need to modify ->sh_addr and
665 	 * ->sh_offset fields to keep track of permanent and temporary
666 	 * locations of sections.
667 	 */
668 	sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
669 	if (!sechdrs)
670 		return -ENOMEM;
671 
672 	memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
673 
674 	/*
675 	 * We seem to have multiple copies of sections. First copy is which
676 	 * is embedded in kernel in read only section. Some of these sections
677 	 * will be copied to a temporary buffer and relocated. And these
678 	 * sections will finally be copied to their final destination at
679 	 * segment load time.
680 	 *
681 	 * Use ->sh_offset to reflect section address in memory. It will
682 	 * point to original read only copy if section is not allocatable.
683 	 * Otherwise it will point to temporary copy which will be relocated.
684 	 *
685 	 * Use ->sh_addr to contain final address of the section where it
686 	 * will go during execution time.
687 	 */
688 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
689 		if (sechdrs[i].sh_type == SHT_NOBITS)
690 			continue;
691 
692 		sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
693 						sechdrs[i].sh_offset;
694 	}
695 
696 	/*
697 	 * Identify entry point section and make entry relative to section
698 	 * start.
699 	 */
700 	entry = pi->ehdr->e_entry;
701 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
702 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
703 			continue;
704 
705 		if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
706 			continue;
707 
708 		/* Make entry section relative */
709 		if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
710 		    ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
711 		     pi->ehdr->e_entry)) {
712 			entry_sidx = i;
713 			entry -= sechdrs[i].sh_addr;
714 			break;
715 		}
716 	}
717 
718 	/* Determine how much memory is needed to load relocatable object. */
719 	bss_align = 1;
720 	bss_sz = 0;
721 
722 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
723 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
724 			continue;
725 
726 		align = sechdrs[i].sh_addralign;
727 		if (sechdrs[i].sh_type != SHT_NOBITS) {
728 			if (kbuf.buf_align < align)
729 				kbuf.buf_align = align;
730 			kbuf.bufsz = ALIGN(kbuf.bufsz, align);
731 			kbuf.bufsz += sechdrs[i].sh_size;
732 		} else {
733 			/* bss section */
734 			if (bss_align < align)
735 				bss_align = align;
736 			bss_sz = ALIGN(bss_sz, align);
737 			bss_sz += sechdrs[i].sh_size;
738 		}
739 	}
740 
741 	/* Determine the bss padding required to align bss properly */
742 	bss_pad = 0;
743 	if (kbuf.bufsz & (bss_align - 1))
744 		bss_pad = bss_align - (kbuf.bufsz & (bss_align - 1));
745 
746 	kbuf.memsz = kbuf.bufsz + bss_pad + bss_sz;
747 
748 	/* Allocate buffer for purgatory */
749 	kbuf.buffer = vzalloc(kbuf.bufsz);
750 	if (!kbuf.buffer) {
751 		ret = -ENOMEM;
752 		goto out;
753 	}
754 
755 	if (kbuf.buf_align < bss_align)
756 		kbuf.buf_align = bss_align;
757 
758 	/* Add buffer to segment list */
759 	ret = kexec_add_buffer(&kbuf);
760 	if (ret)
761 		goto out;
762 	pi->purgatory_load_addr = kbuf.mem;
763 
764 	/* Load SHF_ALLOC sections */
765 	buf_addr = kbuf.buffer;
766 	load_addr = curr_load_addr = pi->purgatory_load_addr;
767 	bss_addr = load_addr + kbuf.bufsz + bss_pad;
768 
769 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
770 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
771 			continue;
772 
773 		align = sechdrs[i].sh_addralign;
774 		if (sechdrs[i].sh_type != SHT_NOBITS) {
775 			curr_load_addr = ALIGN(curr_load_addr, align);
776 			offset = curr_load_addr - load_addr;
777 			/* We already modifed ->sh_offset to keep src addr */
778 			src = (char *) sechdrs[i].sh_offset;
779 			memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
780 
781 			/* Store load address and source address of section */
782 			sechdrs[i].sh_addr = curr_load_addr;
783 
784 			/*
785 			 * This section got copied to temporary buffer. Update
786 			 * ->sh_offset accordingly.
787 			 */
788 			sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
789 
790 			/* Advance to the next address */
791 			curr_load_addr += sechdrs[i].sh_size;
792 		} else {
793 			bss_addr = ALIGN(bss_addr, align);
794 			sechdrs[i].sh_addr = bss_addr;
795 			bss_addr += sechdrs[i].sh_size;
796 		}
797 	}
798 
799 	/* Update entry point based on load address of text section */
800 	if (entry_sidx >= 0)
801 		entry += sechdrs[entry_sidx].sh_addr;
802 
803 	/* Make kernel jump to purgatory after shutdown */
804 	image->start = entry;
805 
806 	/* Used later to get/set symbol values */
807 	pi->sechdrs = sechdrs;
808 
809 	/*
810 	 * Used later to identify which section is purgatory and skip it
811 	 * from checksumming.
812 	 */
813 	pi->purgatory_buf = kbuf.buffer;
814 	return ret;
815 out:
816 	vfree(sechdrs);
817 	vfree(kbuf.buffer);
818 	return ret;
819 }
820 
821 static int kexec_apply_relocations(struct kimage *image)
822 {
823 	int i, ret;
824 	struct purgatory_info *pi = &image->purgatory_info;
825 	Elf_Shdr *sechdrs = pi->sechdrs;
826 
827 	/* Apply relocations */
828 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
829 		Elf_Shdr *section, *symtab;
830 
831 		if (sechdrs[i].sh_type != SHT_RELA &&
832 		    sechdrs[i].sh_type != SHT_REL)
833 			continue;
834 
835 		/*
836 		 * For section of type SHT_RELA/SHT_REL,
837 		 * ->sh_link contains section header index of associated
838 		 * symbol table. And ->sh_info contains section header
839 		 * index of section to which relocations apply.
840 		 */
841 		if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
842 		    sechdrs[i].sh_link >= pi->ehdr->e_shnum)
843 			return -ENOEXEC;
844 
845 		section = &sechdrs[sechdrs[i].sh_info];
846 		symtab = &sechdrs[sechdrs[i].sh_link];
847 
848 		if (!(section->sh_flags & SHF_ALLOC))
849 			continue;
850 
851 		/*
852 		 * symtab->sh_link contain section header index of associated
853 		 * string table.
854 		 */
855 		if (symtab->sh_link >= pi->ehdr->e_shnum)
856 			/* Invalid section number? */
857 			continue;
858 
859 		/*
860 		 * Respective architecture needs to provide support for applying
861 		 * relocations of type SHT_RELA/SHT_REL.
862 		 */
863 		if (sechdrs[i].sh_type == SHT_RELA)
864 			ret = arch_kexec_apply_relocations_add(pi->ehdr,
865 							       sechdrs, i);
866 		else if (sechdrs[i].sh_type == SHT_REL)
867 			ret = arch_kexec_apply_relocations(pi->ehdr,
868 							   sechdrs, i);
869 		if (ret)
870 			return ret;
871 	}
872 
873 	return 0;
874 }
875 
876 /* Load relocatable purgatory object and relocate it appropriately */
877 int kexec_load_purgatory(struct kimage *image, unsigned long min,
878 			 unsigned long max, int top_down,
879 			 unsigned long *load_addr)
880 {
881 	struct purgatory_info *pi = &image->purgatory_info;
882 	int ret;
883 
884 	if (kexec_purgatory_size <= 0)
885 		return -EINVAL;
886 
887 	if (kexec_purgatory_size < sizeof(Elf_Ehdr))
888 		return -ENOEXEC;
889 
890 	pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
891 
892 	if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
893 	    || pi->ehdr->e_type != ET_REL
894 	    || !elf_check_arch(pi->ehdr)
895 	    || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
896 		return -ENOEXEC;
897 
898 	if (pi->ehdr->e_shoff >= kexec_purgatory_size
899 	    || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
900 	    kexec_purgatory_size - pi->ehdr->e_shoff))
901 		return -ENOEXEC;
902 
903 	ret = __kexec_load_purgatory(image, min, max, top_down);
904 	if (ret)
905 		return ret;
906 
907 	ret = kexec_apply_relocations(image);
908 	if (ret)
909 		goto out;
910 
911 	*load_addr = pi->purgatory_load_addr;
912 	return 0;
913 out:
914 	vfree(pi->sechdrs);
915 	pi->sechdrs = NULL;
916 
917 	vfree(pi->purgatory_buf);
918 	pi->purgatory_buf = NULL;
919 	return ret;
920 }
921 
922 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
923 					    const char *name)
924 {
925 	Elf_Sym *syms;
926 	Elf_Shdr *sechdrs;
927 	Elf_Ehdr *ehdr;
928 	int i, k;
929 	const char *strtab;
930 
931 	if (!pi->sechdrs || !pi->ehdr)
932 		return NULL;
933 
934 	sechdrs = pi->sechdrs;
935 	ehdr = pi->ehdr;
936 
937 	for (i = 0; i < ehdr->e_shnum; i++) {
938 		if (sechdrs[i].sh_type != SHT_SYMTAB)
939 			continue;
940 
941 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
942 			/* Invalid strtab section number */
943 			continue;
944 		strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
945 		syms = (Elf_Sym *)sechdrs[i].sh_offset;
946 
947 		/* Go through symbols for a match */
948 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
949 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
950 				continue;
951 
952 			if (strcmp(strtab + syms[k].st_name, name) != 0)
953 				continue;
954 
955 			if (syms[k].st_shndx == SHN_UNDEF ||
956 			    syms[k].st_shndx >= ehdr->e_shnum) {
957 				pr_debug("Symbol: %s has bad section index %d.\n",
958 						name, syms[k].st_shndx);
959 				return NULL;
960 			}
961 
962 			/* Found the symbol we are looking for */
963 			return &syms[k];
964 		}
965 	}
966 
967 	return NULL;
968 }
969 
970 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
971 {
972 	struct purgatory_info *pi = &image->purgatory_info;
973 	Elf_Sym *sym;
974 	Elf_Shdr *sechdr;
975 
976 	sym = kexec_purgatory_find_symbol(pi, name);
977 	if (!sym)
978 		return ERR_PTR(-EINVAL);
979 
980 	sechdr = &pi->sechdrs[sym->st_shndx];
981 
982 	/*
983 	 * Returns the address where symbol will finally be loaded after
984 	 * kexec_load_segment()
985 	 */
986 	return (void *)(sechdr->sh_addr + sym->st_value);
987 }
988 
989 /*
990  * Get or set value of a symbol. If "get_value" is true, symbol value is
991  * returned in buf otherwise symbol value is set based on value in buf.
992  */
993 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
994 				   void *buf, unsigned int size, bool get_value)
995 {
996 	Elf_Sym *sym;
997 	Elf_Shdr *sechdrs;
998 	struct purgatory_info *pi = &image->purgatory_info;
999 	char *sym_buf;
1000 
1001 	sym = kexec_purgatory_find_symbol(pi, name);
1002 	if (!sym)
1003 		return -EINVAL;
1004 
1005 	if (sym->st_size != size) {
1006 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1007 		       name, (unsigned long)sym->st_size, size);
1008 		return -EINVAL;
1009 	}
1010 
1011 	sechdrs = pi->sechdrs;
1012 
1013 	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1014 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1015 		       get_value ? "get" : "set");
1016 		return -EINVAL;
1017 	}
1018 
1019 	sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1020 					sym->st_value;
1021 
1022 	if (get_value)
1023 		memcpy((void *)buf, sym_buf, size);
1024 	else
1025 		memcpy((void *)sym_buf, buf, size);
1026 
1027 	return 0;
1028 }
1029